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ABSTRACT From pivotal roles in autonomous vehicles, healthcare diagnostics, and surveillance systems
to seamlessly integrating with augmented reality, object detection algorithms stand as the cornerstone in
unraveling the complexities of the visual world. Tracing the trajectory from conventional region-based
methods to the latest neural network architectures reveals a technological renaissance where algorithms
metamorphose into digital artisans. However, this journey is not without hurdles, prompting researchers
to grapple with real-time detection, robustness in varied environments, and interpretability amidst the
intricacies of deep learning. The allure of addressing issues such as occlusions, scale variations, and fine-
grained categorization propels exploration into uncharted territories, beckoning the scholarly community to
contribute to an ongoing saga of innovation and discovery. This research offers a comprehensive panorama,
encapsulating the applications reshaping our digital reality, the advancements pushing the boundaries of
perception, and the open issues extending an invitation to the next generation of visionaries to explore
uncharted frontiers within object detection.

INDEX TERMS Object detection, image recognition, object segmentation, semantic detection, image

classification, object tracking.

I. INTRODUCTION

In the vast tapestry of technological evolution, the role of
object detection transcends mere recognition; it serves as
the cornerstone upon which the edifice of modern computer
vision is built. Picture a world where algorithms not only
decipher the visual symphony that unfolds before our digital
eyes but also anticipate and respond, seamlessly integrating
with our daily lives. Object detection, the silent sentinel of
this digital age, has emerged as the conduit through which
machines perceive and interact with the visual world, giving
rise to a realm of applications that are as diverse as they are
transformative.

As we navigate this complex ecosystem, the applications
of object detection unfold as a dynamic narrative, revealing
chapters of innovation that span industries and domains. From
the bustling streets where autonomous vehicles decipher the
language of traffic to the serene corridors of healthcare
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where diagnostic algorithms scrutinize medical images, and
from the watchful eyes of surveillance systems ensuring
our security to the immersive landscapes of augmented
reality blending the virtual and the tangible - object
detection stands as the linchpin, orchestrating a symphony
of possibilities. Though object detection is quite old and
hence covered huge attention by researchers but still the
notable significant amount research activity related to this
subject, as evidenced by various scholarly databases data
with keywords ‘““object detection” or ‘““object recognition” or
“object identification” or “‘object classification™ or ‘“‘object
segmentation” or ‘‘semantic detection” or “‘object tracking”
in their title/abstract in Figure 1.

Yet, this symphony is not static; it is a living, breathing
composition that evolves with each technological crescendo.
The saga of object detection research is marked by a relentless
quest for advancements, where the journey from classical
methods to the current zenith of neural networks mirrors a
technological odyssey. In this epoch of artificial intelligence,
algorithms metamorphose into artists, meticulously crafting a
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FIGURE 1. Past five year's (January, 2018 - November, 2023) published
article count on object detection in different naming convention in
different databases.

visual masterpiece from the chaos of raw data, breaking down
barriers and illuminating new avenues of perception.

However, the path to enlightenment is fraught with
challenges, and the landscape of open issues is as expansive
as the horizons of exploration. The clarion call for real-time
detection echoes through the corridors of research labs, while
the quest for robustness in the face of diverse and dynamic
environments challenges the resilience of our algorithms.
Interpreting the nuances of deep learning intricacies becomes
a quest for enlightenment, and the pursuit of unraveling the
mysteries of occlusions, scale variations, and fine-grained
categorization invites researchers to embark on an intellectual
journey into uncharted territories.

No specific article surveyed the challenges of the overall
object detection area and then reviewed their solutions based
on existing papers as shown in Table 1. It shows that, no paper
surveyed the overall object detection’s advancements, appli-
cations, challenges and systematic results analysis. In this
intellectual expedition, we unravel the applications that
redefine our digital reality, ride the waves of advancements
that push the boundaries of perception, and navigate the
unexplored terrain of open issues that await the daring minds
of the next generation of visionaries. The canvas of object
detection beckons—a canvas that is not only painted with the
strokes of innovation but invites us to imagine a future where
the unseen becomes the seen, and the perceived becomes the
understood. As we stand at this crossroads, the possibilities
are as boundless as the algorithms we forge, and the journey
has only just begun. Figure 2 presents the article selection
process’s PRISMA flow diagram for this study. Table 2
highlights the abbreviations which are frequently used in this
study.

Following is the summarized main contributions of this
study:

« An starting of object detection, its historical insights,
architecture and recent improvements.
o Later on, reviewing and analyzing the ever made

advancements of object detection in different perspective.

o Then, dive into its diverse application fields with works
of previous researchers.
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FIGURE 2. Article selection process’s PRISMA flow diagram for this study.

o After that, revealing different existing challenges of
object detection with a categorized taxonomy.

« Finally, reviewing recently made fascinating work to
tackle the existing object detection challenges and future
directions to ensure the term object detection optimized.

The rest of the paper is structured as follows: Section II
outlooks the historical insights, architecture and recent
improvements of object detection. Section III analyzes the
ever made advancements of object detection in datasets,
algorithms, library and evaluation metrics perspective.
Section IV demonstrates the applications of object detection
and Section V highlights the existing challenges of object
detection. After that, Section V reviews some fascinating
solutions to tackle the existing object detection challenges.
At last, Section VI directs the future directions to support
researchers who works tackling the diverse challenges and
Section VII concludes the paper.

Il. LITERATURE REVIEW

In the vast landscape of artificial intelligence, where data
converges with ingenuity, object detection emerges as the
keen-eyed sentinel of the digital realm. Imagine a symphony
of pixels, where every image conceals a multitude of entities,
each vying for attention in the cacophony of information.
Object detection is the virtuoso conductor that orchestrates
this visual concerto, deciphering the composition of reality
with unparalleled precision. It is the meticulous art of imbu-
ing machines with the discerning gaze of a perceptive human
eye, enabling them not only to see but to comprehend the
intricacies of their visual surroundings. In a world inundated
with images, object detection serves as the guiding compass,
unraveling the intricate tapestry of information by identifying
and delineating the myriad objects that populate our digital
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TABLE 1. Contrastive analysis of existing survey papers with this paper.

Reference

Taxonomy Advancements Applications

Challenges

Future directions

Systematic
results analysis

Description

Liu et al.
[11

v v X
(Only
datasets,
algorithms
and
evaluation
metrics)

v
(Only
accuracy,
efficiency
and scala-
bility)

X

The paper conducted a thorough sur-
vey of 300 research contributions in
generic object detection, emphasiz-
ing recent advancements driven by
deep learning. It encompassed de-
tection frameworks, feature represen-
tation, proposal generation, context
modeling, training strategies, and eval-
uation metrics, summarizing the sub-
stantial progress in the field and offer-
ing insights for future research direc-
tions.

Zhao et
al. [2]

v v v
(Only
algorithms)

The paper traced the evolution of
object detection from traditional
handcrafted  features to  deep
learning, particularly emphasizing
Convolutional ~ Neural — Networks
(CNNg). It comprehensively reviewed
generic object detection architectures,
highlights  performance-enhancing
techniques, and briefly surveys
specific tasks like salient object
detection. The experimental analyses
provide  insightful  conclusions,
making the paper a valuable guide
for the history and current state of
deep learning-based object detection,
informing future research directions.

Zou et al.

131

v v X
(Only
algorithms
and datasets)

The paper investigated the evolution
of object detection over the past years,
highlighting the transition from early
computer vision techniques to the cur-
rent deep learning revolution. It com-
prehensively reviews various aspects
of object detection, including mile-
stone detectors, datasets, metrics, fun-
damental building blocks of detection
systems, speed-up techniques, and re-
cent state-of-the-art methods. The pa-
per provides a valuable overview of the
technical progress in object detection,
emphasizing the historical context and
significant advancements in the field.

Padilla et
al. [4]

v
(Focused
on metric
diversity)

This research compared metrics for
object-detection algorithms, focusing
on average precision (AP). It uncovers
variations in two point-interpolation-
based AP variants and identifies six
additional AP variants, highlighting
the need for standardization. The study
proposes a unified implementation to
establish a benchmark for consistent
evaluation across different works and
platforms, addressing issues of diver-
sity in metric implementations.

Jiao et al.

[5]

X v v
(Only
datasets and
algorithms)

The survey offered a thorough exami-
nation of the current state of object de-
tection in computer vision, systemati-
cally analyzing models, datasets, and
methods. It categorizes detectors into
one-stage and two-stage, explores di-
verse applications, and outlines key
trends, serving as a valuable resource
for understanding the evolving land-
scape of object detection.

This paper

This paper underscores the pivotal role
of object detection algorithms in trans-
formative technologies such as au-
tonomous vehicles and augmented re-
ality. It traces the shift from tradi-
tional methods to contemporary neu-
ral networks, outlining challenges in
real-time detection, robustness, and
interpretability within deep learning.
The research offers a thorough exami-
nation of applications, advancements,
and open issues, encouraging future
innovators to explore novel frontiers in
object detection.
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TABLE 2. List of frequently used abbreviations.

