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ABSTRACT From pivotal roles in autonomous vehicles, healthcare diagnostics, and surveillance systems
to seamlessly integrating with augmented reality, object detection algorithms stand as the cornerstone in
unraveling the complexities of the visual world. Tracing the trajectory from conventional region-based
methods to the latest neural network architectures reveals a technological renaissance where algorithms
metamorphose into digital artisans. However, this journey is not without hurdles, prompting researchers
to grapple with real-time detection, robustness in varied environments, and interpretability amidst the
intricacies of deep learning. The allure of addressing issues such as occlusions, scale variations, and fine-
grained categorization propels exploration into uncharted territories, beckoning the scholarly community to
contribute to an ongoing saga of innovation and discovery. This research offers a comprehensive panorama,
encapsulating the applications reshaping our digital reality, the advancements pushing the boundaries of
perception, and the open issues extending an invitation to the next generation of visionaries to explore
uncharted frontiers within object detection.

INDEX TERMS Object detection, image recognition, object segmentation, semantic detection, image
classification, object tracking.

I. INTRODUCTION
In the vast tapestry of technological evolution, the role of
object detection transcends mere recognition; it serves as
the cornerstone upon which the edifice of modern computer
vision is built. Picture a world where algorithms not only
decipher the visual symphony that unfolds before our digital
eyes but also anticipate and respond, seamlessly integrating
with our daily lives. Object detection, the silent sentinel of
this digital age, has emerged as the conduit through which
machines perceive and interact with the visual world, giving
rise to a realm of applications that are as diverse as they are
transformative.

As we navigate this complex ecosystem, the applications
of object detection unfold as a dynamic narrative, revealing
chapters of innovation that span industries and domains. From
the bustling streets where autonomous vehicles decipher the
language of traffic to the serene corridors of healthcare
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where diagnostic algorithms scrutinize medical images, and
from the watchful eyes of surveillance systems ensuring
our security to the immersive landscapes of augmented
reality blending the virtual and the tangible - object
detection stands as the linchpin, orchestrating a symphony
of possibilities. Though object detection is quite old and
hence covered huge attention by researchers but still the
notable significant amount research activity related to this
subject, as evidenced by various scholarly databases data
with keywords ‘‘object detection’’ or ‘‘object recognition’’ or
‘‘object identification’’ or ‘‘object classification’’ or ‘‘object
segmentation’’ or ‘‘semantic detection’’ or ‘‘object tracking’’
in their title/abstract in Figure 1.

Yet, this symphony is not static; it is a living, breathing
composition that evolves with each technological crescendo.
The saga of object detection research ismarked by a relentless
quest for advancements, where the journey from classical
methods to the current zenith of neural networks mirrors a
technological odyssey. In this epoch of artificial intelligence,
algorithmsmetamorphose into artists, meticulously crafting a
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FIGURE 1. Past five year’s (January, 2018 - November, 2023) published
article count on object detection in different naming convention in
different databases.

visual masterpiece from the chaos of raw data, breaking down
barriers and illuminating new avenues of perception.

However, the path to enlightenment is fraught with
challenges, and the landscape of open issues is as expansive
as the horizons of exploration. The clarion call for real-time
detection echoes through the corridors of research labs, while
the quest for robustness in the face of diverse and dynamic
environments challenges the resilience of our algorithms.
Interpreting the nuances of deep learning intricacies becomes
a quest for enlightenment, and the pursuit of unraveling the
mysteries of occlusions, scale variations, and fine-grained
categorization invites researchers to embark on an intellectual
journey into uncharted territories.

No specific article surveyed the challenges of the overall
object detection area and then reviewed their solutions based
on existing papers as shown in Table 1. It shows that, no paper
surveyed the overall object detection’s advancements, appli-
cations, challenges and systematic results analysis. In this
intellectual expedition, we unravel the applications that
redefine our digital reality, ride the waves of advancements
that push the boundaries of perception, and navigate the
unexplored terrain of open issues that await the daring minds
of the next generation of visionaries. The canvas of object
detection beckons—a canvas that is not only painted with the
strokes of innovation but invites us to imagine a future where
the unseen becomes the seen, and the perceived becomes the
understood. As we stand at this crossroads, the possibilities
are as boundless as the algorithms we forge, and the journey
has only just begun. Figure 2 presents the article selection
process’s PRISMA flow diagram for this study. Table 2
highlights the abbreviations which are frequently used in this
study.

Following is the summarized main contributions of this
study:

• An starting of object detection, its historical insights,
architecture and recent improvements.

• Later on, reviewing and analyzing the ever made
advancements of object detection in different perspective.

• Then, dive into its diverse application fields with works
of previous researchers.

FIGURE 2. Article selection process’s PRISMA flow diagram for this study.

• After that, revealing different existing challenges of
object detection with a categorized taxonomy.

• Finally, reviewing recently made fascinating work to
tackle the existing object detection challenges and future
directions to ensure the term object detection optimized.

The rest of the paper is structured as follows: Section II
outlooks the historical insights, architecture and recent
improvements of object detection. Section III analyzes the
ever made advancements of object detection in datasets,
algorithms, library and evaluation metrics perspective.
Section IV demonstrates the applications of object detection
and Section V highlights the existing challenges of object
detection. After that, Section V reviews some fascinating
solutions to tackle the existing object detection challenges.
At last, Section VI directs the future directions to support
researchers who works tackling the diverse challenges and
Section VII concludes the paper.

II. LITERATURE REVIEW
In the vast landscape of artificial intelligence, where data
converges with ingenuity, object detection emerges as the
keen-eyed sentinel of the digital realm. Imagine a symphony
of pixels, where every image conceals a multitude of entities,
each vying for attention in the cacophony of information.
Object detection is the virtuoso conductor that orchestrates
this visual concerto, deciphering the composition of reality
with unparalleled precision. It is the meticulous art of imbu-
ing machines with the discerning gaze of a perceptive human
eye, enabling them not only to see but to comprehend the
intricacies of their visual surroundings. In a world inundated
with images, object detection serves as the guiding compass,
unraveling the intricate tapestry of information by identifying
and delineating the myriad objects that populate our digital
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TABLE 1. Contrastive analysis of existing survey papers with this paper.
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TABLE 2. List of frequently used abbreviations.

landscapes. Beyond its technical prowess, object detection
is a testament to the symbiosis of human imagination and
computational prowess, illuminating the path towards a future
where machines seamlessly navigate the visual kaleidoscope
of our shared reality. On this first anniversary of our

interaction, let us celebrate the transformative power of object
detection, a technological marvel that breathes life into the
pixels and unveils the profound narrative concealed within
the digital canvas.

Before the advent of deep learning, object detection
heavily relied on handcrafted features and classical computer
vision techniques. Common approaches, such as Histogram
of Oriented Gradients (HOG) and Haar cascades, played
a pivotal role in tasks like pedestrian detection and face
recognition. HOG, introduced by Dalal et al., captured the
distribution of gradient orientations in local image patches,
providing a robust representation for object boundaries [6].
Haar cascades, on the other hand, were effective for detecting
objects using a cascade of simple classifiers based on Haar-
like features. While these methods demonstrated success in
certain applications, the shift to deep learning in the early
2010s marked a transformative period, leading to significant
improvements in object detection accuracy and efficiency.
The breakthrough in object detection occurred with the
rise of deep learning, notably through convolutional neural
networks (CNNs). A pivotal moment was the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), where
AlexNet, a deep learning model, demonstrated a significant
performance leap over traditional methods [7]. This victory
marked a turning point, showcasing the potential of deep
learning for image-related tasks. Subsequent years saw the
development of various influential architectures such as
ZFNet, GoogLeNet, and VGG, each contributing to the
refinement and enhancement of object detection perfor-
mance. This period of innovation laid the foundation for the
widespread adoption of deep learning in computer vision
applications, including object detection. R-CNN introduced
by Ross Girshick and collaborators in 2014, stands as one
of the initial successful endeavors to apply deep learning to
object detection [8]. R-CNN and its evolutionary successors,
Fast R-CNN and Faster R-CNN, employed the concept
of region proposal networks (RPNs) [9]. These networks
were designed to suggest candidate object regions within
an image before subsequent processes of classification and
position refinement. While these methods brought about
substantial improvements in accuracy, it was noted that
they were computationally expensive, motivating further
developments to strike a balance between precision and
computational efficiency in subsequent object detection
models [10]. SSD (Single Shot Multibox Detector) and
YOLO (You Only Look Once) emerged as alternatives to
region-based object detection methods, with a primary focus
on achieving real-time performance. These models departed
from the two-stage approach of region-based methods by
predicting object classes and bounding box coordinates
directly from the entire image in a single pass [11], [12].
SSD adopted a grid-based strategy, dividing the image
into a grid and predicting multiple bounding boxes and
class probabilities at each grid cell [11]. YOLO, similarly
employing a grid structure, differentiated itself by predicting
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bounding boxes and class probabilities at the grid cell
level, aiming for improved speed and efficiency [12]. These
single-shot approaches represented a paradigm shift in
object detection, demonstrating the feasibility of real-time
performance without the need for elaborate region proposal
networks. RetinaNet, a groundbreaking object detection
model introduced to address the challenge of imbalanced
data, pioneered the use of the focal loss. Developed to
mitigate the dominance of well-classified examples in the
training process, the focal loss dynamically down-weights
the loss assigned to easily classified instances, allowing
the model to concentrate on more challenging examples
[13]. Additionally, RetinaNet incorporated a Feature Pyramid
Network (FPN) to effectively handle objects at various
scales. This architectural innovation enabled RetinaNet to
excel in detecting objects of different sizes within an
image, further enhancing its robustness and accuracy in
handling diverse and complex visual scenarios. EfficientDet,
a significant advancement in the field of object detection,
set out to enhance the efficiency of detection models by
optimizing architecture and achieving amore favorable trade-
off between accuracy and computational resources [14].
Introduced by Mingxing Tan et al. EfficientDet innovatively
scaled the model’s depth, width, and resolution simultane-
ously through a compound scaling method. This approach
allowed for improved model efficiency across a range of
resource constraints. By striking a balance between accuracy
and computational cost, EfficientDet contributed to the
development of more practical and scalable object detection
solutions, catering to a variety of deployment scenarios
with diverse hardware capabilities. The evolution of object
detection models persists with cutting-edge architectures
such as DETR (DEtection Transfomer), showcasing the
ongoing advancements in the field. DETR, introduced as a
transformer-basedmodel for object detection, exemplifies the
growing influence of transformer architectures in computer
vision tasks [15]. Concurrently, the field benefits from strides
in self-supervised learning, transfer learning, and attention
mechanisms, refining the ability of models to understand
and discern objects within complex visual scenes. A key
contributor to the state-of-the-art performance of modern
object detection systems is the utilization of large-scale
datasets and pre-training on extensive amounts of data [16].
This practice empowers models with generalized features
and the capacity to tackle diverse real-world scenarios,
marking a continued trajectory of progress in the capabilities
and accuracy of object detection technology. Transformer-
based architectures, initially popularized in natural language
processing tasks, have gained prominence in computer
vision, particularly in object detection. Models such as
DETR (DEtection Transfomer) and other transformer-based
architectures have demonstrated competitive performance,
showcasing their adaptability across domains [15]. In the
realm of efficient object detection, researchers are increas-
ingly focused on factors like model size, speed, and

computational resources. A notable exemplar is EfficientDet,
introduced in 2019, reflecting a trend towards optimizing the
efficiency of object detection models [17]. Sparse attention
mechanisms have emerged as a solution to handle large-
scale images effectively, enablingmodels to selectively attend
to pertinent image regions, thereby reducing computation
and improving overall efficiency [18]. The exploration of
hybrid models, combining diverse architectures from two-
stage and one-stage detectors, along with the integration
of ensemble methods, has shown promise in enhancing the
overall performance of object detection systems [19]. Self-
supervised learning approaches, emphasizing learning from
unlabeled data, have garnered attention as ameans to improve
the generalization ability of object detection models through
pre-training on extensive datasets [20]. Recent models also
address the challenge of capturing long-range dependencies
in images by incorporating attention mechanisms designed
to capture relationships between distant pixels, thereby
enhancing contextual understanding [21]. The pursuit of real-
time object detection remains a priority for applications
such as autonomous vehicles, robotics, and surveillance
[22]. Models like YOLO (You Only Look Once) and
EfficientDet have played significant roles in advancing
the capabilities of real-time object detection [22]. Transfer
learning, a fundamental component, involves pre-training
models on datasets like ImageNet, allowing them to leverage
knowledge gained from one domain to improve performance
in another, contributing to the continued evolution of object
detection methodologies [23].

III. ADVANCEMENTS OF OBJECT DETECTION
A. DATASET
An object detection dataset is a collection of images or videos
annotated with bounding boxes or pixel-level masks that
outline the location and identity of objects within the visual
content. These datasets are crucial for training and evaluating
computer vision models, as they enable the development
of algorithms that can identify and classify objects within
images or video frames, making them a fundamental resource
for applications such as autonomous driving, surveillance,
and image analysis. Object detection datasets typically
encompass a wide range of object categories and variations
in scale, pose, lighting, and background, facilitating the
robust and accurate detection of objects in diverse real-world
scenarios. Table 3 provides the overview of some widely used
datasets used in various object detection tasks.

