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ABSTRACT Raman spectroscopy (RS) is a label-free molecular vibrational spectroscopy technique that
is able to identify the molecular fingerprint of various samples making use of the inelastic scattering of
monochromatic light. Because of its advantages of non-destructive and accurate detection, RS is finding
more and more use for benign and malignant tissues, tumor differentiation, tumor subtype classification,
and section pathology diagnosis, operating either in vivo or in vitro. However, the high specificity of RS
comes at a cost. The acquisition rate is low, depth information cannot be directly accessed, and the sampling
area is limited. Such limitations can be contained if data pre- and post-processing methods are combined
with current methods of Artificial Intelligence (AI), essentially, Machine Learning (ML) and Deep Learning
(DL). The latter is modifying the approach to cancer diagnosis currently used to automate many cancer
data analyses, and it has emerged as a promising option for improving healthcare accuracy and patient
outcomes by abiliting prediction diseases tools. In a very broad context, Artificial Intelligence applications
in oncology include risk assessment, early diagnosis, patient prognosis estimation, and treatment selection
based on deep knowledge. The application of autonomous methods to datasets generated by RS analysis of
benign and malignant tissues could make RS a rapid and stand-alone technique to help pathologists diagnose
cancer with very high accuracy. This review describes the current milestones achieved by applying AI-based
algorithms to RS analysis, grouped according to seven major types of cancers (Pancreatic, Breast, Skin,
Brain, Prostate, Ovarian and Oral cavity). Additionally, it provides a theoretical foundation to tackle both
present and forthcoming challenges in this domain. By exploring the current achievements and discussing
the relative methodologies, this review offers recapitulative insights on recent and ongoing efforts to position
RS as a rapid and effective cancer screening tool for pathologists. Accordingly, we aim to encourage future
research endeavors and to facilitate the realization of the full potential of RS and AI applications in cancer
grading.

INDEX TERMS Raman spectroscopy, cancer diagnosis, artificial intelligence, automated cancer diagnosis,
machine learning, deep learning, tumor classification.

I. INTRODUCTION
The development of effective approaches to deal with cancer
grading still remains one of the greatest challenges for pathol-
ogists [1]. Cancer is the leading cause of death in developed
countries, and the number of cases is expected to grow
as the population ages [2], [3]. Nowadays, many effective
treatments are available (e.g., radiotherapy, chemotherapy,
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and chemoradiation). The effectiveness of the aforemen-
tioned therapeutic approaches is positively correlated to
the low invasiveness, high speed and high accuracy of the
diagnostic approaches [4]. In this sense, well-established
approaches for cancer detection, such as Positron Emission
Tomography (PET) or Computed Tomography (CT) show the
drawback of employing ionizing radiation, a potential source
of risk for the patient’s health. On the other hand, Magnetic
Resonance Imaging (MRI) cannot be employed on patients
with metallic devices permanently implanted within the body,
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due to the strong magnetic fields required. Furthermore, the
frequent use of contrast liquids in combination with these
techniques turns out to be a possible source of side effects,
such as allergic reactions. Finally, ultrasound tomography
exhibits good performance in detecting some types of tumor
masses, but unfortunately produces images at low resolution.
In recent years, novel and promising diagnostic approaches
based on targeting cancer-related chemical compounds with
so-called anti-cancer bioactive peptides (ACPs) have been
developed. These molecules found several applications,
either in tissue imaging, or as markers of cancer-related
substances. Among them, we mention cACP [5], cACP-
2LFS [6], iACP-GAEnsC [7], cACP-DeepGram [5], AIPs-
SnTCN [8] and pAtbP-EnC [9]. Despite the advantages of
ACPs in terms of rapid tissue uptake or rapid body release,
future challenges will be represented by the high large-scale
production cost and possible interference with the human
immune system [10].

Optical diagnostic techniques represent a powerful, non-
invasive, and cost-effective alternative to the approaches
mentioned above. In particular, Fourier Transform Infrared
spectroscopy exploits light absorption in the infrared spectral
region to retrieve information about the molecular com-
position of a material [11]. However, the strong infrared
absorption of water with consequent sample heating limits
the use of this approach, especially for in vivo applications.
Fluorescence spectroscopy exploits fluorescence to retrieve
molecular information [12], [13]. Despite the wealth of fields
of application [14], [15], [16], fluorescence spectroscopy
often requires difficult and time-consuming staining proce-
dures, aimed at increasing the fluorescence signal of the
sample under investigation. Furthermore, fluorescence is
accompanied by non-radiative relaxation processes respon-
sible for the thermal damage of the sample and/or the
progressive inactivation of the fluorescent emitters, with a
consequent decrease of the fluorescence signal.

RS is a widely studied optical diagnostic technique that
exploits the Raman effect [17] to identify molecule-specific
vibrational states of the sample of interest [18]. The strong
sensitivity of RS to the meolecular groups originating the
Raman effect makes this approach capable of retrieving
information about the chemical composition of several types
of materials in a label-free and nondestructive fashion [19].
As well as for cancer diagnosis [19], [20], [21], [22],
[23], this technique is already being employed in several
clinical settings, for instance to analyze bacteria [24], [25],
viruses [26], fungal infections in blood [27] and blood
vessels conditions [28] but also skin and tissue damages as
in the case of burns categorization [29]. Additionally, the
non-destructive nature of RS makes it particularly suitable
for the healthcare sector. For instance, it is experimentally
reported in [22] that multiple RS applications with fixed
laser and location parameters produced independent spectra
without producing differences or damages in the analyzed
tissue, thus highlighting the non-invasiveness property of the
technique.

Traditionally, biopsy has been the standard methodology
for the pathological diagnosis of cancerous tissues. However,
this technique typically involves tissue sectioning and stain-
ing, while requiring pathologists with specialized training in
order to interpret tissue samples [30]. The RS analysis can
instead be applied directly to cancerous tissues to obtain the
corresponding chemical composition, from which multiple
information and patterns can be extracted and then employed
to conduct a precise and fast analysis of the disease. In fact,
improvements in the categorization method accuracy can
lead to reductions in analysis costs, diagnostic delays, test
pervasiveness, and the development of new technologies and
software to support healthcare practitioners.

A very important limitation of RS imaging has always
been its intrinsically low acquisition speed. The collection
of RS images with lateral resolution between 10 and 20 µm
(i.e. from 2500 to 10,000 spectra per mm2) usually takes
between 40 min to > 20 h/mm2 (considering an acquisition
time of 1 s per spectrum) due to the intrinsically weak signal
generated by RS. Since histological samples are typically
between 30 mm2 and 1 cm2 in size (reaching millions of
spectra), diagnosis of entire tissue specimens, with a spatial
resolution almost two orders of magnitude worse than that
achievable by staining tissues with Hematoxylin and Eosin
(H&E), as traditionally made by pathologists, would require
many hours or even days. This is surely not compatible with
intra-operatory diagnosis (total time from 30 to 120 min
depending on the type of tumor) and still far from standard
diagnostic procedures considering that the current protocols
to obtain H&E-stained slices from the excised sample
usually take 12–72 h [31]. Currently, RS cannot be used
as a unique diagnostic approach without the intervention
of pathologists. Some strategies have been suggested to
circumvent the low speed of imaging procedures without
necessarily increasing the acquisition speed or changing the
acquisition modality [32], [33], [34]. These strategies, which
are the focus of the present review, are used to combine RS
with AI in order to accelerate diagnosis by data mining of
spectral data.

The last decade saw a significant increase in the availability
of data resources, as well as new, more effective, and efficient
AI-based techniques. With the fast progress of computer
science, several conventional study domains have been
transformed by novel techniques, but numerous challenges
remain in order to successfully integrate AI in clinical
oncology [2]. In the remaining of themanuscript, withMLwe
consider the set of shallow learning techniques of Machine
Learning, excluding the deep model ones, while with DL
we refer to the subfield of ML that employs deep neural
networks as learning techniques. Because ML and DL are
applicable to many heterogeneous types of data, ranging from
3D medical images [35] to 1D signals, the implementation
of tailored AI-based models can be particularly useful for
data pre-processing and data modeling of Raman spectra.
Generally, the automated analysis of RS data can be divided
into two main steps: data pre-processing and data modeling.
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The first procedure allows for the identification of patterns
in the data that are not immediately detectable in the
original feature space. For example, commonly employed
techniques are wavenumber calibration, baseline or spike
corrections, smoothing, noise removal, and more [36], [37],
[38]. Regarding data modeling, several ML and DL models
can be applied for the automated analysis of RS data.
For instance, discriminant analysis, support vector machines
(SVM), pre-trained neural networks, and other techniques are
often used for classification tasks because they provide high
accuracy and good generalization capabilities. A thorough
discussion of the most promising approaches can be found
in the next chapters.

In particular, our goal is to provide a concise yet
informative summary of recent techniques utilized in the
literature, with an emphasis on the most recent ML and DL
techniques applied to RS data from both methodological
and application aspects. Concerning the past reviews in
the same field, our work stands out due to its exclusive
attention to recent literature and the systematic categorization
of results according to various types of tumors, as described
in Section III. We will focus individually on each research
work, and the overall analysis will be accompanied by a
theoretical overview of the main RS and AI methodologies
encountered. This approach will equip readers with the
essential knowledge that is useful to test, improve, and
advance implementations in this field.

The rest of the manuscript is organized as follows: In
Section II a brief summary of recent reviews is provided.
Then, the criteria for collecting and selecting relevant
material from the publicly available resources are addressed
in Section III, complemented by the methodology employed
to compose this review. A comparison table 1 is presented
hereafter, wherein the selected articles are systematically
compared based on a set of salient parameters.

To understand the primary methodologies that can be
encountered in the results, the fundamental steps associated
with RS and the principles of ML theory are discussed in
Section IV. In Section VI we present the results by summa-
rizing and discussing all the selected publications according
to seven major cancer categories. Finally, Section VII-B
discusses our conclusive remarks and future perspectives on
this field of study.

II. RELATED WORKS
With the advancement of technology, artificial intelligence
provides an unprecedented opportunity to extract precise
information from complex or large datasets in a variety
of academic disciplines. Thanks to the flexibility of the
RS technique, several ML and DL approaches have been
utilized in the literature for the analysis of Raman spectra
obtained from chemical structures, leading to successful
classification, detection, and predictive systems. In particular,
for the medical field, several reviews have been published in
recent years concerning different characteristics and aspects
of AI-based methodologies.

In the 2022 review of Luo et al. [36] typical algorithms
used for the analysis of Raman spectra are described,
with a focus on the DL models implemented in the field.
In addition, the latter presents the recent applications for
RS, with an emphasis on data pre-processing, classification,
regression, and spectral data highlighting. The DL capa-
bilities are outlined, describing the possibility of skipping
feature extraction, data modeling, and pre-processing by
implementing a single neural network model to obtain
the correct analysis. In conclusion, model training and
preprocessing are discussed as the major problems in the
field.

Another literature review was conducted in 2022 by
Blake et al. [37], to determine the most recent ML techniques
used to classify malignant neoplasies while exploiting Raman
spectral data. They discovered that DL models usually
outperform their traditional ML comparisons, although a
variety of methodological issues may have contributed to
an overestimation of performance. In particular, the main
issues demonstrated were small sample sizes as well as poor
sampling and validation procedures. Following a theoretical
discussion, several suggestions are provided as a guideline for
future efforts.

Lussier et al. [39] focus on the analysis techniques
for Raman and surface-enhanced Raman scattering (SERS)
effect, as well as the ML methods for extracting chemical
information from the resulting data. The review, written in
2020, discusses the principal ML techniques and procedures
applied to the four most prevalent RS applications: food
and beverage, forensics, bacteria and viruses, and medical
diagnostics.

Pan et al. [40] published in 2021 a review that describes
AI methods paired with RS to determine the composition of
substances. With an emphasis on the sectors of chemicals,
food, medicine, and medical diagnostics, they provide an
overview of the most commonly used RS preprocessing and
classification techniques.

The present study focuses on the examination of the most
recent ML techniques employed in the analysis of Raman
spectra extracted from oncological tissues, as documented
in the existing literature. Building upon previous literature
reviews, our analysis is centered on a critical evaluation of
the multidisciplinary approaches involved in the combination
of RS and AI to perform cancer grading and classification,
to provide both a theoretical and practical overview. Ongoing
research in the field has yielded a steady stream of results,
and the most recent findings have been prioritized in the
article selection process. The next section will elaborate on
the methodology that was adopted to give a comprehensive
and detailed overview of the present state of the art.

III. METHODS
As mentioned, this article will provide an extensive review
of studies that have used RS in conjunction with ML or
DL techniques to investigate cancerous tissues. A minimum
impact factor of 2 was chosen as a criterion for article
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FIGURE 1. The flowchart outlines the systematic process for selecting relevant literature, focusing on the number of studies (n) involved. The main
sources utilized for initial article collection are presented in the first row. The second row illustrates the filtration process based on the defined
methodology. Finally, the last row displays the total number of selected papers, categorized by the type of tumor under consideration.

selection to eliminate publications of inferior quality. In addi-
tion, to maintain a clinical perspective and investigate the
potential applications of spectroscopy in a clinical setting,
this review considered studies with more than 10 participants
to be appropriate, and priority was given to more recent
research findings over older ones. This study focuses on
several types ofmalignant tumors, including those originating
in the pancreas, the skin, the breast, the brain, the prostate, the
ovarian, and the oral cavity, each with its unique properties
and characteristics. This is by no means an exhaustive list of
all potential medical applications of RS; rather, it is meant to
illustrate the breadth of potential diagnostic scenarios and the
similarity or diversity of potential automated analyses within
them.

The main portals used to find the most suitable articles
are the Google Scholar and PubMed websites, and the paper
selection is also based on the similarities between the chosen
article and other relevant papers cited within it, as determined
by the Connected Papers [41] website.

The keywords used for the article search are ‘‘deep
learning’’, ‘‘machine learning’’, ‘‘Raman spectroscopy’’,
‘‘in vivo’’ (preferred when available from the ‘‘ex vivo’’ one),
together with an identifier of the specific tumor considered
(‘‘pancreatic cancer’’, ‘‘skin cancer’’, ‘‘breast cancer’’,

‘‘brain cancer’’, ‘‘prostate cancer’’, ‘‘ovarian cancer’’ and
‘‘oral cancer’’). A selection was made from the thousands
of results obtained for each type of tumor based on the title,
abstract, and date of publication. A total of 54 articles were
selected from the filtered results as the most representative of
recent discoveries in the specified categories. Furthermore,
a medical viewpoint on each tumor is presented to further
emphasize the importance of vibrational spectroscopic meth-
ods in healthcare systems. Finally, we present an overview
of AI approaches in the context of RS, emphasizing the
necessity of applying such technologies in a clinical setting.
With these methodologies, this research aims to inform the
future development of a cost-effective, efficient, and rapid
diagnostic instrument.