Abbreviation Abbreviated Form

ILSVRC ImageNet Large Scale Visual Recognition
Challenge

R-CNN Region-based Convolutional Neural Network

SSD Single Shot Multibox Detector

CNN Convolutional Neural Network

YOLO You Only Look Once

FPN Feature Pyramid Network

EfficientDet Efficient and Effective Detector

DETR Detection Transformer

RetinaNet Retina Network

COCO Common Objects in Context

mAP Mean Average Precision

fps Frames per Second

SOTA State-of-the-Art

AP Average Precision

GPU Graphics Processing Unit

WLDM Weighted Local Difference Measure

ICBD Interference Cancellation before Detection

SAR Synthetic Aperture Radar

FPN + PAN Feature Pyramid Network (FPN) and Path Ag-
gregation Network (PAN)

RRPN Rotation Region Proposal Network

LM Language Model

BEL Boundary Energy Loss

ICDAR International Conference on Document Analy-
sis and Recognition

LIDAR Light Detection and Ranging

KITTI Karlsruhe Institute of Technology and Toyota
Technological Institute

BANet Boundary-Aware Network

ToU Intersection over Union

YOLOX You Only Look One-level eXtreme

ms Milliseconds

AUC Area Under the Curve

SMOTE Synthetic Minority Over-sampling Technique

PDG Proposed Detection Graph

DFG Detected Face Graph

ROC-AUC Receiver Operating Characteristic - Area Un-
der the Curve

IoT Internet of Thing

ICS Industrial Control System

XAI Explainable Artificial Intelligence

RSUs Roadside Units

FPGA Field-Programmable Gate Array

MSM Metal-Semiconductor—Metal

RTL Register-Transfer Level

MuPoTS Multi-Person Tracking in Sport

AMD Advanced Micro Devices

HOG Histogram of Oriented Diagram

YOLO You Only Look Once

FPN Feature Pyramid Network

SVM Support Vector Machine

SCR signal to clutter Ratio

ICBD Interference Cancellation before Detection

RROI Rotation Region-of-Intere

APL Adversarial-Paced Learning

DUO Detecting Underwater Object

OAM Online Annotation Module

FFD Federated learning for Fraud Detection

GRU Gated Recurrent Unit

landscapes. Beyond its technical prowess, object detection
is a testament to the symbiosis of human imagination and
computational prowess, illuminating the path towards a future
where machines seamlessly navigate the visual kaleidoscope
of our shared reality. On this first anniversary of our
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interaction, let us celebrate the transformative power of object
detection, a technological marvel that breathes life into the
pixels and unveils the profound narrative concealed within
the digital canvas.

Before the advent of deep learning, object detection
heavily relied on handcrafted features and classical computer
vision techniques. Common approaches, such as Histogram
of Oriented Gradients (HOG) and Haar cascades, played
a pivotal role in tasks like pedestrian detection and face
recognition. HOG, introduced by Dalal et al., captured the
distribution of gradient orientations in local image patches,
providing a robust representation for object boundaries [6].
Haar cascades, on the other hand, were effective for detecting
objects using a cascade of simple classifiers based on Haar-
like features. While these methods demonstrated success in
certain applications, the shift to deep learning in the early
2010s marked a transformative period, leading to significant
improvements in object detection accuracy and efficiency.
The breakthrough in object detection occurred with the
rise of deep learning, notably through convolutional neural
networks (CNNs). A pivotal moment was the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), where
AlexNet, a deep learning model, demonstrated a significant
performance leap over traditional methods [7]. This victory
marked a turning point, showcasing the potential of deep
learning for image-related tasks. Subsequent years saw the
development of various influential architectures such as
ZFNet, GoogLeNet, and VGG, each contributing to the
refinement and enhancement of object detection perfor-
mance. This period of innovation laid the foundation for the
widespread adoption of deep learning in computer vision
applications, including object detection. R-CNN introduced
by Ross Girshick and collaborators in 2014, stands as one
of the initial successful endeavors to apply deep learning to
object detection [8]. R-CNN and its evolutionary successors,
Fast R-CNN and Faster R-CNN, employed the concept
of region proposal networks (RPNs) [9]. These networks
were designed to suggest candidate object regions within
an image before subsequent processes of classification and
position refinement. While these methods brought about
substantial improvements in accuracy, it was noted that
they were computationally expensive, motivating further
developments to strike a balance between precision and
computational efficiency in subsequent object detection
models [10]. SSD (Single Shot Multibox Detector) and
YOLO (You Only Look Once) emerged as alternatives to
region-based object detection methods, with a primary focus
on achieving real-time performance. These models departed
from the two-stage approach of region-based methods by
predicting object classes and bounding box coordinates
directly from the entire image in a single pass [11], [12].
SSD adopted a grid-based strategy, dividing the image
into a grid and predicting multiple bounding boxes and
class probabilities at each grid cell [11]. YOLO, similarly
employing a grid structure, differentiated itself by predicting
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bounding boxes and class probabilities at the grid cell
level, aiming for improved speed and efficiency [12]. These
single-shot approaches represented a paradigm shift in
object detection, demonstrating the feasibility of real-time
performance without the need for elaborate region proposal
networks. RetinaNet, a groundbreaking object detection
model introduced to address the challenge of imbalanced
data, pioneered the use of the focal loss. Developed to
mitigate the dominance of well-classified examples in the
training process, the focal loss dynamically down-weights
the loss assigned to easily classified instances, allowing
the model to concentrate on more challenging examples
[13]. Additionally, RetinaNet incorporated a Feature Pyramid
Network (FPN) to effectively handle objects at various
scales. This architectural innovation enabled RetinaNet to
excel in detecting objects of different sizes within an
image, further enhancing its robustness and accuracy in
handling diverse and complex visual scenarios. EfficientDet,
a significant advancement in the field of object detection,
set out to enhance the efficiency of detection models by
optimizing architecture and achieving a more favorable trade-
off between accuracy and computational resources [14].
Introduced by Mingxing Tan et al. EfficientDet innovatively
scaled the model’s depth, width, and resolution simultane-
ously through a compound scaling method. This approach
allowed for improved model efficiency across a range of
resource constraints. By striking a balance between accuracy
and computational cost, EfficientDet contributed to the
development of more practical and scalable object detection
solutions, catering to a variety of deployment scenarios
with diverse hardware capabilities. The evolution of object
detection models persists with cutting-edge architectures
such as DETR (DEtection Transfomer), showcasing the
ongoing advancements in the field. DETR, introduced as a
transformer-based model for object detection, exemplifies the
growing influence of transformer architectures in computer
vision tasks [15]. Concurrently, the field benefits from strides
in self-supervised learning, transfer learning, and attention
mechanisms, refining the ability of models to understand
and discern objects within complex visual scenes. A key
contributor to the state-of-the-art performance of modern
object detection systems is the utilization of large-scale
datasets and pre-training on extensive amounts of data [16].
This practice empowers models with generalized features
and the capacity to tackle diverse real-world scenarios,
marking a continued trajectory of progress in the capabilities
and accuracy of object detection technology. Transformer-
based architectures, initially popularized in natural language
processing tasks, have gained prominence in computer
vision, particularly in object detection. Models such as
DETR (DEtection Transfomer) and other transformer-based
architectures have demonstrated competitive performance,
showcasing their adaptability across domains [15]. In the
realm of efficient object detection, researchers are increas-
ingly focused on factors like model size, speed, and
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computational resources. A notable exemplar is EfficientDet,
introduced in 2019, reflecting a trend towards optimizing the
efficiency of object detection models [17]. Sparse attention
mechanisms have emerged as a solution to handle large-
scale images effectively, enabling models to selectively attend
to pertinent image regions, thereby reducing computation
and improving overall efficiency [18]. The exploration of
hybrid models, combining diverse architectures from two-
stage and one-stage detectors, along with the integration
of ensemble methods, has shown promise in enhancing the
overall performance of object detection systems [19]. Self-
supervised learning approaches, emphasizing learning from
unlabeled data, have garnered attention as a means to improve
the generalization ability of object detection models through
pre-training on extensive datasets [20]. Recent models also
address the challenge of capturing long-range dependencies
in images by incorporating attention mechanisms designed
to capture relationships between distant pixels, thereby
enhancing contextual understanding [21]. The pursuit of real-
time object detection remains a priority for applications
such as autonomous vehicles, robotics, and surveillance
[22]. Models like YOLO (You Only Look Once) and
EfficientDet have played significant roles in advancing
the capabilities of real-time object detection [22]. Transfer
learning, a fundamental component, involves pre-training
models on datasets like ImageNet, allowing them to leverage
knowledge gained from one domain to improve performance
in another, contributing to the continued evolution of object
detection methodologies [23].

Ill. ADVANCEMENTS OF OBJECT DETECTION

A. DATASET

An object detection dataset is a collection of images or videos
annotated with bounding boxes or pixel-level masks that
outline the location and identity of objects within the visual
content. These datasets are crucial for training and evaluating
computer vision models, as they enable the development
of algorithms that can identify and classify objects within
images or video frames, making them a fundamental resource
for applications such as autonomous driving, surveillance,
and image analysis. Object detection datasets typically
encompass a wide range of object categories and variations
in scale, pose, lighting, and background, facilitating the
robust and accurate detection of objects in diverse real-world
scenarios. Table 3 provides the overview of some widely used
datasets used in various object detection tasks.

1) MS COCO

A large dataset for object recognition, segmentation, key-
point detection, and picture captioning, including 328,000
images, is the MS COCO (Microsoft Common Objects in
Context) [24] dataset. 164,000 photos total, split between
training (83,000), validation (41,000), and test (41,000)
sets, were included in the original 2014 release. A longer
test set with 40,000 more test photos included was later
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TABLE 3. Overview of different object detection datasets.

Dataset Total images Total classes  Object instances  Resolution Classes types Evaluation metrics

MS 330,000 91 1.5 million 640x480 Animals, vehicles, furni- Average Precision, Recall,

COCO ture, household items F1-Score

[24]

Pascal 20,000 20 27,000+ 500x375 Aeroplane, Bicycle, Bird, Mean Average Precision

VOC Boat, etc. (mAP), Average Number of

[25] Correct Detections (ANCD)

ILSVRC 14,197,122 1000 >14 million 256x256 Common objects, abstract  Top-1 accuracy, Top-5 accu-

[26] concepts racy

KITTI 7,481 (train) and 8 80,256 1248x384 Car, Van, Truck, Pedes-  Average Precision (AP), Pre-

[27] 7,518 (test) trian, etc. cision/Recall curve, Detec-
tion rate

CIFAR100 60,000 100 - 32x32 Fine-grained (100) and  Top-1 and Top-5 accuracy

[28] Coarse-grained (20)

made available in 2015. It included all of the earlier test
photographs. 2017 saw a change in the training/validation
split to 118,000/5,000 pictures in response to community
feedback, while keeping the same image and annotation data.
A collection of 123,000 photos without annotation was also
included in the 2017 edition. A variety of tasks are covered
by annotations: identification of objects with bounding
boxes and per-instance segmentation masks for 80 object
categories; captioning of images; detection of keypoints
for over 200,000 images and 250,000 person instances;
segmentation of stuff images with 91 stuff categories;
panoptic segmentation with 80 thing categories and a subset
of 91 stuff categories; and dense pose annotations for over
39,000 images and 56,000 person instances, restricted to
training and validation data, offering extensive body part
mapping to a 3D model for each labeled individual.