1) MS COCO
A large dataset for object recognition, segmentation, key-
point detection, and picture captioning, including 328,000
images, is the MS COCO (Microsoft Common Objects in
Context) [24] dataset. 164,000 photos total, split between
training (83,000), validation (41,000), and test (41,000)
sets, were included in the original 2014 release. A longer
test set with 40,000 more test photos included was later
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TABLE 3. Overview of different object detection datasets.

made available in 2015. It included all of the earlier test
photographs. 2017 saw a change in the training/validation
split to 118,000/5,000 pictures in response to community
feedback, while keeping the same image and annotation data.
A collection of 123,000 photos without annotation was also
included in the 2017 edition. A variety of tasks are covered
by annotations: identification of objects with bounding
boxes and per-instance segmentation masks for 80 object
categories; captioning of images; detection of keypoints
for over 200,000 images and 250,000 person instances;
segmentation of stuff images with 91 stuff categories;
panoptic segmentation with 80 thing categories and a subset
of 91 stuff categories; and dense pose annotations for over
39,000 images and 56,000 person instances, restricted to
training and validation data, offering extensive body part
mapping to a 3D model for each labeled individual.

2) PASCAL VOC
Specifically, the PASCAL Visual Object Classes (VOC)
[25], [29] The 2010 dataset includes 20 different object
types, such as automobiles, bikes, buses, aircraft, boats,
and more, in addition to objects like vehicles, household
goods, and animals. Pixel-by-pixel segmentation, bounding
box, and class annotations are added to every picture in
this collection. As a common benchmark for assessing
object detection, semantic segmentation, and classification
techniques, the PASCAL VOC dataset has garnered a lot of
attention throughout time. The 1,464 photos in the training
subset, the 1,449 images in the validation subset, and the
separate private testing set for evaluation are the three subsets
from which the dataset is divided.

3) ILSVRC
14,197,122 photos that have been tagged using the WordNet
hierarchy make up the ImageNet dataset. This dataset has
been the basis for the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [26], an established benchmark
for object identification and picture classification since 2010.
Annotated training photos are included in the publically
available dataset, however an unannotated collection of test
images is offered separately. The ILSVRC annotations may

be divided into two groups: annotations at the picture level
that indicate whether object classes are present in the image
or not, and annotations at the object level that provide precise
class labels and tight bounding boxes for specific object
instances in the image. It should be noted that only thumbnails
and image URLs are made available because the ImageNet
project does not own copyright to the photographs. The
dataset includes 1.2 million photos linked to SIFT features
from 1,000 synsets and a broad range of 21,841 non-empty
WordNet synsets, totaling 14,197,122 images. Of these,
1,034,908 images include bounding box annotations.

4) KITTI
One of the most well-known datasets in mobile robotics
and autonomous driving is the KITTI [27] dataset, which
includes long recordings of traffic scenes taken with several
types of sensors, such as RGB and grayscale stereo cameras
as well as a 3D laser scanner. Notably, KITTI has been
enhanced by hand annotations from many research groups,
while lacking intrinsic semantic segmentation ground truth.
For example, in the road recognition challenge, Álvarez et al.
presented ground truth data for 323 photos and classified
items into three classes: road, vertical components, and
sky. Similar to this, Zhang et al. painstakingly annotated
252 acquisitions for testing and training, distinguishing
between 10 item categories: buildings, sky, roads, greenery,
sidewalks, automobiles, people, bicycles, signs/poles, and
fences. In addition, Ros et al. provided annotations for
170 training and 46 testing photos from the visual odometry
challenge. These annotations classified items into 11 different
categories, which included skies, buildings, trees, cars, signs,
roads, pedestrians, fences, poles, sidewalks, buildings, and
bicycles.

5) CIFAR100
The CIFAR-100 [28] dataset is a subset of the Tiny Pictures
dataset that contains 60,000 color, 32×32 pixel images. There
are one hundred classes available at the Canadian Institute
for Advanced Research, or CIFAR. Twenty superclasses are
created from these 100 classes, and each class is given
600 photos. Every image has two tags: the specific class
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(represented by the label) and the superclass to which the
image belongs. For every class, there are 500 training photos
and 100 test images in the dataset. What is this image of,
and how likely is it that the class name will be a reasonable
response to the question? For an image, a specific category
has been selected. Line drawings were rejected as the primary
emphasis, and a certain degree of photorealism was also
necessary. In every image, there should be one distinct, easily
observable example of the object the class is discussing; it
doesn’t matter if it is partially hidden or seen from an odd
angle; the labeler should be able to identify the object even in
these situations.

B. ALGORITHM
Mainly, there are three types of object detection architecture;
traditional machine learning, new deep learning one-stage
and two-stage architecture as presented in Figure 3. Tradi-
tional object detection architectures, often associated with
handcrafted features, typically involve multi-step processes,
which visualized in Figure 4. In this approach, an image is
initially processed to extract features using methods like His-
togram of Oriented Gradients (HOG) or Haar-like features.
Subsequently, these features are fed into a classifier, such
as a Support Vector Machine (SVM), to distinguish between
object and non-object regions. Finally, post-processing steps,
like non-maximum suppression, are applied to refine and
consolidate the detected bounding boxes. On the other hand,
one-stage object detection architectures drawn in Figure 5,
exemplified by YOLO (You Only Look Once) and SSD
(Single Shot Multibox Detector) etc., streamline the process
by simultaneously predicting object classes and bounding
box coordinates across the entire image in a single forward
pass. These models employ dense sampling and anchor
boxes to handle object size and aspect ratio variations.
In contrast, two-stage architectures, like Faster R-CNN
(Region-based Convolutional Neural Network), employ a
region proposal network (RPN) in the first stage to suggest
potential object regions, followed by a second stage that
refines these proposals and classifies objects as shown in
Figure 6. The use of region proposals allows for improved
localization accuracy, especially for small objects, and
facilitates the integration of deep learning techniques for end-
to-end training. Table 4 provides the insights of well-known
algorithms of object detection.

1) TRADITIONAL MACHINE LEARNING ARCHITECTURE
• VJ: Without requiring any limitations, such as skin
color segmentation, P. Viola and M. Jones developed the
first real-time human face detector in 2001 [32], [37].
Powered by a 700MHz Pentium III CPU, the detector
operated at rates tens to hundreds of times faster than
existing technologies, while maintaining equal detection
accuracy. In order to find windows containing human
faces at all imaginable sizes and locations inside a
picture, the VJ detector uses a straightforward sliding

window approach. This procedure may appear simple,
but the calculation required was greater than what the
computers of the day could handle. The VJ detector was
able to drastically improve its target identification speed
by employing three key techniques: detection cascades,
feature selection, and integral images.

• HOG: In 2005, N. Dalal and B. Triggs created a
feature descriptor known as Histogram of Oriented
Gradients (HOG) [33]. HOG is considered a major
breakthrough in shape contexts [38] and scale-invariant
feature transform [39], [40] of its era. The HOG
descriptor is calculated on a dense grid of uniformly
spaced cells using overlapping local contrast normal-
ization to balance feature invariance with nonlinearity.
HOG’s creation was primarily motivated by the need
to recognize pedestrians, even though it can detect a
wide variety of objects. In order to recognize objects
of different sizes, the HOG detector rescales the input
picture many times while keeping the detection window
size constant. For a considerable amount of time, the
HOG detector functioned as an essential component
of many object detectors [34], [41] [42] and different
computer vision applications.

• DPM: DPM was the gold standard for traditional
object detection methods after winning the VOC-07,
-08, and -09 detection contests. DPM was used for the
enhancement of the HOG detector; P. Felzenszwalb [34]
originally proposed this technique in 2008. Divide and
conquer detection theory views training as just learning
how to correctly dissect an object, and inference as an
ensemble of detections on different object components.
This clarifies the current situation. For example, one
has to be able to recognize an automobile’s window,
wheels, and body in order to distinguish it from another.
The star model, as it is sometimes called, was given
in this portion of the study by P. Felzenszwalb and
colleagues [34]. Then, to improve the star model even
more, Girshick included mixing models to account
for objects in the actual world with larger variations.
In [41], [43], [44], and [45], despite significant advance-
ments in detection accuracy in many contemporary
object detecting systems, the deep insights offered by
DPM nonetheless have a long-lasting influence. Some
examples of these tactics are context priming, mixture
models, bounding box regression, hard negative mining,
and others. 2010 saw the PASCAL VOC Lifetime
Achievement Award given to Girshick et al.

2) MODERN DEEP LEARNING ARCHITECTURE: ONE-STAGE
MODEL

• YOLO: YOLO was first presented in 2015 by R.
Joseph et al. According to [12], it was the first one-
stage detector in the deep learning period. With a
VOC07 mAP=63.4% for its enhanced version and
a VOC07 mAP=52.7% for its fast version, YOLO
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FIGURE 3. Algorithms of object detection.

TABLE 4. Comparison of different object detection algorithms.

is incredibly fast. It works at 45 frames per second
for the enhanced version. By using a single neural
network to analyze the entire image, YOLO operates
on a totally different paradigm than two-stage detectors.
With simultaneous prediction of bounding boxes and
probability for each zone, this network divides the
picture into regions. Although YOLO can identify items
more quicker than two-stage detectors, it still has poorer

localization accuracy, especially when it comes to tiny
objects. Additional thought has been given to this
problem by later versions of YOLO [46], [47], [48] and
the proposed SSD of today [11]. The YOLOv7 [49]
team has been proposed as a follow-up to the work
of the YOLOv4 team. It achieves higher speeds and
higher accuracy (varying from 5 FPS to 160 FPS) than
most existing object detectors by introducing optimized
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FIGURE 4. Traditional model of object detection.

FIGURE 5. One-stage model of object detection.

structures such as dynamic label assignment and model
structure reparameterization.

• SSD: SSD was introduced by Liu et al. [11]. The main
benefit of SSD is the addition of multi-reference and
multiresolution detection techniques (to be covered in
Section II-C1). These approaches significantly improve
the detection accuracy of a one-stage detector, especially
for some tiny objects. Accuracy and detection speed are
two areas where SSD shines (COCO mAP@.5=46.5%;
fast version runs at 59 frames per second). SSD
can recognize objects at different sizes across several
network levels, while the older detectors could only

detect items on their topmost layers. This is the main
difference between SSD and the earlier detectors.

• RetinaNet: Despite its incredible speed and ease of
use, one-stage detectors have never been as accurate
as two-stage detectors. After looking into the causes,
Lin et al. [13] suggested RetinaNet. The main finding
they made was that there is a noticeable discrepancy
between the background and foreground classes while
dense detectors are being trained. In order to do this,
RetinaNet presents a unique loss function known as
focused loss, which alters the traditional cross-entropy
loss to encourage the detector to focus more during
training on difficult, misidentified examples. One-stage
detectors may detect at a very high rate (COCO
mAP@.5=59.1%) while keeping accuracy levels com-
parable to two-stage detectors by applying focused loss.

• CornerNet: In previous methods, the primary method
of supplying references for classification and regression
was through anchor boxes. It is usual for an object’s
quantity, position, scale, ratio, etc. to vary. They need
to keep installing a lot of reference boxes so that ground
facts better match in order to get higher performance.
Still, there would be more category imbalance, a long
convergence time, and a lot of hand-designed hyper-
parameters in the network. To address these problems,
Law et al. [30] reject the previous paradigm of detection
and consider the work as a prediction problem involving
key points, i.e., the corners of a box. Once the key
points are gathered, it will use the extra embedding
information to decouple and re-group the corner points
in order to construct the bounding boxes. CornerNet
outperforms the majority of one-stage detectors at that
moment (COCO mAP@.5=57.8%).

• CenterNet: CenterNet [31] was presented by X.
Zhou and colleagues in 2019. This completely end-to-
end detection network eliminates costly post-processes
such as group-based keypoint assignment and NMS
(found in CornerNet [30], ExtremeNet [50], etc.) while
yet adhering to the same keypoint-based detection
paradigm. CenterNet treats an object as a single point
(the object’s center) and regresses all of its attributes
(size, orientation, position, pose, and so on) based
on the reference center point. The model is simple
and elegant, capable of encapsulating several tasks
including optical flow learning, depth estimation, 3-
D object identification, and human location estimation
into a single framework. It is possible for CenterNet to
get similar detection results (COCO mAP@.5=61.1%)
even with a basic detection method.

• DETR: In recent years, deep learning has been greatly
influenced by transformers, particularly in the field
of computer vision. Transformers avoid the traditional
convolution operator in favor of attention-alone calcula-
tion, which allows them to overcome CNN limitations
and reach a global-scale receptive field. Carion et al.
suggested DETR [15] in 2020. They addressed object

VOLUME 12, 2024 54137



M. Tanzib Hosain et al.: Synchronizing Object Detection: Applications, Advancements and Existing Challenges

FIGURE 6. Two-stage model of object detection.

detection as a set prediction issue and demonstrated an
end-to-end detection network with transformers. Up to
now, object detection has entered a new phase where
objects may be recognized without the need for boxes
or anchor points. Deformable DETR was subsequently
proposed by Zhu et al. [51] as a solution to the DETR’s
lengthy convergence time and poor performance on tiny
object detection. It achieves state-of-the-art performance
(COCO mAP@.5=71.9%) on the MSCOCO dataset.