IV. RAMAN SPECTROSCOPY
A. BASICS
When a beam of photons impinges on an isolated molecule
or a bulk material, several physical processes can occur,
which can be classified into two categories: light absorption
and light scattering [98]. In the first case, if the energy of
the incoming photons matches the difference between two
electronic energy levels of the molecule, the electrons occu-
pying the lowest level can absorb the photons, undergoing
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TABLE 1. Summary of key studies employed in this review for AI-assisted Raman spectroscopy analysis in oncological applications.
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TABLE 1. (Continued.) Summary of key studies employed in this review for AI-assisted Raman spectroscopy analysis in oncological applications.
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TABLE 1. (Continued.) Summary of key studies employed in this review for AI-assisted Raman spectroscopy analysis in oncological applications.

an electronic transition. After light absorption, the irradiated
target can relax by emitting energy through several radiative
or non-radiativemechanisms, within time scales ranging from
nanoseconds to milliseconds. In the second case, the light
scattering is usually described as the interaction between the
incoming photons and short-lived virtual states [99], i. e.
not well-defined energy states of the molecule [100]. With
respect to light absorption, light scattering processes occur
within far smaller time scales, ranging between hundreds
and thousands of femtoseconds. In addition, the most part of
the scattered photons usually has the same frequency as the
incident photons. The corresponding physical mechanism is
referred to as Rayleigh scattering. The other scattered photons
can have frequencies smaller or larger than the frequencies
of the incoming photons. In the first case, the corresponding
phenomenon is called Stokes scattering, while in the second
case, it is defined as anti-Stokes scattering [101]. Stokes and
anti-Stokes scattering can be included within the so-called
Raman effect, observed for the first time by Raman et al.
in 1928 [17].
The aspect that makes the Raman effect interesting for

the assessment of the molecular properties of materials

is represented by the fact that the difference between the
frequency ν of the scattered and the frequency νex of the
incident photons is intimately correlated with the molecular
vibrational motions of the irradiated material. Since these
oscillations depend on the chemical nature of the atoms and
of the bonds between them, the Raman effect turns out to
be a potential source of information about the molecular
properties of the substance under investigation.

The Raman effect is the physical phenomenon on the basis
of RS. In a generic RS apparatus, the intensity of the scattered
light is recorded as a function of |ν − νex | or other related
quantities, resulting in a Raman spectrum. In particular, the
Raman signal is often reported as a function of the so-called
wavenumber k , defined as

k =
2π |ν − νex |

c
, (1)

where c represents the speed of light in vacuum. In Fig. 3
a typical Raman spectrum of a biological sample in the
spectral range of wave numbers between 400 and 3400 cm−1

is shown. The Raman signal observed at specific intervals,
or bands, in the wave number domain, is proportional to the
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FIGURE 2. Schematic diagram illustrating the electronic levels involving Stokes, Rayleigh and Anti-Stokes scattering and
corresponding representative Raman spectra.

FIGURE 3. Example of a Raman spectrum of a biological sample, highlighting characteristic Raman bands and the related molecular assigment.

concentration of specific molecular groups. In particular, the
main Raman bands of interest in biology are highlighted in
Fig. 3 as numbered shaded areas.

B. CONFOCAL RAMAN MICROSCOPY (CRM)
Despite the aforementioned strengths, the Raman effect
suffers from some drawbacks.

First of all, the Raman signal is usually very weak.
In particular, Raman scattering is characterized by cross
sections up to five orders of magnitude smaller than for
fluorescence emission [102]. Therefore, if the sample under

investigation is fluorescent, the contribution of fluorescence
to the measured signal can mask the Raman component.
Since fluorescence is usually observed at low wavelengths,
a possible strategy to minimize fluorescence emission could
be represented by the use of infrared light sources. However,
the use of infrared light is not always possible, e.g., when
the sample of interest is highly transparent within this
spectral region. Furthermore, the classical theory of the
Raman effect predicts that the intensity of the Raman
signal is roughly proportional to the fourth power of the
frequency of the incident photons. Therefore, the intensity
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of the Raman signal is expected to be low in the infrared
spectrum.

In addition, for several applications [103], [104], [105],
high spatial resolutions are required in order to detect spatial
variations of the Raman signal over length scales compatible
with biological structures relevant for several biological
processes of interest. Due to light diffraction, conventional
optical microscopes do not allow to reach such resolving
powers, thus affecting their ability to concentrate the light
into small spatial volumes. Confocal Microscopy answers the
aforementioned needs.

As shown in Fig. 4 (a), in a conventional optical
microscope, light is focused in a relatively large ellipsoidal
volume. Therefore, the light collected by the objective
contains contributions coming from a relatively thick layer
of material around the theoretical focal plane. As a result,
the recorded image appears blurry. Unlike the conventional
optical microscope, in a confocal setup (see Fig. 4 (b)),
the focal volume is far smaller, reaching sizes of 0.25 µm
along the direction perpendicular to the optical axis and
0.5 µm along the optical axis [106]. This property results in
the suppression of out-of-focus components in the recorded
signal and in an increase of contrast and sensitivity. The
most peculiar feature responsible for the aforementioned
suppression of out-of-focus light is represented by the
combination of two spatial filters. As shown in the scheme
in Fig. 4 (c), a first spatial filter has the function to suppress
the out-of-focus components of the incident light and it
is located in the focus of the condenser lens. A second
spatial filter is then placed in the focus of the objective,
cutting the out-of-focus components of the scattered light.
One of themost widespread confocal apparatus is represented
by the Minsky’s configuration (see Fig. 4 (d)), where a single
spatial filter, called pinhole, performs the function of both the
aforementioned spatial filters.

As mentioned before, confocal apparatus allows to record
the optical information related to a thin layer of material
in the neighborhood of the theoretical focal plane. In the
Confocal Laser Scanning optical Microscopes (CLSM), the
focal volume can be translated along the three directions.
This aspect allows to record three-dimensional optical maps,
where each pixel corresponds to a single Raman spectrum.

Despite the aforementioned qualities, in several cases
CRM is not sufficient to reach adequate Raman signal-to-
noise ratios, especially in case of low concentrations of the
Raman active molecules or poor Raman scatterers [107].
In this sense, SERS has been introduced to fix this issue.
The physico-chemical nature of SERS is still an object
of debate. SERS is an effect traditionally attributable to
two distinct pictures [108], [109], [110], [111]. First of
all, the theory called Electromagnetic Enhancement (EE)
attributes SERS to a local enhancement in the electric field,
induced by the presence of collective oscillations of the
conducting electrons in the metal. In case of matching
between the frequency of the radiation and the frequency
of the aforementioned electronic oscillations, an excitation

phenomenon called Surface Plasmon Resonance (SPR)
occurs. In case of Localized Surface Plasmon Resonance
(LSPR), i. e. stationary electronic oscillations, the local
electric field Eloc generated by the corresponding charge
distribution is larger in magnitude than the incident electric
field. In particular, this increase in magnitude is usually
quantified in terms of the so-called enhancement factor0ex =∣∣Eloc(νex )
Eex (νex )

∣∣2, where Eex and νex are the magnitude and the
frequency of the incident electric field, respectively. Such an
enhanced local electromagnetic field can be further increased
by the presence of dipoles or quadrupoles in proximity of
the metallic surface. In fact, in presence of an enhanced
electromagnetic field, such molecules typically increase
their dipole moment. The resulting electromagnetic field
generated by the Raman scattering of such molecules further
contributes to the LSPR in a mutual excitation process. The
corresponding enhancement factor is thus represented by
0Raman =

∣∣Eloc(ν)
Eex (ν)

∣∣2, where ν is the frequency of the Raman
electromagnetic field. If ν ∼ νex , i.e., when the Raman-active
molecules are characterized by vibrational modes of low
frequency, the total enhancement factor 0tot can be written
as

0tot = 0Raman0ex ∼

∣∣∣∣Eloc(ν)E0(ν)

∣∣∣∣4 (2)

Another theory about the origin of SERS is referred to as
Chemical Enhancement (CE). This model leads SERS back
to the modification of the molecular polarizability induced by
chemical mechanisms.

Since the contribution of EE is usually between two and
six orders of magnitude larger than CE, this last effect is often
considered negligible [102].

In cancer diagnosis, SERS is often realized by exploiting
the field enhancement effect in the proximity of metallic
nanoparticles. By properly choosing the metal and at
appropriate concentrations of such nanoparticles it is possible
to increase sensitively the Raman signal-to-noise ratio even
at low concentrations of the Raman-active biomarkers. This
makes the technique particularly suitable for liquid biopsies,
such as saliva, blood, urine, etc., offering the advantage of
being collected in a non-invasive manner.

Another common Raman-based approach adopted to
increase the signal-to-noise ratio is the so-called Coherent
Raman Scattering [112].

In the classical picture of the Raman effect, the illuminated
molecular target is represented as an electric dipole, under
the effect of a monochromatic electric field of frequency
νex . In adiabatic conditions, i. e. when electronic and
nuclear vibrations can be considered decoupled, the dipole
oscillates at the same frequency of the incident electric field.
On the other hand, if a coupling between the nuclear and
the electronic vibrations occurs, the dipole oscillates at a
frequency νvib− νex , where νvib is a characteristic vibrational
frequency of the molecular target. In Coherence Raman
spectroscopy, the Raman effect is induced by irradiating
the molecular target with two laser beams corresponding to
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FIGURE 4. (a) Schematic representation of the focal volume in a conventional optical microscope; (b) Schematic
representation of the focal volume in a confocal microscope; (c) Scheme of a generic confocal microscope,
highlighting the two spatial filters; (d) Schematic representation of a confocal microscope in the Minsky’s
configuration.

the monochromatic electric fields Eex = Êexe−2π iνex t and
Es = Êse−2π iνest . In this case, the classical theory predicts
this expression for the induced oscillating dipole µCoherent (t)
as a function of time t:

µCoherent (t)

= Êex Ê∗
s

(
δα

δq

)2

0
f (N )q0e−2π iNt [Eex(t) + Es(t)] + c.c.,

(3)

where N = νex − νs and
(

δα
δq

)
0 is the functional derivative

of the electronic polarizability with respect to the nuclear
coordinates q, calculated at the equilibrium configuration q0.
First of all, the factor f (N ) is maximized when N ∼ νvib.
In addition, the presence of the electric fields Eex(t) and Es(t)
produces four contributions at frequencies νex±N and νs±N .
In particular, the scattering radiation emitted at frequency
νex + N corresponds to the so-called Coherent Anti-Stokes
Raman Scattering (CARS).

The use of two laser beams of different frequencies in
CARS is mainly justified by the resulting phase correlation of
the molecules that constitute the sample. This feature results
in a much higher signal in comparison to the Spontaneous
Raman effect. In addition, this coherent Raman emission is
strongly directional and therefore, easily collected by placing
the detector in the forward direction.

C. APPLICATIONS OF COHERENT ANTI-STOKES RAMAN
SCATTERING IN CANCER DETECTION
One of the most frequent applications of CARS in the cancer
research regards the monitoring of liquid droplets in cells.
In fact, the study of the distribution and of the temporal
evolution of such cellular structures is considered a relevant
marker to assess the progression of tumors. In particular,
the high concentration of hydrocarbon functional groups
characterizing the lipid droplets makes them particularly
sensitive to Raman-based approaches, in particular to CARS.

Only to cite few examples, Weng et al. [113] employed
CARS for the DL-assisted recoginition of healthy and
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cancerous lung tissues. The authors observed an increased
capability of pre-trained neural network in recognizing
cellular structures by CARS experimental data, such as
lipid droplets. Galli et al. [114] succeded to resolve lipid
droplets in a cancerous brain tissue subject to necrosis after
chemotherapy treatment.

Another interesting application of CARS in the study
of cancer regards the treatment of tissue images, aimed at
enhancing the contrast between relevant structures. This field
of research could constitute a valid support to pathologists in
the qualitative observation of biopsies, complementary to the
common practice, based on the staining with Hematoxylin
and Eosin. Furthermore, the inherent confocality of CARS
allows to put in evidence characteristic phenomena with
high spatial resolution. For example McCullagh et al. [115]
employed a CARS based apparatus to asses the changes in the
concentration of myeline in mice and gerbils brain tissues.
The high spatial resolution allowed to distinguish myelin
from the Nissl bodies. Petrov et al. [116] coupled CARS
with hierarchical clustering ML model for the individuation
of tissues microcalcifications associated to breast cancer.

D. MATERIALS
When RS is performed directly on tissues, fixation could
represent an useful and practical solution to preserve the
state of the tissue and to store it for long periods of time.
In this sense, Formalin Fixing and Paraffin Embedding
representes a widespread protocol for the tissue fixation.
In this case, the tissue is immersed in aqueous formalin
solution. This procedure preserves some lipid molecules
through chemical reactions with the double bonds of unsatu-
rated hydrocarbons. Furthermore, the primary and secondary
amine groups of proteins are cross-linked, thus resulting
in protein fixation [117]. The tissue is than immersed in
acquueous solutions of ethanol of increasing concentrations,
with the aim of replacing water with the ethanol itself. This
operation could determine the coagulation of the proteins of
cytoplasm and consequent degradation of organelles. This
technique has an additional drawback of being aggressive for
some lipid molecules, not preserved in the aforementioned
formalin treatment. After these steps, ethanol is removed and
substitute by an organic solvent, e. g. xylene, by immersing
the sample the solvent itself. The sample is then immersed in
liquid paraffin and left at room temperature until complete
paraffin solidification. The sample is then ready to be cut
in micrometric sections for the following analysis. The
main drawback of this technique is represented by possible
chemical alterations of proteins attributable to formalin
and to the Raman activity of paraffin in spectral intervals
overlapped to the bands of interest in biology. This last
drawback can be limited by employing specific solvents to
remove paraffin. However, such de-waxing procedure could
decrease the concentration of lipids, often considered target
molecules for cancer diagnosis [118]. Alternatively, another
route is represented by the removal of the formalin peaks
within the post-processing of the Raman spectra, suitable

when the paraffin signal doesn’t dominate significantly over
the contribution of the sample itself. For these reason, the
employment of snap-frozen fresh tissues is often preferred,
especially for the study of soluble lipids and/or enzymes.
This process is carried out in isopentane, previously cooled
in liquid nitrogen. The rapid cooling prevents the formation
of relatively large crystals of ice, responsible for the damage
of the tissues. The result of this procedure is a frozen tissue
that can be cutted in sections for the following investigations.

Besides the choice of the type of sample and or the
protocol to properly treat it, the choice of the substrate
represents another crucial factor. In particular, the glass slides
commonly employed in microscopy represent a low-cost
solution, with the drawback of a strong contribution to the
measured signal due to the fluorescence of the substrate itself.
This behavior limits the probing of the Raman effect in the
infrared spectrum. Calcium Fluoride (CaF2) or Magnesium
Fluoride (MgF2) substrates represent a more expensive but
effective solution to suppress the background contribution.

Several types of tumors, either solid or not, show evident
symptoms only when they are at a late stage. For this
reason, the employment of diagnostic methods based on
liquid biopsies, e. g. blood, saliva, urine, seminal fluid etc.
could potentially represent a non-invasive and effective route
towards the early-stage screening of cancer. In this case, the
Raman measurement can be performed with a liquid samples
as-is through an immersion objective or by keeping the liquid
in amicrofluidic device. Another option could be represented
by drying a droplet of liquid previously deposited on a
substrate. The resulting coffee-ring effect [119] determines an
increase of the concentration of the Raman-ective molecules
at the margins of the droplet, with a consequent increase of
the signal-to-noise ratio.

Another option to enhance the Raman signal is represented
by the use of SERS. In this case, the liquid sample is placed
incontact with a substrate, mainly represented by gold or
silver nanoparticles of diameters typically ranging between
10 and 150 nm.

