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ABSTRACT Software defect identification (SDI) is a key part of improving the quality of software projects
and lowering the risks that along with maintenance. It does identify the software defect causes that have
not been reached yet to get sufficient results. On the other hand, many researchers have recently developed
several models, including NN, ML, DL, advanced CNN, and LSTM, to enhance the effectiveness of defect
prediction. Due to an insufficient dataset size, repeated investigations, and no longer appropriate baseline
selection, the research on the CNN model was unable to produce reliable results. In addition, XAI a
well-known explainability approach creates deep models in computer vision, as well as successfully handles
the software defect prediction that is easy for humans to understand. To address these issues, firstly we have
used SMOTE for preprocessing which was collected from the NASA repository; categorical and numerical
data. Secondly, we have experimented with software defect prediction using 1D-CNN and 2D-CNN named
lightweight CNN (LCNN). Subsequently, evaluation we have employed a 100-repetition holdout validation.
For the cross-validation setup, we utilized the 1D-CNNmodel was 20×1, and for the 2D-CNNmodel, it was
4×5×1. After that, the results of the experiment were compared and assessed in terms of accuracy,MSE, and
AUC. The result shows that 2D-CNN shows 1.36%better contrast with 1D-CNN. Thirdly, we have conducted
research on the identification of software defect features via LIME and SHAP in XAI stand as state-of-the-
art techniques. However, we cannot use 2D-CNN because it involves more complex relationships, making it
challenging to create transparent explanations. That is whywe have realized that 1D-CNNwill superior result
to explain the root cause of software feature identifications. Finally, LIME provides accurate visualization of
software defect features in contrast with SHAP, as well as it helps the stakeholders of the software industry
easily find actual root causes of software defect identification.

INDEX TERMS Software defect identification (SDI), explainability, 1D-CNN, 2D-CNN, CNNmodel, deep
learning, SHAP, LIME.

I. INTRODUCTION
In today’s world, the use of software is increasing day
by day in different domains such as increased efficiency
and productivity, enhanced communication and collabora-
tion, entertainment and leisure, innovation and technological
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advancement, accessibility, and global connectivity. Soft-
ware defects, ranging from coding errors to design flaws,
can have far-reaching consequences, leading to system fail-
ures, security breaches, and financial losses. That is why
the identification and mitigation of software defects is
a pivotal issue for ensuring reliable and safe software.
On the other hand, the field of software engineering has
long recognized the importance of early fault detection and
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remediation, and with the advent of artificial intelligence
(AI), significant strides have been made in automating fault
detection and analysis. Software engineers and quality assur-
ance (QA) managers face numerous challenges in their
respective positions. The following are often encountered
challenges: evolving needs, intricacy of software systems,
guaranteeing quality across many platforms and devices,
upholding code quality, automating testing, addressing inte-
gration and compatibility problems, addressing security
concerns, and managing limited resources.

In the last four decades, different researchers have worked
on software defect identification, but their results have not
been fruitful. In this regard, several ANN architectures have
been proposed for software fault prediction and analysis by
Begum and Dohi [1]. They presented a software fault pre-
diction model that utilizes Box-Cox power transformation
methods and compared existing software reliability growth
models. A Multilayer Perceptron (MLP) is a sequentially
linked artificial neural network with several layers of con-
nections. In order to solve and foresee software errors,
the authors of [1] developed an MLP with a one-stage
look-ahead prediction utilizing Box-Cox Power Transforma-
tion as an experiment. Traditional ANN models’ prediction
performance was improved using a mix of ML and evo-
lutionary computing approaches [2]. However, academics’
main focus has shifted to the correct identification of a
software defect, which has a significant impact on soft-
ware release time. Several ANN methods for determining
the best time to release software have been proposed by
Begum and Dohi [3], [4]. Using a multi-stage look-ahead
prediction approach where the ideal number of hidden neu-
ral networks and transformation values were discovered has
limitations.

In another work, Liu et al. [5] investigated the impact of
combining different sampling techniques and ML classifiers
on defect prediction performance. While it finds no single
optimal combination, it identifies support vector machines
and deep learning as the most consistently performing classi-
fiers. In [6], they contributed to the field of software defect
prediction by utilizing various ML approaches to create
multiple categorization or classification models, aiming to
improve software quality and reduce testing costs. They also
discussed the application of ensembling techniques and fea-
ture selection methods, such as principal component analysis
(PCA), to further improve the accuracy of defect prediction
models. They focused only on accuracy.