2) PASCAL VOC

Specifically, the PASCAL Visual Object Classes (VOC)
[25], [29] The 2010 dataset includes 20 different object
types, such as automobiles, bikes, buses, aircraft, boats,
and more, in addition to objects like vehicles, household
goods, and animals. Pixel-by-pixel segmentation, bounding
box, and class annotations are added to every picture in
this collection. As a common benchmark for assessing
object detection, semantic segmentation, and classification
techniques, the PASCAL VOC dataset has garnered a lot of
attention throughout time. The 1,464 photos in the training
subset, the 1,449 images in the validation subset, and the
separate private testing set for evaluation are the three subsets
from which the dataset is divided.

3) ILSVRC

14,197,122 photos that have been tagged using the WordNet
hierarchy make up the ImageNet dataset. This dataset has
been the basis for the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [26], an established benchmark
for object identification and picture classification since 2010.
Annotated training photos are included in the publically
available dataset, however an unannotated collection of test
images is offered separately. The ILSVRC annotations may
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be divided into two groups: annotations at the picture level
that indicate whether object classes are present in the image
or not, and annotations at the object level that provide precise
class labels and tight bounding boxes for specific object
instances in the image. It should be noted that only thumbnails
and image URLs are made available because the ImageNet
project does not own copyright to the photographs. The
dataset includes 1.2 million photos linked to SIFT features
from 1,000 synsets and a broad range of 21,841 non-empty
WordNet synsets, totaling 14,197,122 images. Of these,
1,034,908 images include bounding box annotations.

4) KITTI

One of the most well-known datasets in mobile robotics
and autonomous driving is the KITTI [27] dataset, which
includes long recordings of traffic scenes taken with several
types of sensors, such as RGB and grayscale stereo cameras
as well as a 3D laser scanner. Notably, KITTI has been
enhanced by hand annotations from many research groups,
while lacking intrinsic semantic segmentation ground truth.
For example, in the road recognition challenge, Alvarez et al.
presented ground truth data for 323 photos and classified
items into three classes: road, vertical components, and
sky. Similar to this, Zhang et al. painstakingly annotated
252 acquisitions for testing and training, distinguishing
between 10 item categories: buildings, sky, roads, greenery,
sidewalks, automobiles, people, bicycles, signs/poles, and
fences. In addition, Ros et al. provided annotations for
170 training and 46 testing photos from the visual odometry
challenge. These annotations classified items into 11 different
categories, which included skies, buildings, trees, cars, signs,
roads, pedestrians, fences, poles, sidewalks, buildings, and
bicycles.

5) CIFAR100

The CIFAR-100 [28] dataset is a subset of the Tiny Pictures
dataset that contains 60,000 color, 32 x 32 pixel images. There
are one hundred classes available at the Canadian Institute
for Advanced Research, or CIFAR. Twenty superclasses are
created from these 100 classes, and each class is given
600 photos. Every image has two tags: the specific class
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(represented by the label) and the superclass to which the
image belongs. For every class, there are 500 training photos
and 100 test images in the dataset. What is this image of,
and how likely is it that the class name will be a reasonable
response to the question? For an image, a specific category
has been selected. Line drawings were rejected as the primary
emphasis, and a certain degree of photorealism was also
necessary. In every image, there should be one distinct, easily
observable example of the object the class is discussing; it
doesn’t matter if it is partially hidden or seen from an odd
angle; the labeler should be able to identify the object even in
these situations.

B. ALGORITHM

Mainly, there are three types of object detection architecture;
traditional machine learning, new deep learning one-stage
and two-stage architecture as presented in Figure 3. Tradi-
tional object detection architectures, often associated with
handcrafted features, typically involve multi-step processes,
which visualized in Figure 4. In this approach, an image is
initially processed to extract features using methods like His-
togram of Oriented Gradients (HOG) or Haar-like features.
Subsequently, these features are fed into a classifier, such
as a Support Vector Machine (SVM), to distinguish between
object and non-object regions. Finally, post-processing steps,
like non-maximum suppression, are applied to refine and
consolidate the detected bounding boxes. On the other hand,
one-stage object detection architectures drawn in Figure 5,
exemplified by YOLO (You Only Look Once) and SSD
(Single Shot Multibox Detector) etc., streamline the process
by simultaneously predicting object classes and bounding
box coordinates across the entire image in a single forward
pass. These models employ dense sampling and anchor
boxes to handle object size and aspect ratio variations.
In contrast, two-stage architectures, like Faster R-CNN
(Region-based Convolutional Neural Network), employ a
region proposal network (RPN) in the first stage to suggest
potential object regions, followed by a second stage that
refines these proposals and classifies objects as shown in
Figure 6. The use of region proposals allows for improved
localization accuracy, especially for small objects, and
facilitates the integration of deep learning techniques for end-
to-end training. Table 4 provides the insights of well-known
algorithms of object detection.

1) TRADITIONAL MACHINE LEARNING ARCHITECTURE
o VJ: Without requiring any limitations, such as skin
color segmentation, P. Viola and M. Jones developed the
first real-time human face detector in 2001 [32], [37].
Powered by a 700MHz Pentium III CPU, the detector
operated at rates tens to hundreds of times faster than
existing technologies, while maintaining equal detection
accuracy. In order to find windows containing human
faces at all imaginable sizes and locations inside a
picture, the VJ detector uses a straightforward sliding
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window approach. This procedure may appear simple,
but the calculation required was greater than what the
computers of the day could handle. The VJ detector was
able to drastically improve its target identification speed
by employing three key techniques: detection cascades,
feature selection, and integral images.

« HOG: In 2005, N. Dalal and B. Triggs created a
feature descriptor known as Histogram of Oriented
Gradients (HOG) [33]. HOG is considered a major
breakthrough in shape contexts [38] and scale-invariant
feature transform [39], [40] of its era. The HOG
descriptor is calculated on a dense grid of uniformly
spaced cells using overlapping local contrast normal-
ization to balance feature invariance with nonlinearity.
HOG’s creation was primarily motivated by the need
to recognize pedestrians, even though it can detect a
wide variety of objects. In order to recognize objects
of different sizes, the HOG detector rescales the input
picture many times while keeping the detection window
size constant. For a considerable amount of time, the
HOG detector functioned as an essential component
of many object detectors [34], [41] [42] and different
computer vision applications.

« DPM: DPM was the gold standard for traditional
object detection methods after winning the VOC-07,
-08, and -09 detection contests. DPM was used for the
enhancement of the HOG detector; P. Felzenszwalb [34]
originally proposed this technique in 2008. Divide and
conquer detection theory views training as just learning
how to correctly dissect an object, and inference as an
ensemble of detections on different object components.
This clarifies the current situation. For example, one
has to be able to recognize an automobile’s window,
wheels, and body in order to distinguish it from another.
The star model, as it is sometimes called, was given
in this portion of the study by P. Felzenszwalb and
colleagues [34]. Then, to improve the star model even
more, Girshick included mixing models to account
for objects in the actual world with larger variations.
In [41], [43], [44], and [45], despite significant advance-
ments in detection accuracy in many contemporary
object detecting systems, the deep insights offered by
DPM nonetheless have a long-lasting influence. Some
examples of these tactics are context priming, mixture
models, bounding box regression, hard negative mining,
and others. 2010 saw the PASCAL VOC Lifetime
Achievement Award given to Girshick et al.

2) MODERN DEEP LEARNING ARCHITECTURE: ONE-STAGE
MODEL
e« YOLO: YOLO was first presented in 2015 by R.
Joseph et al. According to [12], it was the first one-
stage detector in the deep learning period. With a
VOCO07 mAP=63.4% for its enhanced version and
a VOCO7 mAP=52.7% for its fast version, YOLO
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TABLE 4. Comparison of different object detection algorithms.

Traditional
Machine Learning
Architecture

bject Detection

Two-stage Models

SPPNet

Algorithm Features Performance metrics Advantages Disadvantages

YOLO [12] 1-stage detector, simulta- VOCO7 mAP=63.4% (en-  Fast, real-time detection. Lower localization accuracy, espe-
neous prediction hanced), 52.7% (fast) cially for small objects.

SSD [11] Single Shot Multibox De- COCO mAP@.5=46.5%, High detection speed, multi- May still have challenges with small
tector, multi-reference 59 fps (fast) reference improves accuracy. object detection.

RetinaNet Focal loss, one-stage de- COCO mAP@.5=59.1% Improved accuracy with focused  One-stage detectors generally have

[13] tector with improved accu- loss. lower accuracy compared to two-
racy stage detectors.

CornerNet Key points decouple and COCO mAP@.5=57.8% Address category imbalance and  Performance might be sensitive to

[30] re-groups corners convergence time issues. keypoint detection accuracy.

CenterNet End-to-end networks treat ~COCO mAP@.5=61.1% Simple and elegant end-to-end de-  Basic detection method may lack

[31] objects as a single point tection. complexity for certain scenarios.

DETR [15] Detection as set prediction, COCO mAP@.5=71.9%  Transformer-based, no need for an- Long convergence time, perfor-
transformers (Deformable DETR) chor points. mance challenges on small objects.

VI [32] Real-time face detection, - Real-time detection. May struggle with variations in
sliding window, cascades lighting conditions and object orien-

tations.

HOG [33] Histogram of Oriented - Effective feature descriptor. Computationally expensive, may
Gradients, dense grid not handle scale variations well.