V. MACHINE AND DEEP LEARNING
In recent years, the escalating need to analyze and com-
prehend complex patterns within diverse datasets has led
to a spike in interest in the fields of ML and DL, two
major domains of AI. While their roots trace back to the
mid-20th century, it wasn’t until the 1980s and 1990s that
ML potentialities were identified and started to grow [120].
In particular, DL is a younger subfield of ML that appeared in
the early 2000s, and focuses on a specific ML methodology.
Despite their widespread acceptance and the fact that they
share numerous similarities, such as the extensive use of data,
it is important to note that there are several fundamental
distinctions between the two.

ML is a branch of AI that mainly involves the development
of algorithms capable of learning from input distributions
and making predictions based on them. These algorithms are
usually designed to acquire implicit knowledge by exploit-
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ing large quantities of information. There are two major
categories of ML algorithms: supervised and unsupervised.
In supervised learning, the objective is to learn a mapping
between the input and output variables. The model is trained
using labeled data, where the correct output is known.
On the other hand, unsupervised learning involves training
the model on unlabeled data with the aim of understanding
its underlying structure. For instance, it can be used for
clustering, the generation of new data, or to reduce the
dimensionality of the input.

DL, a subfield of ML, leverages the use of neural networks
to acquire accurate knowledge about data representations
by introducing multiple linear transformations. At its core,
DL relies on the neural network model, a mathematical
structure loosely inspired by the biological neural net-
work. These networks are built to perform a sequence
of mathematical approximations on input data, estimating
desired results from potentially any kind of distribution.
In the medical field, ML and DL are especially helpful
because of their capacity to handle massive amounts of
complex data with low inference time, building hierarchies
of features that capture underlying data relations. Notably,
DL has demonstrated exceptional promise in the automated
analysis and interpretation of medical images such as X-rays,
CT scans, and MRI scans [121], [122], [123].

After the raw data collection procedure, described in the
previous section, the fundamental steps involved in learning
procedures are the data preprocessing, the model selection,
and the model evaluation. The next section will briefly
describe these operations.

A. DATA PREPROCESSING
The effective use of ML and DL models with real-world
data requires tackling several technical challenges. In the
case of RS applications, it is common to deal with potential
artifacts, such as background fluorescence noise. These
artifacts can adversely affect the learning process, compro-
mising the model’s precision. To address these challenges,
ML models require the use of data preprocessing techniques.
This involves transforming the raw Raman spectra, which
may suffer from incompleteness, inconsistencies, a lack of
discernible patterns, and human errors, into more under-
standable and practical formats. The preprocessing of RS
typically includes multiple stages, including but not limited
to dimensionality reduction, cosmic ray removal, signal
smoothing, and baseline subtraction. It is worth noting that,
in principle, it is possible to train NNs or CNNs directly on
raw data, with the preprocessing step implicitly performed
within the network layers. However, this approach may be
suboptimal due to constraints related to the quantity and
quality of the data. When explicitly performed, the process of
preparing data for analysis involves a number of sequential
stages, which we summarize into the following steps: data
cleaning and transformation, data augmentation, and data
reduction.

1) DATA CLEANING AND TRANSFORMATION
Preparing data for analysis often requires an important step
of cleaning, which includes procedures such as eliminating
outliers, correcting inconsistent data points, and smoothing
noisy data. In the RS case, because the Raman scattering
phenomenon is significantly less intense (by several orders of
magnitude) than fluorescence emission related to biological
tissues, the signal may exhibit a strong low-frequency noise
pattern. This noise pattern hinders the precise measurement
of spectral components, obscuring Raman signals. Therefore,
it is common to use correction algorithms before conducting
an analysis on the Raman spectrum [124].

Several practical strategies that involve hardwaremodifica-
tions, like shifted excitation and time gating, can be employed
to tackle this problem. Nevertheless, computational methods,
due to their affordability and simplicity of implementation,
have been widely utilized for baseline correction [125]. Such
correction techniques, including but not limited to Fourier
andWavelet transforms, polynomial fitting, first- and second-
order differentiation, and multiplicative signals [124] can
significantly improve the signal clarity and help to enhance
the signal-to-noise ratios. In addition, semi-automated pre-
processing of Raman spectral data, achieved through algo-
rithms like the Vancouver [125] or the Savitzky-Golay [126]
ones, can highlight relevant information and patterns for the
training phase while removing unnecessary details. These
algorithms could be considered a gold standard in the
field when looking at their widespread usage. Furthermore,
data transformation into a format compatible with ML or
DL algorithms enhances its effectiveness in data science
applications. Techniques such as rescaling, normalization,
merging, and discretization are employed to facilitate the
training process and improve overall accuracy.

2) DATA AUGMENTATION
There are several available strategies to generate synthetic
data that closely mirror the original data distribution. They
are usually applied to enhance the quantity and quality of
information that can be gathered from the dataset, increasing
the model’s generalization capabilities. For instance, starting
from a single sample, a sequence of modifications can be
applied to generate additional samples. This methodology is
widely used in the AI domain to meet the critical demand for
large quantities of data. In the realm of AI-driven RS analysis,
simple but effective data augmentation techniques include
a left-right shift of the spectra (up to a small shift value,
usually tuned accordingly to the relative type of spectra),
and a slight additive noise (e.g., sampled from a Gaussian
distribution with mean and variance proportional to the data
values) to generalize the input and mitigate low-magnitude
noise. Additionally, the process of augmentation can be
implemented concurrently with the training phase, thus
providing the model with samples that exhibit varying levels
of detail with each iteration. This dynamic augmentation
contributes to the model’s ability to generalize and handle
diverse inputs effectively.
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a: GENERATIVE ADVERSARIAL NETWORKS (GAN)
An interesting possibility is the generation of synthetic data
using GAN models [127]. These architectures are built
on the concept of competition between two concurrently
trained networks, a discriminator and a generator, with the
end goal of producing realistic samples. The generator is a
network that, given a known distribution as input, can produce
realistic samples sampling from a learned distribution.
At the same time, the discriminator is taught to differentiate
between authentic samples and generated ones using a binary
classification. While learning together, the generator seeks to
minimize the number of correctly classified samples (thus
improving the realism of the produced data), while the
discriminator aims to maximize it. It is significant to consider
that, due to the peculiarities of adversarial training (which is
prone to collapses and instabilities), the discriminator tends
to be smaller than the generator with respect to size and layer
depth.

3) DATA REDUCTION
This process commonly involves the implementation of
techniques for reducing dimensionality, such as PCA, PLS,
and LDA. By utilizing denser information during the training
process, potential noise patterns within the data can be elim-
inated, and the more significant features can be emphasized.
In this manner, the data, reduced in dimensionality and
complexity, can be given as input to the classification model.

a: PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a very popular methodology for reducing the
dimensionality of inputs in ML-based RS applications (see
tab. 1). Its objective is to enhance the interpretability of
data without losing its underlying information, as well as to
enable the representation of data with multiple dimensions
on a lower-dimensional space through eigenvalues and
eigenvectors analysis [128]. The process of reducing the
dimensionality of a given data set involves the transformation
of the data into another coordinate system. The newly
established coordinate system displays distinct features in
which the first axis, commonly referred to as the first
principal component, is capable of capturing the highest
degree of variance present in the data, with the following ones
capturing a decreasing degree of variance. Another important
PCA characteristic is the ability to mitigate the effects of
noise and redundancy. PCA can be utilized for a variety
of purposes, including but not limited to data reduction,
visualization, clustering, and feature extraction.

b: PARTIAL LEAST SQUARES (PLS)
PLS is an algorithm that is commonly used for dimensionality
reduction and regression purposes. It iteratively identifies
latent variables that capture the maximum covariance
between a set of predictors and a set of response variables.
It is particularly suitable when predictor variables are highly
correlated or higher in number than the response ones,

similarly to the PCA. After standardizing the variables,
the algorithm extracts components that explain as much of
the covariance as possible between response and predictor
variables and represent their directions in the data space.
In this manner, when generating a new component, the
objective differs from PCA, as it doesn’t prioritize achieving
the highest degree of variance. Instead, its goal is to maximize
the response variable predictability from a model. PLS
iteratively repeats this process until a specified number of
components or a satisfactory level of variance is reached.
In the case of a regression task, the final components are used
to build a predictive model, and the regression coefficients
obtained facilitate making predictions for new observations.

c: LINEAR DISCRIMINANT ANALYSIS (LDA)
LDA is a supervised learning algorithm used for classi-
fication, dimension reduction, and data visualization. It is
a technique used to find a linear combination of features
that best separates the classes in a dataset. The technique
operates by reducing the dimensionality of the data and
optimizing the distance between the categories. To do this,
a group of linear discriminants that refine the proportion
of between-class and within-class variances are identified.
Bymaximizing the distance between themeans of two classes
and minimizing the variance within the individual class,
it can be effectively used both as a dimensionality reduction
algorithm and as a classifier. Moreover, LDA is also known
as Normal Discriminant Analysis (NDA) or Discriminant
Function Analysis (DFA) and can be used alternatively (or,
if employed as a classifier, sequentially) after the PCA
application.

B. MODEL SELECTION
This section provides a catalog of the most frequently
employedML and DL techniques to analyze oncological data
obtained through the RS, with the aim of presenting a concise
theoretical outline for all the most important methodologies
encountered in this review. Each of the mentioned models has
been suggested as the best model in at least one of the studies
considered in the comparison table 1.

1) LINEAR REGRESSION (LR)
LR is a simple supervised learning technique exploited to
establish a statistical relationship between a dependent vari-
able and one or more independent variables. This algorithm
requires a linear correlation between these variables and is
commonly applied for regression analyses.

2) K-NEAREST NEIGHBORS (K-NN)
The K-NN algorithm [129] is a straightforward non-
parametric technique often used for classification and
regression tasks. Starting from a specific data point within
the dataset, it works by computing which class is the most
common among its k-nearest neighbors. The corresponding
class category is then assigned to the evaluated point. On the
other hand, the k-NN regression case instead evaluates the

54828 VOLUME 12, 2024



P. M. Conforti et al.: Raman Spectroscopy and AI Applications in Cancer Grading

average of the values of the k nearest neighbors and returns it
as the prediction value.

3) SUPPORT VECTOR MACHINES (SVM)
SVM [130] is a type of supervised learning algorithm that is
very frequently employed for both classification and regres-
sion tasks. The core idea behind SVM involves the creation of
a hyperplane that maximizes the margin, or distance, between
itself and the nearest elements of each class, commonly
referred to as support vectors. A regularization term denoted
as C is typically adjusted to balance the tradeoff between the
mentioned margin size and the tolerance for misclassification
The algorithm can also be applied to multiclass classification
scenarios by employing a one-on-one approach across all
classes, sequentially, to determine their respective categories.
With the SVM, it is also possible to effectively execute a
non-linear classification through an implicit mapping (with
the so-called kernel trick) of the inputs into a feature space
of higher dimensionality. In this way, the technique can
also be applied when dealing with data that is not linearly
separable. Several possible kernels are available for this
purpose, as shown in the table 1.

4) EXTREME GRADIENT BOOSTING (XGBOOST)
The XGboost algorithm [131] is a decision tree (DT)
based ML algorithm commonly used for classification
and regression and provided by the XGBoost open-source
software library. The DT is a popular non-parametric ML
algorithm employed to make inferences about a given
set of observations. It employs simple tree-like structures
known as classification (or regression) trees, in which leave
nodes represent class labels and branches represent feature
arrangements that lead to those class labels. An example
of a DT-based ensemble learning algorithm is Random
Forest, usually applied to simple classification and regression
tasks. Random Forest builds multiple decision trees on
randomly selected subsets of the training data and combines
their predictions to enhance overall accuracy. In contrast,
XGBoost follows an ensemble learning approach, using a
gradient-boosting framework to sequentially train multiple
decision trees while minimizing a specified loss function.
This approach often leads to superior accuracy and perfor-
mance compared to a single decision tree, although it comes
at the expense of some interpretability.

5) MULTI-LAYER PERCEPTRON (MLP) OR ARTIFICIAL
NEURAL NETWORK (ANN OR NN)
The MLP methodology draws inspiration from the structural
organization of the human brain [132] and involves a series of
layers composed of interconnected nodes, commonly referred
to as neurons. This approach interleaves layers of neurons,
which perform weighted sums of inputs, with non-linear
activation functions. By introducing non-linearities within the
system, the network gains the ability to model and capture
complex, non-linear relationships within the data. Complex

network structures can be constructed by adding multiple
layers with different shapes and operators, increasing the
overall number of neurons, and allowing the identification of
more intricate patterns within the input distribution.

6) CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN is a widely utilized ANN-based architecture [133]
for tasks such as classification, detection, or segmentation
of signals, images, and videos. CNNs are based on the
application of a convolutional operator within the network
layers to improve the extraction of spatial features from
the input data. This allows the model to learn hierarchical
representations of patterns while decreasing the number of
learnable parameters, therefore improving the training time
and reducing the likelihood of overfitting with respect to
a traditional ANN. Inside the CNN layers, multiple filters
are employed to extract relevant information from the input
data. A sequence of convolutional layers is capable of
achieving optimal performance thanks to the decomposition
of the initial information into meaningful and hierarchical
features. This enables CNNs to distinguish increasingly
complex patterns while processing the information through
the network. Additionally, to further generalize the learned
features, pooling and dropout layers are commonly employed
in this type of network. Through them, input spatial
dimensions are reduced by some criteria (e.g., maximum
value, mean value, random shutdown), making the network
more efficient and robust to small input perturbations.

7) LONG SHORT-TERM MEMORY (LSTM)
the LSTM [134] is a specialized type of recurrent neural
network extensively applied in sequence prediction and
classification tasks. In particular, a recurrent neural network
is a type of ANN designed to process sequential data thanks
to recurrent connections built within the network. These con-
nections enable the model to link with previously generated
predictions obtained from data already analyzed to capture
temporal or sequential information. This methodology faced
some issues with longer sequences, where the information
was not retained correctly by the network and was lost after
some time. This issue was overcome through the LSTM
model, in which knowledge of the past is maintained through
a special memory and gating mechanisms to selectively
forget or remember specific elements in the sequential data.
In this way, the architecture can effectively handle long-term
dependencies while retaining contextual information over
extended periods.

C. MODEL EVALUATION
As Raman-based early diagnosis in oncology is crucial due
to its potential impact on cancer treatments, it is fundamental
to use the appropriate model evaluation metrics, validate
them from various perspectives, and conduct investigations
that assess the model’s performance in real-world clinical
settings. This work will not cover potential human feedback
in the evaluation pipeline, but it is important to note that
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collaborating with human professionals with expertise in
the field is essential for a comprehensive evaluation of the
techniques.

The most common and traditional performance measure
for a model is the accuracy value. This metric evaluates the
overall reliability of the output of a model by determining the
number of correct predictions divided by the total number
of them. However, because it doesn’t differentiate or weigh
the specific types of data, it can be misleading when dealing
with unbalanced datasets. In medical diagnosis scenarios, for
example, class imbalances often occur due to data availability
and patient conditions, and a simple accuracy assessment
may hide significant weaknesses of the model, especially
when dealing with anomalies or rare cases. For instance,
a significantly higher number of non-disease cases may
obscure a rare disease. Moreover, accuracy does not take into
account that in a medical setting predicting as cancer a benign
tumor sample (false positive) is usually considered a less
severe error than classifying as benign tumor a cancer sample
(false negative). To deal with these problems, other types of
measures are commonly employed and available to support
an effective analysis, as can be seen in the performancemetric
column in Table 1.