The authors [7] employed long-short-term memory
(LSTM) networks in this kind of research to forecast software
faults. They also calculated the data dispersion from the
observed independent RMSE data points for each model.
The quantified data dispersion value of the second model
was found to be less minimal than the first one. The authors
applied LSTM to predict the faults of multi-time stamps
using a recursive approach. In addition, they compared LSTM
and traditional software reliability growth models (SRGMs)
based on their prediction accuracy evaluations.

The CNN model is well-suited for software fault pre-
diction because it can effectively capture local and global
patterns within source code structures, aiding in identifying
potential defects. The author [8] improved a CNN model
for within-project defect prediction (WPDP) and examined
it with CNN and empirical results. This experiment uses
30-repetition holdout validation and 10× 10 cross-validation.
In WPDP experiments, the improved CNN model was equiv-
alent to the existing CNN model and outperformed state-
of-the-art machine learning models. One limitation of this
research is the need for more data, specifically C/C++ open-
source projects, to build robust and generalizable datasets for
deep learning-based defect prediction.

Scope: This research introduces an LCNN for software
defect prediction, which utilizes CNN models. The pro-
posed LCNN model outperforms conventional ML models
in terms of performance. Subsequently, we converted the
executable strings into numerical values and included them
in the CNN model, which comprises a word embedding
layer, a pair of convolutional layers, two max-pooling lay-
ers, and one dropout layer. Then, we assessed the proposed
model’s prediction ability by examining its accuracy, MSE,
and AUC using the CM1 dataset, taken from the NASA
repository [9]. There were two CNN methods: 1D and 2D,
which we used for this evaluation. 2D-CNN has almost the
same outcomes compared with 1D-CNN. For root cause
analysis, we use a method called ‘‘explainability,’’ along with
LIME and SHAP, to figure out what happened with a deep
learning model that was trained on tabular data. On the other
hand, 2D-CNN changes input data shape; for this reason,
we are unable to use tabular data on XAI. Therefore, we use
1D-CNN for the recognition of the root causes of software
faults. As a result, LIME is a good way to explain fea-
tures of software defects in XAI, where we used it along
with SHAP.

The following are some of our study’s contributions:
• We have introduced an LCNN model that aims to
enhance generalization and enable the identification of
software defect features via the use of XAI.

• We used two CNN techniques: 1D and 2D, for experi-
ments.

• We divided our research into two sections. In the first
section, we use the CNN model for the prediction and
choose 1D-CNN for further experiments. The subse-
quent experiment explained the underlying reasons for
software issues.

• In our empirical discoveries, we carried out a hyperpa-
rameter search, during which we took into account the
number of dense layers, the kernel size, and the stride
step.

• LIME is a method that accurately approximates the
predictions of any classifier or regressor using a locally
interpretable model, allowing for truthful explanations.

• We introduce SHAP-based methodology, enhancing
the interpretability of ML models and offering clearer
insights into feature importance.
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• Finally, we concluded that LIME and SHAP in XAI pro-
vide us with an accurate understanding of the root cause
of software defects. However, when comparing them,
we found that LIME gave better results than SHAP.

We introduce our research questions, which were answered
in a section of analysis with LIME and SHAP.

• RQ1: How can an LCNN architecture be designed
for effective feature identification in software defect
analysis using XAI?

• RQ2: What role does Explainable AI play in
enhancing the transparency and interpretability
of the LCNN model for software defect feature
identification?

• RQ3: How does the LCNN architecture perform
compared to traditional methods in terms of accu-
racy and efficiency for identifying software defect
features?

• RQ4: What impact does the choice of hyperpa-
rameters have on the CNN model’s performance in
software defect feature identification, and how can
these be optimized for better results?

• RQ5: How transferable is the proposed LCNN archi-
tecture to different software domains, and what
factors influence its generalizability?

The remaining parts of this paper are organized as fol-
lows: Section II presents a comprehensive review of previous
research conducted in the areas of software defect identi-
fication and explainable AI. In Section III, we delve into
the methodology, detailing the XAI techniques and feature
engineering strategies employed. In addition, Section IV
delivers the experimental results and examines the practical
implications of this research. Finally, in Section V, we draw
conclusions and outline future directions for this exciting
intersection of software engineering and AI-driven inter-
pretability.