3) MODERN DEEP LEARNING ARCHITECTURE: TWO-STAGE
MODEL

• SPPNet:He et al. [35] introduced Spatial Pyramid Pool-
ing Networks (SPPNet) in 2014. A fixed-size input was
required by earlier CNN models; for instance, AlexNet
needed an image with dimensions of 224 by 224 [52].
The main component of SPPNet is the Spatial Pyramid

Pooling (SPP) layer, which enables a CNN to generate
a fixed-length representation regardless of Whenever
SPPNet is used for object recognition, fixed-length
representations of any region may be created to train the
detectors without having to compute the convolutional
features again. This enables a single computation of the
feature maps from the entire picture. More than 20 times
(VOC07 mAP=59.2%) better performance is achieved
by SPPNet than R-CNN without sacrificing detection
accuracy. Despite the huge boost in detection speed,
SPPNet still has certain limitations. Firstly, training
is still multi-stage; secondly, SPPNet only refines its
entirely connected layers, ignoring all other layers. Later
that year, with the introduction of Fast RCNN [9], these
problems were fixed.

• Faster RCNN: In 2015, Ren et al. introduced the
Faster CNN detector, shortly after the Fast RCNN [10],
[53]. This faster CNN (COCO AP@.5=42.7%, VOC07
mAP=73.2%) is the first near-realtime deep learning
detector, achieving 17 frames per second with ZF-Net
48. The main feature of Faster-RCNN is the introduc-
tion of the Region Proposal Network (RPN), which
essentially enables cost-free region suggestions. With
the exception of proposal detection, feature extraction,
bounding box regression, and TC, the majority of
discrete object detection system components have been
gradually incorporated into a single, end-to-end earning
framework, beginning with R-CNN and concluding
with Faster RCNN. Computation redundancy remains at
the following detection stage even after Faster RCNN
has over the speed constraint of Fast RCNN. Light
head RCNN [54] and RFCN [55] are two further
improvements that have been proposed since then.

• FPN: Lin et al. [36] introduced FPN in 2017. Before
the introduction of FPN, most deep learning-based
detectors only employed feature maps at the top layer
for detection. The deeper layers of a CNN do not
help with object localization, even though they do
contain features that are helpful for classifying data.
To accomplish so, FPN builds a top-down architecture
for high-level semantics creation at all sizes, complete
with lateral links. Given that the forward propagation of
a CNN naturally generates a feature pyramid, the FPN
shows notable gains in object identification over a wide
variety of sizes. By integrating FPN in a basic Faster
R-CNN system, it achieves state-of-the-art single model
identification performance on the COCOdataset without
further bells and whistles (COCO mAP@.5=59.1%).

C. LIBRARY
An object detection library is a software framework or
toolkit designed to facilitate the automated identification and
localization of objects within digital images or video streams.
It typically includes pre-trained models, computer vision
algorithms, and tools for training custom models, allowing
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developers to build applications that can detect and classify
objects in real-world scenes. These libraries are crucial for
a wide range of applications, from autonomous vehicles
and surveillance systems to augmented reality and image
analysis, enabling the extraction of valuable information from
visual data by accurately recognizing and delineating objects
of interest. Table 5 provides a brief comparison of these
libraries based on some criteria.

1) IMAGEAI
The ImageAI library is a comprehensive toolkit designed
to empower developers with a wide range of computer
vision algorithms and deep learning techniques for various
tasks in object detection and image processing. Its core
mission is to streamline the development of object detection
projects by simplifying the coding process to just a few
lines. ImageAI offers extensive support for operations such
as image recognition, image object detection, video object
detection, video detection analysis, custom image recognition
training and inference, and custom object detection training
and inference. With its image recognition capabilities, it can
identify up to 1000 distinct objects within an image, while
for image and video object detection, it can efficiently spot
80 of the most commonly encountered objects in everyday
scenarios. Furthermore, the library enables the training of
custom object recognition and detection models using own
datasets, allowing for the inclusion of a broader array of
objects through the utilization of new images and datasets.

2) GLUONCV
GluonCV stands out as a leading library framework for deep
learning in computer vision, offering a powerful arsenal of
state-of-the-art algorithms to expedite results in the field.
With an extensive range of tasks supported, including image
classification, object detection in images, videos, and real-
time scenarios, semantic and instance segmentation, pose
estimation, and action recognition, GluonCV proves itself
as a versatile tool. This framework accommodates both
MXNet and PyTorch, bolstered by a wealth of tutorials
and additional resources to facilitate exploration of various
concepts. It boasts a rich repository of pre-trained models,
allowing users to craft tailored machine learning models for
specific tasks with ease.

3) YOLOV3_TENSORFLOW
YOLOv3 represents a significant advancement in the YOLO
series, boasting improved performance in both speed and
accuracy over its predecessors. What sets it apart is its ability
to effectively detect smaller objects with precision. However,
it faces a tradeoff between speed and accuracy when com-
pared to other prominent algorithms. YOLOv3_TensorFlow,
an early implementation of the YOLO architecture for object
detection, is known for its swift GPU computations, efficient
results, streamlined data pipelines, weight conversions, faster
training times, and a host of other benefits.

4) DETECTRON2
Detectron2, an advanced framework created by Facebook’s
AI research team (FAIR), stands as a cutting-edge library
supporting a wide array of state-of-the-art techniques for
object detection and segmentation, all grounded in PyTorch.
This versatile and extensible library offers users access to
top-notch implementation algorithms and methods, making
it a go-to choice for numerous applications and production
projects at Facebook. Detectron2’s ability to be trained on
single or multiple GPUs delivers rapid and highly effective
results, empowering users to employ a variety of high-
quality object detection algorithms, including innovations
like DensePose, panoptic feature pyramid networks, and
various iterations of the Mask R-CNN model family.

5) DARKFLOW
Darkflow is a Python-based adaptation of the Darknet
framework, originally written in C and CUDA, designed to
make object detection more accessible to a broader audience
using TensorFlow. To utilize Darkflow effectively, one
will need prerequisites like Python 3, TensorFlow, Numpy,
and Opencv. With these essential dependencies, Darkflow
empowers users to perform various object detection tasks.
This framework grants access toYOLOmodels and facilitates
the downloading of custom weights for diverse models.
Its capabilities encompass parsing annotations, configuring
networks, visualizing flow graphs, training new models,
custom dataset training, real-time or video analysis, and
leveraging Darkflow for similar applications. Furthermore,
Darkflow allows users to save these models in the protobuf
(.pb) format for future use.

D. EVALUATION METRICS
Table 6 provide a comparison of different metrics to
evaluation object detection.

1) INTERSECTION OVER UNION (IOU)
IoU is one of the most fundamental metrics used in object
detection. It measures the overlap between the predicted
bounding box and the ground truth bounding box. The IoU
is calculated as the ratio of the area of intersection between
the two bounding boxes to the area of their union:

IoU =
Area of Intersection

Area of Union
(1)

2) PRECISION AND RECALL
Precision and recall are used to assess the accuracy and
completeness of object detection. Precision measures the
proportion of true positive detections among all positive
predictions, while recall measures the proportion of true
positive detections among all actual positive instances. The
equations for precision and recall are as follows:

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)
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TABLE 5. Comparison of different object detection libraries.

TABLE 6. Comparison of different detection evaluation metrics.

3) AVERAGE PRECISION (AP)
AP is a common metric for summarizing the precision-
recall trade-off across different IoU thresholds. It involves
calculating the precision-recall curve and computing the area
under this curve. A high AP indicates a better object detection
model.

4) MEAN AVERAGE PRECISION (MAP)
mAP is a more comprehensive metric that calculates the
Average Precision (AP) for each class and then averages
them. It is often used to evaluate the overall performance of
an object detection model across multiple object categories.
The equations for mAP is as follows:

mAP =
1
N

N∑
i=1

Average Precisioni (4)

Here N and APi are total classes number and ith class of the
Average Precision.

5) F1 SCORE
F1 score is the harmonic mean of precision and recall.
It provides a single value that balances the trade-off between
precision and recall. The formula for F1 score is:

F1 Score =
2 · (Precision · Recall)
Precision + Recall

(5)

IV. APPLICATIONS OF OBJECT DETECTION
Object detection plays a crucial role in various applications,
including autonomous driving, surveillance, and medical
imaging etc. It involves identifying and locating specific
objects within images or video frames. Object detection
algorithms use deep learning models, such as Convolutional
Neural Networks (CNNs), to detect and draw bounding
boxes around objects of interest, making it a powerful
tool for tasks like pedestrian detection in self-driving cars,
identifying anomalies in security footage, and locating
tumors in medical scans. This technology has the potential
to enhance efficiency, safety, and accuracy in a wide range of
fields by enabling automated and real-time object recognition
and tracking. In Table 7, the distributions of the selected
articles on various application domains of object detection
are indexed. Whereas in Table 8 the data of various scholarly
articles about the applications of object detection is shown.

A. FACE DETECTION
Face detection is a compelling application of object detection,
where the goal is to identify and locate human faces
within images or video frames. This technology leverages
convolutional neural networks and deep learning to recognize
facial features and determine their positions accurately.
It has widespread applications in various fields, including
security for surveillance systems, photography for autofocus
and facial recognition, as well as in the development
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TABLE 7. Papers count of different application domains in different scholarly databases.

FIGURE 7. Face detection fields.

of augmented reality and virtual reality applications. The
ability to swiftly and accurately detect faces in diverse
contexts contributes to improved human-computer inter-
action and enhances the efficiency and security of many
technological systems. Figure 7 shows various applicable
fields of face detection (For figures, icons were taken from
https://www.flaticon.com/).

Yang et al. introduced the WIDER FACE [61] dataset
illustrated it as an effective training source in the field of
face detection. Through their work, the authors proposed a
multi-scale two-stage cascade framework which uses divide
and conquer technique using WIDER FACE dealing large
scale variation. Qi et al. implemented YOLO5Face [62]
face detector on the basis of YOLOv5 object detector and
WiderFace dataset. The authors also implemented a backbone
for mobile devices based on ShuffleNetV2, which also
provided the SOTA performance and fast execution speed.
Jiang, Huaizu, and Erik Learned-Miller experimented based
on the dataset WIDER FACE and two benchmarks, FDDB
and IJB-A to use Faster R-CNN [63]. Zhu et al. invented
TinaFace [64] as a baseline method dealing face detection.
As the backbone with ResNet-50 and dataset WIDER
FACE, TinaFace attained 92.4% AP which outperformed
the state-of-the-art method that time. Mamieva et al. build
a single-stage face detector, RetinaNet [65] baseline. Their
work on WIDER FACE and FDDB datasets showed that
the method achieves high Average Precision (AP) scores,

with an accuracy of 95.6% for successfully detected faces.
Boyd et al. introduced a training strategy, CYBORG [66],
which uses human-annotated saliency maps to guide deep
learning models in focusing on image regions that humans
find salient for a given task. The authors found that CYBORG
significantly improves generalization and accuracy on unseen
samples in synthetic face detection compared to traditional
training methods. Hangaragi et al. introduced a face detection
and recognition model using Face mesh [67]. The model
is trained on Labeled Wild Face (LWF) dataset images
and real-time captured images. While testing, the model
compares face landmarks of the test image with those of
the training images and achieves an accuracy of 94.23% for
face recognition. Prunty et al. showed that humans exhibit
an ingroup bias at the earliest stage of face processing,
where they detect ingroup faces (Black and White) more
quickly and accurately than outgroup faces (Asian, Black,
and White) in everyday scenes [68]. According to their
findings, this bias in face detection is independent of the
color of faces and can be attributed to both visual and social
factors. Sandhya et al. proposed a smart criminal detection
and identification system [69]. They combined a Single Shot
Multibox Detector for face detection and an auto-encoder
model for matching captured facial images with criminals
in a database. The authors found that the system achieves
a confidence rate of 0.75 and above, making it effective in
identifying individuals with a history of felonies based on
facial images. Al-Neama et al. build a GPU-based system for
real-time face recognition [70]. According to the findings,
the system significantly outperforms traditional CPU-based
methods, with a 19.72x improvement in the detection phase
and a remarkable 1573x improvement in the recognition
phase when implemented on an NVidia GTX 570 graphics
card.

B. ARIAL TARGET DETECTION
Arial target detection, as an application of object detection,
involves the identification and localization of specific objects
or subjects within an image or video stream. This technology
is widely employed in various domains, such as surveillance,
autonomous vehicles, and military applications, to recognize
and pinpoint predefined targets of interest, which could be
vehicles, pedestrians, wildlife, or even specific objects like
weapons. Object detection algorithms use deep learning and
computer vision techniques to draw bounding boxes around
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TABLE 8. Scholarly articles about the applications of object detection.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.
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TABLE 8. (Continued.) Scholarly articles about the applications of object detection.

the recognized targets, enabling precise tracking, classifi-
cation, and subsequent decision-making processes, thereby
enhancing safety and situational awareness in complex real-
world scenarios. Figure 8 shows various applicable fields of
arial target detection.