The sensitivity, also called recall or true positive rate,
measures how effectively the model recognizes positive
cases. This metric estimates the proportion of accurately
predicted positive cases (true positives) in relation to the
total number of actual positive instances. A high level of
sensitivity demonstrates the model’s capacity to accurately
detect a majority of positive situations, thereby reducing the
occurrence of false negatives. High sensitivity ensures that
a medical-oriented model can find as many true positive
cases as possible, therefore reducing the chances of missing
a potentially serious condition.

Alongside sensitivity, the metric of specificity is com-
monly employed to assess the capability of a model to
accurately identify negative occurrences. It is defined as the
ratio of correctly predicted negative cases (true negatives)
in relation to the total number of actual negative instances.
A high level of specificity indicates that the model is success-
ful in minimizing the occurrence of false positives. A high
specificity value ensures that the model minimizes the risk
of incorrectly identifying a negative occurrence, contributing
to more reliable decision-making and for instance avoiding
unnecessary diagnostic procedures and treatments.

Among other possible performance measures, the Receiver
Operating Characteristic (ROC) curve and the Area Under the
Curve (AUC) [135] are two of the most frequent ones. These
metrics are used to evaluate the discriminatory capability of
a classification model in distinguishing between two distinct
categories, as described below:

The ROC curve demonstrates the model’s ability to
classify positive instances while simultaneously minimizing
the occurrence of false positives. The curve is a graphical
representation of the sensitivity (true positive rate) against the
specificity (false positive rate).

The AUC is a quantitative metric commonly used in ML
applications [136], frequently in conjunction with the ROC
curve, representing the region beneath it. A higher AUC
value indicates superior performance in classifying instances,
while a low value indicates poorer model performance. Fun-
damentally, AUC metric measures the overall performance
of the model across different threshold values. For example,
an AUC value of 0.5 implies that the model’s performance is
equivalent to random chance. On the contrary, an AUC equal
to 1.0 means a classifier that is flawless. Hence, a greater
AUC indicates optimal classification performance, while
the ROC curve visually illustrates the model’s effectiveness
across various sensitivity and specificity trade-offs.

Although the described metrics offer meaningful insight
into the performance of a model, it is important to acknowl-
edge that they may not provide a comprehensive repre-
sentation of the model’s capability to generalize the input
distribution properly. Validation approaches are a helpful
addition to these measures, assessing how well a model
can generalize to previously unseen data and its consistency
in real-world scenarios. Selecting an appropriate validation
strategy, considering factors such as the data characteristics,
model complexity, and validation criteria is fundamental for
evaluating the performance and generalization capabilities of
both ML and DL models. These techniques can support the
model design and development process to avoid issues such
as overfitting or underfitting and address challenges related
to the bias-variance tradeoff problems.

A basic but fundamental approach to validation involves
the use of the train-test split technique. This method involves
partitioning the dataset into two distinct subsets: a training
set, which is employed for model training purposes, and a
testing set, which is utilized to assess the model’s perfor-
mance. This methodology is used to understand the model’s
performance on novel and unobserved data, thereby reducing
possible overfitting concerns. However, it is important to
acknowledge that the reliability of performance estimation
can be compromised due to the specific split of data into
training and testing sets considered.

To overcome this issue, the K-Fold Cross-Validation
is considered a robust approach, especially when dealing
with small datasets. Firstly, the dataset is partitioned into
K subsets, known as folds. During each iteration, one fold
serves as the test set, while the rest are employed for training
purposes. Then, this procedure is iterated K times, and each
fold is utilized as the test set exactly once. The outcomes
produced from these iterations are then averaged to get an
assessment of the model’s overall capabilities in generic
settings.

One critical problem is the presence of relevant variability
among individual subjects and of different acquisition ses-
sions that must be taken into account in medical disciplines,
as in the case of RS. The biological composition of each
individual is distinct, and its inherent variability (that can
be inter- or intra-subject variability) can result in substantial
variations of Raman spectra. In fact, the presence of genetic
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diversity, variations in health conditions, and differences in
lifestyle factors can lead to significant signatures in the
Raman data patterns collected. Investigators must consider
and address these distinctions when developing diagnostic
or analytical models to guarantee the generalization and
dependability of such models across a wide range of patients.

The leave-One-Patient-Out (or similar multiple patient
variations) validation or cross-validation method is a valuable
technique useful to mitigate the inherent bias present in
data collected from a small group of patients. This bias is
a common challenge in ML and it assumes even greater
significance in the medical domain ( as highlighted for
example in [137] for automated EEG analysis). By employing
this technique, the data gathered from specific patients and
employed for training purposes is then excluded from the
testing phase. Consequently, this eliminates any model bias
associated with known patients, preventing it from artificially
inflating performance metrics and leading to misleading
results that might not adequately generalize to the broader
population. When employing leave-one-patient-out k-fold
Cross-Validation, the approach is iterated for all the k-folds
considered, ensuring that the model is tested each time on
unseen patients with respect to the training group considered.

D. DATASETS
One of the most debated issues of ML regards the properties
of the considered dataset, in particular the dataset size. In fact,
large-sized datasets prevent the risk of overfitting, with
important consequences in terms of the model robustness and
generalization capabilities to unseen data.

In the special case of RS employed in combination with
ML for cancer detection, the dataset size refers to the number
of patients involved, the number of samples available for each
patient, and the number of Raman spectra collected for each
sample. In particular, among the references analyzed in this
work, we couldn’t find any significant correlation between
the size of the collected datasets and the particular Raman
technique adopted or the type of samples under interest.
However, a possible limiting factor could be represented
undoubtedly by the availability of patients corresponding to
the cases of interest. This issue is particularly relevant for
relatively uncommon cancer among the population, such as
the melanoma cancer. Another limiting factor for the dataset
size is represented by the availability of samples suitable for
Raman spectroscopy. In particular, in the references taken
into consideration in this survey paper, the samples treated
for RS are mostly fresh tissues, immersed in liquid nitrogen
or liquid biopsies, often functionalized with nanoparticles
to exploit enhancement effects. These fabrication techniques
are supposed to be specifically designed for RS. However,
especially in RS of tissues, the samples available are often
obtained from biopsies, stored in tissue banks, previously
treated with formalin, and embedded in paraffin, not specif-
ically conceived for RS. Due to not well-defined fabrication
protocols and/or random causes, the resulting samples are not
always suitable for RS.

These limiting factors for the dataset size are particularly
crucial for the DL algorithms, which need particularly
large datasets to avoid overfitting. In this case, to reach
the desired dataset size, a solution could be represented
by the obtainment of a large number of spectra from
the same samples, with possible drawbacks in terms of
data redundancy. Another strategy, already mentioned in
Section V, could be represented by data augmentation. The
properties related to the size of the dataset employed in the
references analyzed in this survey paper are shown in Table 2.

VI. RESULTS
A total of 54 studies from the selected cancer-types have been
considered to describe the current state of the art concerning
the automated analysis of Raman spectra obtained from
cancerous tissue. The following types of cancer have been
considered the most representative of the field, on which
this review focuses: pancreatic cancer, breast cancer,, skin
cancer, brain cancer, prostate cancer, ovarian cancer, oral
cancer.

A. PANCREATIC CANCER
Pancreatic cancer is one of the leading causes of cancer
death in the United States for both men and women [38],
[138], with a very low 5-year survival rate (12%) for all
its stages combined. It is estimated that by 2030, it will
become the second leading cause of death in malignant
tumors [21]. The symptoms usually do not appear until the
disease has progressed, amongwhichwe can findweight loss,
abdominal discomfort, and sometimes diabetes. Tumors that
develop near the common bile duct can cause the yellowing
of the skin and eyes (jaundice), which sometimes helps
with the diagnosis. In the advanced stages, the disease may
cause severe abdominal pain, nausea, and vomiting [138].
Moreover, the use of alcohol and tobacco, diabetes, obesity,
and genetics are some of the most prevalent factors that
increase the risk of developing pancreatic cancer. Surgical
interventions have the potential to enhance survival and
symptomatology [42], as well as radiation therapy and
chemotherapy. Intraoperative frozen section analysis and
postoperative histopathology examination are two common
technical procedures used to diagnose pancreatic cancer [38].
These conventional methods have significant drawbacks
because they can be time-consuming, subjective to expert
interpretations, and dependent on tissue preparation; at the
same time, those methods can suffer from sampling bias and
be limited by the number of sample points available for the
analysis. In contrast, RS-based spectral histopathology offers
a new perspective on cancer diagnosis that has the potential
to facilitate effective intraoperative tissue diagnosis [139].
Li et al. in [38] reported the first effort to diagnose pancre-

atic cancer through Raman scattering with a lab-developed
system designed for intraoperative applications. The consid-
ered dataset is composed of 1305 Raman spectra taken from
cancerous pancreatic tissues, and 1224 samples taken from
healthy pancreatic tissues. 2D samples were generated by the
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TABLE 2. Summary respectively reporting the number of patients, samples, and resulting Raman spectra analyzed in this survey.

dot product of the Raman spectra with their transpose, creat-
ing a two-dimensional representation by changing the input
shape while maintaining the same quantity of information.
The latter were used as input of a DL pipeline, together with

one-dimensional RS samples and the principal component of
2D samples projected into one dimension. A 1D-CNN and
a 2D-CNN were used to classify the data, and a five-fold
cross-validation strategy was applied to test them. The final
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accuracy is 98–99% for almost all the models presented, with
a very fast convergence rate. Additionally, an explainable AI
effort was made to identify the key Raman characteristics
that aid in this differentiation. After training the networks, the
mean Raman spectra for both the one-dimensional and two-
dimensional cases of cancerous and normal pancreatic tissues
were loaded into their corresponding CNNs. The strongest
activation channels were then extracted from themax-pooling
layer outputs, and the learned CNN features were plotted
on the Raman shifts. Therefore, some critical CNN Raman
features were visualized in the max-pooling layers. The
results of this study were compared with GoogleNet [140]
and random forest models, with the proposedmodel obtaining
better performances than those models.

A ML approach taking as input Raman spectra of
a human pancreatic cell line is reported in the work
of Mandrell et al. [22]. The article tackles the task of
distinguishing between tumor-repopulating cells (TRCs) and
parental control cells while determining the best combination
of data type, dimension size, and classification technique to
differentiate the cell types. 51 Raman spectra were collected
from 13 samples: eight parental controls for the 37 spectra
and five TRCs for the 14 spectra. An accuracy of 98%
is obtained from SVM and kNN classifiers. Moreover,
two refinement steps are applied to the input data: the
dimension elimination (discarding unwanted data) and the
dimension selection (selecting only certain wavenumbers)
processes. In the first case, very noisy regions of a spectrum
are chosen for elimination. Because the Raman fingerprint
region of the skeletal vibrations is reported to lie between
600 and 1800 cm−1, with the high energy signals of
biologicals appearing in the region 2500–3500 cm−1, rather
than scanning from 250 to 3500 cm−1, a targeted scanning
from 600 to 1800 cm−1 and 2500–3400 cm−1 produces the
required data while limiting the dimension size to 1900. This
approach was motivated by prior knowledge of the salient
Raman fingerprint regions of the skeletal vibrations and the
high-energy signal positions. Moreover, in order to further
decrease the dimensions, the spectral values that correspond
to the local maxima were taken into account. Finally, the
authors compared traditional continuous spectrum data with
peak data. The peak data considered only the wavenumbers
that corresponded to a local maximum. If any spectrum had
a peak at a particular dimension, then that wavenumber was
used in the analysis; otherwise, a value of zero was assigned
to that dimension. For the dimensions selection, a series of
techniques are employed to accomplish this task: T-statistic,
MIT correlation [141], Relief algorithm [142], and PCA. The
first two provide a statistical measure of the correlation of
each wavenumber to the class where the sample belongs.
The third is a ML-based algorithm to find a weight for each
dimension based on the distance to its nearest neighbor from
each class. The last method, PCA, converts a sample space
with dependent variables into an independent space while
retaining nearly all of the original space variances. A 14-fold
cross-validation strategy was applied, in which the dataset

was divided into 14 subsets (one for each TRC cell), and
then the classifier performed 14 training and testing phases.
After the cells were extracted, they were evaluated using
modular Raman microscopy equipment to prevent excessive
cell degeneration. In addition, a number of optimization
procedures were implemented to improve the signal-to-noise
ratio and repeatability of the Raman signal. For example,
a baseline correction was implemented by matching the
baseline segment to a polynomial function using an in-house-
developed algorithm.

Sezer et al. [20], the pancreatic ductal adenocarcinoma
(PDAC) is analyzed using RS, and the data is classified
with 97.6 percent accuracy using a PCA-assisted vector
machine algorithm. PDAC is the most frequent form of
pancreatic cancer. It has a very low survival rate, and an early
diagnosis can not only prevent metastasis development but
also increase the efficacy of chemotherapy treatment. The
phenomenon analyzed in the article is called epithelial-to-
mesenchymal transition (EMT) and occurs in a variety of
processes, such as embryonic development, wound healing,
fibrosis, and early-stage tumor metastasis. A particularly
useful tool for the monitoring of cellular processes such as
cell division, apoptosis, and EMT is the RS. By varying peak
intensities and shifting peak positions in the Raman spectra,
the researchers wanted to see if indomethacin (a nonsteroidal
anti-inflammatory drug) had any effect on an induced EMT
(with the growth factor TGF-β) in a pancreatic cancer cell
line. Additional details are available in section 3.3 of [20],
where can be found a detailed description of the spectral
changes reflecting the chemical composition before and after
TGF-β treatment. Raman signals collected from untreated
(control) and TGF-β1 treated cells in the presence or
absence of indomethacin (of 100 µM and 300 µM) revealed
EMT-related chemical changes with differences in both
signal intensities and band positions. The spectral data were
preprocessed employing background subtraction and average
smoothing. The PCA algorithm was applied on 254 total
Raman spectra (101 TGF-β, 48 TGF-β + indomethacin
100 µM, 50 TGF-β + indomethacin 300 µM, 55 control) to
reduce the input dimensionality. Four different ML classifiers
were run onRaman data: SVM,AdaBoost, kNN, and decision
tree. A combined approach of a PCA-SVM model obtained
the best result of 97.6% of accuracy. Other molecular
techniques (i.e., immunostaining and qRT-PCR) were used to
confirm the treatment results in order to evaluate the outcome
with a more time-consuming procedure that requires specific
reagents. Unlike the latter, the study demonstrates that Raman
imaging is an excellent method for obtaining label-free,
nondestructive spectral classification of the samples with
minimal sample preparation and time constraints.

In Yan et al. [21] the blood serum is studied by using a con-
focal Raman micro-spectrometer able to distinguish between
benign and malignant pancreatic human tumor samples.
Fresh blood samples from 18 patients with pancreatic cancer
and 10 patients with a benign tumor stage were utilized. The
samples were analyzed in the 400 to 1800 cm-1 wavelength
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region, and the major molecular differences in the serum of
patients with pancreatic tumors were identified by changes
in alcohols, lipids, amides, and nucleic acids. Fluorescence
interference, a typical phenomenon that affects Raman
scattering, was avoided by performing a preprocessing step.
The authors adopted partial least squares (PLS) to extract
the Raman spectrum information of patients with pancreatic
tumors to minimize complications caused by models with
a large number of parameters. 815 features available in
the high-dimensional input spectrum were projected into
the low-dimensional data space via PLS, and then the
samples were classified employing LDA, SVM, and KNN
classification algorithms. Both the SVMmodel (with a linear,
quadratic, and cubic kernel) and the KNN technique (with a
neighbor count of 1) obtained a promising result of 96.4% of
accuracy.Moreover, the results were verified using a five-fold
cross-validation strategy.