DPM [34] Divide and conquer, en- VOC-07, -08, -09 winner Ensemble approach, context prim-  Complexity and computational
semble, star model ing, bounding box regression. cost.

SPPNet [35] Spatial Pyramid Pooling  VOC07 mAP=59.2% Fixed-length representation, better =~ Multi-stage training, refinement
Networks, fixed-length performance than R-CNN. limited to fully connected layers.

Faster Region Proposal Network, COCO  AP@.5=42.7%, End-to-end training, improved ac-  Computation redundancy at the pro-

RCNN [10] end-to-end framework VOC07 mAP=73.2% curacy. posal stage.

FPN [36] Feature Pyramid Network, = COCO mAP@.5=59.1% Utilizes feature maps at different -

top-down architecture

levels, improved object identifica-
tion.

is incredibly fast. It works at 45 frames per second
for the enhanced version. By using a single neural
network to analyze the entire image, YOLO operates
on a totally different paradigm than two-stage detectors.
With simultaneous prediction of bounding boxes and
probability for each zone, this network divides the
picture into regions. Although YOLO can identify items
more quicker than two-stage detectors, it still has poorer
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localization accuracy, especially when it comes to tiny
objects. Additional thought has been given to this
problem by later versions of YOLO [46], [47], [48] and
the proposed SSD of today [11]. The YOLOv7 [49]
team has been proposed as a follow-up to the work
of the YOLOv4 team. It achieves higher speeds and
higher accuracy (varying from 5 FPS to 160 FPS) than
most existing object detectors by introducing optimized
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FIGURE 5. One-stage model of object detection.

structures such as dynamic label assignment and model
structure reparameterization.

SSD: SSD was introduced by Liu et al. [11]. The main
benefit of SSD is the addition of multi-reference and
multiresolution detection techniques (to be covered in
Section II-C1). These approaches significantly improve
the detection accuracy of a one-stage detector, especially
for some tiny objects. Accuracy and detection speed are
two areas where SSD shines (COCO mAP@.5=46.5%;
fast version runs at 59 frames per second). SSD
can recognize objects at different sizes across several
network levels, while the older detectors could only
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detect items on their topmost layers. This is the main
difference between SSD and the earlier detectors.
RetinaNet: Despite its incredible speed and ease of
use, one-stage detectors have never been as accurate
as two-stage detectors. After looking into the causes,
Lin et al. [13] suggested RetinaNet. The main finding
they made was that there is a noticeable discrepancy
between the background and foreground classes while
dense detectors are being trained. In order to do this,
RetinaNet presents a unique loss function known as
focused loss, which alters the traditional cross-entropy
loss to encourage the detector to focus more during
training on difficult, misidentified examples. One-stage
detectors may detect at a very high rate (COCO
mAP@.5=59.1%) while keeping accuracy levels com-
parable to two-stage detectors by applying focused loss.
CornerNet: In previous methods, the primary method
of supplying references for classification and regression
was through anchor boxes. It is usual for an object’s
quantity, position, scale, ratio, etc. to vary. They need
to keep installing a lot of reference boxes so that ground
facts better match in order to get higher performance.
Still, there would be more category imbalance, a long
convergence time, and a lot of hand-designed hyper-
parameters in the network. To address these problems,
Law et al. [30] reject the previous paradigm of detection
and consider the work as a prediction problem involving
key points, i.e., the corners of a box. Once the key
points are gathered, it will use the extra embedding
information to decouple and re-group the corner points
in order to construct the bounding boxes. CornerNet
outperforms the majority of one-stage detectors at that
moment (COCO mAP@.5=57.8%).

CenterNet: CenterNet [31] was presented by X.
Zhou and colleagues in 2019. This completely end-to-
end detection network eliminates costly post-processes
such as group-based keypoint assignment and NMS
(found in CornerNet [30], ExtremeNet [50], etc.) while
yet adhering to the same keypoint-based detection
paradigm. CenterNet treats an object as a single point
(the object’s center) and regresses all of its attributes
(size, orientation, position, pose, and so on) based
on the reference center point. The model is simple
and elegant, capable of encapsulating several tasks
including optical flow learning, depth estimation, 3-
D object identification, and human location estimation
into a single framework. It is possible for CenterNet to
get similar detection results (COCO mAP@.5=61.1%)
even with a basic detection method.

DETR: In recent years, deep learning has been greatly
influenced by transformers, particularly in the field
of computer vision. Transformers avoid the traditional
convolution operator in favor of attention-alone calcula-
tion, which allows them to overcome CNN limitations
and reach a global-scale receptive field. Carion et al.
suggested DETR [15] in 2020. They addressed object
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Inputs Pooling (SPP) layer, which enables a CNN to generate

a fixed-length representation regardless of Whenever

SPPNet is used for object recognition, fixed-length

| representations of any region may be created to train the
detectors without having to compute the convolutional

Conv features again. This enables a single computation of the
Y feature maps from the entire picture. More than 20 times
(VOCO07 mAP=59.2%) better performance is achieved

v by SPPNet than R-CNN without sacrificing detection

accuracy. Despite the huge boost in detection speed,
SPPNet still has certain limitations. Firstly, training
Down sampling 7 is still multi-stage; secondly, SPPNet only refines its
entirely connected layers, ignoring all other layers. Later
that year, with the introduction of Fast RCNN [9], these

7 problems were fixed.
o Faster RCNN: In 2015, Ren et al. introduced the
l Faster CNN detector, shortly after the Fast RCNN [10],

[53]. This faster CNN (COCO AP@.5=42.7%, VOCO7
mAP=73.2%) is the first near-realtime deep learning
detector, achieving 17 frames per second with ZF-Net
48. The main feature of Faster-RCNN is the introduc-
tion of the Region Proposal Network (RPN), which
essentially enables cost-free region suggestions. With
the exception of proposal detection, feature extraction,

/ bounding box regression, and TC, the majority of

ROI pooling

— discrete object detection system components have been
gradually incorporated into a single, end-to-end earning
framework, beginning with R-CNN and concluding

Proposal reglon Feature map with Faster RCNN. Computation redundancy remains at

the following detection stage even after Faster RCNN
has over the speed constraint of Fast RCNN. Light
head RCNN [54] and RFCN [55] are two further

improvements that have been proposed since then.
o FPN: Lin et al. [36] introduced FPN in 2017. Before
cis Loc the introduction of FPN, most deep learning-based
detectors only employed feature maps at the top layer
for detection. The deeper layers of a CNN do not
help with object localization, even though they do
contain features that are helpful for classifying data.

Conv

FIGURE 6. Two-stage model of object detection.

detection as a set prediction issue and demonstrated an To accomplish so, FPN builds a top-down architecture
end—to—epd detecti(?n network with transformers. Up to for high-level semantics creation at all sizes, complete
now, object detection has entered a new phase where with lateral links. Given that the forward propagation of

objects may be recognized without the need for boxes
or anchor points. Deformable DETR was subsequently
proposed by Zhu et al. [51] as a solution to the DETR’s
lengthy convergence time and poor performance on tiny
object detection. It achieves state-of-the-art performance
(COCO mAP@.5=71.9%) on the MSCOCO dataset.

a CNN naturally generates a feature pyramid, the FPN
shows notable gains in object identification over a wide
variety of sizes. By integrating FPN in a basic Faster
R-CNN system, it achieves state-of-the-art single model
identification performance on the COCO dataset without
further bells and whistles (COCO mAP@.5=59.1%).

3) MODERN DEEP LEARNING ARCHITECTURE: TWO-STAGE
MODEL C. LIBRARY
o SPPNet: He et al. [35] introduced Spatial Pyramid Pool- An object detection library is a software framework or
ing Networks (SPPNet) in 2014. A fixed-size input was toolkit designed to facilitate the automated identification and
required by earlier CNN models; for instance, AlexNet localization of objects within digital images or video streams.
needed an image with dimensions of 224 by 224 [52]. It typically includes pre-trained models, computer vision
The main component of SPPNet is the Spatial Pyramid algorithms, and tools for training custom models, allowing
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developers to build applications that can detect and classify
objects in real-world scenes. These libraries are crucial for
a wide range of applications, from autonomous vehicles
and surveillance systems to augmented reality and image
analysis, enabling the extraction of valuable information from
visual data by accurately recognizing and delineating objects
of interest. Table 5 provides a brief comparison of these
libraries based on some criteria.

1) IMAGEAI

The ImageAl library is a comprehensive toolkit designed
to empower developers with a wide range of computer
vision algorithms and deep learning techniques for various
tasks in object detection and image processing. Its core
mission is to streamline the development of object detection
projects by simplifying the coding process to just a few
lines. ImageAl offers extensive support for operations such
as image recognition, image object detection, video object
detection, video detection analysis, custom image recognition
training and inference, and custom object detection training
and inference. With its image recognition capabilities, it can
identify up to 1000 distinct objects within an image, while
for image and video object detection, it can efficiently spot
80 of the most commonly encountered objects in everyday
scenarios. Furthermore, the library enables the training of
custom object recognition and detection models using own
datasets, allowing for the inclusion of a broader array of
objects through the utilization of new images and datasets.

2) GLUONCV

GluonCV stands out as a leading library framework for deep
learning in computer vision, offering a powerful arsenal of
state-of-the-art algorithms to expedite results in the field.
With an extensive range of tasks supported, including image
classification, object detection in images, videos, and real-
time scenarios, semantic and instance segmentation, pose
estimation, and action recognition, GluonCV proves itself
as a versatile tool. This framework accommodates both
MXNet and PyTorch, bolstered by a wealth of tutorials
and additional resources to facilitate exploration of various
concepts. It boasts a rich repository of pre-trained models,
allowing users to craft tailored machine learning models for
specific tasks with ease.