Dong et al. introduced an improved Progressive TIN
Densification (PTD) filtering algorithm for point clouds
with high density and standard variance [71]. The results

demonstrated that the improved PTD algorithm significantly
reduces type I errors and total errors in the point clouds
compared to the original PTD method by 7.53% and 4.09%,
respectively. Lei et al. experimented that by using the Swin
Transformer as the backbone network, enhancing multi-
scale feature fusion, and improving the confidence loss
function, the modified model achieved a mean average
precision (mAP) of 87.2%, making it highly effective for
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FIGURE 8. Arial target detection fields.

detecting underwater targets [72]. Yun et al. developed a
real-time target detection method based on a lightweight
convolutional neural network [73]. The method utilized
depthwise separable residual modules and depthwise separa-
ble convolutions to reduce the number of model parameters
and improve detection speed. According to their findings,
it introduced 1 × 3 and 3 × 1 convolution kernels to enhance
feature extraction. Deng et al. proposed a ‘‘weighted local
difference measure (WLDM)-based scheme’’ for detecting
small targets in infrared images against complex cloudy-
sky backgrounds [74]. The studies found that this method
enhances target visibility while suppressing background
clutter and noise, leading to improved small target detection
accuracy, robustness across various backgrounds and target
movements, and significantly improved signal-to-clutter ratio
(SCR) values. Wen et al. discovered a modified YOLOv5s
network, YOLOv5s-CA [75], for underwater target detection.
This modified network incorporated a Coordinate Attention
(CA) module and a Squeeze-and-Excitation (SE) module to
enhance target detection accuracy. For increasing the number
of bottlenecks in the initial C3module and embedding the CA
module and SE layer, the model’s ability to focus on targets
and extract shallow features is improved. As the results of
their studies on data from the 2019 China Underwater Robot
Competition show a 2.4% increase inmeanAverage Precision
(mAP) compared to the baselineYOLOv5s network. Liu et al.
introduced the Interference Cancellation before Detection
(ICBD) [76] method for signal detection in the presence
of unknown Gaussian noise and subspace interference. The
study found that ICBD effectively addresses the detection
issue by projecting data into an interference-orthogonal
subspace, enabling efficient detection with minimal training
data. The study also found that, ICBD offered lower
computational burden and can work even when interference
is present in the training data. Yasir et al. developed an
upgraded YOLOv5s technique for multiscale SAR ship
detection [77]. This model incorporated C3 and FPN + PAN
structures, as well as an attention mechanism, to improve
ship detection accuracy in SAR imaging. Through the results

using SAR ship detection datasets and satellite images,
the authors showed that the proposed model is highly
applicable for maritime surveillance. Yanget al. invented
the KPE-YOLOv5 [78] algorithm, which enhances small
target detection by addressing the limitations of existing
methods, including low accuracy, high false detection rates,
and missed detections. The algorithm achieved more accurate
anchor box sizes for small targets through K-means++

clustering, integrates the scSE attention module to prioritize
small target feature information in the backbone network, and
improves small target feature extraction by adding a dedicated
detection layer. As their evaluation on the VisDrone-2020
dataset which demonstrated that KPE-YOLOv5 outperforms
YOLOv5, achieving a 5.3% improvement in detection mAP
and a 7% increase in precision for small target detection.
Liang, Heng, and Tingqiang Song proposed a lightweight
underwater object detection algorithm based on YOLOv5
[79]. In underwater object detection, the algorithm addressed,
including the reduction of model parameters and computa-
tional complexity through the use of depth-wise separable
convolution and Ghost convolution. The incorporation of
RepVgg and Rep-ECA modules enhances feature extraction
and channel attention for small objects in blurred images.
Results on the URPC underwater object detection dataset
showed a 39% reduction in model parameter count, a 42%
decrease in computational complexity, a 24% improvement in
frame rate, and a 1.1% increase in mAP, improving detection
precision while maintaining a lightweight model suitable for
deployment in underwater equipment.

C. TEXT DETECTION
Text detection as an application of object detection involves
the identification and localization of textual elements within
images or scenes. It plays a crucial role in various
domains, such as document analysis, image captioning,
and autonomous navigation. Object detection models are
employed to detect and outline regions containing text,
enabling subsequent text recognition or analysis. Accurately
identifying text objects within diverse visual data, this appli-
cation facilitates tasks like automated transcription, signage
interpretation, and the extraction of valuable information
from images, contributing to improved accessibility, data
retrieval, and overall comprehension in the digital age.
Figure 9 some text detection applicable fields. Also,
Baek et al. developed a scene text detection method

that effectively detects text areas by considering individ-
ual characters and their affinities, especially for complex
text shapes like arbitrarily-oriented, curved, or deformed
texts [90]. Achieving this by using character-level annotations
for synthetic images and estimating character-level ground-
truths for real images, their method offering high flexibility
in detecting complex scene text images. Ma et al. intro-
duced the ‘‘Rotation Region Proposal Networks (RRPN)’’
[91] framework for arbitrary-oriented text detection. They
showed that the framework generates inclined text proposals
with orientation angle information and adapts this angle
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FIGURE 9. Text detection fields.

information for accurate bounding box regression. They also
introduced the ‘‘Rotation Region-of-Interest (RRoI) pooling
layer’’ [91] to project arbitrary-oriented proposals onto a
feature map for text region classification. According to their
analysis, this region-proposal-based architecture enhances
the computational efficiency and effectiveness of arbitrary-
oriented text detection compared to previous systems. He
et al. stated a new approach to object detection, specifically
for multi-oriented scene text involving a fully convolutional
network with pixel-wise classification and direct regression
for quadrilateral text boundary coordinates [92]. The method
achieved F-measure of 81% on the ICDAR2015 Incidental
Scene Text benchmark. Jiang et al. introduced a novel text
detection method called Rotational Region CNN (R2CNN)
[93] designed for identifying text in natural scene images
with arbitrary orientations. The approach was built upon
the Faster R-CNN architecture and involving inclined non-
maximum suppression to produce the final detection results.
Through their work, the authors demonstrated competitive
performance on text detection benchmarks, including ICDAR
2015 and ICDAR 2013. Mitchell et al. developed a frame-
work, DetectGPT [94] for detecting text generated by large
language models (LLMs). They found that text generated by
LLMs tends to occupy regions of negative curvature in the
model’s log probability function. DetectGPT leverages this
observation to judge if a passage is generated by a specific
LLM, without the need for training a separate classifier,
collecting datasets, or watermarking generated text. Ye et al.
introduced the DPText-DETR [95] network for scene text
detection. DPText-DETR improves training efficiency and
detection performance by using explicit point coordinates to
generate and dynamically update position queries. As their

results, DPText-DETR also enhanced the spatial inductive
bias of non-local self-attention with an Enhanced Factorized
Self-Attention module. He et al. build MGTBench [96],
a benchmark framework for detecting Machine-Generated
Texts (MGTs) generated by powerful Language Model
(LLMs). The authors found that most existing detection
methods are ineffective against MGTs, except for ChatGPT
Detector and LM Detector. Model-based detection methods
show promise with fewer training samples and transferability.
The authors also explored text attribution, finding that the
LM Detector is the best at identifying the originating model
of a given text. Zhang et al. invented a unified coarse-
to-fine framework for arbitrary shape text detection that
accurately and efficiently locates text boundaries without
the need for complex post-processing [97]. Results stated
that, guided by a boundary proposal module, the module
refined coarse boundary proposals using an encoder-decoder
structure and introduces a novel boundary energy loss
(BEL) to optimize and stabilize the learning of boundary
refinement. Kumarage et al. developed a novel algorithm
that uses stylometric signals [98] to enhance the detection
of AI-generated tweets on Twitter. This work stated that
these stylometric features effectively improve the accuracy
of AI-generated text detectors while discriminating between
human and AI-generated tweets, and detecting when AI
begins generating tweets in a user’s Twitter timeline. Ye et al.
introduced DeepSolo [99], a DETR-like framework for end-
to-end text spotting. DeepSolo combines text detection and
recognition in a single decoder using explicit point queries
for character sequences. The authors showed that DeepSolo
also supports line annotations, reducing annotation costs.

D. PEDESTRIAN AND TRAFFIC DETECTION
Object detection plays a pivotal role in plant and animal
disease detection by enabling the automated identification
of infected or unhealthy specimens in agriculture and
wildlife conservation. Utilizing computer vision and machine
learning algorithms, this technology can identify specific
symptoms or anomalies in plants or animals, such as
discolored leaves, lesions, or abnormal behavior, allowing for
early detection and intervention. Accurately pinpointing the
areas or individuals affected, object detection contributes to
more precise monitoring, timely responses, and ultimately,
the preservation of crop yields and the well-being of wildlife
populations. Figure 10 shows various applicable fields of
pedestrian and traffic detection.

Masita et al. assessed the performance of R-CNN for
pedestrian detection using two diverse dataset [100]. They
employed AlexNet as a feature extraction model and fine-
tuned it through transfer learning for dataset-specific classifi-
cation. The study revealed insights into the R-CNN detector’s
performance across different datasets. Papageorgiou et al.
created a flexible object detection system for automotive
vision, with a focus on pedestrian detection [101]. They
emphasized learning from examples, making it adaptable to
different scenarios without requiring manual design. Their
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FIGURE 10. Pedestrian and traffic detection fields.

approach was not reliant on motion data or scene assump-
tions. They also discussed video processing improvements
and integration into a DaimlerChrysler test vehicle. Ma
et al. created a real-time obstacle and pedestrian detection
system for vehicles using a single monochrome camera [102].
They identified obstacles above the ground plane with a
‘‘virtual stereo system’’ via inverse perspective mapping
and used digital image stabilization for accuracy. They
introduced a pedestrian segmentation method for bounding
box extraction and a ‘‘pedestrian detection strip’’ to improve
calculation speed. The system reliably detected obstacles
and pedestrians up to 50 meters away at 64 frames per
second on a standard PC. Schlosser et al. improved pedestrian
detection using CNNs by incorporating LIDAR and color
imagery [103]. They converted LIDAR data to depth maps,
including three 3D scene features as extra image channels.
The KITTI dataset was used for validation. Dollár et al.
developed a faster object detection method by approximating
multi-resolution image features through scale extrapolation,
resulting in significant speed improvements with minimal
loss in detection accuracy [104]. This approach is broadly
applicable to various vision algorithms requiring fine-grained
multi-scale analysis, particularly for images with broad
spectra. Park et al. explored the challenges of recognition
at different object scales. They argued against the idea
of strict scale-invariance and proposed a multiresolution
model that adapts to the size of detection windows, using
deformable part-based modeling for large objects and rigid
templates for small ones [105]. Their research, demonstrated
on the Caltech Pedestrian benchmark, significantly improved
detection rates, reducing missed detection from 86%-37%
to 29% compared to recent state-of-the-art methods. Ng
et al. addressed the challenge of traffic congestion in Hong
Kong, where high traffic flow is a common issue. They
developed a new traffic signal control system that employs
machine learning with object detection and an evolutionary
algorithm [106]. This system allows real-time, adaptive
signal switching at intersections, reducing waiting times for
pedestrians and vehicles and enhancing the overall travel
experience. Jain et al. explored single object detection using
convolution layers in a neural network, focusing on on-
road vehicle datasets with varying illuminations [107]. They
also performed multiple object detection using the YOLOv3
algorithm with the KITTI dataset, specifically for classes
like car, bus, truck, motorcycle, and train. Additionally, they

implemented vehicle tracking by using centroid positions
in subsequent video frames, utilizing OpenCV and Python
in conjunction with the YOLOv3 algorithm. Low et al.
created a system to detect and segment objects in video
frames for traffic surveillance [108]. They used MATLAB
to apply a shadow removal method to improve detection
accuracy. By distinguishing background from foreground, the
system segmented foreground regions as objects, enabling
potential use in object recognition and classification. Testing
on four traffic video scenes achieved around 90% accuracy.
Akhtar et al. improved YOLOv2 for precise tiny object
detection in surveillance videos [109]. They used DenseNet-
201 for compact feature extraction, achieving an average
precision of 97.51% in vehicle detection and recognition,
outperforming other methods. Wang et al. addressed the
challenge of small and multi-object detection in traffic
environments by introducing BANet, a bidirectional attention
network featuring multichannel attention blocks, alpha-
effective IoU loss, andmultiple attention fusion [110]. BANet
outperformed YOLOX, achieving improved mean average
precision on several datasets and demonstrating better speed,
reducing forward time by 0.97 ms.

E. HUMAN VIOLENCE AND SPORT’S FOUL DETECTION
Object detection plays a pivotal role in various applications,
including human violence and sports foul detection. In the
realm of security and public safety, object detection can be
employed to identify acts of violence or aggression, such
as physical altercations or suspicious behavior, through real-
time analysis of video footage in public spaces. Similarly,
in the context of sports, object detection can be utilized
to identify fouls and rule violations in games, ensuring
fair play and enhancing the accuracy of referee decisions.
Analyzing video feeds and recognizing specific actions and
objects, object detection contributes to the safety and integrity
of both public spaces and sports events. Figure 11 shows
various applicable fields of human violence and sport’s foul
detection.

FIGURE 11. Human violence and sport’s foul detection fields.