Conforming to the previously reported articles, a dimen-
sionality reduction technique and a ML classifier are
frequently described as standard procedures for approach-
ing the discussed task. For instance, to classify spectral
pancreatic samples, Carmicheal et al. [42] use a princi-
pal component-discriminant function analysis model (PC-
DFA). Within the proposed system, exosomes are employed
as biomarkers in order to classify the input samples.
The exosomes are extracellular vesicles that form inside
multivesicular compartments of eukaryotic cells and are
secreted when these compartments fuse with the plasma
membrane [143]. Their identification can be fundamental to
understand their role in cancer progression. Soung et al. [144]
employed exosomes to distinguish pancreatic cancer cells
from healthy pancreatic epithelial cell lines. Moreover, using
the Vancouver Raman method, the raw spectra collected
from SERS measurements were normalized and baseline-
corrected. Then, applying the PC-DFA 121, Raman spectra
were first reduced from 1004 variables (from 719 cm−1 to
1800 cm−1) to 20 principal components (PCs), then classified
with 90% of accuracy by the aid of PC-DFA.

In their study, Aslam et al. [43] tackled the task of
detecting PDAC using a variety of analytical techniques
applied to distinctive explainable features acquired from
RS data. Through these features the authors successfully
identified mutations related to Kirsten-rat-sarcoma-viral-
oncogene-homolog and tumor-suppressor-protein-53 in the
fingerprint region of PDAC, providing valuable insights into
the molecular characteristics of the disease. Their study was
based on RS data collected from 20 mice, each injected
with human cells subcutaneously. The dataset comprised
over 2500 RS signals, including readings from both tumor
and normal pancreas tissues. To ensure the reliability of their
results, the analysis was conducted with a 15-fold cross-
validation process. In addition, to uncover crucial information
regarding the spectra, several feature extraction techniques
(statistical analysis, empirical mode decomposition, and
peak feature extraction) have been used, obtaining valuable
insights exploited in the analysis process. The analysis

was performed employing a SVM with a recursive feature
elimination [145] and the correlation bias reduction methods.
This approach outperformed other traditional techniques with
a final classification accuracy of 98.5%, while reducing
testing time and memory usage.

Uthamacumaran et al. [44] conducted a study using a small
dataset comprising nine patients across four different cancer
subtypes (colorectal cancer, hepatocellular carcinoma, breast
cancer, and pancreatic cancer), alongwith five healthy control
patients. Spectra were obtained from RS analysis of blood
serum samples, paired with the Fourier Transform Infrared
(FTIR) spectroscopy, obtaining from these techniques 19 and
15 spectra respectively. Their investigation focused on extra-
cellular vesicles (EVs) found in the sera of cancer patients,
which contain a diverse range of biomarkers reflective of their
cell of origin. These EVs are of particular interest in liquid
biopsy and cancer screening research. To analyze them, the
the authors employed several machine learning algorithms
including AdaBoost Random Forest Classifier, Decision
Trees, and Support Vector Machines, which successfully dis-
tinguished between the baseline-corrected Raman spectra of
cancer EVs and those of healthy controls. This discrimination
achieved a classification accuracy of 100% when the spectral
frequency range was narrowed down to 1800-1940 cm−1 and
subjected to a 50:50 training-testing split. In addition, the
result also incorporated a five-fold cross-validation approach,
although there were noted uncertainties in the outcomes.
Moreover, given the very small dataset size and the perfect
result scores, the outcome raises possible concerns about
potential overfitting.

It is important to remark that the state-of-the-art research
concerning pancreatic cancer led to very few available articles
of recent years that analyzed the disease with the aid of RS
and artificial intelligence techniques, thus highlighting the
novelty in the field. For instance, in the thorough summary
of the AI applied to pancreatic cancer tissue in the literature
done by [146], only one study applied the RS technique to
analyze the pathology differently from the most traditional
approaches (PET, MRI, CT, EUS, etc.), which have currently
a much broader use.

B. BREAST CANCER
Breast cancer is the second-leading cause of cancer death as
well as themost frequently diagnosed cancer in women [138].
The death rate has declined in the last 20 years, thanks to
improvements in early detection and treatment. The most
common symptom of breast cancer is a lump or mass in the
breast, which is the main indicator for a diagnosis together
with the analysis of external factors such as weight gain,
physical inactivity, heavy smoking, and alcohol consump-
tion [138]. X-ray mammography is the current gold standard
technique for breast mass screening, and it is commonly
used to diagnose breast cancer. However, mammography
performs poorly in thick breasts and cannot discern easily
between malignant and benign lesions. Depending on the
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specific cases, the same limitations can apply to ultrasound
and magnetic resonance imaging (MRI) processes [147].
Consequently, a needle or surgical excision biopsy is still
necessary to develop a precise diagnosis. The latter may
add weeks to the diagnostic procedure, increasing patient
anxiety and medical treatment expenses. Depending on
the severity of the disease, treatments typically involve
mastectomy or breast-conserving surgery. Moreover, the
biological behavior can significantly differ between patients,
despite common histopathological features at diagnosis, with
the current 5-year relative survival rate equal to 90% [148].
Complex gene expression patterns, which may be exploited
to create molecular signatures of breast cancer, have practical
significance for long-term patient outcomes but are not yet
utilized to guide therapies. A more thorough investigation
and evaluation of the molecular patterns of the illness in
each individual patient could be fundamental to achieving an
effective ad-hoc breast cancer therapy. Towards this objective,
the development of a novel approach for the detection of
tumor molecular phenotype is one of the possible next
fundamental steps in the field of tumor classification and
diagnostics [148], [149].
Zhang et al. [45] tackle this problem through a series

of classification tasks to distinguish cancerous breast cells
from different levels of analysis. In the study, roughly
150 cells were recorded for each of the 6 cell lines,
resulting in approximately 4500 Raman spectra with a Raman
shift ranging from 300 cm−1 to 1800 cm−1. A series of
transformations were applied to clean the input data and
remove noise, such as cosmic ray removal, background
subtraction by polynomial curve fitting, and normalization.
The dataset was divided into three subsets of equal size,
two of which were designated as training sets and one
as a test set. It is important to note that this splitting
approach is more prone to overfitting than other validation
techniques, such as cross-validation, but can be considered
adequate for preliminary analysis with enough sample sizes
and is thus considered informative for a comparison with
similar studies. The initial phase of the analysis involves a
binary classification task aimed at distinguishing between
normal and cancerous breast cells. The task is carried out
employing PCA-SVM and PCA-DFA techniques, with very
promising accuracy results (90%). The study continues with a
multi-classification procedure that categorizes breast cancer
into its four possible subtypes: luminal A type, luminal
B type, human epidermal growth factor receptor (HER2)-
positive type, and triple-negative breast cancer (TNBC).
The analysis was performed using two different approaches
commonly employed in the field: PCA-DFA and PCA-SVM.
The PCAwas used to reduce the number of dimensions in the
data from 1024 to 351, keeping 95.0% of the variance. The
accuracy of both algorithms in distinguishing cell subtypes
was greater than 92%. Lastly, using two cell lines (SUM149
and MDA-MB-231) a supplementary classification of TNBC
into two subtypes is performed. The overall performance

of PCA-DFA and PCA-SVM models is 70.9% and 70.7%,
respectively.

Li et al. [46] analyzed the serum Raman spectra of
171 patients with invasive ductal carcinoma and 100 healthy
participants. Using a leave-one-subject-out validation
paradigm, the samples were randomly divided according
to a train-test ratio equal to 7:3. After normalization, the
data were filtered using the adaptive iteratively reweighted
penalized least squares algorithm and the Savitzky-Golay
algorithm [150] for baseline correction, smoothing, and
denoising. The PCA algorithm was used to extract 102 fea-
tures, and then multiple ML algorithms (SVM, DT, LDA)
and a custom fully connected network were used to classify
samples based on both raw and reduced data. The neural
model achieved the highest level of accuracy, scoring a
perfect 100%. It is worth noticing that the models trained on
the raw data performed better than the ones working on PCA-
reduced data. This finding goes in the opposite direction with
respect to the majority of other research works and indicates
that the PCA noise reduction and data cleaning capabilities
are usually crucial to obtaining the best performances. In fact,
several other studies performed the classification through a
dimensionality reduction technique and a ML classifier, as in
the case of [151], [152], and [153].

Together with traditional ML models, the current lines of
research focus also on deeper and more complex AI models,
which exploit a greater number of trainable parameters as
well as more expressive power, such as deep neural networks.
Zeng et al. [47] proposed a diagnostic system based on serum
RS and DL algorithms, where a fast and low-cost diagnosis
method is used for screening 75 serum samples for breast
cancer and healthy controls. In particular, 69 spectral samples
are obtained from 23 samples of TNBC, 60 spectra from
22 samples of HER2-positive breast cancer, and 90 spectra
from 30 healthy control samples. In total, 225 spectral
measurements were obtained and exploited for this study.

To conduct the statistical analysis, the authors filtered
the data through the Savitzky-Golay algorithm, used for
smoothing and denoising, after the application of a linear
normalization step. Following that, a 6-fold cross-validation
paradigm is used to ensure the model reliability, with an
8:2 split ratio between the train and test sets. The custom
models employed in this work are based on the NN, CNN,
and BiLSTM architectures, with resulting accuracy rates of
87.78%, 90.37%, and 91.11%, respectively. For the healthy
control group, all models achieve perfect classification
accuracy (100%), which could be attributed to the large
difference in bio-molecule concentrations in serum between
the control group and breast cancer patients.

Another interesting possible RS application is to monitor
radiation-based treatment response up to a molecular level.
In particular, the application of those treatments can result
in structural changes in tissues, which can be measured
by the RS. Fuentes et al. [48] propose the use of a
Raman microscope to identify biochemical in-vivo radiation
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response in xenografted human breast tumors. Radiotherapy
employs high-energy ionizing radiation to eliminate tumor
tissues while limiting collateral harm to healthy tissues.
However, a fraction of breast cancer patients did not react
well to the radiation treatment, resulting in high cancer
recurrence rates (42%) [154]. The final aim of this work has
been to develop customized treatment plans thanks to the
ability of RS to detect and monitor changes in radioresistance
in metabolic biomarkers. In order to pursue this goal, the
authors implemented a 1D-CNN to classify irradiated versus
non-irradiated tissue with a leave-one-subject-out validation
strategy. A total of 3054 spectra were sampled on day
1 after irradiation, and 6708 spectra were collected on day 3.
Moreover, it is important to remark that the Raman spectra
used in this study were previously collected in another
study that employed female mice [155], thus limiting the
generalization capabilities of the model to human subjects.
Each spectrum was pre-processed to remove cosmic rays,
subtract background noise, adapt to wavenumber calibration
drifts, and normalize to the total area under the curve. The
system obtained a final accuracy of 92.1% for data collected
3 days post-irradiation, and 85.0% on day 1 post-irradiation.
Moreover, the proposed approach shows improved discrimi-
nation capabilities compared to a random forest model and to
a previously implemented algorithm [156].
In their latest research, Fuentes et al. [49] explored the

use of RS and CNN to characterize tumor response to
radiotherapy, with a focus on identifying its degree of
radioresistance with an explainable AI technique. Their
dataset comprised Raman spectra gathered from three distinct
human tumor cell lines (breast, lung, and prostate cancer)
cultivated in vitro, classified as either radiosensitive or
radioresistant across various treatment doses and time points.
The CNN architecture employed in this work was refined
based on the one described previously in [48], simplifying the
model by reducing the network parameters to mitigate over-
parameterization and overfitting risks. The model achieved
an exceptional mean classification accuracy, sensitivity,
specificity, and F1 score with a reported mean matrix value
of 99.8%. The evaluation metrics demonstrated again the
ability of the model to accurately classify tumor responses
to radiotherapy. The training procedure involved a simple
70-20-10 split with early stopping technique, that typically
converged within only 35 epochs. Additionally, an interesting
explainability approach based on the Gradient-Weighted
Class Activation Mapping technique was employed to
visualize critical discriminative features captured by the 1D
model, analyzing each feature map contribution of the last
convolutional layer to the final score. Heatmaps generated
with this procedure revealed contributions fromRaman bands
associated with glycogen, amino acids, and nucleic acids,
while radiosensitive cell lines showed activations at lipid and
phospholipid bands.

An exosome-based analysis is performed byMa et al. [50],
where the classification is performed through SERS data,
acquired with a Raman microscopy system. Exosomes were

employed as biomarkers thanks to their ability to reflect the
genetic and phenotypic status of the cells from which were
obtained. The authors propose an enhanced methodology
for their separation, specifically regarding the extraction
process through ultracentrifugation. Subsequently, after the
sample preparation, the SERS signals are obtained from
130 randomly selected locations and then averaged in order to
obtain a data sample. A baseline correction and fluorescence
background subtraction of the spectra, as well as a min-
max normalization, are performed as data preprocessing.
The authors do not explicitly declare the use of a specific
validation technique, so it is assumed that no subject-wise
split validation paradigmwas used, where the dataset division
is reported to be 70% training, 10% validation, and 20%
testing. In the end, a total of 1160 SERS spectra are
classified between normal breast cells and cancer cells with
a Resnet-based CNN structure, obtaining a final accuracy
of 95%. The findings suggest that the integration of SERS
detection and CNN screening holds promise for the early
detection of breast cancer. This is supported by the extremely
sensitive nature of Raman detection and the consistent
presence of exosomes during the incubation period of cancer
cells. Consequently, this exosome-based approach may have
potential for future applications in the early diagnosis of
cancer cells.

Other works leverage DL models to overcome the tra-
ditional ML approaches, as in the case of the work of
Ma et al. [51]. In the latter, through a DL technique, the
authors analyzed a dataset containing 600 spectra taken from
20 patients, where from the same patient both a healthy and
a cancerous breast sample were retrieved. As preprocessing,
a traditional baseline correction was performed with the
automatic background subtraction algorithm. To deal with the
issue of limited data, the authors implemented the following
data augmentation techniques: a 2 cm−1 shift of the original
spectra (left or right, considering also the spectral range is
800–1800 cm−1 with a resolution of 3 cm−1), an addition
of random Gaussian noise, and a scaling process with a
random coefficient. In turn, thanks to this data augmentation
schema, the total number of spectra increased by more than
eight times, from 600 to 5000. A 1D convolutional neural
network is selected to perform the binary classification,
which obtained the best classification performance of 92%
accuracy. Its results are then compared to the PCA-SVM
and PCA-LDA algorithms in order to assess the model
capabilities. However, although ten-fold cross-validation is
used to validate the results on theMLmodels, it is not clear to
the reader if the convolutional neural network has been tested
on the same validation paradigm.