II. RELATED WORK
The realm of software defect identification has seen a surge in
research focusing on leveraging CNNs. In particular, the pur-
suit of developing lightweight and tailored CNN architectures
has become a pivotal area of interest. Subsequently, it aims to
enhance the efficiency and accuracy of defect identification
within software systems. Integrating XAI techniques into this
domain further augments the interpretability of these models,
providing insights into the decision-making process of the
network.

In addition, several researchers have delved into designing
customized CNN architectures, considering the intricacies
of software code while ensuring transparency in the iden-
tification process. Tong et al. [10] suggested a new way
to solve the class imbalance problem with SDP that uses
deep representations along with the two-stage ensemble and
conducted an experiment on 12 NASA datasets. They have
not worked on cross-project defect prediction, and there is no
clear identification of root causes.

In [11], Zhu et al. introduced a new defect predictionmodel
called DAECNN-JDP. This model utilizes a combination
of denoising autoencoder and CNN techniques to provide
just-in-time defect prediction. The evaluation of the model
was conducted using six extensive open-source projects and
compared to 11 baseline models. The experimental findings
demonstrated that the suggested model surpasses these base-
line models. However, they have not evaluated open-source
and commercial projects. In addition, they have not used
parameter optimization techniques to adjust the parameter.
Subsequently, Qiu et al. [12] introduced a new method that
utilizes a transfer CNNmodel to extract transferable semantic
features for cross-project defect prediction (CPDP) tasks. The
studies were carried out using 10 benchmark projects and
90 pairs of CPDP tasks.

Deep representation and ensemble learning were dis-
cussed in [13] for SDP to resolve the class imbalance
problem. The experimental findings demonstrated that the
proposed method outperformed existing cutting-edge tech-
niques. In addition, to optimize defect prediction models,
the authors in [14] proposed an ANN model with automated
parameter tuning techniques. The results indicated that the
performance of their proposed model improved after param-
eter settings were optimized. In [15], the authors improved
the recurrent artificial neural network (RANN) method used
to predict long-term software defects based on the number of
software faults and proposed a simulation-based method (PI
simulation) for calculating prediction intervals (PIs). In the
end, they compared it to the conventional delta method in
terms of the mean prediction interval width and PI coverage
rate. Still, they have not validated software metrics, including
McCabe, Halstead, and OO metrics.

Currently, the majority of SDP approaches have given little
consideration to the expense associated with misclassifying
faulty and non-faulty modules, with just a few instances
where this has been considered [16], [17]. Nevertheless, the
misclassification cost for the majority class is much lower
compared to the minority class in the context of software
testing. Cost-sensitive learning has shown its effectiveness
in connecting various misclassification costs into the SDP
process [18]. Faruk Arar and Ayan [16] tried to make
cost-sensitive neural networks using cost-sensitive learning
methods. They did this to try to fix the problem of the unequal
distribution of classes by taking costs into account.

Zhao et al. [19] have introduced a new SDP model named
Siamese parallel fully connected networks (SPFCNN), which
combines the benefits of Siamese networks with DL. The
experimental findings showed that the suggested model
exhibits considerably superior performance compared to the
benchmarked SDP techniques. In [20], a hybrid model that
combines bidirectional long-short-term memory with CNN
for SDP demonstrated the efficacy of the suggested method-
ology in accurately forecasting software problems. On the
other hand, the authors introduced a Semantic Dependency
Parsing (SDP) framework using an RNN that incorporates
attention mechanisms [21].
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TABLE 1. Contributions and limitations of different studies in the literature.

In Table 1, we show some contributions and limitations of
different studies in the literature.

From the above-related work, we realized software defect
prediction is vital for stakeholders, researchers, and the soft-
ware industry. Therefore, we propose an LCNN for SDP
using CNN models that outperform ML models. After that,
we explain the root causes of the software defect by using
expandable AI, and finally, we conclude that LIME in XAI
outperformed compared with SHAP.