Thamaraimanalan et al. explored the application of com-
puter vision and object detection in gaming and sports, with
a particular focus on character tracking in the game Super
Smash Brothers Melee [111]. They developed a real-time
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detection model for this purpose, leading to the creation of
a basic bot capable of taking actions based on character
locations. Ryu el al. introduced an activity recognition
model that blends spatial and temporal analysis of video
activities [112]. They employed a novel technique called
sequential object feature accumulation, refining deep neural
network features for activity and sub-object classification.
Ma et al. introduced a football foul feature extraction
method based on deep learning algorithms. The approach
aims to enhance the accuracy of foul identification during
normal football competitions by eliminating background
elements from input images, employing human motion
tracking, and utilizing star skeleton features for foul action
extraction [113]. The experimental results indicated that
the method’s target detection accuracy requires further
improvement. Liu et al. examined deep learning techniques
for football video analysis, covering player and ball detection,
tracking, event detection, and game analysis [114]. Their
study contributes to the growing demand for video analysis
in sports. The study referenced Borghesi et al. and focused
on utilizing Temporal Convolutional Networks (TCNs) for
automating ball possession data extraction from tracking
data in sports analytics [115]. The paper explored various
classification approaches using TCNs to categorize game
states. Performance evaluation on professional soccer track-
ing data demonstrated significant improvements over state-
of-the-art methods, achieving 86.2% accuracy in possession
estimation and 89.2% accuracy in dead-alive classification.
The study also conducted ablation studies to understand the
contributions of input data to the final prediction. A study
by Bouazizi et al. explored using a cleaning robot equipped
with a 2D LIDAR for fall detection and monitoring in
environments with furniture obstructions [116]. By continu-
ously collecting and processing LIDAR data, the robot can
identify falls and individuals on the ground, achieving an
81.2% accuracy in fall detection and a 99% accuracy in
detecting individuals in prone positions through simulations.
This approach outperforms static LIDAR methods with
lower accuracies. Khan et al. proposed a violence detection
scheme for movies that involves three key steps: shot
segmentation, frame selection based on saliency, and the
classification of violence and non-violence shots using a fine-
tuned deep learning model to create violence-free versions
of movies, suitable for children and individuals sensitive
to violence [117]. Bianculli et al. created a new dataset
containing 350 high-resolution video clips (1920×1080
pixels, 30 fps) for the purpose of testing violence detection
techniques [118]. The dataset consisted of 230 clips depicting
violent behaviors and 120 clips representing non-violent
behaviors, including actions that may lead to false positives in
violence detection due to their resemblance to violent actions.
Vijeikis et al. introduced a novel architecture for violence
detection in video surveillance cameras [119]. The proposed
model utilized a U-Net-like network with MobileNet V2
as an encoder for spatial feature extraction, followed by
LSTM for temporal feature extraction and classification.

This architecture is computationally lightweight yet achieves
good results, with an average accuracy of 0.82 ± 2%
and an average precision of 0.81 ± 3% when tested
on a complex real-world security camera footage dataset
(RWF-2000). As the authors stated, the effectiveness of
this model in efficiently and accurately detecting violent
events in surveillance footage. Ullah et al. developmed a
triple-staged deep learning framework for violence detection
in surveillance videos [120]. The model was optimized
using an Intel toolkit for efficient execution. Wu et al.
proposed a comprehensive approach to violence detection
in videos [121]. The authors introduced a substantial and
diverse dataset (XD-Violence) containing long untrimmed
videos with audio signals and weak labels. The authors also
emphasized the positive impact of multimodal (audio-visual)
input and modeling relationships in violence detection.

F. PLANT AND HUMAN DISEASE DETECTION
Plant and human disease detection leverage object detection
technology to identify and diagnose diseases in respective
domains. In the context of plant disease detection, object
detection algorithms are employed to locate and classify
symptoms or anomalies on leaves, fruits, or other plant
parts, aiding farmers in early disease identification and
management. Similarly, in human disease detection, object
detection can be used to identify abnormal regions in medical
images, such as X-rays or MRIs, enabling timely diagnosis
and treatment. Automating the identification process, object
detection enhances the accuracy and efficiency of disease
detection in both plant and human contexts, ultimately
contributing to improved agricultural yields and better
healthcare outcomes. Figure 12 shows various applicable
fields of plant and human disease detection.

FIGURE 12. Plant and human disease detection fields.

Lee et al. previously developed a crop disease diagno-
sis solution that combines Image Captioning and Object
Detection using deep learning methods [122]. The Image
Captioning model achieved a high performance with a
64.96% average BLEU score, while the Object Detection
model, with an mAP50 of 0.382, needs further improvement
[122]. This solution enhances assistance to novice farmers
by offering detailed descriptions of disease symptoms based
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on severity, improving diagnosis reliability. Peng et al.
developed an image retrieval system for plant disease iden-
tification. This system combines object detection and deep
metric learning, offering flexibility in recognition categories
and data requirements [123]. It effectively addresses plant
disease detection across various scenarios. Poornappriya et al.
previously applied Image Processing techniques and Deep
Learning models to detect rice plant diseases, addressing the
critical need for early disease detection and prevention in
agriculture to mitigate yield loss and resource wastage [124].
Li et al. introduced CLU-CNNs, a domain adaptation frame-
work tailored for medical images [125]. This framework
addressed the data distribution disparity between source and
target domains, enhancing domain adaptation without the
need for domain-specific training. Leveraging the work by
He et al., the study explored skin disease diagnosis using
CNNs [126]. Two datasets were created: ‘‘Skin-10’’ and
‘‘Skin-100,’’ containing 10 and 100 skin disease classes,
respectively. The research revealed lower accuracy for ‘‘Skin-
100’’ compared to ‘‘Skin-10.’’ An ensemble approach was
implemented, achieving 79.01% accuracy for ‘‘Skin-10’’
and 53.54% for ‘‘Skin-100.’’ The introduction of object
detection to the ‘‘Skin-10’’ dataset improved accuracy for
certain disease classes [126]. Liu et al. focused on object
detection in scenarios with limited annotated bounding box
data, a common issue in domains like medical imaging.
They introduced a generative model that optimizes both
image generation and object detection simultaneously. This
approach outperformed existing methods, notably achieving
a 20% relative improvement in average precision and a
50% relative increase in localization accuracy on challenging
datasets such as disease detection and small-data pedestrian
detection [127]. Terzi et al. proposed ensemble strategies to
enhance deep learning object detectionmodels for anatomical
and pathological detection in brain MRI [128]. It assessed
nine models, identified anatomical and pathological regions,
and employed ensembles, achieving a potential 10% mAP
increase and improved AP for anatomical parts. The ensem-
ble approach outperformed individual models, especially for
detecting small anatomical objects. Awad et al. addressed
the challenges of big-medical-data classification and image
detection by enhancing logistic regression and YOLOv4
algorithms. Their approach incorporated advanced parallel k-
means pre-processing to identify data patterns and structures
and utilized a neural engine processor for improved speed
and efficiency [129]. Evaluation of large medical datasets
confirmed the method’s accuracy and reliability, demon-
strating significant performance improvements for logistic
regression and YOLOv4, offering a more robust solution for
medical data classification and image detection in healthcare
applications. Chotikunnan et al. enhanced industrial object
detection via ResNet18-based image segmentation, favoring
dual image processing for precise recognition [130]. They
highlighted strengths and limitations in automation, with
room for future improvements. Leng et al. served as a
reference for the development of a transformer-based object

detection network for leukocyte detection. The model,
based on the DETR architecture, integrates pyramid vision
transformers and deformable attention modules, achieving
superior mean average precision compared to convolutional
neural networks [131]. This research offers a valuable
approach to leukocyte detection. Fan et al. conducted the
first systematic study on concealed object detection (COD),
introducing the COD10K dataset with rich annotations [132].
Their research unveiled SINet, a powerful baseline for
COD, surpassing twelve contemporary baselines. The study
offered significant insights and potential applications for this
challenging field.

G. ASTRONOMICAL OBJECT DETECTION
Object detection, a powerful computer vision technique, finds
applications in diverse fields, including the identification of
astronomical objects detection. In the realm of astronomy,
object detection assists in the automated recognition and
tracking of celestial bodies, such as stars, planets, and
asteroids, enabling astronomers to analyze their movements
and characteristics more efficiently. Also, in the context of
environmental monitoring, object detection can be employed
to identify and classify airborne particulate matter, gases,
and pollution sources, contributing to real-time air quality
assessment. Harnessing object detection algorithms, these
applications offer critical insights for both astronomical
research and environmental protection. Figure 13 shows
various applicable fields of astronomical object detection.

FIGURE 13. Astronomical object detection fields.

Kök et al. (2021), introduced a novel LSTM-based deep
learning model for predicting air quality in IoT-based
smart cities [133]. The model offers promising results in
air quality prediction and has the potential to address
various predictive challenges in smart cities, showcasing
the applicability of deep learning in urban planning and
management. Chakma et al. developed an efficient image-
based method for PM2.5 concentration estimation using
deep CNNs [134]. Their approach, based on a dataset of
591 images and corresponding PM2.5 concentrations from
Beijing, proves effective for air quality analysis and pollution
control. The study by Yang et al. explored the implementation
of occupant-centric control (OCC) strategies in office envi-
ronments, combining real-time indoor occupancy detection
with OCC to enhance thermal comfort, maintain air quality,
and reduce energy consumption (2.3%-8.1% savings) [135].
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The research revealed that lower occupancy levels result
in more significant improvements in comfort and energy
efficiency, indicating the potential formore occupant-friendly
and energy-efficient building management systems. The
study by Jayawickrama et al. introduced a novel computer
vision prediction model for detecting leftover items in
shared vehicles, addressing cleanliness concerns. The model,
utilizing convolutional neural networks (CNNs), achieved an
accuracy of 89% for distinct classes of items and 91% for
general classes of trash and valuables [136]. Additionally,
an indoor air quality (IAQ) unit was implemented for
monitoring specific air pollutants within the vehicle. Future
research will focus on integrating these systems to assess
cleanliness levels and expand the dataset with data from
real shared vehicles in operation. Baker et al., introduced
a portable, low-cost air-quality monitoring device (LPAQD)
that detects particles from micron-sized down to 100 nm-
sized particles in real-time. It accurately measures particulate
matter densities as low as 3 µg m-3. The LPAQD uses a
vapor-condensed film to enhance particle detection, making it
capable of tracking even sub-pixel and sub-diffraction-limit-
sized particles [137]. Its high dynamic range and affordability
empower individuals to monitor air quality for better health
decisions. Paithankar et al. introduced an innovative air
quality monitoring system using IoT technology to provide
real-time, cost-effective, and precise data, addressing con-
cerns from industrial and transportation activities [138]. The
system combines portable sensors, a low-power wide area
network, and IoT for data analysis, demonstrating accuracy
in air quality monitoring and pattern recognition, and
contributing to urban air quality management. Dhanush et al.
introduced an IoT-based air quality monitoring system
to combat rising pollution levels driven by factors like
population growth and industrialization [139]. The system
displays air quality in parts per million (PPM) on LCD
and web platforms for easy monitoring. It triggers alarms
when harmful gases like CO2, smoke, alcohol, aromatic
hydrocarbon, and NH3 reach critical levels. Moreover, it can
activate devices or send alerts when pollution exceeds set
thresholds. Sortino et al. analyzed deep learning approaches
for automatic object detection and instance segmentation in
the domain of radio astronomy, with a focus on the emerging
need for such techniques in the era of Big Data and the
Square Kilometre Array (SKA) telescope [140]. Prasad et al.
A utilizaed time-series data analysis, primarily based on
light-curves, for the detection and characterization of stars,
exoplanets, and galaxies, with a focus on data accessible from
the NASA Exoplanet Archive [141]. The authors highlighted
the use of Box Least Squares (BLS) periodogram analysis
to identify potential transiting signals from exoplanets and
the application of a neural network classifier to determine
the likelihood of an object being an exoplanet. This research
leveraged NASA’s wealth of data from missions like Kepler
and TESS and provides an interactive means of exploring
and analyzing space data, making it a valuable tool for
astronomers and researchers in the field.

V. MULTI-NODAL CHALLENGES OF OBJECT DETECTION
Object detection architectures undergo extensive training on
vast datasets to facilitate effortless identification of objects
within input images. However, the efficacy of detection
algorithms is influenced by diverse sets of parameters during
the detection process. Figure 14 illustrates a taxonomy of
some object detection challenges discussed following which
interfare its efficiency to detect objects.

A. ANNOTATING TRAINING DATA
The process of annotating training data for object detection
presents a myriad of challenges. Achieving accuracy and
consistency in bounding box annotations is a primary
concern, as variations can impact model performance.
Subjectivity in determining object boundaries, coupled with
the labor-intensive nature of manual annotation, results in
time and cost implications. Handling complex object shapes,
dealing with ambiguous object categorization, addressing
data imbalance, and selecting appropriate annotation tools
are critical considerations. Ensuring data privacy,maintaining
annotation quality across annotators, and facilitating data
augmentation while preserving accurate annotations are
additional complexities. Moreover, tasks like 3D object
annotation and video annotation pose specialized challenges,
and the need for clear documentation, transparency, and the
ability to adapt to evolving object categories further compli-
cate the process. Overcoming these challenges necessitates
well-defined guidelines, training, quality control measures,
and suitable tools to create high-quality datasets essential for
the development of accurate object detection models.