Li et al. [52] developed a novel methodology centered on
a feature fusion strategy for the analysis of Raman spectra,
aimed at mitigating the signal-to-noise ratio inherent in RS.
This approach involved a multiparameter serial encoding
evolutionary algorithm combined with an adaptive Local
Hyperplane K-nearest Neighbor classification algorithm
for adaptive hyperparameter optimization. The latter was
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employed in the classification task of 125 spectra from
sixteen breast tissue samples, gathered through RS from
16 patients. In particular, the experiment utilized a QE65000
miniature Raman spectrometer equipped with a 785 nm
Raman laser, covering a scanning range from 0 to 2723 cm−1.
To address challenges such as high-frequency noise,

baseline drift, and fluorescence background interference,
a combination of techniques including Savitzky-Golay
smoothing, Standard Normal Variate, and adaptive iteratively
reweighted penalized least squares algorithm were applied
to the spectra. Moreover, given the limited spectral data and
the imbalance in the number of different types of data, the
Synthetic Minority Oversampling Technique algorithm was
employed to increase the number of spectra and regulate
the proportion between normal and tumor samples. After
the preprocessing, the dataset was split into train and
test sets with a ratio of 2:1 (train:test), with both classes
(normal, tumor) containing an equal number of spectra.
Feature selection was initially conducted using the Relief
Algorithm to identify a representative train and test a subset
of the original data based on a predetermined threshold.
Additionally, another train and test subset was derived from
PCA processing on the original data. Both the methodologies
derived two sets, later employed for the classification. The
Classification was performed using the Adaptive Local
Hyperplane K-nearest neighbor algorithm, fine-tuned by
the Multi-parameter serial encoding evolutionary algorithm
to optimize hyperparameters. Notably, the model yielded
optimal hyperparameters and accuracy scores, finding very
good classification performances and exhibiting enhanced
performance compared to manual configuration.

To ensure robustness, the methodology incorporated
10 sets of parallel experiments through random sub-sampling.
A mean accuracy score of 98.31%, sensitivity of 96.45%,
and specificity of 100% were achieved. Consistent results
were obtained with an 80% vs. 20% train/test split ratio.
On the other hand, to enhance generalizability, an additional
validation approach was employed, with a 10-fold cross-
validation approach, resulting in a mean accuracy of 94.15%,
specificity of 89.03%, and sensitivity of 99.12%.

In conclusion, the literature demonstrates that the RS
technique is effective as a noninvasive method for analyzing
various cancer types, including breast cancer. In addition,
RS-based in vivo analysis of breast cancer could lead to
personalized and fast prediction results, assisting medical
personnel and reducing diagnostic delays. As the correct
identification of the type of cancer is essential for selecting
the appropriate treatment, further investigations may yield
novel and more effective methodologies in this domain.

C. SKIN CANCER
Skin cancer is the most prevalent malignancy among white
people, accounting for about one-third of all malignant
neoplasies diagnosed annually [53] and resulting in more
than 40% of global total cancer cases [56]. There are
three major types of skin cancer, which are: basal cell

carcinoma (BCC), squamous cell carcinoma (SCC), and
Melanoma (ME), and in particular BCC and SCC are the
most common forms and together are referred to as non-ME
skin cancers. Although less common than the others, ME is
more lethal and accounts for the majority of skin cancer
deaths [157]. Among the possible causes, the majority of
skin cancer cases are caused by exposure to UV radiation,
and thus are potentially preventable [138]. Visual inspection
together with a preliminary clinical screening is generally
sufficient to perform an adequate diagnosis, with the addition
of procedures like dermoscopy, biopsy, and histological
studies to further improve the accuracy [158]. Moreover,
to diagnose and treat skin cancer at an early stage, new
or changing skin spots or growths must be recognized in
time and monitored. Any change in the lesion appearance
should be evaluated by a specialist. For instance, by visual
inspection, the properties of asymmetry, border irregularities,
color, diameter size, and appearance changes are the warning
elements of melanoma [138]. Once identified, most cases
are cured by removing the lesion through minor surgery,
while immunotherapy or targeted drugs might be options
for the more advanced stages. The five-year relative survival
rate is over 99% if the cancer is entirely confined in the
place of origin, while decreases to 32% if the cancer has
spread from the primary tumor to remote parts of the
body [138]. Several investigations have been conducted to
analyze skin cancer with AI-based techniques, leveraging
deep neural networks and clinical images to classify with
a level of accuracy comparable to dermatologists [158],
[159]. On the other hand, a diagnosis based only on visual
inspections may be not precise enough in the case of more
complex cases, which could benefit instead from a thorough
analysis taken on a molecular level. Optical biopsy can be
an essential element to detect tumors based on their spectral
features resulting from the comparative presence of different
chemical components [53]. Among the several possible fields
of application, Raman spectra are effectively employed to
conduct different types of studies on the skin. Recently,
RS combined with AI procedures has been adopted as a
standard to distinguish different kinds of skin patterns. For
instance, Ye et al. [160] used a ML-based classification
system to distinguish burn severities from ex vivo porcine
skin tissue, while Kanemura et al. [161] employed a
near-infrared RS andML techniques to classify inflammatory
skin diseases. In the case of skin cancer detection, several
investigations used RS as the main tool to analyze malignant
skin samples, obtaining analysis up to a molecular level.

Bratchenko et al. performed multiple studies [53], [162],
[163] on a portable spectroscopic system for in vivo
skin neoplasms diagnostics by Raman and autofluorescence
analysis. Due to the proposed portable system affordability
and simplicity, the device is considered suitable to be
employed in small clinics by first-hand professionals as well
as expert oncological specialists. In the most recent advance-
ment found in [53], Bratchenko et al. analyzed 617 skin
tumor samples, considering 204 malignant and 413 benign
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neoplasms. The examined data were gathered in previous
ML-based research including 54 white European American
patients [163]. They used a train-test split and 10-fold cross-
validation, with 90% of the dataset employed as a training
set and the remaining 10% as a test set. Finally, the previous
splitting procedure was repeated 10 times in order to obtain
the final mean receiver operating characteristic area under the
curve (ROC AUCs) results. In this investigation, the authors
demonstrated that a CNN-based approach produced superior
results than the PLS-DA classification of Raman signals
of skin tumors. The CNN custom architecture considers a
residual block in parallel with two convolutional and two
pooling layers. The sum of the outputs is then passed to a
recurrent layer and to two fully connected layers. When this
model was used to differentiate between malignant vs benign
tumors as well as melanomas vs pigmented tumors and
melanomas vs seborrheic keratosis, ROCAUCs of 0.96, 0.90,
and 0.92 were respectively obtained. The developed model
outperformed the PLS-DA approach, which yielded inferior
ROC AUCs. Finally, to determine the informativeness of
individual predictors, the variable importance in projection
(VIP) score for the PLS loadings was evaluated.

Araújo et al. [54] proposed an interesting methodology to
select the optimal model and minimum necessary segment
of the input spectra to classify with high performances ME
and benign melanocytic nevus (MN) samples. In particular,
the MN group consisted of superficial and deep melanocytic
nevus, while the ME group was composed of primary and
metastatic melanoma spectra. Data were collected in vitro
using an FT-Raman spectrometer (with 2 cm−1 resolution)
on 33 MN samples and 51 ME samples, which in turn
have been obtained through surgical resection. Despite
the traditional implications concerning the autofluorescence
phenomenon, they decided to use the unprocessed raw data
as input signals. Five to ten spectra were collected from
each sample, with a total of 436 Raman spectra, of which
168 were taken from the MN group and 268 from the
ME group. After that, the local properties of the spectra
were investigated by segmenting them into subsequences,
each with a predetermined length. A variety of statistical
methods (the arithmetic mean, standard deviation, Kurtosis
skewness, derivative, minimum, and maximum) were used
to extract different features on these vectors. The evaluated
features were fed as input to a fast LightGBM [164] model,
which obtained a slightly better AUC ROC measurement
(0.98) with respect to other ML-based techniques (Random
Forest, KNN, XGBOOST). The result was validated using
the traditional five-fold cross-validation technique, where the
final result value is the mean of the five test run results.
The analysis discovered that a resolution size of 5 cm−1 for
the subsequences provides the best results. After applying
the LightGBM model to the input spectral subsequences,
the derivative output was found to be the most informative
feature. The latter identification was performed using the
SHAP [165] technique, whichmeasures the influence of input

features’ absence or presence on the model decisions in order
to evaluate the relevance of those characteristics. In addition,
to discover the most informative interval of the Raman
samples, the authors generated multiple datasets composed of
cropped spectra, with sample lengths ranging from 20 cm−1

up to 300 cm−1. Afterward, thousands of mini-models were
trained on these subsets for the ME vs. MN classification
task. At the end of the procedure, 158 models with an AUC
of 0.96 or higher were found. Among them, the model
that obtained the best AUC value (0.973) with the smaller
spectral regions (from 896 to 1039 cm−1) was selected as
the optimal one, highlighting the fact that even a minimized
spectrum of only 143 cm−1 can be effectively exploited for
the classification task. It is important to note that all themodel
performances were evaluated using a five-cross-validation
paradigm.

Several other applications follow the traditional approach
of a dimensionality reduction technique followed by a
traditional ML algorithm to classify skin cancers with the
use of RS (e.g. the use of in PCA-SVM of Qiu et al.
in [166] or of Liu et al. in [167]) on small datasets with very
promising results. On the other hand, the literature shows
also an intensive use of DL techniques that, combined with
the Raman technology, are able to produce autonomous skin
cancer diagnosis with high accuracy.

Qui et al. [55] have devised a CNN network model to
differentiate between healthy and various types of malignant
cells. The Raman spectra samples were collected using a
SERS substrate and a confocal Raman spectrometer with a
resolution of roughly 1 cm−1. They employed Raman spectra
of ten different types of cell line samples, for a total of
20000 spectra obtained by collecting 2000 spectra from each
cell line sample. All the spectra were normalized within
the measurement range, and pre-processed by cosmic ray
removal, smoothing, and baseline correction. To classify the
samples, a DL architecture based on a small custom CNN
with 4 convolutional layers, 4 max-pooling layers, and two
fully connected layers was employed. The proposed model
achieved a perfect accuracy of 100%, which converged faster
if trained on the preprocessed data with respect to the raw
data. In addition, in order to analyze the performances of
the proposed approach, their model has been compared with
a baseline PCA procedure followed by K-nearest neighbor.
This comparison could be unfair given the differences in
the number of model parameters and their complexity, and
may be inadequate to assess the methodology capabilities.
In addition, to validate the proposed CNN model, the
authors employed a 10-fold cross-validation approach with
a 7-2-1 split for the training, testing, and validation sets.
In addition, to categorize multiple subtypes of the tumor
under exam, the authors applied the classification procedure
at different possible biological levels. They proceeded with a
progressive approach: firstly, a binary model was employed
to distinguish melanocytes from malignant ME, with 98.5%
accuracy. Then, using only samples in the ME category,
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an additional classifier has been applied to distinguish
between wild-type and mutant ME, with 99% accuracy.
After these steps, another CNN model was used to classify
two wild-type ME and three mutant ME cell types, with
100% and 98% accuracy, respectively. Afterward, the authors
produced a dataset to assess the efficacy of the proposed
CNNmodel in discriminating between several forms of drug-
resistant ME. This dataset is composed of ME cell line
samples (A375 and M14) that were subjected to varying
concentrations (0.5 and 2.0 µM) of vemurafenib, a kinase
inhibitor (also known as a cancer growth blocker). The
investigation obtained satisfactory results, with A375 and
M14 cell lines samples classified with almost 100% and 93%
of accuracy, respectively. The described results demonstrate
how RS spectra classification through AI can potentially
provide a novel direction for the characterization of drug-
resistant (or drug-treated) melanoma cells.

Wu et al. [56] investigated the use of generative strategies
to address the data scarcity problem, which is a common
issue in the field. The authors introduced a DL system
capable of identifying skin cancer spectral samples through
the exploitation of synthetic data. More in detail, they applied
a generative adversarial network to estimate the implicit
distribution underneath the input data. This enabled the
production of additional input data samples that strongly
resembled the original ones. These newly generated samples
were consequently fed as input to train the employed
classification models. In turn, this study focuses on the
multi-category task of discriminating three distinct tissue
types, namely BCC, SCC, and healthy samples. In particular,
this work employed a previously analyzed dataset [168],
used to explore the correlation of Raman spectral features
of normal and malignant tissues subjected to a high-powered
CO2 laser treatment. Since the lack of correlation in the
tissue was proven in previous research, both laser-treated and
untreated samples were considered suitable for this study. The
dataset consists of 36, 63, and 50 RS samples for BCC, SCC,
and healthy categories, respectively. To augment the volume
of data, two strategies were considered: the first aimed to
reduce the class unbalance in the input training distribution
by producing a fixed amount of GAN-generated samples; the
second approach considered the relative proportion between
the input categories, thus generating samples to keep the
dataset balanced. Several models, trained with the same
number of epochs (500) and with a leave-one-out cross-
validation scheme, have been used to find the best archi-
tecture and to demonstrate the methodology effectiveness.
The models analyzed included logistic regression and SVM
both with or without PCA, and MLP, LSTM, and CNNs.
Moreover, almost all the methods have been tested with and
without data augmentation. The results of the study indicate
that DL models have superior performances compared to
ML techniques. Additionally, classifier models that were
trained on augmented data demonstrated better accuracies
in comparison to those trained only with original data.
A customized 1D-CNN architecture, composed by a 1D

convolutional and two dense layers, resulted in the best-
proposed model.

The health and economic burden of skin cancer treatment
is substantial and increasing, as shown by Guy et al.
[169], where the authors emphasized the importance of skin
cancer prevention and early detection efforts, which may
lead to timely treatments as well as healthcare system cost
savings.Moreover, skin examinations are an effectivemethod
for detecting skin cancer in its early, more manageable
phases. In particular, in its first stages, skin cancer has the
highest likelihood of being successfully treated. Moreover,
the accuracy of RS-based, skin cancer classification models
can be greater than or comparable to the accuracy of trained
dermatologists [53]. On the other hand, due to the high
background noise that heavily affects RS measurements,
a precise tumor classification is not trivial to achieve.
Hence, it can be challenging to categorize skin cancers
effectively with a single type of data. Further research
on this subject could contribute to the creation of an
autonomous, reliable, and portable analysis device for skin
cancer diagnosis, therefore reducing analysis delays and
healthcare costs. For instance, by applying the discussed
techniques in a multimodal framework, which could be based
on dermoscopy- and spectroscopy-based diagnostic systems,
the classification accuracy of skin neoplasms could be further
improved.

D. BRAIN CANCER
Brain tumors can be classified within the category of primary
and metastatic neoplasms of the central nervous system
(CNS). With respect to other forms of cancer, brain tumors
are considered rare, with around 7 cases per 100000 people
registered in Europe in 2018 [170]. However, the brain
cancer-related prognosis is commonly considered poor, with
a mortality of more than 5 cases per 100000 people every
year [170]. Among the various cases of brain cancer, almost
70% are high-grade and invasive. In particular, glioblastoma
is characterized by an average survival that doesn’t exceed
15 months [171].