III. PROPOSED APPROACH
Fig. 1 depicts the five stages that make up our suggested
approach architecture. The first phase consists of CM1NASA
datasets, preprocessing techniques, and splitting data for 1D-
CNN and 2D-CNN. In the second phase, we experiment on
1D-CNN, and next, we experiment on 2D-CNN with process
data. In the fourth step, we compared 1D-CNN and 2D-
CNN to select the best CNN technique for software defect
prediction. Finally, we have shown that LIME and SHAP are
used to find the proper explanation and visualize the root
cause of software defects.

A. FIRST PHASE
The following steps will describe the dataset used and the
preprocessing methods.

1) DATASET
For this study, we used CM1 from the PROMISE database [9]
for software engineering. It has 22 features that can be used to
find defects in software, whereas the last one is a dependent
feature, which indicates if there is a software defect or not.
In addition, it has 6992 instances, where the class distribution
is made up of a dataset with 3455 faults and 3537 no faults.

2) PREPROCESSING
In this research, we preprocess our datasets to transform raw
data into a more presentable format. Here, we use the label
encoding (LE) and standard scaler methods for normalization
and balancing. The LE method [28] is used for measuring
qualitative information. In thismethod, each category in a cat-
egorical variable is given an individual number that converts
to an integer representation to make the data more accessible.
Additionally, the standard scaler is used for scaling the data
so that the distribution is zero with a standard deviation of
one. The standard variation is as follows:

zscaled =
x − µ

σ
(1)

where µ = Mean and σ = Standard Deviation.
Finally, we split the dataset by 80% for training and 20%

for testing.
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FIGURE 1. Comprehensive design of the proposed methodology.

B. SECOND PHASE (1D-CNN)
The one-dimensional convolutional NN (1D-CNN) is a spe-
cial kind of ANN that works with sequential data by using
convolutional operations to pull out features that are related to
each other. It uses convolutional layers to automatically pull
out hierarchical features from the input data. Additionally,
it plays a crucial role in enhancing the accuracy and efficiency
of predicting software defects by leveraging its ability to
capture intricate dependencies within sequential code struc-
tures. Fig. 2 depicts the composition of a frequent 1D-CNN,
which consists of three primary layers: The architecture of the
1D-CNN includes 1D convolutional layers, pooling layers,
and fully connected layers [29]. Table 2 provides particular
details on hyperparameters in the LCNN architecture for
1D-CNN. At first, the input data shape is (6992,1), with a
kernel size of (3 × 1) and stride 1. For data compression,
we used 3 times the convolution and Maxpolling techniques,
and finally, we received the data shape (387,64). After that,
we used the sigmoid activation function to classify software
faults. There are two more important factors besides these
three: the dropout layer and the activation function.

1) ONE-DIMENSIONAL CONVOLUTIONAL LAYER
The one-dimensional convolutional layer [30] applies con-
volutional operations along a single axis, extracting features
and patterns from sequential data. The function takes the
one-dimensional input (vector) x[n] as its input, where
n ranges from 0 to N − 1. N is the total number of instances.
The following parameters are used for making the layer.

1. Kernels: The kernels slide along the input sequence,
capturing local patterns and producing output representations
that highlight relevant features for further analysis. Let S
represent the input sequence,K is the one-dimensional kernel
and the resulting convolution output ζ [n] may be found by
solving the (2):

ζ [n] = (S ∗ K )[i] =

K−1∑
k=0

S[i+ k] · K [k] (2)

where S ∗ K denotes the convolution operation and i is the
index of the output sequence.

2. Activation function [30]: An activation function in
1D-CNN introduces non-linearity, which is essential for
learning complex patterns in sequential data. There are var-
ious types of functions, but the most popular are ReLU,
Sigmoid, and Tanh, which are used for intricate relationships
between features. We have used the exponential linear unit
(ELU) as an activation function, which is a variant of the
rectified linear unit (RELU). The ELU incorporates an addi-
tional alpha constant (α) to determine the smoothness of the
function when the input values are negative. In addition, σ

represents the input to the activation function and it exhibits a
higher rate of convergence towards zero cost and yields more
precise outcomes. The formula is expressed as α > 0:

ELU(σ ) =

{
σ if σ > 0
α · (exp(σ ) − 1) if σ <= 0

(3)

2) STRIDE [31]
Stride refers to the step size of a 1D-CNN. It determines the
amount the kernel moves along the input signal. A larger
stride reduces the output size by taking larger steps and
extracting less information, while a smaller stride captures
more detail but may increase computational complexity.
Its adjustment allows CNNs to control the amount of informa-
tion processed and influences the network’s receptive field,
impacting feature extraction in 1D sequences like time series
or signals.