3) YOLOV3_TENSORFLOW

YOLOV3 represents a significant advancement in the YOLO
series, boasting improved performance in both speed and
accuracy over its predecessors. What sets it apart is its ability
to effectively detect smaller objects with precision. However,
it faces a tradeoff between speed and accuracy when com-
pared to other prominent algorithms. YOLOv3_TensorFlow,
an early implementation of the YOLO architecture for object
detection, is known for its swift GPU computations, efficient
results, streamlined data pipelines, weight conversions, faster
training times, and a host of other benefits.
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4) DETECTRON2

Detectron2, an advanced framework created by Facebook’s
Al research team (FAIR), stands as a cutting-edge library
supporting a wide array of state-of-the-art techniques for
object detection and segmentation, all grounded in PyTorch.
This versatile and extensible library offers users access to
top-notch implementation algorithms and methods, making
it a go-to choice for numerous applications and production
projects at Facebook. Detectron2’s ability to be trained on
single or multiple GPUs delivers rapid and highly effective
results, empowering users to employ a variety of high-
quality object detection algorithms, including innovations
like DensePose, panoptic feature pyramid networks, and
various iterations of the Mask R-CNN model family.

5) DARKFLOW

Darkflow is a Python-based adaptation of the Darknet
framework, originally written in C and CUDA, designed to
make object detection more accessible to a broader audience
using TensorFlow. To utilize Darkflow effectively, one
will need prerequisites like Python 3, TensorFlow, Numpy,
and Opencv. With these essential dependencies, Darkflow
empowers users to perform various object detection tasks.
This framework grants access to YOLO models and facilitates
the downloading of custom weights for diverse models.
Its capabilities encompass parsing annotations, configuring
networks, visualizing flow graphs, training new models,
custom dataset training, real-time or video analysis, and
leveraging Darkflow for similar applications. Furthermore,
Darkflow allows users to save these models in the protobuf
(.pb) format for future use.

D. EVALUATION METRICS
Table 6 provide a comparison of different metrics to
evaluation object detection.

1) INTERSECTION OVER UNION (IOU)

IoU is one of the most fundamental metrics used in object
detection. It measures the overlap between the predicted
bounding box and the ground truth bounding box. The IoU
is calculated as the ratio of the area of intersection between
the two bounding boxes to the area of their union:

Area of Intersection
TIoU = - €))
Area of Union

2) PRECISION AND RECALL

Precision and recall are used to assess the accuracy and
completeness of object detection. Precision measures the
proportion of true positive detections among all positive
predictions, while recall measures the proportion of true
positive detections among all actual positive instances. The
equations for precision and recall are as follows:

True Positives

Precision = — — 2)
True Positives + False Positives

True Positives
Recall = — . 3
True Positives + False Negatives
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TABLE 5. Comparison of different object detection libraries.

Criteria ImageAl [56] GluonCYV [57] YOLOvV3_TensorFlow Detectron2 [59] DarkFlow [60]
(58]
Ease of use Very easy, few lines of  User-friendly interfaces  Suitable for advanced  User-friendly interfaces  Suitable for advanced
code and tutorials users familiar with Ten-  and tutorials users  familiar ~ with
sorFlow and YOLO YOLO
Speed Slower, relies on pre-  Efficient GPU computa-  Fast GPU computations,  Efficient GPU computa-  Fast GPU computations,
trained models, no GPU  tions, real-time perfor- real-time performance tions, real-time perfor- real-time performance
acceleration mance mance
Accuracy Detects common objects ~ High  accuracy  on  Accurate, especially for ~ High  accuracy on  Accurate, especially for
with reasonable accu- challenging datasets and ~ small objects challenging datasets and ~ small objects
racy tasks tasks
Customization Limited options for Highly extensible and  Supports training cus- Highly extensible and  Supports training cus-

model architecture and
hyperparameters

modular, supports cus-
tomization

tom models using cus-
tom datasets and weights

modular, supports cus-
tomization

tom models using cus-
tom datasets and weights

TABLE 6. Comparison of different detection evaluation metrics.

Metric Advantages Disadvantages
IoU Simple and intuitive. Provides a clear measure of overlap. Sensitive to small variations. May not capture all aspects of
detection quality. Binary nature (threshold-based).
P&R Balances trade-off between relevance and completeness. Suit- ~ Measures the quality and quantity of predictions. May not be
able for imbalanced datasets. suitable for tasks where FPs or FNs are crucial independently.
Can mislead based on the number of predictions.
AP Provides a comprehensive evaluation at various confidence =~ May not work for tasks with strict precision or recall require-
levels. Sensitive to the choice of confidence thresholds. ments.
mAP A comprehensive metric. Aggregates performance across mul-  Can mask poor performance in specific classes. Sensitive to
tiple classes. class imbalance. Involves complex calculations and is compu-
tationally expensive.
F1 Score Balances precision and recall. Good choice for imbalanced  Ignores true negatives, so may not work for tasks where they

datasets.

are crucial. Sensitive to the selected threshold.

3) AVERAGE PRECISION (AP)

AP is a common metric for summarizing the precision-
recall trade-off across different IoU thresholds. It involves
calculating the precision-recall curve and computing the area
under this curve. A high AP indicates a better object detection
model.

4) MEAN AVERAGE PRECISION (MAP)

mAP is a more comprehensive metric that calculates the
Average Precision (AP) for each class and then averages
them. It is often used to evaluate the overall performance of
an object detection model across multiple object categories.
The equations for mAP is as follows:

N
1
mAP = N Z Average Precision, “)

i=1

Here N and AP; are total classes number and i class of the
Average Precision.

5) F1 SCORE
F1 score is the harmonic mean of precision and recall.
It provides a single value that balances the trade-off between
precision and recall. The formula for F1 score is:

2 - (Precision - Recall)

F1 Score = — (5)
Precision + Recall
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IV. APPLICATIONS OF OBJECT DETECTION

Object detection plays a crucial role in various applications,
including autonomous driving, surveillance, and medical
imaging etc. It involves identifying and locating specific
objects within images or video frames. Object detection
algorithms use deep learning models, such as Convolutional
Neural Networks (CNNs), to detect and draw bounding
boxes around objects of interest, making it a powerful
tool for tasks like pedestrian detection in self-driving cars,
identifying anomalies in security footage, and locating
tumors in medical scans. This technology has the potential
to enhance efficiency, safety, and accuracy in a wide range of
fields by enabling automated and real-time object recognition
and tracking. In Table 7, the distributions of the selected
articles on various application domains of object detection
are indexed. Whereas in Table 8 the data of various scholarly
articles about the applications of object detection is shown.

A. FACE DETECTION

Face detection is a compelling application of object detection,
where the goal is to identify and locate human faces
within images or video frames. This technology leverages
convolutional neural networks and deep learning to recognize
facial features and determine their positions accurately.
It has widespread applications in various fields, including
security for surveillance systems, photography for autofocus
and facial recognition, as well as in the development
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TABLE 7. Papers count of different application domains in different scholarly databases.

Keyword Paper count
Face Detection 10

Arial Target Detection 19

Text Detection 10
Pedestrian and Traffic Detection 11

Human Violence and Sport’s Foul Detection 11

Plant and Human disease detection 11
Astronomical Object Detection 9

Photography
Autofocus

Ingroup Bias Security

Surveillance

-V
& S
3D Face | AR and VR
Reconstruction e / Applications
L EDe
< 4

Face Detection

FIGURE 7. Face detection fields.

of augmented reality and virtual reality applications. The
ability to swiftly and accurately detect faces in diverse
contexts contributes to improved human-computer inter-
action and enhances the efficiency and security of many
technological systems. Figure 7 shows various applicable
fields of face detection (For figures, icons were taken from
https://www.flaticon.com/).

Yang et al. introduced the WIDER FACE [61] dataset
illustrated it as an effective training source in the field of
face detection. Through their work, the authors proposed a
multi-scale two-stage cascade framework which uses divide
and conquer technique using WIDER FACE dealing large
scale variation. Qi et al. implemented YOLOS5Face [62]
face detector on the basis of YOLOvV5 object detector and
WiderFace dataset. The authors also implemented a backbone
for mobile devices based on ShuffleNetV2, which also
provided the SOTA performance and fast execution speed.
Jiang, Huaizu, and Erik Learned-Miller experimented based
on the dataset WIDER FACE and two benchmarks, FDDB
and IJB-A to use Faster R-CNN [63]. Zhu et al. invented
TinaFace [64] as a baseline method dealing face detection.
As the backbone with ResNet-50 and dataset WIDER
FACE, TinaFace attained 92.4% AP which outperformed
the state-of-the-art method that time. Mamieva et al. build
a single-stage face detector, RetinaNet [65] baseline. Their
work on WIDER FACE and FDDB datasets showed that
the method achieves high Average Precision (AP) scores,
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with an accuracy of 95.6% for successfully detected faces.
Boyd et al. introduced a training strategy, CYBORG [66],
which uses human-annotated saliency maps to guide deep
learning models in focusing on image regions that humans
find salient for a given task. The authors found that CYBORG
significantly improves generalization and accuracy on unseen
samples in synthetic face detection compared to traditional
training methods. Hangaragi et al. introduced a face detection
and recognition model using Face mesh [67]. The model
is trained on Labeled Wild Face (LWF) dataset images
and real-time captured images. While testing, the model
compares face landmarks of the test image with those of
the training images and achieves an accuracy of 94.23% for
face recognition. Prunty et al. showed that humans exhibit
an ingroup bias at the earliest stage of face processing,
where they detect ingroup faces (Black and White) more
quickly and accurately than outgroup faces (Asian, Black,
and White) in everyday scenes [68]. According to their
findings, this bias in face detection is independent of the
color of faces and can be attributed to both visual and social
factors. Sandhya et al. proposed a smart criminal detection
and identification system [69]. They combined a Single Shot
Multibox Detector for face detection and an auto-encoder
model for matching captured facial images with criminals
in a database. The authors found that the system achieves
a confidence rate of 0.75 and above, making it effective in
identifying individuals with a history of felonies based on
facial images. Al-Neama et al. build a GPU-based system for
real-time face recognition [70]. According to the findings,
the system significantly outperforms traditional CPU-based
methods, with a 19.72x improvement in the detection phase
and a remarkable 1573x improvement in the recognition
phase when implemented on an NVidia GTX 570 graphics
card.