Early-stage diagnosis of brain cancer is universally con-
sidered a crucial step, decisively affecting the effectiveness
of the following therapies and, thus, the patient’s quality
of life and survival. Today, the most common approaches
for brain mass detection are based on PET, MRI, and CT.
Besides the poor contrast, long acquisition times, the use
of intense magnetic fields or ionizing radiation, etc., such
approaches alone do not lead to a final diagnosis. On the other
hand, invasive and difficult tissue excisions and consequent
histopathological analysis are required to provide a final
response. All these difficulties pushed the researchers to
find non-invasive and accurate alternatives to complement
the commonly used diagnostic approaches. In this sense, the
investigations about the possibility of detecting brain cancer
from blood-derived samples, such as serum or extracellular
vesicles, aroused particular interest [172]. Such approaches
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are hampered by the presence of the so-called Blood-Brain-
Barrier, i.e., a semi-permeable membrane that selectively
regulates the molecular crossing from the brain to peripheral
circulation. The presence of Blood-Brain-Barrier determines
low concentrations of cancer-related biomarkers in the
peripheral blood. This feature makes the use of RS for the
detection of such biomarkers particularly challenging, due
to the weakness of the Raman signal. However, several
works [58], [59], [61], [64], [65] have proved that ML
protocols allow to detect brain cancer from Raman spectra
obtained from blood-derived liquid biopsies. For example,
Tian et al. [65] experimented with various DL techniques for
the detection of glioma from Raman spectra of blood-derived
serum samples. For this study, they employed a statistical
sample made of 83 patients, 38 with glioma and 45 control
cases. The corresponding Raman spectra were retrieved with
a Confocal Raman Microscope, working with a laser source
at 532 nm. the final dataset included 415 Raman spectra,
190 for the malignant class and 225 for the control cases.
The DL pipeline consisted in PLS feature extraction, data
augmentation, and the application of several Convolutional
Neural Networks. Thanks to 5-fold cross-validation, the
study revealed that PLS+GoogLeNet corresponded to the
maximum performance with sensitivity, specificity, and
accuracy exceeding 98%. The excellent prediction capability
shown in this work suggests the applicability of RS and ML
for brain cancer detection from non-invasive liquid biopsies.

As regards the treatment of brain cancer, the gold standard
is made by the combination of surgical excision and Chemo-
or Radiotherapy. In this sense, one of the crucial issues
is represented by the need to maximize the amount of
the resected malignant mass by preserving the surrounding
healthy tissues. Despite several approaches, such as intraop-
erative MRI [173], fluorescence-guided surgery [174], and
electrophysiological mapping [175], have been introduced
to help the surgeon during the mass resection, today one
of the most relevant causes of morbidity and mortality
related to brain tumors is researched in the recurrence of
the tumor mass in the proximity of the boundaries of the
resection cavity [63]. This finding suggests the failure of
the surgical treatment, with portions of malignant tissues
left in the resection cavity [176]. Such dramatic statistics
pushed the researchers to find fast and accurate approaches
for the estimation of the tumor boundaries. Due to the fast
response and label-free character of RS, this technique has
been widely studied in combination with ML for the accurate
estimation of brain tumor boundaries [57], [60], [62], [67].
In particular, Jin et al. [62] proposed a protocol to detect
brain tumor boundaries that exploit the reduction of the pH
induced by the tumor mass on its boundaries. The concept
of this assessment is based on putting a water droplet in
contact with brain tissues. Then, the droplet is placed on a
chip coated with metal nanoparticles for SERS investigation.
The resulting Raman spectra of these samples were employed
to feed a custom Convolutional Neural Network for an
ultrasensitive prediction of the pH of the portion of tissue

that has come into contact with the water droplet. Based on
this principle, it is possible to probe the tissue pH in several
points of the intracranial area and to reconstruct pH maps,
highlighting the pH of the tissues point-by-point. To verify
the effectiveness in detecting the tumor boundaries, the
aforementioned principle was tested in SERS-guided surgical
excisions of glioma in mice. Concerning the conventional
strategies, which are usually based on MRI-assisted surgery,
SERS resulted in a significantly increased survival rate of the
mice, revealing itself promising for future implementations
in common practice.

Alongside SERS, Stimulated RS constitutes an alternative
solution to the problem of increasing the Raman signal-to-
noise ratio in the assessment of brain tumor boundaries.
In this sense, Stimulated Raman Histology represents a
promising approach, providing spatially-resolved molecular
and morphological properties of brain tissues. In particular,
Hollon et al. [60] performed a study aimed at comparing
Stimulated Raman Histologic images of brain tissues to
traditional Histologic images. This investigation was based
on the use of a sophisticated DL protocol, called Deep-
Glioma, in which a Convolutional Neural Network was fed
with 2.5 millions of Stimulated Raman Histologic Images,
obtained from an initial cohort of 278 patients. The trained
Convolutional neural network reached accuracies exceeding
93%, in line with the performances of the traditional
histopathological exam. Furthermore, the DL model was
capable of detecting peculiar features of histopathological
images, i. e. tumor infiltrates within healthy tissues.

The promising results regarding brain cancer detection
on brain tissues through RS coupled with ML pushed the
researchers to realize engineering tools aimed at helping the
surgeon distinguish the tumor boundaries during the excision
in a real-time fashion. For example, Zhang et al. [57] adopted
a portable VRR-LRRTM Raman analyzer under quasi-clinical
conditions to detect glioma from fresh human brain tissues.
The apparatus worked with light at wavelength of 532 nm.
The Raman technique was coupled with ML pipeline based
on the application of PCA and SVM. The model was trained
with 2220 spectra, retrieved from 53 patients. The technique
allowed to distinguish normal and malignant tissues with
an accuracy exceeding 80%, with relevant implications in
terms of the future implementations of the aforementioned
technologies in the common practice.

E. PROSTATE CANCER
Prostate cancer turns out to be the second most frequent
form of tumor in men, with more than one every ten
cases of cancer, with almost 7% of cancer-related deaths
in male in 2018 worldwide [177]. In addition, among all
the prostate cancer cases registered every year, around 97%
involve men after 50 years of age [178]. Today, despite
the presence of well-established screening protocols, there
isn’t an universally recognized diagnostic recipe for prostate
cancer. Unlike the Digital Rectal Examination, the diagnostic
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gold standard is represented by the measurement of the level
of Prostate-Specific Antigen (PSA). This antigen is secreted
by the epithelial cells of prostate and its level is usually
assessed in blood. In particular, high levels of PSA in blood
correspond to suspect cases of prostate cancer. It is commonly
recognized that this protocol suffers from lack of sensitivity
and accuracy, especially in distinguishing cancer from the
so-called Benign Prostatic Hyperplasia. For this reason, PSA
alone leads to high percentage of false positive cases and
invasive and painful biopsies are generally required to obtain
a final diagnosis through histopatological analysis [179],
[180], [181]. The result is the so-called Gelason Score (GS),
a parameter that, according to the original definition, assumes
integer values ranging between 1 and 5, representative of
the appearance and the differentiation of tissues in the
histological pattern. The definition of GS has been subjected
through the years to several revisions and corrections [182].
Therefore, novel and non-invasive screening protocols are
needed for a more effective detection of prostate cancer and
for sensitively reducing painful and unnecessary biopsies.
In this sense, a possible strategy is represented by the analysis
of liquid samples, such as blood, serum, seminal fluid or
urine, by measuring the presence of specific biomarkers, such
as micro-RNA, circulating tumor cells or exosomes [178].
For example, Medipally et al. [77] conducted a study whose
goal was to search prostate cancer from blood plasma.
To this aim, 76 patients were selected, 43 of whom were
affected by prostate cancer, while the others were healthy. The
technique Raman adopted was based on the use of Confocal
Raman Microscope equipped with a laser emitting light of
wavelength 785 nm. PCA applied to the resulting spectral
components put in evidence differences between the benign
and the malignant sub-groups. Furthermore the algorithm
revealed also differences related to the Gleason Score, i.
e. to the degree of malignancy. The principal components
were than used to train a ML model based on Partial Least
Squares-Discriminant Analysis, leading to sensitivities and
specificities ranging from 90% to 99%. Finally, a decon-
volution of the characteristic peak convolution was carried
out through a Classical Least Squares fitting procedure,
highlighting an increase in the content of interleukin-
6, phosphatidylethanolamine, creatinine and RNA and a
decrease in the concentration of albumin and β-carotene in
the malignant patients with respect to the healthy ones.

RS and ML were also employed in the monitoring of the
effect of therapies on the progression of prostate cancer. For
example, Picot et al. [73] developed a Raman fiber-optics
system for the trans- rectal examination of prostatic tissues,
aimed at monitoring the effects of brachytherapy on the
disease recurrence. The apparatus was fed with a laser
emitting light at 785 nm and it was tested on a sample made of
18 patients with prostate cancer and 14 tissues retrieved from
patients subjected to prostatectomy. The resulting dataset was
composed of 138 Raman spectra. AMLmodel based on SVM
was applied with the purpose of distinguishing normal from
cancerous tissues. The model was tested in situ in 28 benign

and 21 malignant cases, resulting in 79% accuracy, 86%
sensitivity and 72% specificity.

F. OVARIAN CANCER
Ovarian cancer turns out to be the second leading cause
of cancer-related deaths among women worldwide, with
a mortality of around 60% registered in 2018 [183]. The
reasons for such dramatic statistical data can be found in
the absence of symptoms representative of the early stage
of the disease. Furthermore, despite the efforts devoted by
the researchers, today there are no biomarkers conceived for
an early-stage diagnosis of the tumor. Recent screening cam-
paigns [184], performed on women with suspect symptoms,
led to a reduction in tumor mortality, highlighting the need
for novel, easy in use and powerful techniques to perform
an early-stage diagnosis and thus increase the 5-year survival
rate of the patients.

Today the non-invasive screening protocols for the detec-
tion of ovarian cancer are based on the research in blood
samples of specific biomarkers, such as Cancer Antigen
125 (CA-125) or HE4 [185]. The main drawback of these
approaches can be found in the lack of sensitivity, especially
in the detection of early-stage cases. For this reason,
the employment of multiple biomarkers could represent a
possible solution to improve the detection performances.
In this case, future challenges are represented by the choice of
combinations of biomarkers representing a good compromise
between the need to maximize the detection performances
and the need to avoid the employment of useless and/or
redundant biomarkers [186]. As regards the imaging of
ovarian tissues, today the most widespread approach is
based on the use of ultrasounds, either in a transvaginal
or in a transabdominal fashion, with the weakness of not
distinguishing benign from malignant masses.

The common therapy for ovarian cancer consists of sur-
gical removal and chemotherapy, accompanied by the moni-
toring of the disease recurrence through specific biomarkers,
such as CA-125, and imaging techniques. The pitfall of this
stage of the therapy is represented by the possible presence
of micro-metastasis, possible causes of cancer recurrence,
and often hard to detect [80]. In particular, it has been
demonstrated a positive correlation between the presence
of micro-metastasis after surgical therapy and an increase
in tumor morbidity [187]. For example, David et al. [80]
developed an RS-ML protocol for the detection of ovarian
cancer by directly measuring ovarian tissues, with the aim of
offering an additional tool to detect the presence of micro-
metastasis. Their sample was constituted of 9 patients, 4 of
whom with ovarian cancer, 3 with endometrial cancer, 1 with
benign mucinous cystadenofibroma, and 1 with unknown
diagnosis. The Raman analysis was performed on fresh
ovarian tissues and with a Confocal Raman Microscope,
equipped with a laser emitting light at 785 nm. The
resulting dataset was subjected to an SVM algorithm with
a LASSO regression. The resulting dataset was subjected to
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k-NN analysis. The protocol allowed the detection of eight
characteristic spectral bands, used for the prediction. The
final performances in distinguishing cancer were assessed
through a Leave-One-Out cross-validation, and consisted of
accuracy, sensitivity, and specificity of 90%, 93%, and 88%,
respectively.

However, as regards the employment of the Raman
technique in association withML for diagnostic purposes, the
research about ovarian cancer has progressively devoted its
efforts to developing non-invasive protocols to detect cancer
from body fluids, such as blood plasma, serum, cystic fluid,
ascitic fluid etc [79], [81], [83], [84], [85]. In this sense,
the SERS concept has been widely adopted to increase the
Raman signal-to-noise ratio of the characteristic biomarkers
for ovarian cancer. Moisoiu et al. [83] experimented with the
use of SERS in the detection of ovarian cancer in human
blood serum samples functionalized with silver nanoparticles
to perform signal enhancement. For this study, they gathered
a cohort of 253 patients, 39 healthy volunteers, 42 with
breast cancer, 109with colorectal cancer, 33with lung cancer,
17 with oral cancer, and 13 with ovarian cancer. The Raman
spectra were retrieved with a Confocal Raman Microscope
by probing the Raman effect with a laser source at 532 nm.
The resulting Raman spectra were used as input variables for
a standard ML model based on the consecutive application of
PCA and LDA. The performances of the model were assessed
through the 5-fold Cross-Validation technique. The model
showed excellent performances in distinguishing benign from
malignant cases with an average sensitivity and specificity of
98% and 91%, respectively. In addition, the model has proved
to be effective in distinguishing the types of tumor, with
accuracies of 88% for oral cancer, 86% for colorectal cancer,
80% for oral ovarian cancer, 76% for breast cancer, and
59% for lung cancer. Giamougiannis et al. [81] described a
technique for the identification of ovarian cancer from human
blood plasma and ascitic fluid, based on the use of a standard
Raman Confocal Microscope, equipped with a laser emitting
light at 785 nm. The study involved 20 healthy patients and
18 with ovarian cancer, with the aim of performing a binary
classification. The resulting initial dataset was composed
of 385 Raman spectra. After a dimensionality reduction,
employing PCA, the resulting data were subjected to two
different classifiers, i.e. LDA and SVM. The detection per-
formances were assessed through a 10-fold cross-validation
revealing a maximum accuracy of 82% in the detection of
cancer from ascitic fluid. Paraskevaidi et al. [85] carried out a
study aimed at distinguishing ovarian cancer from the human
blood plasma retrieved from 55 patients, by employing a
standard Confocal Raman Microscope operating at 785 nm.
The Raman spectra were subjected to a Support Vector
Machine classifier, adopting a Gaussian kernel, resulting in
excellent detection performances, i. e. sensitivity of 94% and
specificity of 96%. This last work testifies to the effectiveness
of blood samples for the Raman-assisted detection of ovarian
cancer.

G. ORAL CANCER
Oral cancer is defined as a form of tumor affecting the floor
of the mouth, palate, tongue, alveolus, or buccal mucosa. This
form of cancer turns out to be the sixth most frequent form
of tumor worldwide, with mortality overcoming 60% within
the first five years from the initial diagnosis [188]. Today,
the commonly accepted diagnostic protocol for oral cancer
is based on a visual examination and palpation of the tumor
mass, aimed at distinguishing the tumor boundaries. This
phase is followed by tumor resection, whose effectiveness is
strictly correlated to the correct estimate of tumor margins.
In particular, it was estimated that in the most widespread
form of oral cancer, i. e. the oral cavity squamous cell
carcinoma, in almost one out of every two cases the marginal
resection is incomplete [91]. Furthermore, this operation is
often made complex by the presence of tumor margins in
deep tissue layers [189]. All these difficulties lead to the need
for multiple and invasive resections and to a high probability
of cancer recurrence with negative consequences in terms
of the 5-year survival rate. In this sense, the combination
between RS and ML has taken two paths. A first research
line is focused on the estimation of tumor boundary from the
analysis of fresh tissues. Jeng et al. [92] conducted a study
on human fresh tissues aimed at detecting oral squamous
cell carcinoma through a standard CRM operating in the
visible range (532 nm). The patients’ cohort was composed
of 80 individuals, resulting in a dataset of 400 Raman
spectra. The spectra were pre-processed through a Savitzky-
Golay filter of order 3, followed by the removal of the
basline component. Finally, the spectra were normalized by
standardizing the Area Under Curve to the group median.
The classification was performed by sequentially applying
PCA and Quadratic Discriminant Analysis, resulting in an
accuracy of 87.5%, a sensitivity of 90.9%, and a specificity of
83.3%. Sharma et al. [96] successfully employed a common
Confocal Raman Microscope with laser light at 532 nm for
the detection of oral squamous cell carcinoma from fresh
biopsies. In particular, an ensemble of 64 patients with
oral squamous cell carcinoma was considered. From each
patient, two biopsies, of healty and malignant oral tissue,
were excised. Five spectra were acquired for each sample of
tissue, resulting in a total number of 640 spectra. Prior to the
classification, the spectra were subjected to pre-processing
operations, aimed at reducing the interference, removing the
baseline component and eliminating the data redundancy.
The classification was carried out by applying Partial Least
Squared and Support Vector Machine sequentially. The
resulting ML model discriminated malignant from healthy
tissues with an accuracy of 94.74%, a sensitivity of 95.65%
and a specificity of 93.33%.