C. POOLING LAYER
The Pooling Layer [30] in a 1D-CNN condenses feature
maps, reducing dimensionality and computational load. It is
common to use Max Pooling, it selects the maximum value
within a window, capturing the most prominent features.
There are multiple forms of pooling procedures, including
max pooling, sum pooling, and average pooling [31]. In the
present investigation, we applied 1D max pooling, which
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FIGURE 2. Architecture for the proposed basic 1D-CNN network.

entails analyzing the input data by applying a predefined
pool size and stride and picking the maximum value from the
examined area. In (4), the functioning of this can be illustrated
by

ζ lh = max
∀p∈rh

ζ l−1
p (4)

in which rh stands for the pooling area with the index h.

1) DROPOUT LAYER AND FLATTEN LAYER [30]
Dropout layers in 1D CNN randomly deactivate neurons
during training, preventing overfitting by promoting robust
learning. They improve model generalization by dropping a
fraction of neurons, reducing interdependence. Flatten layers
transform multidimensional arrays into a 1D array, essen-
tial in CNNs after convolutional layers, enabling seamless
connection to fully connected layers. This process converts
spatial information into a format suitable for traditional dense
layers in the neural network. To fix this, we use a dropout
layer, which removes some neurons from the neural network
during training so that we end up with a smaller model.

2) FULLY CONNECTED LAYER [30]
The fully connected layer in a 1D CNN serves as the clas-
sifier, receiving flattened features from the convolutional
layers. Each neuron in this layer connects to every output
from the previous layer, aggregating high-level features to
make predictions. It has dense connections that enable com-
prehensive feature extraction and pattern recognition. The
activation function is a parameter of this function. The ELU
function, defined in (4), is used in this study.

TABLE 2. Architecture of proposed 1D-CNN for tabular data.

D. THIRD PHASE (2D-CNN)
This research proposes leveraging 2D-CNN for software
defect prediction using tabular data. Traditional methods
face limitations in extracting intricate patterns from tabu-
lar datasets. Our approach aims to preprocess the tabular
data into 2D representations, enabling the application of
CNNs. The methodology involves data transformation into
2D matrices, utilizing CNN layers for feature extraction, and
integrating predictivemodels. The study’s focus is on improv-
ing accuracy and efficiency in software defect prediction.
Table 3 provides particular details on the LCNN architec-
ture hyperparameters for 2D-CNN. The batch size, usually
denoted by ‘‘None,’’ is the first dimension of the output data
shape. The resulting feature map’s spatial dimensions follow:
It is a 4 × 5 grid with 32 channels and 160 parameters.
None, 2, 2, 32 max_pooling2d params 0: Max-pooling layer
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TABLE 3. Architecture of proposed 2D-CNN for tabular data.

applied to preceding convolutional layer output. Reduces
spatial dimensions by 2, and each of the 32 feature maps is
treated separately. No parameters are trainable in this layer
(0, output shape: None, 2, 2, 32). flatten (None, 64) This
flattening layer turns the preceding layer’s 3D output into a
1D vector. The output shape is (None, 64), and this layer has
no trainable parameters (0). The output layer we have used is
activated using the sigmoid function.

Some methodology we used for 2D-CNN:
• Transformation of tabular data into a 2D format akin
to an image-like structure, representing relationships
between software metrics.

• Normalization and feature engineering to enhance the
network’s ability to discern patterns.

• Designing a 2D CNN architecture with convolutional
and pooling layers to capture local and global feature
dependencies.

• Incorporating multiple convolutional layers to learn
hierarchical representations from the tabular data

• Splitting the dataset into training, validation, and testing
sets.

• Training the 2D CNN model on the transformed
tabular data, adjusting hyperparameters for optimal
performance.

• Validating the model’s performance using various eval-
uation metrics like precision, recall, F1 score, and
accuracy.

• Visualization techniques to interpret the learned features
and understand the significance of various software met-
rics in defect prediction.

• Analyzing the performance metrics to highlight the
superiority and efficiency of the 2D CNN for software
defect prediction.