Zhang et al. introduced an adversarial-paced learning
(APL) framework to reduce manual annotations. APL,
inspired by self-paced learning, employed data-driven
adversarial learning to establish a robust learning pace.
Experiments showcased competitive results, achieved using
only 1,000 human-annotated training images across four
datasets [142]. Shao et al. introduced Objects365, a large
object detection dataset with 365 categories and over 600K
training images. It serves as a valuable resource for feature
learning in object detection and semantic segmentation tasks,
outperforming ImageNet models on the COCO benchmark
[143]. Liu et al. tackled underwater object detection for
robot picking, an increasingly important field. They identified
challenges, such as the lack of test set annotations in
existing datasets, leading to self-divided test sets and
hindering benchmark comparisons [144]. To address this,
they introduced the Detecting Underwater Objects (DUO)
dataset and benchmark. DUO offers diverse underwater
images with improved annotations, serving as an efficient
benchmark for academic and industrial applications, includ-
ing robot-embedded environments. Ponce et al. addressed the
importance of datasets in object recognition research. They
highlighted current dataset limitations and shared insights
from existing efforts, along with innovative methods for
acquiring large and diverse annotated datasets [145]. The
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FIGURE 14. Taxonomy of object detection challenges.

paper also proposed criteria for gathering future datasets.
Biffi et al. discussed the challenges of object detection relying
on time-consuming manual annotations [146] They intro-
duced an online annotation module (OAM) that generates
reliable annotations from weakly labeled images. This OAM
can enhance the performance of Fast(er) R-CNN, improving
mAP by 17% and AP50 by 9% on PASCAL VOC 2007 and
MS-COCO benchmarks, outperforming other methods using
mixed supervision.

B. DEPTH PERCEPTION
The challenge of depth perception in object detection involves
accurately estimating the distance or depth of objects from
the sensor or camera, which is crucial for understanding the
three-dimensional environment and ensuring the safety and
reliability of autonomous systems. Accurate depth perception
is essential for tasks like obstacle avoidance, scene under-
standing, and object recognition in autonomous vehicles,
robotics, and various computer vision applications. However,
challenges in depth estimation, such as handling occlusions,
low-textured surfaces, and adverse weather conditions, can
significantly affect the performance of object detection
systems. Developing robust and accurate depth perception
methods is vital to address these challenges and advance
the capabilities of object detection systems in real-world
scenarios.

Chen et al. addressed the challenge of depth perception
affected by optical illusions in single-lens imaging. They
presented a compact and intelligent depth-sensing meta-
device, using a 3600-achromatic meta-lens array, measuring
1.2× 1.2 mm2, capable of depth measurement and structured
light projection [147]. The depth information is processed
with deep learning and has implications for applications like
autonomous driving, machine vision, augmented reality, and
biometric identification. Chen et al. addressed challenges in
RGB-D salient object detection. They introduced a unified
feature fusion module, enhancing both semantic and spatial
information, and a multi-scale contextual perception mod-
ule [148]. Their method, outperforming 14 state-of-the-art

approaches on eight datasets, effectively combines RGB and
depth features. Wu et al. addressed the challenge of monoc-
ular 3D object detection in autonomous driving and mobile
robotics. They introduced Depth Dynamic Center Difference
Convolution (DDCDC) to improve depth estimation using
surrounding pixel cues with distinct convolution weights
for each pixel [149]. Their end-to-end detection network
with DDCDC modules achieved significant improvements in
evaluation results on KITTI and nuScenes datasets. Hou et al.
aimed to boost RGB-D object detection by effectively
coordinating depth with RGB data [150]. They introduced a
two-stage learning framework, involving property derivation
and fusion, to comprehensively describe objects by deriving
visual properties from color/depth and their pairs. Their
experimental results on NYUD2 and SUN RGB-D datasets
outperformed baselines. Aguilar et al. created a real-time
system for object detection and depth estimation using
a micro-UAV’s onboard camera and convolutional neural
networks [151]. They emphasized that their approach avoids
the need for complex SLAM visual systems, making it
resource-efficient and faster. Training the neural networks
with stereo images enables accurate real-time obstacle
detection. Gupta et al., conducted a survey on deep learning in
autonomous vehicles, covering theory, implementations, and
evaluations [152]. They aim to bridge the gap between deep
learning and autonomous driving, discussing self-driving
car fundamentals, deep learning, and computer vision.
The survey explores techniques for image perception and
evaluates recent implementations, concluding with research
recommendations.

C. ROBUSTNESS TO NOISE
Robustness to noise is a critical challenge in object
detection, primarily due to environmental variability, sensor
imperfections, adversarial attacks, object occlusion, data
anomalies, class imbalance, and generalization issues. Real-
world conditions introduce noise through changing lighting,
sensor imperfections, and adversarial attacks can manipulate
input data. Additionally, object occlusion, data anomalies,
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class imbalances, and difficulties in generalization further
compound this challenge. Addressing robustness to noise in
object detection requires strategies like data augmentation,
adversarial training, and the development of robust model
architectures. Furthermore, the collection of diverse datasets
that incorporate noisy and real-world examples is crucial
for training object detection models that perform reliably in
practical scenarios.

Liu et al., addressed noisy annotations in Domain Adaptive
Object Detection (DAOD) with their Noise Latent Trans-
ferability Exploration (NLTE) framework, improving mAP
on benchmark DAOD datasets when 60% of annotations
were corrupted [153]. Volk et al. addressed the need for
robust convolution Neural Networks (CNNs) in automotive
object detection. They automated data augmentation to
enhance robustness against natural distortions caused by
different weather conditions, such as rain. Their approach
outperformed existing techniques like Gaussian noise or Salt-
and-Pepper noise when validated against real rain datasets
[154]. Adhikari et al., explored label noise’s effect on object
detection loss functions, essential for system robustness
[155]. They focused on missing labels, simulated during
training, and compared cross-entropy loss and focal loss.
They discovered that adjusting focal loss hyperparameters
can enhance its robustness, allowing for up to 50% missing
labels. Sabater et al. focused on improving object recognition
in videos, vital for applications like autonomous driving
and surveillance [156]. They introduced an innovative post-
processing method using learning-based similarity evalua-
tion, enhancing state-of-the-art video detectors, especially for
fast-moving objects, while maintaining low computational
requirements. When applied to efficient still image detectors
like YOLO, it achieved comparable results to computation-
ally intensive alternatives.

D. OCCLUSION AND INTERACTION
Occlusion and interaction pose significant challenges in
object detection. Occlusion occurs when objects are partially
or completely blocked by other objects or obstacles in the
scene, making it difficult for detectors to accurately identify
and locate them. Interactions involve objects that are in close
proximity or contact with each other, such as in a crowd
or traffic scenario. Detecting and distinguishing individual
objects within these complex scenes is a demanding task for
object detection algorithms. Accurate handling of occlusion
and interaction is crucial for applications like autonomous
driving, surveillance, and robotics, as it directly impacts the
reliability and safety of these systems. Researchers are con-
tinuouslyworking to improve object detectionmodels’ ability
to address these challenges and enhance their performance in
real-world, cluttered environments.

Song et al. addressed the challenge of recognizing
partially occluded faces using a mask learning strategy
[157]. By establishing a mask dictionary through innovative
methods, they effectively identified and discarded corrupted

feature elements during recognition. This approach signif-
icantly outperformed existing systems in experiments with
occluded face datasets. The VOT2020 challenge, organized
by Kristan et al. assessed 58 trackers across five sub-
challenges, spanning various tracking domains [158]. These
sub-challenges covered short-term tracking in RGB, real-
time short-term tracking in RGB, long-term tracking with
target disappearance and reappearance, short-term tracking
in RGB and thermal imagery, and long-term tracking in
RGB and depth imagery. Notably, VOT-ST2020 introduced
a new evaluation methodology and replaced bounding boxes
with segmentation ground truth. Wang et al. introduced a
novel approach for human-object interaction (HOI) detection
that focuses on interactions between human-object pairs
[159]. This fully convolutional method predicts interaction
points, which directly localize and classify the interactions.
It is the first approach to framing HOI detection as a
key point detection and grouping problem. The method
was tested on the V-COCO and HICO-DET benchmarks.
Wu et al. addressed video object detection (VID) challenges
related to appearance degradation in fast-motion frames
[160]. They introduced the Sequence Level Semantics
Aggregation (SELSA) module, which aggregates features at
the full-sequence level, improving performance on ImageNet
VID and EPIC KITCHENS datasets while simplifying
the pipeline. Liu et al. introduced Position Embedding
Transformation (PETR) for multi-view 3D object detection,
achieving state-of-the-art results with 50.4%NDS and 44.1%
mAP on the nuScenes dataset [161].

E. ETHICAL AND REGULATORY
Ethical challenges in object detection encompass privacy
concerns stemming from pervasive surveillance and data
collection, potential biases and discrimination in algo-
rithmic decision-making, and the misuse of surveillance
technologies. They raise questions about the infringement
of civil liberties, transparency, and accountability in data
collection practices. Object detection also presents ethical
dilemmas related to autonomous weapons, job displacement,
and concerns about unauthorized surveillance or harass-
ment. Addressing these challenges requires clear policies,
accountability measures, fairness in algorithm design, and
the importance of informed consent. Responsible AI devel-
opment and regulatory safeguards are essential to ensure the
ethical use of object detection technology while respecting
individual rights and societal values.

Chattopadhyay et al. addressed security concerns related
to adversarial attacks on models and data [162]. The study
explored dimensionality and spatial patterns to improve
adversarial robustness. It also investigated protecting model
ownership using watermarking, extending the concept to nat-
ural language processing. Additionally, the research focused
on data privacy in decentralized setups, utilizing federated
learning and differential privacy to prevent information
leakage and malicious attacks. The findings have advanced
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the reliability and privacy of machine learning systems.
Kagan et al. analyzed privacy risks in video conferencing.
They examined 15,700 collage images and 142,000 face
images from public meetings, demonstrating the ease of
extracting personal information, including age, gender, user-
names, and full names [163]. The study emphasized potential
risks when facial images are linked with social network
data and the need to address privacy concerns in virtual
meetings, affecting various user groups. Lin et al. introduced
HS-YOLO, a method to enhance small object detection in
power safety monitoring [164]. It is based on HRNet and uses
parallel branches to process feature maps of various scales
and maintain microfeature information. HS-YOLO achieved
an mAP of 87.2%, surpassing YOLOv5 by 3.5%, and notably
improved the detection of small objects in power operation
scenarios. Sirisha et al., delved into object detection in com-
puter vision, comparing two-stage and one-stage detectors.
While two-stage detectors excel in detection accuracy, one-
stage detectors like YOLO have made significant strides
in this regard. The study explored performance metrics,
regression formulations, and different YOLO variations,
shedding light on their design, performance, and applications
[165]. BinDarwish, Abdulaziz et al. addressed the rising
issue of ATM-related crimes by proposing a system for bank
ATMs [166]. This system detects dangerous objects like
weapons and employs facial recognition to identify potential
repeat offenders. Using object, face, and action recognition
algorithms, their approach effectively detects threats.

VI. REMARKABLE INVENTIONS AND FUTURE RESEARCH
DIRECTIONS
A. REMARKABLE TECHNIQUES TO TACKLE CHALLENGES
1) FEW SHOT LEARNING BASED DETECTION
Few-shot learning in object detection involves training a
model to recognize objects with limited annotated examples.
Figure 15 illustrates the methodology, which leverages a pre-
trained model on a large dataset to capture generic features
and knowledge about objects. The few-shot learning process
is then introduced by fine-tuning the model on a small dataset
containing only a limited number of examples for each object
class. Transfer learning techniques, such as meta-learning
or episodic training, are commonly employed to enhance
the model’s ability to generalize from the small dataset to
unseen objects. During training, the model learns to adapt
quickly to new classes and instances with minimal labeled
data. Techniques like episodic memory, where the model is
trained on episodes comprising a small support set and a
query set, enable the model to generalize effectively to novel
classes. Few-shot object detection methodologies often aim
to strike a balance between utilizing the knowledge from
a large dataset and adapting to specific, limited examples,
enabling the model to perform well on new, unseen object
classes with only a handful of annotated samples. The rapid
progress in deep learning offers effective solutions for remote
sensing image interpretation, but limited labeled samples

FIGURE 15. Few shot object detection model.

in the field underscore the need for few-shot learning.
Figure 15 illustrates the generic architecture of few shot
object detection.