B. ARIAL TARGET DETECTION

Arial target detection, as an application of object detection,
involves the identification and localization of specific objects
or subjects within an image or video stream. This technology
is widely employed in various domains, such as surveillance,
autonomous vehicles, and military applications, to recognize
and pinpoint predefined targets of interest, which could be
vehicles, pedestrians, wildlife, or even specific objects like
weapons. Object detection algorithms use deep learning and
computer vision techniques to draw bounding boxes around
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TABLE 8. Scholarly articles about the applications of object detection.

Application Year Title work and refer- Datasets Methods Metrics and Results
ence
Face 2016 Efficient Face Detection WIDER FACE Multi-scale, two-  Notable performance im-
detection [61] stage cascade provement on large-scale
framework variation.

2022 Mobile-Friendly WIDER FACE YOLOS5Face  with SOTA performance and
Face Detection ShuffleNetV2 fast execution on mobile
Implementation. [62] backbone devices.

2017 Advancing Face Detec- WIDER FACE, Faster R-CNN Notable  results on
tion Benchmarks. [63] FDDB, 1JB-A WIDER FACE, FDDB,

and IJB-A benchmarks.

2020 Innovating Baseline for WIDER FACE TinaFace 92.4% Average Precision
Face Detection. [64] on WIDER FACE.

2023 Single-Stage Precisionin  WIDER FACE, RetinaNet High Average Precision
Face Detection. [65] FDDB scores on WIDER FACE

and FDDB.

2023 Enhanced Synthetic Face - CYBORG Improved generalization
Detection. [66] and accuracy using

saliency maps.

2023 High Accuracy Face Labeled Wild Face mesh 94.23% accuracy for
Recognition. [67] Face (LWF) face recognition on LWF

dataset.

2023 Human Perception: In- - - Ingroup bias in early face
group Face Bias. [68] processing.

2023 Smart Criminal Detec- - SSD for face Smart criminal detection
tion with SSD and Auto- detection, Auto- and identification sys-
encoder. [69] encoder for matching tem.

2023 GPU-based Real-time - GPU-based system Real-time face
Face Recognition recognition, significant
Outperforms CPU. [70] performance

improvement over
CPU-based methods.
Arial  target 2018 Improved Point Cloud - Progressive TIN Reduction in type I errors
detection Filtering: Reduction in Densification (PTD) by 7.53% and total errors
Errors. [71] by 4.09%.

2022 Underwater Target De- - Modified Swin  87.2% mean average pre-
tection: mAP with Mod- Transformer cision (mAP) for under-
ified Swin Transformer. water target detection.
[72]

2022 Real-time Target Detec- - Lightweight CNN Real-time target
tion: Lightweight CNN. with depthwise detection with improved
[73] separable modules speed.

2016 Small Target Detection Infrared images WLDM-based Improved accuracy and
in Infrared: WLDM scheme robustness in small target
Scheme. [74] detection.

2023 Underwater Target De- - YOLOvV5s-CA 2.4% increase in mAP
tection: mAP Improve- for underwater target de-
ment. [75] tection.

2023 ISignal Detection with - ICBD method Improved signal detec-
ICBD Method. [76] tion in the presence of

noise and interference.

2023 Multiscale SAR Ship - Upgraded YOLOvSs Multiscale SAR  ship

Detection: Upgraded
YOLOVSs. [77]

with C3, FPN + PAN,
and attention

detection with enhanced
structures and attention.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.
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2023 Improved Small Target - KPE-YOLOv5 5.3% improvement in
Detection. [78] detection mAP, 7%
increase in precision for
small target detection.
2023 Underwater Object De- - Lightweight 1.1% increase in mAP
tection. [79] YOLOVS for underwater object de-
tection.
2023 Damaged Building De- Post-disaster DB-YOLOvS High accuracy and effi-
tection. [80] UAV images ciency for real-time de-
tection.
2020 Human Detection in Dis- - Image processing for Improved disaster man-
asters. [81] human detection agement through video
analysis.
2018 Humanitarian Relief Co- - Machine learning Coordination of humani-
ordination. [82] tarian relief efforts in dis-
asters.
2021 Building Extraction for Pléiades satellite Mask R-CNN High recall, precision,
Covid-19. [83] imagery and F1 score in building
extraction.
2019 Automated Bridge De- UAV-generated Multi-stage approach ~ Faster processing and
tection. [84] multispectral high accuracy in bridge
images detection.
2020 Local-Level Poverty Pre- High-resolution Object detectors High Pearson’s r? in
diction. [85] satellite imagery predicting village-level
poverty.
2023 Flood Detection Fusion. Satellite remote Ensemble classifica- Enhanced flood
[86] sensing data, tion technique detection and assessment
social media data through data fusion.
2023 Power Outage Detection.  Space-borne PODM Successful detection of
[87] remote  sensing power outages in meteo-
imagery rological disasters.
2023 Algae Bloom and Fish Satellite imagery, - Linked algae bloom to
Extinction. [88] soundings fish extinction using
satellite imagery.
2023 Progressive Image Clas-  Satellite and PICA Improved speed and ac-
sification. [89] aerial imagery curacy in flood disaster
detection.
Text detection 2019 Complex Text Shapes: - Scene text detection High flexibility for com-
Scene Text Detection. method plex text shapes.
[90]
2018 Arbitrary-Oriented Text - RRPN for arbitrary- Generation of inclined
Detectio. [91] oriented text detec- text proposals with ori-
tion entation angle informa-
tion.
2017 Multi-Oriented Text De- - Fully convolutional Pixel-wise classification
tection: FCN Approach. network for multi- and direct regression
[92] oriented text for text boundary
detection coordinates.
2017 Arbitrary-Oriented Text - R2CNN for textiden- ~ Application of R2CNN
Identification. [93] tification on Faster R-CNN for
arbitrary-oriented  text
detection.
2023 DetectGPT Framework - DetectGPT Text detection
for Text Detection. [94] framework without separate
classifiers, datasets,
or watermarking.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.

2023 Scene Text Detection: - DPText-DETR Improved training effi-
DPText-DETR Network. network ciency and detection per-
[95] formance using explicit

point coordinates.

2023 Benchmarking MGTs: - MGTBench Benchmarking for
MGTBench Framework. benchmark detecting Machine-
[96] framework Generated Texts.

2023 Unified Text Detection - Unified coarse-to- Accurate and efficient
Framework: Coarse-to- fine framework text boundary
Fine. [97] localization for arbitrary

shapes.

2023 Al-Generated  Tweets Twitter dataset Stylometric signals Enhanced detection of
Detection. [98] algorithm Al-generated tweets with

improved accuracy.

2023 Combined text spotting - DeepSolo framework  End-to-end text spotting
framework. [99] with combined detection

and recognition using ex-

plicit point queries.
Pedestrian 2018 Pedestrian detection in- Diverse datasets R-CNN with  Insights into R-CNN per-
and traffic sight. [100] AlexNet and transfer formance across differ-
detection learning ent datasets.

1999 Adaptive Object Detec- - Flexible object detec-  Adaptability to different
tio. [101] tion system scenarios without man-

ual design.

2007 Real-time Obstacle De- - Real-time obstacle Reliable detection up to
tection up to 50 meters and pedestrian 50 meters at 64 frames
range. [102] detection per second.

2016 Improved Pedestrian De-  KITTI dataset CNN with LIDAR Improved detection us-
tection. [103] and color imagery ing LIDAR and color

imagery on the KITTI
dataset.

2014 Faster Object Detection - Faster object detec- Significant speed
with improved speed, tion method improvements with
minimal accuracy loss. minimal loss in accuracy.
[104]

2010 Multiresolution Caltech Multiresolution Significant improvement
Object Recognition:  Pedestrian model with  in detection rates on Cal-
Deformable part-based benchmark deformable part- tech Pedestrian bench-
modeling. [105] based modeling mark.

2020 Traffic Signal Control - Machine learning- Real-time, adaptive sig-
with ML-based adaptive based traffic signal nal switching, reducing
switching [106] control system waiting times.

2019 On-road Vehicle Detec- On-road vehicle YOLOv3 algorithm Vehicle detection and
tion. [107] datasets with convolution tracking in on-road

layers datasets.

2010 Traffic Object Detection  Traffic video Object detection and  Around 90% accuracy on
System. [108] scenes segmentation system  four traffic video scenes.

2022 Tiny Object Detection. Surveillance YOLOvV2 with 97.51% average preci-
[109] videos DenseNet-201 sion in vehicle detection

and recognition.