E. FOURTH PHASE
In the context of comparing the performance of 1D-CNN and
2D-CNN for software defect prediction, many metrics have
been used such as accuracy, AUC, and MSE [32], [33].

1) ACCURACY
Accuracy is a fundamental metric for evaluating the overall
performance of the proposed LCNN architecture. It is defined

as the ratio of correctly predicted instances to the total number
of instances in the dataset. Higher accuracy refers to the
model’s capacity to accurately categorize instances as either
faulty or non-defective. It is computed as follows:

Accuracy =
Correct Predictions

Total Number of Predictions
× 100% (5)

2) MEAN SQUARED ERROR (MSE)
MSE is a statistic for calculating the average squared dif-
ference between what was expected and what happened.
A smaller MSE in software defect predictions indicates more
accurate and reliable results, highlighting improved precision
in forecasting potential defects within the software system.

MSE =
1
n

n∑
i=1

(
yi − ŷi

)2 (6)

where n is the number of instances, yi is the actual value of the
i-th instance, and ŷi is the predicted value of the i-th instance.

3) AREA UNDER THE CURVE (AUC)
The AUC is a key measure of how well the model can tell
the difference between defective and non-defective cases at
different choice levels. In addition, the ROC shows how the
true positive rate and false positive rate change as limits are
raised or lowered. In combinally, the AUC takes the ROC
curve and turns it into a single number from 0 to 1, and a
higher AUC means better discrimination.

F. FIFTH PHASE (XAI)
A new study method is being suggested to look into how XAI
techniques can be used to find and understand the causes of
software errors. By using XAI the fields of software engi-
neering and artificial intelligence with useful information that
could be used to make software more reliable and easier to
maintain. Therefore, we have focused on creating and using
a brand-new XAI-based model to analyze software bugs.
We used advanced XAI methods, like LIME (Local Inter-
pretable Model-agnostic Explanations) and SHAP (SHapley
Additive Explanations), to give clear and understandable
information about how complicated software systems work.

1) LIME
LIME (Local Interpretable Model-agnostic Explanations)
plays a crucial role in advancing software defect identifi-
cation by providing transparent and interpretable insights
into the decision-making process of complex ML models.
This methodology empowers researchers and practitioners to
enhance model trustworthiness and pinpoint potential vulner-
abilities, contributing to more effective and reliable software
defect detection strategies. LIME offers several benefits for
software fault root cause analysis, such as interpretability,
local explanations, model agnostic, and so on. This inves-
tigation holds promise for advancing the field of software
engineering by providing a nuanced understanding of the root
causes behind software faults through the lens of LIME’s
interpretability.
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2) PSEDOCODE FOR LIME
Utilizing a 1D-CNN model, this research integrates LIME
for interpretable predictions, extracting feature importance
to pinpoint software fault root causes. In Algorithm 1,
we demonstrated how to build a model using the suggested
LIME in XAI methods. The method empowers transparency
in complex models, aiding effective root cause analysis in
software fault detection. First, it shows the faults as input-
output pairs. Next, it starts up a LIME explainer, writes LIME
explanations for each fault, looks at the explanations to find
the root causes, and finally shows out the root causes.

Algorithm 1 LIME Pseudocode for Finding the Root
Cause of Software Faults
Input: Software fault data, and fault manifestations
Output: Root causes of software faults
Step1: Represent software faults as input-output pairs
1: fault_data = []
2: for each instance fault in faults do
3: fault_data.append((fault.code,

fault.execution_environment, fault.manifestation))
4: end for
Step2: Initialize LIME explainer
1: lime_explainer = LimeExplainer(kernel_width=0.3,

class_weights=0: 1, 1: 1)
Step3: Generate LIME explanations for individual faults
1: explanations = []
2: for fault_input , fault_output in fault_data do
3: explanation = lime_explainer.explain_instance(fault_input,

fault_output, labels=[0, 1])
4: explanations.append(explanation)
5: end for
Step4: Analyze LIME explanations to identify root causes
1: root_causes = []
2: for explanation in explanations do
3: root_cause = []
4: for feature, weight in explanation.asl ist() do
5: if weight > 0.1 then
6: root_cause.append(feature)
7: root_causes.append(root_cause)
8: end if
9: end for
10: end for
Step5: Output root causes of software faults
return root_causes

3) SHAP
SHAP (SHapley Additive exPlanations) plays a pivotal role
in advancing software defect identification by providing a
robust framework for interpreting and understanding the con-
tributions of different features in predictive models. This
technique enables a nuanced examination of the impact of
individual features on the prediction of software defects,
fostering transparency and interoperability. The integration
of SHAP in defect identification models enhances their
explainability, contributing to more informed and effec-
tive decision-making in software development and quality
assurance processes. It offers several benefits for software

TABLE 4. Performance evaluation for 1D-CNN and 2D-CNN.