Sun et al. presented a bibliometric analysis, introduced
two few-shot learning methods, and outlined typical remote
sensing applications, serving as a valuable reference for
scholars in this domain [167]. Quellec et al. introduced a
few-shot learning framework, merging convolutional neural
networks (CNNs) with an unsupervised probabilistic model.
Outperforming other frameworks on a dataset of 164,660
screening exams, it detected 37 out of 41 conditions with
an average AUC of 0.938 [168]. This advancement has the
potential to automate eye pathology screening, revolutioniz-
ing clinical practice in ophthalmology.Wang et al. introduced
FSL-SCNN, a few-shot learning model with a Siamese CNN,
addressing limited labeled data challenges for intelligent
anomaly detection in industrial cyber-physical systems. The
model aims to enhance accuracy and mitigate overfitting
issues by measuring distances between input samples based
on optimized feature representations. A robust cost function
with three specific losses is proposed, demonstrating sig-
nificant improvements in false alarm rates (FAR) and F1
scores for detecting intrusion signals in industrial cyber-
physical security [169]. Zhang et al. introduced G-FSDet,
a Generalized Few-Shot Detector for remote sensing images
(RSIs), addressing the limitations of current few-shot object
detection methods. G-FSDet prevents forgetting previous
knowledge and achieves competitive novel class performance
with minimal base class degradation, demonstrating state-
of-the-art overall performance on DIOR and NWPU VHR-
10.v2 datasets. Source code is available [170]. Yang et al.
introduced HESFOL, a spike-based framework for few-
shot learning in neural networks. Using entropy theory,
HESFOL establishes a gradient-based few-shot learning
scheme in a recurrent SNN architecture. Evaluation on few-
shot tasks and motor control shows improved accuracy
and robustness, emphasizing the application of entropy-
based methods in spike-driven learning [171]. This offers
new perspectives for enhancing SNN learning and applied
developments in neuromorphic systems. Hu et al., addressed
few-shot learning (FSL) in computer vision, focusing on
a practical and effective pipeline. They explored neural
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architecture, employed a three-stage approach involving pre-
training on external data, meta-training on labeled few-shot
tasks, and task-specific fine-tuning. The study investigated
the benefits of pre-training on external data, the utilization of
state-of-the-art transformer architectures, and optimal fine-
tuning strategies [172]. Demonstrating strong performance
on benchmarks like Mini-ImageNet, CIFAR-FS, CDFSL,
and Meta-Dataset, the simple transformer-based pipeline
proved effective. Kang et al. introduced a few-shot object
detector to address limited bounding box annotations for
rare categories. The model quickly adapted to novel classes
using fully labeled base classes, a meta feature learner, and a
reweighting module within a one-stage detection architecture
[173]. Trained end-to-end with an episodic few-shot learning
scheme, the model significantly outperformed baselines in
few-shot object detection across multiple datasets, inspiring
future research in this area. Koizumi et al. addressed the
challenge of overlooking anomalies in anomaly detection
systems by proposing a method for training a cascaded
specific anomaly detector using few-shot samples (1 to 3).
This approach aims to reduce false negatives by decreasing
the false-positive rate while maintaining a true-positive rate
of 1. Experimental results demonstrated the superiority of
the proposed method over conventional cross-entropy-based
few-shot learningmethods, providing an effective solution for
updating systems to avoid overlooking observed anomalies
[174]. Gamal et al. proposed CNN-IDS, a Few-Shot Deep
Learning-based Intrusion Detection System for IoT networks
[175]. The system automatically identifies zero-day attacks
from the network edge using a two-stage approach: 1) a
filtered Information Gain method for feature selection, and
2) a one-dimensional Convolutional Neural Network (CNN)
algorithm for recognizing new attack types. Trained on
UNSW-NB15 and Bot-IoT datasets, the model exhibited
improved detection rates and reduced false-positive rates,
enhancing IoT system security.

Heidari et al. introduced a few-shot error detection
framework with effective data augmentation to minimize
human involvement. The approach used an expressive model
and data augmentation on a small set of clean records, achiev-
ing 94% average precision and 93% average recall across
diverse datasets [176]. Outperformed traditional methods,
showing a 20-point average F1 improvement with 3x fewer
labeled examples. In addressing the scarcity of abnormal
samples in network intrusion detection, a Few-Shot Learning
(FSL) method was introduced. With less than % of the NSL-
KDDKDDTrain+ dataset utilized for training, high accuracy
was achieved—92.34% for KDD-Test+ and 85.75% for
KDD-Test-21. In contrast, lower accuracy was observed
with traditional methods (J48, Naive Bayes, Random Forest,
Support Vector Machine, recurrent neural network, and deep
convolutional neural network), despite using 20% of the
KDDTrain+ dataset [177]. Detection rates for Dos, U2R,
R2L were improved, notably increasing U2R and R2L
detection rates from 13% to 81.50% and 44.41% to 75.93%,
respectively, on the UNSW-NB15 dataset.

FIGURE 16. Federated object detection model.

2) FEDERATED LEARNING BASED DETECTION
Federated learning-based object detection is a collaborative
machine learning approach that aims to train robust and
accurate object detection models across decentralized and
privacy-sensitive devices. In this methodology shown in
Figure 16, multiple edge devices, such as smartphones or
Internet of Things (IoT) devices, collaboratively participate in
the training process without sharing their raw data centrally.
The process begins with the distribution of a pre-trained
model to these devices. Each device then refines the model
locally using its own data, extracting relevant features and
updating the model parameters based on its observations.
Subsequently, these locally updated models are aggregated
or federated in a secure and privacy-preserving manner.
The federated averaging or similar aggregation techniques
ensure that the collective knowledge from all devices
contributes to the global model without exposing individual
data instances. This iterative process of local training and
global aggregation continues until the object detection
model achieves satisfactory performance. Federated learning,
by preserving data privacy at the edge and promoting
collaborativemodel improvement, addresses concerns related
to centralized data storage and enhances the scalability and
efficiency of object detection systems across diverse and
distributed environments. Figure 16 demonstrates the generic
model of FL based object detection.

Mothukuri et al. introduced a Federated Learning
(FL)-based anomaly detection approach for IoT security,
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prioritizing user data privacy. The method uses federated
training rounds on gated recurrent units (GRUs) models,
sharing only learned weights with the central server. The
ensembler aggregates updates from multiple sources to opti-
mize the global ML model’s accuracy [178]. Experimental
results show superior performance over classic/centralized
machine learning (non-FL) versions, ensuring user data
privacy and achieving optimal accuracy in attack detection
within IoT networks. Yang et al. introduced FFD (Federated
learning for Fraud Detection) to enhance credit card fraud
detection, using federated learning for privacy-preserving
model training on locally distributed data. The shared
Fraud Detection System (FDS) aggregates locally computed
updates, and an oversampling approach balances the skewed
dataset. In real-world credit card transactions, FFD achieved
an average test AUC of 95.5%, surpassing traditional FDS
by approximately 10% [179]. Tian et al. introduced DC-
Adam, an asynchronous federated learning-based detection
approach for resource-limited IoT devices. Addressing
the gradient delay problem in non-IID data patterns,
DC-Adam utilizes a Taylor Expansion-based scheme for
compensation and a pre-shared data training strategy [180].
The method demonstrates stable convergence and outper-
forms benchmarks, showing a significant improvement in
accuracy, precision, recall, and F1 score compared to barrier-
free asynchronous federated learning. Preuveneers et al.
introduced a blockchain-based federated learning method
to enhance accountability in cybersecurity. Addressing the
challenge of potential poisoning in federated learning setups,
the solution integrates federated learning with a permissioned
blockchain, allowing incremental updates on the distributed
ledger. Experiments in intrusion detection show a limited
performance impact (5-15%) while providing transparency
over the distributed training process [181]. The blockchain-
based federated learning solution is applicable to various
neural network architectures and use cases. Liu et al.
introduced FedVision, a platform for developing federated
learning-powered computer vision applications, addressing
privacy concerns and data transmission costs. Deployed
in smart city applications, FedVision achieved efficiency
improvement and cost reduction, eliminating the need to
transmit sensitive data for three major customers [182].
This marks the first real application of federated learning in
computer vision-based tasks. Huong et al. introduced FedeX,
an architecture for distributed anomaly detection in IoT-based
Industrial Control Systems (ICSs) for Smart Manufacturing.
FedeX achieves high detection performance, fast learning of
new data patterns, and lightweight deployment on resource-
constrained edge devices. In experiments, it outperformed
14 existing solutions on all metrics with liquid storage and
SWAT datasets, demonstrating fast training (7.5 minutes)
and lightweight hardware requirements (14% memory con-
sumption) [183]. FedeX incorporates Explainable AI (XAI)
for interpreting predicted anomalies, enhancing decision-
making trust in real-time on edge computing infrastructure.

Huong et al. proposed a Federated Learning-based anomaly
detection for Industrial IoT in Smart Manufacturing,
outperforming existing solutions. The architecture is efficient
on edge computing hardware, saving 35% bandwidth, with
realistic resource consumption (max CPU 85%, avg. memory
37%) [184]. Liu et al. introduced a cooperative intrusion
detection mechanism for vehicular networks, leveraging
distributed edge devices like connected vehicles and RSUs.
The federated-based approach offloads model training to
enhance efficiency, utilizing blockchain for secure storage
and sharing of models. The scheme ensures cooperative
privacy-preservation for vehicles, reducing communication
overhead and computation costs while maintaining security
[185]. Jahromi et al. introduced a scalable deep federated
learning-based method for Industrial Control System (ICS)
security, addressing IT-ICS network differences and data
privacy issues. In this method, clients train local unsupervised
deep neural network models, share parameters with a
server, which aggregates them to create a generalized public
model [186]. Evaluation on a real-world ICS dataset in a
water treatment system demonstrates superior performance
compared to non-federated learning-based methods, with
similar computational complexity to existing deep neural
network-based approaches in the literature.

3) EXPLAINABLE ARTIFICIAL INTELLIGENCE
Explainable Artificial Intelligence (XAI) in the context of
object detection involves employing transparent and inter-
pretable models, as well as developing post-hoc explanations
to enhance the comprehensibility of the detection process.
Initially, interpretable models, such as decision trees or
rule-based systems, are favored over complex black-box
models like deep neural networks. These models facilitate
understanding by providing explicit rules governing object
detection. Additionally, post-hoc explanation methods, such
as saliency maps or attention mechanisms, are applied to
illuminate the key features influencing model predictions.
These visualizations help users discern why a specific
object was detected or provide insights into potential
biases. By combining both interpretable models and post-hoc
explanations, the methodology aims to make object detection
systems more transparent, trustworthy, and accessible for
users, fostering confidence in the decisions made by AI
algorithms. Figure 17 shows an architecture of XAI enabled
object detection.

4) RECONFIGURABLE COMPUTING BASED DETECTION
Reconfigurable computing-based object detection leverages
the flexibility and adaptability of reconfigurable hardware,
typically using Field-Programmable Gate Arrays (FPGAs) or
similar technologies. The process begins with the selection
of an appropriate object detection algorithm, often a convo-
lutional neural network (CNN), which is then tailored and
optimized for deployment on reconfigurable hardware. The
FPGA’s reconfigurability allows for dynamic adjustments to
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FIGURE 17. Explainable Artificial Intelligence model.

the hardware architecture, enabling efficient parallelization
and acceleration of the algorithm. This adaptability is partic-
ularly advantageous in scenarios where real-time processing
or low-latency requirements are critical. The methodology
involves the design and mapping of the algorithm onto
the FPGA, exploiting parallelism and optimizing resource
utilization. Additionally, reconfigurable computing facilitates
iterative refinement and optimization of the object detection
model based on specific application requirements. This
methodology offers a balance between the performance
benefits of hardware acceleration and the flexibility to adapt
to evolving detection tasks, making it suitable for applications
such as video surveillance, autonomous vehicles, and other
real-time image processing tasks.

Li et al. [187] demonstrated a reconfigurable and non-
volatile neuromorphic device based on two-dimensional
semiconducting metal sulfides, functioning as a photovoltaic
detector. The device, utilizing a metal-semiconductor-metal
(MSM) two-terminal structure with pulse-tunable sulfur
vacancies, achieved highly tunable responsivity and con-
current non-volatile storage of image data. Additionally,
a convolutional neuromorphic network was designed for
image processing and object detection using the same
device, showcasing its potential as a key component in
visual perception hardware. Zhao et al. [188] introduced a
novel method for optimizing CNN-based object detection
algorithms on embedded FPGA platforms, addressing limited
computation resources and power constraints. The key
contributions include parameterized CNNhardwaremodules,
an optimization flow that considers network architectures
and resource constraints, and achieved results demonstrating
over 85% accuracy and a 49.6 times speed-up compared
to software implementation with optimized configurations.
Chan et al. [189] explored the use of modern FPGAs
for accelerating intelligent vision-guided crop detection
in agricultural field robots, adapting the YOLOv3 object
detection neural network for broccoli and cauliflower detec-
tion. The FPGA implementation achieved a 92% mAP
with efficient quantization, demonstrating superior power

efficiency and throughput compared to an embedded GPU.
Specifically, the FPGA solution is 4.12 times more power-
efficient and offers 6.85 times higher throughput, leading to
faster and longer operation of battery-powered field robots.
Kim et al. [190] introduced an optimized convolutional
neural network (CNN) accelerator design on a mobile FPGA,
specifically focusing on limited-resource edge computing
environments. The reconfigurable accelerator design was
implemented at the register-transfer level (RTL), employing
low-power techniques to enhance programming speed. The
optimization techniques included clock gating to eliminate
residual signals and deactivate unnecessary blocks. The
proposed design, tested with Resnet-20 on the CIFAR-10
dataset, demonstrated a significant improvement in power
efficiency consumption (16%), hardware utilization (up to
58%), and throughput (15%) based on experimental results.
Na et al. [191] proposed a novel active learning algorithm.
The algorithm considers both classification and localization
informativeness of unannotated video frames, leveraging
temporal information to measure localization informative-
ness. The evaluation on theMuPoTS and FootballPD datasets
demonstrates the effectiveness of the proposed algorithm
in selecting informative frames for annotation in object
detection training. Baczmanski et al. [192] implemented a
perception system for autonomous vehicles by leveraging the
MultiTaskV3 detection-segmentation network on the AMD
Xilinx Kria KV260 Vision AI embedded platform. The
system demonstrated high efficiency in obstacle recognition,
real-time performance, and energy efficiency, achieving over
97% mean average precision for object detection and above
90% mean intersection over union for image segmentation.
Additionally, the implementation on the FPGA platform
resulted in significant power savings (5 watts on average) and
a compact form factor (119mm x 140mm x 36mm), making
it suitable for space-constrained applications.