2023 Small and Multi-Object  Several datasets BANet (Bidirectional Outperformed YOLOX
Detection [110] Attention Network) in mean average

precision on several
datasets.
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Human 2020 Real-time Character  Super Smash Real-time character Developed real-time de-
violence and Tracking. [111] Brothers Melee tracking tection model for charac-
sports  foul ter tracking.
detection
2022 Activity  Recognition. - Activity recognition ~ Refined features for
[112] activity and sub-object
classification.
2019 Football Foul Feature Football competi- Deep learning-based Enhanced accuracy in
Extraction. [113] tions foul feature extrac- foul identification.
tion
2023 Deep Learning in Foot- Football video Various deep learn- Contribution to sports
ball Video Analysi. [114]  analysis ing techniques video analysis.
2023 Automated Ball Posses-  Sports analytics Temporal Improved possession es-
sion Extraction. [115] Convolutional timation and classifica-
Networks (TCNs) tion accuracy.
2023 Fall Detection with LI- - 2D LIDAR-equipped High accuracy in fall de-
DAR Robot. [116] cleaning robot tection and detection of
prone positions.
2019 Violence Detection in - Shot segmentation, Classification of
Movies. [117] saliency-based frame violence and non-
selection violence shots.
2020 Violence Detection  Violence - New dataset for testing
Dataset Creation. [118] detection dataset violence detection tech-
niques.
2022 Video Surveillance Vio- Real-world U-Net-like network Good results on violence
lence Detection. [119] security camera with MobileNet V2 detection in real-world
footage footage.
2019 Efficient Violence De- Surveillance Triple-staged deep Efficient violence
tection. [120] videos learning framework detection in surveillance
videos.
2020 Multimodal ~ Violence XD-Violence Comprehensive vio- Positive impact of multi-
Detection. [121] dataset lence detection ap- modal input and relation-
proach ship modeling.
Plant and 2023 Crop Disease Diagnosis. - Image  Captioning High BLEU score for
human [122] and Object Detection Image Captioning. Ob-
disease ject Detection improve-
detection ment needed.
2023 Plant Disease Retrieval. - Object Detection and  Plant disease identifica-
[123] Deep Metric Learn- tion across various sce-
ing narios.
2022 Rice Plant Disease De- - Image  Processing Early detection and pre-
tection. [124] and Deep Learning vention of rice plant dis-
eases.
2022 Medical Image Domain - CLU-CNNs Domain adaptation for
Adaptation. [125] medical image data.
2019 Skin Disease Diagnosis. Skin-10,  Skin- CNNs and Ensemble Improved accuracy for
[126] 100 Approach certain  skin  disease
classes.
2019 Generative Model: Ob- - Generative model for Outperformed existing
ject Detection in Limited object detection methods in  limited
Annotated Data. [127] annotated data scenarios.
2023 Object Detection in Brain MRI Ensemble strategies Potential mAP increase

Brain MRI. [128]

for object detection

and improved AP for
anatomical parts.
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2023

2023

2023

2021

Medical Data Enhance-
ment. [129]

Industrial Object Detec-
tion. [130]
Transformer-based
Leukocyte  Detection.
[131]

Concealed Object Detec-
tion. [132]

CODI0K

Logistic  regression
and YOLOv4

ResNet18-based im-
age segmentation
Transformer-based
object detection
network

SINet

Significant performance
improvements for med-
ical data classification
and image detection.
Precise recognition in in-
dustrial object detection.
Superior mean average
precision for leukocyte
detection.

Surpassed twelve con-
temporary baselines in
concealed object detec-
tion.

Astronomical 2017

object and
air index
detection

2017

2023

2023

2023

2023

2023

2023

2023

Urban Planning with
LSTM. [133]

PM2.5 concentration
estimation using deep
CNNs [134]
Occupant-Centric
Control: Enhancing
Thermal Comfort and
Energy Savings. [135]
Leftover Item Detection.
[136]

Low-Cost Air Quality
Monitoring. [137]

IoT Air Quality Moni-
toring: Real-time, Cost-
effective Data for Urban
Management. [138]
Combatting  Pollution
with IoT: Real-time
Monitoring and Alerts.
[139]

Deep Learning in Radio
Astronomy. [140]

Time-series Analysis in
Astronomy. [141]

Beijing dataset

LSTM-based deep
learning model

Deep CNNs

OCC strategies with
real-time occupancy
detection

Computer vision pre-
diction model

LPAQD

IoT-based air quality
monitoring system

IoT-based air quality
monitoring system

Deep learning for ra-
dio astronomy

BLS  periodogram
analysis, neural
network classifier

Promising results for
air quality prediction in
smart cities.

Effective PM2.5 concen-
tration estimation for air
quality analysis.
Enhanced thermal com-
fort and energy savings
in office environments.

89% accuracy for de-
tecting leftover items in
shared vehicles.
Real-time detection of
particles with low-cost
monitoring device.

Real-time, cost-
effective, and precise
data for urban air quality
management.

Real-time  monitoring
and alerts for rising
pollution levels.

Insights into automatic
object detection in radio
astronomy.

Detection and character-
ization of stars, exoplan-
ets, and galaxies using
time-series data analysis.

the recognized targets, enabling precise tracking, classifi-
cation, and subsequent decision-making processes, thereby
enhancing safety and situational awareness in complex real-
world scenarios. Figure 8 shows various applicable fields of
arial target detection.

Dong et al. introduced an improved Progressive TIN
Densification (PTD) filtering algorithm for point clouds
with high density and standard variance [71]. The results

54146

demonstrated that the improved PTD algorithm significantly
reduces type I errors and total errors in the point clouds
compared to the original PTD method by 7.53% and 4.09%,
respectively. Lei et al. experimented that by using the Swin
Transformer as the backbone network, enhancing multi-
scale feature fusion, and improving the confidence loss
function, the modified model achieved a mean average
precision (mAP) of 87.2%, making it highly effective for
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FIGURE 8. Arial target detection fields.

detecting underwater targets [72]. Yun et al. developed a
real-time target detection method based on a lightweight
convolutional neural network [73]. The method utilized
depthwise separable residual modules and depthwise separa-
ble convolutions to reduce the number of model parameters
and improve detection speed. According to their findings,
itintroduced 1 x 3 and 3 x 1 convolution kernels to enhance
feature extraction. Deng et al. proposed a “weighted local
difference measure (WLDM)-based scheme” for detecting
small targets in infrared images against complex cloudy-
sky backgrounds [74]. The studies found that this method
enhances target visibility while suppressing background
clutter and noise, leading to improved small target detection
accuracy, robustness across various backgrounds and target
movements, and significantly improved signal-to-clutter ratio
(SCR) values. Wen et al. discovered a modified YOLOvVS5s
network, YOLOvS5s-CA [75], for underwater target detection.
This modified network incorporated a Coordinate Attention
(CA) module and a Squeeze-and-Excitation (SE) module to
enhance target detection accuracy. For increasing the number
of bottlenecks in the initial C3 module and embedding the CA
module and SE layer, the model’s ability to focus on targets
and extract shallow features is improved. As the results of
their studies on data from the 2019 China Underwater Robot
Competition show a 2.4% increase in mean Average Precision
(mAP) compared to the baseline YOLOv5s network. Liu et al.
introduced the Interference Cancellation before Detection
(ICBD) [76] method for signal detection in the presence
of unknown Gaussian noise and subspace interference. The
study found that ICBD effectively addresses the detection
issue by projecting data into an interference-orthogonal
subspace, enabling efficient detection with minimal training
data. The study also found that, ICBD offered lower
computational burden and can work even when interference
is present in the training data. Yasir et al. developed an
upgraded YOLOVSs technique for multiscale SAR ship
detection [77]. This model incorporated C3 and FPN 4 PAN
structures, as well as an attention mechanism, to improve
ship detection accuracy in SAR imaging. Through the results
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using SAR ship detection datasets and satellite images,
the authors showed that the proposed model is highly
applicable for maritime surveillance. Yanget al. invented
the KPE-YOLOvS [78] algorithm, which enhances small
target detection by addressing the limitations of existing
methods, including low accuracy, high false detection rates,
and missed detections. The algorithm achieved more accurate
anchor box sizes for small targets through K-means+-+
clustering, integrates the scSE attention module to prioritize
small target feature information in the backbone network, and
improves small target feature extraction by adding a dedicated
detection layer. As their evaluation on the VisDrone-2020
dataset which demonstrated that KPE-YOLOVS5 outperforms
YOLOVS, achieving a 5.3% improvement in detection mAP
and a 7% increase in precision for small target detection.
Liang, Heng, and Tingqgiang Song proposed a lightweight
underwater object detection algorithm based on YOLOv5
[79]. In underwater object detection, the algorithm addressed,
including the reduction of model parameters and computa-
tional complexity through the use of depth-wise separable
convolution and Ghost convolution. The incorporation of
RepVgg and Rep-ECA modules enhances feature extraction
and channel attention for small objects in blurred images.
Results on the URPC underwater object detection dataset
showed a 39% reduction in model parameter count, a 42%
decrease in computational complexity, a 24% improvement in
frame rate, and a 1.1% increase in mAP, improving detection
precision while maintaining a lightweight model suitable for
deployment in underwater equipment.

C. TEXT DETECTION

Text detection as an application of object detection involves
the identification and localization of textual elements within
images or scenes. It plays a crucial role in various
domains, such as document analysis, image captioning,
and autonomous navigation. Object detection models are
employed to detect and outline regions containing text,
enabling subsequent text recognition or analysis. Accurately
identifying text objects within diverse visual data, this appli-
cation facilitates tasks like automated transcription, signage
interpretation, and the extraction of valuable information
from images, contributing to improved accessibility, data
retrieval, and overall comprehension in the digital age.
Figure 9 some text detection applicable fields. Also,

Baek et al. developed a scene text detection method
that effectively detects text areas by considering individ-
ual characters and their affinities, especially for complex
text shapes like arbitrarily-oriented, curved, or deformed
texts [90]. Achieving this by using character-level annotations
for synthetic images and estimating character-level ground-
truths for real images, their method offering high flexibility
in detecting complex scene text images. Ma et al. intro-
duced the “Rotation Region Proposal Networks (RRPN)”
[91] framework for arbitrary-oriented text detection. They
showed that the framework generates inclined text proposals
with orientation angle information and adapts this angle
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information for accurate bounding box regression. They also
introduced the “Rotation Region-of-Interest (RRol) pooling
layer” [91] to project arbitrary-oriented proposals onto a
feature map for text region classification. According to their
analysis, this region-proposal-based architecture enhances
the computational efficiency and effectiveness of arbitrary-
oriented text detection compared to previous systems. He
et al. stated a new approach to object detection, specifically
for multi-oriented scene text involving a fully convolutional
network with pixel-wise classification and direct regression
for quadrilateral text boundary coordinates [92]. The method
achieved F-measure of 81% on the ICDAR2015 Incidental
Scene Text benchmark. Jiang et al. introduced a novel text
detection method called Rotational Region CNN (R2CNN)
[93] designed for identifying text in natural scene images
with arbitrary orientations. The approach was built upon
the Faster R-CNN architecture and involving inclined non-
maximum suppression to produce the final detection results.
Through their work, the authors demonstrated competitive
performance on text detection benchmarks, including ICDAR
2015 and ICDAR 2013. Mitchell et al. developed a frame-
work, DetectGPT [94] for detecting text generated by large
language models (LLMs). They found that text generated by
LLMs tends to occupy regions of negative curvature in the
model’s log probability function. DetectGPT leverages this
observation to judge if a passage is generated by a specific
LLM, without the need for training a separate classifier,
collecting datasets, or watermarking generated text. Ye et al.
introduced the DPText-DETR [95] network for scene text
detection. DPText-DETR improves training efficiency and
detection performance by using explicit point coordinates to
generate and dynamically update position queries. As their

