
Received 20 March 2024, accepted 11 April 2024, date of publication 16 April 2024, date of current version 23 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3388837

Energy Efficient Real-Time Tasks Scheduling on
High-Performance Edge-Computing Systems
Using Genetic Algorithm
HAMEED HUSSAIN 1, MUHAMMAD ZAKARYA 2,3, (Senior Member, IEEE), AHMAD ALI4,
AYAZ ALI KHAN 5, MOHAMMAD REZA CHALAK QAZANI2, MAHMOOD AL-BAHRI2,
AND MUHAMMAD HALEEM 6
1Department of Computer Science, University of Buner, Buner 19290, Pakistan
2Faculty of Computing and Information Technology, Sohar University, Sohar 311, Oman
3Department of Computer Science, Abdul Wali Khan University, Mardan 23200, Pakistan
4College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
5Department of Computer Science, University of Lakki Marwat, Taja Zai 28420, Pakistan
6Department of Computer Science, Kardan University, Kabul 1007, Afghanistan

Corresponding author: Muhammad Haleem (m.haleem@kardan.edu.af)

ABSTRACT With an increase in the number of processing cores or systems, the high-performance edge-
computing system’s power consumption along with its computational speed will increase, essentially.
However, this comes at the expense of high-energy utilization. One notable solution to reduce the energy
consumption of these systems is to execute these systems at the slowest feasible speed so that the
job’s deadline times are met. Unfortunately, this method is at the expense of more response time and
performance loss. To resolve this issue, in this paper, we propose a scheduling approach that associates
the genetic algorithm (GA) with the first feasible speed (FiFeS) technique i.e. GA-FiFeS algorithm. This
does not jeopardize real-time tasks’ deadlines. The GA-FiFeS algorithm proposes an energy-efficient
schedule while still ensuring high response times. The results of the proposed approach, using plausible
assumptions and experimental parameters, are compared with currently in-practice approaches, i.e. FiFeS
and LeFeS (least feasible speed) approaches. Using numerical simulations and plausible assumptions, our
investigation suggests that the proposed GA-FiFeS technique outperforms the FiFeS technique in terms of
energy consumption (∼18.56%) and response times (∼2.78%). Furthermore, the GA-FiFeS has comparable
outcomes with the LeFeS method while taking the expected time of execution as an assessment feature for
analysis.

INDEX TERMS Genetic algorithm, edge-computing, multi-core, real-time systems, feasibility analysis,
HPC.

I. INTRODUCTION
The power computation of various resources can be
increased by using either high-performance computing
(HPC) systems or multi-core technology. Distributed [1] and
non-distributed [2] systems are the two main categorizations
of the HPC systems, and the idea of distribution means
the arrangement of physical processors on diverse system
boards. From the notion of distributed HPC systems [1], the
concepts of grids, cloud computing systems, and clusters

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

are derived. Whereas, in the class of non-distributed HPC
systems, multi-core systems are dominated [3]. To form a
single system image in cluster computing systems, multiple
storage and processing resources are interconnected through
high-speed networks [1], [4]. For availability, load balancing,
and performance improvement, the integration of software,
hardware, and network resources is the primary goal of
cluster computing systems [1], [4], [5], [6]. As a medium
of resource sharing, the grid-computing concept depends on
the internet [1]. For spread availability through the medium,
the powerful computing resources are connected [7]. Grid
computing encompasses user privileges, geographically

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54879

https://orcid.org/0000-0002-2003-940X
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0002-0782-1077
https://orcid.org/0000-0003-1620-0560


H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

distributed resources, and belonging to different administra-
tive domains as described in [1], [8], and [9]. Moreover, grids
are loosely coupled, and more heterogeneous, in contrast to
the traditional cluster computing systems [10], [11].
The basic motivation behind grid computing is complex

problem-solving and powerful resource sharing. The authors
in [12] and [13] have provided a comprehensive survey
on grid computing systems. Cloud computing is another
dimension of distributed computing systems that facilitates
the users by providing three basic services: (1) software-
as-a-service (SaaS), (2) platform-as-a-service (PaaS), and
(3) infrastructure-as-a-service (IaaS). These services are
provided through the Internet using the virtualization concept
under a pay-as-you-use policy. The detailed comparison
among cluster, grid, and cloud computing systems can be
found in [1] and [14]. Cloud and edge computing are
the two diverse architecture paradigms [15], [16], [17].
Edge computing is normally used for the data having time
constraints as an important issue, while, in the cloud, the
time sensitivity is not that important. In far-flung regions
having low or no connectivity to a centralized location, edge-
computing is a good choice as compared to the cloud, besides
delay [15], [18].

Another technique for increasing the computation power
of the resources is using multi-core technology [2], [19],
[20]. The multi-core front drastically enhances existing
technology, however, this technology faces some crucial
challenges like thermal dissipation and lack of mature
scheduling for executing computational-intensive applica-
tions [21]. Usually, cores run symmetrically by using the
same power and timer occurrences stages [22], [23], wherever
cores run asymmetrically if the situation exists and in
asymmetric circumstances it is very precarious to maintain
and keep the symmetrical performance [19], [24], [25].
Therefore, to tackle this issue, two kinds i.e. hardware
and software solutions are planned [21], [26]. If all cores
operate symmetrically, the software solution is the intelligent
scheduling of applications [21]. While solution through
hardware gives circuitry of dynamic voltages to every
individual core [21]; however, the eventual outcome is power
leakage and thermal throttling [21], [24]. The resolution of
the said problem through software is less expensive and
efficient, but it has given relatively less weight in the state-
of-the-art literature from a scheduling perspective [21]. To fill
the aforementioned gap, authors have used a rate-monotonic
(RM) scheduling technique for power-efficient scheduling
of real-time applications by executing all cores on the same
frequency [21].
Applying diverse techniques, the processing power con-