TABLE 5. Plot the loss and accuracy curves for training and validation.
(a) 1D-CNN, (b) 2D-CNN.

fault root cause analysis, such as contribution quantification,
global and local explanations, model agnostic, and so on.

4) PSEDOCODE FOR SHAP
Utilizing pseudocode for SHAP in our research elucidates
the interpretability of software defect identification models,
offering a concise and clear representation of the Shap-
ley values’ computation for enhanced understanding and
application. In Algorithm 2, we illustrated the process of
constructing models utilizing XAI techniques for the recom-
mended SHAP.

The function identify_root_causes accepts as input
a trained machine learning model, a collection of
code snippets, and their related test cases. The gener-
ate_SHAP_explanations function is invoked to compute the
SHAP values for each code snippet. SHAP values quan-
tify the individual impact of each feature on the model’s
prediction for a specific code snippet. The get_top_features
method is used to determine the most prominent features
for each code snippet. The following characteristics have
the greatest SHAP values, signifying their substantial impact
on the model’s fault prediction. The analyze_top_features
function is utilized to scrutinize the most prominent attributes
of each code snippet. This involves examining the interac-
tion between the qualities, their roles within the code, and
their potential impact on the system’s behavior. A list is
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TABLE 6. LIME agnostic explanations prediction. here, no faults by (a) and faults by (b).

Algorithm 2 SHAP Pseudocode for Finding the Root
Cause of Software Faults
Input: model, code_snippets, test_cases
Output: Root causes of software faults
1: Calculate SHAP values for each code snippet
2: root_causes = []
3: Iterate through each code snippet and its correspond-

ing SHAP values
4: fault_data = []
5: for code_snippet , SHAP_value in zip(code_snippets,
SHAP_values) do

6: Extract the top features based on SHAP values
7: top_features = get_top_features (SHAP_value)
8: Analyze the top features to identify root causes
9: root_causes_for_snippet = analyze_top_features

(code_snippet, top_features)
10: Append the identified root causes for the current

snippet
11: root_causes.extend(root_causes_for_snippet)
12: end for
//Return the list of identified root causes
return root_causes

utilized to maintain the identified underlying reasons for each
code snippet. The function identify_root_causes generates an
exhaustive compilation of all the identified root causes for
each code snippet.

IV. RESULT ANALYSIS
The primary objective of our study was to design and evaluate
a lightweight customized CNN architecture for the identifi-
cation of software defect features. We investigated it using
Python code for each dataset individually, as well as the

FIGURE 3. Confusion matrix without function that is sensitive to cost.

1D-CNN and 2D-CNN methods. Here discussed the results
we got for each of the datasets.

A. MODEL ACCURACY AND EFFICIENCY
Both 1D-CNN and 2D-CNN models demonstrated com-
mendable accuracy rates in identifying software defect
features. In Table 4, 1D-CNN exhibited an accuracy of
91.45%, while the 2D-CNN achieved a slightly higher accu-
racy of 92.81%. On the other hand, MSE for both models
were robust, indicating their ability to correctly identify pos-
itive instances with minimal false positives. Furthermore,
in Table 5 we showed the loss and accuracy curves for both
the 1D-CNN and 2D-CNN techniques. The AUC values for
both architectures were noteworthy, emphasizing their ability
to capture a high percentage of actual positive instances.
A comparative analysis with both CNN techniques show-
cased we have chosen 1D-CNN for further explanation by
using expandable AI because 1D-CNN data shape is the same
before and after the training, and testing. However, when
examining the confusion matrix shown in Fig. 3, it is evident
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TABLE 7. SHapley additive exPlanations prediction of software faults.