These and other similar studies conducted ex vivo pushed
the researchers to study measurements on fresh tissues with
engineered Raman probes, in view of future applications
in situ. For example, Chang et al. [86] compared various
DL models (AlexNet, VGGNet, ResNet50, MobileNetV2,
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and Transformer) for the interpretation of experimental data
obtained from human fresh tissues excised from 90 patients.
In particular, the employed tissues corresponded to control
samples and forms of squamous cell carcinoma located in
various positions within the oral cavity. The Raman setup
was a custom-built fiber-based Raman apparatus working
with a laser emitting light at 785 nm. This led to a final
dataset including 16400 Raman spectra, employed to feed
the aforementioned DLmodels. The collected Raman spectra
were pre-processed by apllying, in the order, Savitzky-
Golay filtering, baseline correction through the asymmetric
weighted penalty least squares and MinMax normalization.
The MLmodels were tested through a k-fold cross-validation
technique, with k = 1, . . . , 5. In those conditions, the
resulting performances highlighted how ResNet50 was the
best model in distinguishing normal and cancerous tissues,
with a final accuracy of 92.81%, a precision of 92.93%, and a
sensitivity of 92.86%. Xia et al. [90] employedDL techniques
to detect cancerous oral tissues from para-cancerous tissues
excised by patients affected by tongue squamous cell
carcinoma. The initial cohort was composed of 12 patients.
The Raman spectra were retrieved through a fiber-based setup
equipped with laser emitting at a wavelength of 785 nm. The
resulting Raman spectra, pre-processed with Savitzky-Golay
filtering, asymmetric weighted penalty least squares basline
correction and MinMax normalization, were employed to
train a custom-built CNN adopted as a feature extractor.
In other words, the CNN had the function of detectiong
the relevant spectral components for cancer detection. The
extracted features were employed to train an SVM with a
Gaussian kernel. A 5-fold cross-validation procedure led to
an overall accuracy larger than 99%.

As mentioned before, one of the most relevant difficulties
addressed during oral cancer removal is related to the
presence of tumor margins infiltrated into deep layers of
tissues, especially when the tumor is at a late stage. Since
the tumor mass develops from the external surface of the
oral cavity inwards [190], novel and effective strategies to
detect the tumor could represent a decisive step to detect the
tumor mass when it is limited to surface layers of tissue, and
therefore, easier to remove. A natural and minimally-invasive
evolution of the aforementioned techniques based on the
analysis of ex vivo tissue is based on the efoliation of
epithelial cells. Chaudhuri et al. [97] employed this technique
to whitdrawal oral cells from patients affected by oral
squamous cell carcinoma. In particular, 65 Raman spectra
were collected from healthy, pre-cancerous and cancerous
patients. The Raman apparatus was a Confocal Raman
Microscope employing laser light at 785 nm. The authors
focused their attention in two classification tasks: a binary
classification, aimed at distinguishing normal tissues from
all the other types; a three-class classification, aimed at
classifying normal, pre-cancerous and cancerous tissues.
After a pre-processing phase, i. e. baseline removal and
MinMax normalization, Linear Discriminant analysis was
applied to reduce the system dimensionality. Then, the spectra

were classified with Support Vector Machine, resulting in an
accuracy of 95% for the binary classification problem and of
88.8% for the three-class based classification problem.

Another strategy for an non invasive detection of oral
cancer is based on the employment of liquid biopsies such
as blood serum [89], blood plasma [89], saliva [88], [89]
or saliva-derived cells [87]. For example, Wang et al. [89]
experimented with a SERS protocol for the early and
non-invasive diagnosis of oral squamous cell carcinoma from
blood serum and saliva liquid biopsies. The blood samples
were collected from a cohort of 183 patients, while the saliva
samples were retrieved from 68 patients. The study was
focused on the individuation of three classes, corresponding
to oral squamous cell carcinoma, neoplasm of the salivary
glands, and healthy patients. The field enhancement was
obtained through the use of silver nanoparticles meshed with
the liquid samples, while the Raman signal was measured
with a conventional Confocal Microscope equipped with a
laser emitting light at 785 nm. The resulting Raman spectra
were subjected to pre-processing operation, i. e. removal of
fluorescence background and area normalization. The Raman
spectra of blood serum put in evidence an association of
cancer to the Raman peaks attributable to glycogen, lactose,
L-tyrosine, and Phenylalanine. An SVM protocol allowed
to demonstrate that the resulting Raman spectra allowed the
discrimination of the three classes of interest considered
pairwise, with an accuracy larger than ∼83% and reaching
∼92% in distinguishing adenocarcinoma and normal samples.
As regards the saliva samples, the resulting performances
were lower, with accuracies ranging between ∼73% and
∼85%. In conclusion, this work demonstrated the effective-
ness of this SERS protocol combined with conventional ML
for the detection of oral cancer from liquid biopsies.

VII. SUMMARY AND CONCLUSION
In this survey, we provided an overview of themost promising
studies employing RS and DL/ML techniques for cancer
grading. To this aim, we collected 60 previous works
regarding the employment of this technique on seven types
of tumors, by taking into consideration the most recent
results available. In the papers analyzed, several experimental
approaches were adopted to retrieve the Raman signal
of interest, ranging from the widespread Confocal Raman
Microscopy to the employment of engineered Raman probes.
Besides the assessment of cancer through solid biopsies,
the use of samples derived from body fluids has gained
attention due to the intrinsic non-invasive nature of this kind
of biopsies. In literature, the analysis of the Raman-derived
experimental data involved several approaches belonging to
ML or to its sub-field, i.e., DL, which is gaining more and
more interest due to its ability to produce better classification
performances.

A. AI ANALYSIS AND INSIGHTS
Based on the reported works findings, several possibilities
are available when selecting an ML or DL-based model to
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autonomously analyze Raman spectra. Our analysis suggests
that each technique excels in specific problem scenarios, with
no single method universally standing out as the superior
choice. From the range of potential options, prevalent
but effective approaches use a dimensionality reduction
technique (mainly PCA) with an SVM or a specifically tuned
deep neural network, yielding notable results on multiple
types of cancer. However, the lack of standardized practices
and survivorship bias in studies pose challenges to the
field that could limit the ability to draw firm conclusions.
Usually, within the same work, DL methodologies show
improved accuracy in comparison to the ML approaches,
with or without multiple preprocessing steps, often serving as
benchmarks for custom implementations. Yet, this advantage
might be attributed to a procedural bias in ML-based
studies that is not consistently followed by other DL-
based investigations. In addition, no thorough comparison
with multiple dataset sources combined and/or on different
Raman apparatus was found, highlighting the necessity of
standardization of the Raman procedure and a joint effort to
produce a common, larger dataset to perform further analysis.
With more extensive, and widely recognized datasets, better-
performing and more complex algorithms that are usually
avoided due to data scarcity could be introduced in this field.
Many studies (e.g., [47], [55], [56]) implemented customNN-
based architectures, which obtained very high classification
accuracies (close to 100%) on small datasets. However, the
real-world effectiveness of statistical models relies on their
capacity to discern underlying patterns behind all possible
types of data. However, a sufficiently large dataset that
reflects the population across many scenarios is required,
as well as a data variability which should be representative
enough of the specific classes of data under consideration.

In other scientific domains, such as computer vision or
natural language processing, larger and proven architectures
are frequently utilized across various data types. Expanding
the size and diversity of Raman datasets could not only
mitigate overfitting but also introduce new baseline compar-
isons, leading to a significant enhancement in the quality and
thoroughness of Raman spectroscopy analysis.

Additionally, even if synthetic data cannot fully replicate
real-world scenarios, several AI techniques showcase the
potential to generate synthetic yet reliable data, potentially
bridging the gap between data-intensive, high-performing
analyses and the more practical but less generalized current
state of Raman data analysis. To tackle these challenges,
a variety of deep generative methods can be utilized, such
as GANs, variational autoencoders, diffusion models, flow-
based models, and energy-based models, leading to new
possibilities within the existing resources [191], [192], [193].
The integration of AI approaches with RS plays a crucial

role in advancing medical diagnostics, with a primary focus
on directly distinguishing between normal and cancerous
tissues based on the distinct patterns within their Raman
spectra. This application is pivotal in the field, as it
enables precise and non-invasive identification of diseased

tissues, offering significant potential for improving patient
outcomes. However, despite its primary emphasis on tumor
classification, the versatility of RS can advance beyond
this scope. For instance, researchers like Fuentes et al.
have demonstrated its utility in identifying biochemical
radiation responses in xenografted human breast tumors,
facilitating the monitoring of changes in the radioresistance
of metabolic biomarkers [48]. Additionally, studies by Ma et
al. explore the potential of Raman spectroscopy in analyzing
exosomes, providing valuable insights into their diagnostic
relevance [50]. This proves that different or even multiple
tasks could be performed at once, enabling parallel andmulti-
level analysis.

Furthermore, several studies (e.g., [38], [43], [49], [54])
made efforts to provide explanations for their findings,
illustrating when the outputs were useful for the implemented
algorithms. This aspect holds significant importance as it
can improve outcomes across various domains, particularly
within healthcare. It is expected that XAI will gain increasing
significance among all stakeholders, including users, devel-
opers, and those affected by AI systems [194]. For instance,
in the healthcare sector, through XAI techniques physicians
can understand which pathological features in input data
guided the algorithm before exploiting the insight obtained
from automatically generated diagnosis reports [194], [195].
This enhances transparency in diagnosis, fostering trust
among both medical staff and patients. In addition, imple-
menting these techniques can help to detect bias in the input
data distribution or faults in the algorithm decision process,
increasing reliability and the ability to face unexpected
situations [194]. Thus, it is highly advisable to implement this
procedure in the final version of an automated RS analysis
system. However, the interpretability comes with a cost, due
to the tradeoff between accuracy and intelligibility [196]
that must be considered. Thus, simultaneously prioritizing
both these aspects may represent the most prudent path
forward in this field where responsibility and confidence are
fundamental for effective decision-making.

B. FUTURE PERSPECTIVES
As stated in the previous sections, the richness of publications
about cancer detection performed by coupling RS with
ML/DL makes this combined approach a promising route,
either for cancer screening or to help the surgeon during
the tumor mass excision to assess the tumor boundaries,
as prescribed by precision medicine. In some cases, the
ML analysis of Raman-based experimental data allowed
us to reach impressive detection accuracy, not only in
distinguishing malignant from benign tumors but also in the
detection of cancer sub-types, metastasis, tumor grade and
location, etc. Specifically, several possibilities are available
when selecting an ML or DL-based model to autonomously
analyze Raman spectra, as shown in the table 1. These results
constitute an encouraging landmark for future applications
in engineered devices. Still, several issues remain open,
representing potential insights for further investigations:
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1) the time needed to obtain the final response inevitably
places limitations on the applicability of such tech-
niques. The assessment of the performance in terms of
diagnostic time requires comparison with commonly
accepted protocols. For example, cancer detection
through the qualitative exam of stained solid biopsies
requires a few minutes, while RS analysis takes from
a few hours to several days [197]. Possible causes of
long diagnostic times can be undoubtedly attributed to
the width of the spectral range, to the number of spectra
needed for a single diagnosis, and, consequently, to the
computational cost of the classification.
The commonly used Raman-based setups turn out to
be cost-effective compared with other techniques, such
as MRI or CT, with a difference of about one order of
magnitude [198]. However, in view of a possible imple-
mentation of commonly used screening protocols, the
aforementioned strength could not be sufficient.
In this sense, identifying specific spectral bands
relevant to the classification process could represent
a crucial step, either for reducing spectral acquisition
and classification times or for realizing Raman setups
featuring relatively simple and affordable optics and/or
detectors suitable for everyday use. Furthermore, the
introduction of pre-processing and/or classification
algorithms, designed to cope with signal noise resulting
from the employment of less technologically advanced
instruments, could help in reaching the desired levels
of diagnostic accuracy. Finally, High-Performance
Computing (HPC) could represent another solution to
speed up the classifier algorithms.

2) Novel approaches can be explored by integrating
information obtained from multiple sources, leading
to comprehensive analyses and potentially yielding
increased performance. For example, the integration of
multimodal oncological data, such as the combination
of Raman imaging and spectra with optical images for
nevi monitoring or with an EEG scan for brain tumors
could result in improved molecular analysis and more
robust predictions, exploiting different points of view
of the specific disease considered. Thismethod exploits
different viewpoints of the specific disease under
consideration and, thanks to the increased quantity of
data, opens up the possibility of using more recent
architectures, such as Graph Neural Networks [199]
and Transformers [200], that showed promising results
in oncological scenarios when a multimodal learning
approach was available [201].

3) The application of AI techniques introduces several
legal and ethical issues beyond their practical effec-
tiveness. It is crucially important to employ transparent
methods that clarify the operations and reasoning of the
algorithm in order to enhance confidence in the outputs
and explain to the medical user the features recognized
by the model in the inputs. Achieving knowledge of
the model’s inner process allows further investigation

of signal patterns that are challenging to distinguish
through visual inspections and human analysis and
can potentially lead to more grounded and justified
diagnoses.

VIII. GLOSSARY
AUC Area Under the Curve.
AdaBoost Adaptive Boosting.
AI Artificial Intelligence.
ANN Artificial Neural Network.
BCC Basal Cell Carcinoma.
Bi-LSTM Bilinear Long Short-Term Memory.
CE Chemical Enhancement.
CLSM Confocal Laser Scanning Optical

Microscopes.
CNN Convolutional Neural Network.
CNS Central Nervous System.
CRM Confocal Raman Microscopy.
CT Computed Tomography.
DL Deep Learning.
DT Decision Tree.
EE Electromagnetic Enhancement.
EEG ElectroEncephaloGram.
EUS Endoscopic Ultrasound.
GAN Generative Adversarial Network.
GS Gleason Score.
HER2 Human Epidermal Growth Factor Receptor.
KNN K-nearest Neighbors.
LDA Linear Discriminant Analysis.
LSPR Localized Surface Plasmon Resonance.
LR Linear Regression.
LSTM Long Short-Term Memory.
LightGBM Light Gradient-Boosting Machine.
ME Melanoma.
ML Machine Learning.
MLP Multilayer Perceptron.
MN Benign Melanocytic Nevus.
MRI Magnetic Resonance Imaging.
PCA Principal Component Analysis.
PDAC Pancreatic Ductal AdenoCarcinoma.
PET Positron Emission Tomography.
PLS Partial Least Squares.
PSA Prostate-Specific Antigen.
ROC Receiver Operating Characteristic.
RS Raman spectroscopy.
SERS Surface-Enhanced Raman Scattering.
SCC Squamous Cell Carcinoma.
SPR Surface Plasmon Resonance.
TNBC Triple-Negative Breast Cancer.
VIP Variable Importance in Projection.
XGBOOST Extreme Gradient Boosting.
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