5) QUANTUM COMPUTING BASED DETECTION
Quantum computing-based object detection employs the
principles of quantum mechanics to enhance traditional
object detection algorithms. Unlike classical computers that
process information using bits, which can exist in a state
of 0 or 1, quantum computers use qubits, which can exist
in multiple states simultaneously due to superposition. This
inherent parallelism allows quantum algorithms to explore
multiple possibilities simultaneously, potentially speeding up
computations for object detection tasks. Quantum entangle-
ment, another quantum phenomenon, enables qubits to be
correlated in away that the state of one qubit is directly related
to the state of another, facilitating complex computations.
Quantum parallelism and entanglement can be leveraged to
optimize the processing of large datasets commonly encoun-
tered in object detection, leading to more efficient and faster
identification of objects within images or videos. However,
the field is still in its infancy, and practical implementations
of quantum computing for object detection face numerous
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FIGURE 18. Quantum architecture for object detection.

challenges, including error correction, decoherence, and
the need for scalable quantum hardware. Ongoing research
aims to address these issues and unlock the full potential
of quantum computing in revolutionizing object detection
methodologies. Figure 18 shows the quantum model object
detection.

Zaech et al. [193] presented a novel formulation of Multi-
Object Tracking (MOT) tailored for Adiabatic Quantum
Computing (AQC) by utilizing an Ising model. The proposed
approach demonstrated competitiveness with state-of-the-art
optimization methods, even when compared to traditional
integer programming solvers. Additionally, the research
showcased the solvability of the MOT problem on current
quantum computers for small instances, highlighting its
potential for addressing NP-hard optimization challenges
in the field. Rajesh et al. [194] explored the application
of Quantum Convolutional Neural Networks (QCNN) in
computer vision, specifically focusing on image recognition
and object detection. The research demonstrated that QCNN
can enhance computational speeds and outperform classical
methods, with potential applications in computer vision,
signal processing, pharmaceuticals, cryptography, and other
fields, highlighting the significance of ongoing developments
in quantum computing algorithms and hardware support.
Furthermore, Meedinti et al. [195] also explored the efficacy
of Quantum Convolutional Neural Networks (QCNNs) com-
pared to classical Convolutional Neural Networks (CNNs)
and Artificial/Classical Neural Network (ANN) models for
object detection and classification. Through comprehensive
evaluations, it was found that QCNNs, leveraging qubits
in a quantum environment, exhibited superior accuracy
and efficiency, particularly in handling large datasets and
real-time processing, demonstrating their potential as a

promising advancement in machine learning. Hu et al.
[196] presented a novel quantum automated object detection
algorithm designed for urban surveillance systems. The
algorithm demonstrated high accuracy in detecting objects in
images and exhibited the capability to handle measurement
errors arising from quantum measurements during the
image retrieval process. The research contributed to the
exploration of quantum computing applications in the field
of computer vision, showcasing its potential for enhancing
object detection in urban surveillance scenarios.

6) MIXED ARCHITECTURAL DETECTION: BLOCKCHAIN
INTEGRATION
The blockchain based object detection model which inte-
grates federated learning, blockchain, and few-shot learning
methodologies as illustrated in 19 can be a powerful
detection techniques. Federated learning allows the model
to train across decentralized devices, preserving data privacy
by keeping data localized. Blockchain technology ensures
a transparent and secure record of model updates and
transactions, enhancing trust in the training process. Few-shot
learning empowers the model to generalize from a limited
number of examples, improving adaptability to novel objects.
The combination of these approaches results in a robust and
privacy-preserving object detection model with a transparent
and secure training process, capable of learning fromminimal
examples for enhanced versatility. Figure 19 demonstrates the
generic model of blockchain integrated object detection.

She et al. introduced a blockchain trust model (BTM)
for detecting malicious nodes in wireless sensor networks
(WSNs). The model ensured fairness and traceability in the
detection process by presenting a framework, constructing
a blockchain data structure, and implementing detection in
3D space through blockchain smart contracts and the WSNs’
quadrilateral measurement localization method [197]. Simu-
lation results demonstrated effectivemalicious node detection
in WSNs with traceability assurance. Guha Roy et al.
proposed a decentralized security mechanism for IoT in
mobile edge and fog computing. The system integrates
SDN and blockchain for continuous monitoring and analysis
of system traffic, providing an attack identification model.
Blockchain addresses failure issues, delivering a decentral-
ized attack identification scheme that detects and reduces
attacks in the fog and edge nodes [198]. BAD (Blockchain
Anomaly Detection) by Signorini et al. is a pioneering
solution tailored for anomaly detection in blockchain-based
systems [199]. This distributed, tamper-proof, trusted, and
private framework leverages blockchain meta-data, providing
effective protection against attacks specific to blockchain
systems, as validated through experimental results and
analysis. Mirsky et al. introduced a novel anomaly detection
approach and a lightweight blockchain-based framework
to secure IoT devices against vulnerabilities and adver-
sarial attacks. The framework, tested on a distributed IoT
simulation platform, utilizes blockchain for incremental
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FIGURE 19. Blockchain integrated object detection model.

updates to a trusted anomaly detection model, enhancing
the security of individual devices and the entire network
[200]. Ashfaq et al. proposed a secure fraud detection model
for the Bitcoin network, addressing evolving fraud methods
in e-banking and online transactions. The model integrates
machine learning algorithms (XGboost and random forest)
for transaction classification, training on fraudulent and
integrated transaction patterns [201]. Blockchain technology
is employed to enhance security. The proposed smart contract
undergoes a security analysis, and an attacker model is
introduced for system protection, demonstrating robustness
against attacks and vulnerabilities. Yu et al. introduced a DNS
Cache Resources Trusted Sharing Model using consortium
blockchain to enhance DNS resolution credibility [202].
It employs a trust-based incentive mechanism, addressing
free-riding, and maintains efficiency with a decentral-
ized storage mechanism. The model proves advantageous
in ensuring credibility and efficiency in domain name

resolution. Han et al. proposed a blockchain-based medical
information-sharingmodel to address security threats in med-
ical data distribution [203]. Through actual implementation,
the model demonstrates reliability, traceability, and a data
recovery function to prevent forgery and alteration of medical
information. Wang et al. proposed a blockchain-based risk
management system for network public opinion (NPO) to
enhance risk prediction accuracy and credibility detection.
The study utilizes smart contracts and risk association tree
technology within the blockchain environment, allowing for
traceability of public opinion through a smart ledger [204].
The experimental results demonstrate the effectiveness of
the proposed model in optimizing the network environ-
ment and enhancing control measures. Yazdinejad et al.
introduced a fuzzy blockchain framework for secure IoT
environments. The approach integrates fuzzy logic, ANFIS-
based attack detection, and fuzzy matching to enhance
threat detection and fraud prevention [205]. Results confirm
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improved security metrics in both blockchain and IoT
networks.

B. FUTURE DIRECTIONS
The future landscape of object detection research is poised
for dynamic evolution as scholars and practitioners strive
to enhance the precision, efficiency, and adaptability of
detection models. One pivotal avenue of exploration is in the
realm of few-shot learning, an area dedicated to empowering
object detectors to glean meaningful insights from a limited
number of examples per class. This pursuit gains particular
significance in scenarios where labeled data is scarce,
prompting researchers to investigate novel methodologies
and frameworks for robust learning with minimally labeled
instances.

Attention mechanisms have become a cornerstone of
research aimed at enhancing object detectors’ ability to focus
on salient features within an image. Recent works demon-
strate the potential of attention mechanisms in refining spatial
relationships, thus contributing to heightened accuracy and
contextual awareness in object detection systems.

Another salient trajectory of future research lies in the
domain of cross-domain object detection, focusing on the
critical task of adapting models to operate seamlessly in
diverse environments beyond their initial training data.
Techniques devised for domain adaptation have shown
promise in augmenting the generalization capabilities of
object detectors, thereby enhancing their applicability across
a spectrum of real-world scenarios characterized by varying
domains.

The quest for real-time efficiency remains an ongo-
ing and significant research focus. Researchers are con-
tinuously exploring methodologies to strike an optimal
balance between the speed and accuracy of object detec-
tion algorithms, especially in applications where real-time
responsiveness is imperative. This pursuit involves refining
existing algorithms and exploring innovative architectures
that can meet the demands of dynamic, time-sensitive
environments. The integration of semantic segmentation
and object detection is emerging as a compelling avenue,
promising a more nuanced and holistic understanding of
visual scenes. Approaches such as panoptic segmentation
exemplify the synthesis of these two tasks, offering the
potential for object detectors to leverage richer contextual
information, thereby elevating their overall performance.

Another future direction of object detection is poised to
intertwine with the principles of green computing, driven by
a growing awareness of environmental sustainability. As the
demand for more sophisticated object detection models
continues to rise, researchers are increasingly focusing
on developing energy-efficient algorithms and hardware
architectures. Green computing in object detection involves
optimizing model architectures to minimize computational
complexity, exploring lightweight neural network designs,
and leveraging quantization techniques to reduce compu-
tational and energy requirements. Additionally, researchers

FIGURE 20. HE integrated with FL in object image classification task.

are investigating the integration of renewable energy sources
and energy-aware scheduling strategies to power data
centers that handle object detection tasks. The pursuit
of eco-friendly computing solutions aims to mitigate the
environmental impact of large-scale AI deployments while
ensuring that future object detection systems remain efficient
and sustainable. As the intersection of object detection and
green computing evolves, the field is expected to witness
innovations that not only enhance detection accuracy but also
contribute to a more energy-conscious and environmentally
responsible approach to computational tasks.

The foray into 3D object detection is gaining promi-
nence, propelled by the growing relevance of applications
in autonomous driving, robotics, and augmented reality.
Researchers are actively engaged in advancing techniques
that extend traditional object detection paradigms to seam-
lessly operate in the three-dimensional space, harnessing
point cloud data for a more comprehensive and accurate
perception of the environment. The imperative to fortify
object detectors against adversarial attacks is shaping a
critical research direction. Ensuring the robustness of models
in the face of deliberate attempts to deceive or compromise
their functionality is paramount. This involves the exploration
of novel architectures, trainingmethodologies, and evaluation
frameworks to withstand adversarial challenges and instill
confidence in the reliability of object detection systems
across diverse, and at times, adversarial environments. Homo-
morphic Encryption integrated with Federated Learning (FL)
here can plays an active role due to its complex encryption
architecture to overcome these challenges. Figure 20 shows
the workflow of HE combined with FL to classify objects.

As AI systems are increasingly employed for tasks such as
image and video analysis, it becomes imperative to provide
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users with insights into the decisions made by these models.
The implementation of XAI techniques in object detection
not only fosters user trust but also helps ensure the responsible
and ethical use of AI in various applications. However,
adapting these techniques to object detection scenarios comes
with its own set of challenges. The dynamic nature of visual
data, the need to balance interpretability with performance,
and the requirement for user-friendly explanations all pose
significant hurdles. It is essential to conduct research focused
on developing XAI methods tailored specifically to the
intricacies of object detection data and applications. Real-
time and interactive explanations that seamlessly integrate
with visual experiences need to be explored. Additionally,
efforts should be directed toward creating decentralized and
privacy-preserving XAI solutions, upholding user trust and
comprehension in the ever-evolving landscape of AI-driven
object detection. In the generation module, captions are
produced from input images through the utilization of an
encoder-decoder architecture. Simultaneously, the explana-
tion module generates a weight matrix that corresponds to
specific regions in the input image and words in the generated
caption. The model is designed to produce two distinct loss
values, denoted as Lossg and Losse. The interplay between
the generation and explanation modules, governed by these
loss values, facilitates the model’s ability to effectively
incorporate region information in the generation of captions.

Mainly, The future trajectory of object detection research
unfolds across a spectrum of interconnected domains, encom-
passing advancements in few-shot learning, cross-domain
adaptation, real-time efficiency, 3D detection, semantic
integration, attention mechanisms, and robustness against
adversarial challenges. As researchers continue to delve
into these multifaceted dimensions, the collective goal is
to push the boundaries of object detection capabilities,
rendering them more versatile, accurate, and resilient across
an ever-expanding array of applications and environmental
conditions. The iterative process of innovation, guided by
these diverse research directions, promises to propel object
detection into new frontiers of capability and applicability.

VII. CONCLUSION
In conclusion, the odyssey through the landscape of object
detection unveils a tapestry woven with technological mar-
vels, where algorithms emerge as the architects of visual
understanding. The applications explored, ranging from
autonomous vehicles to augmented reality, underscore the
transformative impact of object detection on diverse domains.
The narrative of advancements, from traditional methods
to cutting-edge neural network architectures, mirrors a
continual striving for precision and efficiency. As we peer
into the future, the persistent open issues serve as compass
points guiding researchers toward uncharted territories,
beckoning them to unravel the remaining intricacies of real-
time detection, robustness in dynamic environments, and
the interpretability of increasingly complex models. This
exploration is a testament to the dynamic synergy between

innovation and challenges, urging the research community to
persist in their pursuit of refining object detection algorithms
for a future where the unseen is laid bare and the visual world
becomes an open book for intelligent systems.
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