54148

results, DPText-DETR also enhanced the spatial inductive
bias of non-local self-attention with an Enhanced Factorized
Self-Attention module. He et al. build MGTBench [96],
a benchmark framework for detecting Machine-Generated
Texts (MGTs) generated by powerful Language Model
(LLMs). The authors found that most existing detection
methods are ineffective against MGTs, except for ChatGPT
Detector and LM Detector. Model-based detection methods
show promise with fewer training samples and transferability.
The authors also explored text attribution, finding that the
LM Detector is the best at identifying the originating model
of a given text. Zhang et al. invented a unified coarse-
to-fine framework for arbitrary shape text detection that
accurately and efficiently locates text boundaries without
the need for complex post-processing [97]. Results stated
that, guided by a boundary proposal module, the module
refined coarse boundary proposals using an encoder-decoder
structure and introduces a novel boundary energy loss
(BEL) to optimize and stabilize the learning of boundary
refinement. Kumarage et al. developed a novel algorithm
that uses stylometric signals [98] to enhance the detection
of Al-generated tweets on Twitter. This work stated that
these stylometric features effectively improve the accuracy
of Al-generated text detectors while discriminating between
human and Al-generated tweets, and detecting when Al
begins generating tweets in a user’s Twitter timeline. Ye et al.
introduced DeepSolo [99], a DETR-like framework for end-
to-end text spotting. DeepSolo combines text detection and
recognition in a single decoder using explicit point queries
for character sequences. The authors showed that DeepSolo
also supports line annotations, reducing annotation costs.

D. PEDESTRIAN AND TRAFFIC DETECTION

Object detection plays a pivotal role in plant and animal
disease detection by enabling the automated identification
of infected or unhealthy specimens in agriculture and
wildlife conservation. Utilizing computer vision and machine
learning algorithms, this technology can identify specific
symptoms or anomalies in plants or animals, such as
discolored leaves, lesions, or abnormal behavior, allowing for
early detection and intervention. Accurately pinpointing the
areas or individuals affected, object detection contributes to
more precise monitoring, timely responses, and ultimately,
the preservation of crop yields and the well-being of wildlife
populations. Figure 10 shows various applicable fields of
pedestrian and traffic detection.

Masita et al. assessed the performance of R-CNN for
pedestrian detection using two diverse dataset [100]. They
employed AlexNet as a feature extraction model and fine-
tuned it through transfer learning for dataset-specific classifi-
cation. The study revealed insights into the R-CNN detector’s
performance across different datasets. Papageorgiou et al.
created a flexible object detection system for automotive
vision, with a focus on pedestrian detection [101]. They
emphasized learning from examples, making it adaptable to
different scenarios without requiring manual design. Their
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FIGURE 10. Pedestrian and traffic detection fields.

approach was not reliant on motion data or scene assump-
tions. They also discussed video processing improvements
and integration into a DaimlerChrysler test vehicle. Ma
et al. created a real-time obstacle and pedestrian detection
system for vehicles using a single monochrome camera [102].
They identified obstacles above the ground plane with a
“virtual stereo system” via inverse perspective mapping
and used digital image stabilization for accuracy. They
introduced a pedestrian segmentation method for bounding
box extraction and a “‘pedestrian detection strip” to improve
calculation speed. The system reliably detected obstacles
and pedestrians up to 50 meters away at 64 frames per
second on a standard PC. Schlosser et al. improved pedestrian
detection using CNNs by incorporating LIDAR and color
imagery [103]. They converted LIDAR data to depth maps,
including three 3D scene features as extra image channels.
The KITTI dataset was used for validation. Dolldr et al.
developed a faster object detection method by approximating
multi-resolution image features through scale extrapolation,
resulting in significant speed improvements with minimal
loss in detection accuracy [104]. This approach is broadly
applicable to various vision algorithms requiring fine-grained
multi-scale analysis, particularly for images with broad
spectra. Park et al. explored the challenges of recognition
at different object scales. They argued against the idea
of strict scale-invariance and proposed a multiresolution
model that adapts to the size of detection windows, using
deformable part-based modeling for large objects and rigid
templates for small ones [105]. Their research, demonstrated
on the Caltech Pedestrian benchmark, significantly improved
detection rates, reducing missed detection from 86%-37%
to 29% compared to recent state-of-the-art methods. Ng
et al. addressed the challenge of traffic congestion in Hong
Kong, where high traffic flow is a common issue. They
developed a new traffic signal control system that employs
machine learning with object detection and an evolutionary
algorithm [106]. This system allows real-time, adaptive
signal switching at intersections, reducing waiting times for
pedestrians and vehicles and enhancing the overall travel
experience. Jain et al. explored single object detection using
convolution layers in a neural network, focusing on on-
road vehicle datasets with varying illuminations [107]. They
also performed multiple object detection using the YOLOv3
algorithm with the KITTI dataset, specifically for classes
like car, bus, truck, motorcycle, and train. Additionally, they
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implemented vehicle tracking by using centroid positions
in subsequent video frames, utilizing OpenCV and Python
in conjunction with the YOLOv3 algorithm. Low et al.
created a system to detect and segment objects in video
frames for traffic surveillance [108]. They used MATLAB
to apply a shadow removal method to improve detection
accuracy. By distinguishing background from foreground, the
system segmented foreground regions as objects, enabling
potential use in object recognition and classification. Testing
on four traffic video scenes achieved around 90% accuracy.
Akhtar et al. improved YOLOv2 for precise tiny object
detection in surveillance videos [109]. They used DenseNet-
201 for compact feature extraction, achieving an average
precision of 97.51% in vehicle detection and recognition,
outperforming other methods. Wang et al. addressed the
challenge of small and multi-object detection in traffic
environments by introducing BANet, a bidirectional attention
network featuring multichannel attention blocks, alpha-
effective IoU loss, and multiple attention fusion [110]. BANet
outperformed YOLOX, achieving improved mean average
precision on several datasets and demonstrating better speed,
reducing forward time by 0.97 ms.

E. HUMAN VIOLENCE AND SPORT'S FOUL DETECTION
Object detection plays a pivotal role in various applications,
including human violence and sports foul detection. In the
realm of security and public safety, object detection can be
employed to identify acts of violence or aggression, such
as physical altercations or suspicious behavior, through real-
time analysis of video footage in public spaces. Similarly,
in the context of sports, object detection can be utilized
to identify fouls and rule violations in games, ensuring
fair play and enhancing the accuracy of referee decisions.
Analyzing video feeds and recognizing specific actions and
objects, object detection contributes to the safety and integrity
of both public spaces and sports events. Figure 11 shows
various applicable fields of human violence and sport’s foul
detection.
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Explosive Object
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FIGURE 11. Human violence and sport’s foul detection fields.

Thamaraimanalan et al. explored the application of com-
puter vision and object detection in gaming and sports, with
a particular focus on character tracking in the game Super
Smash Brothers Melee [111]. They developed a real-time
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detection model for this purpose, leading to the creation of
a basic bot capable of taking actions based on character
locations. Ryu el al. introduced an activity recognition
model that blends spatial and temporal analysis of video
activities [112]. They employed a novel technique called
sequential object feature accumulation, refining deep neural
network features for activity and sub-object classification.
Ma et al. introduced a football foul feature extraction
method based on deep learning algorithms. The approach
aims to enhance the accuracy of foul identification during
normal football competitions by eliminating background
elements from input images, employing human motion
tracking, and utilizing star skeleton features for foul action
extraction [113]. The experimental results indicated that
the method’s target detection accuracy requires further
improvement. Liu et al. examined deep learning techniques
for football video analysis, covering player and ball detection,
tracking, event detection, and game analysis [114]. Their
study contributes to the growing demand for video analysis
in sports. The study referenced Borghesi et al. and focused
on utilizing Temporal Convolutional Networks (TCNs) for
automating ball possession data extraction from tracking
data in sports analytics [115]. The paper explored various
classification approaches using TCNs to categorize game
states. Performance evaluation on professional soccer track-
ing data demonstrated significant improvements over state-
of-the-art methods, achieving 86.2% accuracy in possession
estimation and 89.2% accuracy in dead-alive classification.
The study also conducted ablation studies to understand the
contributions of input data to the final prediction. A study
by Bouazizi et al. explored using a cleaning robot equipped
with a 2D LIDAR for fall detection and monitoring in
environments with furniture obstructions [116]. By continu-
ously collecting and processing LIDAR data, the robot can
identify falls and individuals on the ground, achieving an
81.2% accuracy in fall detection and a 99% accuracy in
detecting individuals in prone positions through simulations.
This approach outperforms static LIDAR methods with
lower accuracies. Khan et al. proposed a violence detection
scheme for movies that involves three key steps: shot
segmentation, frame selection based on saliency, and the
classification of violence and non-violence shots using a fine-
tuned deep learning model to create violence-free versions
of movies, suitable for children and individuals sensitive
to violence [117]. Bianculli et al. created a new dataset
containing 350 high-resolution video clips (1920x1080
pixels, 30 fps) for the purpose of testing violence detection
techniques [118]. The dataset consisted of 230 clips depicting
violent behaviors and 120 clips representing non-violent
behaviors, including actions that may lead to false positives in
violence detection due to their resemblance to violent actions.
Vijeikis et al. introduced a novel architecture for violence
detection in video surveillance cameras [119]. The proposed
model utilized a U-Net-like network with MobileNet V2
as an encoder for spatial feature extraction, followed by
LSTM for temporal feature extraction and clas