TABLE 8. Research question and answer based on our research.

that the accuracy of defect prediction has shown a substan-
tial improvement. Specifically, for the CM1 datasets using
1D-CNN, the prediction accuracy has increased from 91%
to 9%.

B. EXPLAINABILITY AND INTERPRETABILITY
In the context of software defect prediction using the
proposed LCNN architecture, LIME, and SHAP can be
employed to identify the most influential features for each
defect prediction.

1) VISUALIZATION OF LIME
LIME explanations revealed that the LCNN architecture con-
sistently identified relevant features associated with software
defects. In Table 6, we show the top five most effective fea-
tures out of twenty-one features for an explanation of the root
cause of software defects. Table 6.(a) suggests that there will
be no faults. The e (30%) total features ratio and v features had
the most significant effect on the model’s ability to estimate.
It was found that the t and total_OP features are the best for a
software fault to happen. We conclude that these two features
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have become very important for finding defects in software
when using LIME. Additionally, Table 6.(b) illustrates the
important features used to analyze the software defects in
the dataset. The characteristics t, n, and total_Op of the
software faults in this dataset have experienced a favorable
influence.

2) VISUALIZATION OF SHAP
SHAP explanations provided further insights into the relative
importance of different features for each defect prediction.
The base value in Table 7 is laid at 1.00, which is referred
to as a prediction value. Red-colored features have a posi-
tive impact, causing the predicted value to go closer to 0.
If the t feature is removed, the forecast will decrease from
0.9897 to 1.00. In contrast, characteristics that are colored
blue have a negative impact, meaning they pull the forecast
value closer to 1. Removing the feature of v will increase the
prediction rate from 0.90 to 1.

3) ANALYSIS OF LIME AND SHAP
Both LIME and SHAP are valuable explainability techniques
that provide insights into the decision-making process of the
LCNN architecture. However, they differ in their approach
and provide complementary information. We demonstrated
the visualization of LIME and SHAP to identify the root
causes of software defects. However, For the comparison,
LIME shows better than SHAP because LIME provides a
clear concept of root causes. After that, we easily find unfa-
vorable features that are the main cause of software defects.
In Table 8, we have discussed the research question and
answer for explaining our methods.

V. CONCLUSION
As part of this study, we started making a lightweight CNN
design to identify the root causes of software defect fea-
tures. To make software better, it is important to know why
bugs occur in the testing phase. In this research, we have
tried to make an advanced CNN model for finding the rea-
son for software bugs quickly and easily. The dataset went
through a lot of preparation to make sure it would work
with CNNs. We addressed issues such as label encoding,
standard scaller, and reshaping to meet the input require-
ments of both 1D-CNN and 2D-CNN models. In addition,
we experimented with both 1D-CNN and 2D-CNN models
to evaluate their performance in identifying software defect
features. Then these models were trained and tested on rel-
evant datasets to assess their effectiveness. Subsequently,
we evaluated the 1D-CNN architecture due to its superior
performance in capturing spatial relationships within defect
features, aligningwell with the nature of software defect iden-
tification. To enhance interpretability, we employed LIME
and SHAP techniques specifically for the 1D-CNN model.
These explainability tools provided valuable insights into fea-
ture importance, aiding in understanding the decision-making
process of the model in the domain of software defect
identification.

VI. STRENGTHS, LIMITATIONS, AND FUTURE
PERSPECTIVES
Our research has exhibited several strengths. The LCNN
architecture showcases efficiency in identifying software
defects, providing a lightweight solution for practical deploy-
ment. By integrating XAI, particularly the SHAPmethod, the
interpretability of the model is improved, thereby promot-
ing confidence and comprehension in the decision-making
process. Using the inclusion of the PC1 Promise Repository
dataset increases its practical applicability, hence strengthen-
ing the strength of this research.

Despite its strengths, the research has limitations. The
effectiveness of the proposed solution may be context-
dependent, and its generalizability to diverse software envi-
ronments needs validation. The proposed approach provides
reliance on a specific dataset, however in practical applica-
tions may limit the model’s adaptability to various software
development practices.

Future research could focus on expanding the model’s
applicability by testing it on a broader range of datasets.
On the other hand, LCNN can collaborate with industry
practitioners to provide valuable insights to address specific
software development challenges as well as ensure its effec-
tiveness.
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