sumption of the computing systems can be reduced. As we
know P = v2.f implies that power is straightforwardly
corresponding to frequency or speed and voltage from the
voltage, frequency, and power relationship. Thus, power
can be managed either by changing the working voltage
or speed progressively. This powerful change of voltage
and speed parameters can be done by using the dynamic

voltage scaling (DVS) method. From the above relation,
it can be observed that the DVS technique can help in mini-
mizing power consumption. However, this method increases
response time [21]. Hence, response time acquired through
DVS is challenging to get a handle on, especially continuous
climate where the application needs to be processed within
the deadline. So, minimizing power by adjusting system
speed is a good option for real-time application [27].
In previous works [19], [21], authors have examined the

speed factor in the prior research work presented in [23]; and
termed it as the first feasible speed (FiFeS) method. Then,
the authors addressed the problem of executing a system at
the lowest possible speed and named this method as the least
feasible speed (LeFeS) method. In this research, to improve
the energy consumption and response time of real-time tasks,
we are presenting a methodology by applying a notable
heritable genetic algorithm (GA) in addition to the FiFeS
approach and called it as GA-FiFeS approach.

Furthermore, influenced by the concept of Darwinian’s
theory of the ‘‘survival of the fittest’’ [28], [29], GA [30]
is an optimization algorithm and the meaning is that the
GA recalls the fittest genes in each repetition. By using any
selection method, GA optimization progression, primarily
fitness values of the offsprings are intended, and then some
offsprings are designated, and the designated offsprings are
then passed over to mutation and cross-over phases [30].
The fitness values are recalculated for the new offspring.
The optimization process takes place if the new offspring’s
fitness values are good as compared to their old fitness
values. The key contribution of this research work is that we
propose a novel algorithm which is known as GA-FiFeS that
outperforms FiFeS in terms of energy and LeFeS in view of
execution time, respectively. The major contributions of this
work are as follows:

• we propose a scheduling approach i.e. GA-FiFeS that
associates the genetic algorithm (GA) with the first
feasible speed (FiFeS) technique;

• the proposed approach offers an energy-efficient sched-
ule for real-time tasks while still ensuring tasks’
deadlines i.e. response times;

• GA-FiFeS does not jeopardize real-time tasks’ deadlines
i.e. tasks finished their execution within their deadlines;
and

• empirical evaluation using plausible assumptions and
comparison with state-of-the-art techniques.

The rest of the research work is organized as follows.
An overview of the related work is presented in section II.
In section III, we present the system model which is
related to the system speed, power consumption, and system
model. In section IV, we discuss the proposed work. After
that, section V elaborates on the critical analysis of the
empirical results formed by the proposed work. Furthermore,
experimental setup and evaluation metrics are also described
in this section. Finally, in section VI we conclude the
work and discuss some directions for future research and
investigation.

54880 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

II. RELATED WORK
Designing energy-efficient scheduling strategies for real-time
periodic tasks on heterogeneous platforms poses a formidable
challenge, compounded by the computational complexity
inherent in the problem of task scheduling. Consequently,
there exists a considerable amount and quantity of real-
time energy-aware scheduling approaches that are, in fact,
applicable and have been studied in the context of such
heterogeneous computational environments.

The authors in [31] have explored the evolving landscape
of processing platforms in battery-supported real-time sys-
tems, which increasingly incorporate specialized multi-cores
to address the demands of modern applications. It under-
scores the pressing need for energy-efficient schedulers in
such environments. SEAMERS is a low-overhead heuristic
strategy designed for dynamic voltage and frequency scaling
(DVFS)-based energy-aware scheduling of real-time periodic
tasks on heterogeneous multi-core platforms [31]. SEAM-
ERS operates through four phases: (i) deadline partitioning;
(ii) core clustering; (iii) task allocation; and (iv) energy-
aware scheduling, which collectively aim to optimize task
scheduling while considering both energy consumption and
real-time constraints such as deadline and response time.

The authors in [32] have introduced HEALERS, a novel
low-overhead heuristic strategy tailored for dynamic voltage
and frequency scaling (DVFS) and dynamic power manage-
ment (DPM) enabled energy-aware scheduling of periodic
tasks on a heterogeneous multi-core system. The HEALERS
strategy begins by employing deadline partitioning to delin-
eate distinct time slices. At each time-slice boundary, a three-
phase operation is executed to determine the schedule for the
subsequent time-slice. First of all, the technique calculates
the execution demand pieces of every activity on the platform
across different processor cores. In the second phase, it then
creates a schedule for every job on one or more processor
cores, making sure that the combined execution requirements
of all of the tasks are satisfied. Lastly, in order to reduce
energy usage within the time slice while maintaining the
execution needs of the planned activities, HEALERS applies
DVFS and DPM mechanisms to all processor cores.

Reference [33] discusses the challenge of energy-efficient
task scheduling on edge devices with limited power,
proposing a multi-objective energy-efficient task scheduling
technique (METSM). This technique establishes a math-
ematical model considering make-span and total energy
consumption as optimization objectives, and it introduces a
problem-specific algorithm called the iterated greedy-based
multi-objective optimizer (IMO) to address task scheduling
and resource allocation. The increasing adoption of Cloud
services by Internet of Things (IoT) devices has raised
concerns about latency, leading to the emergence of fog
computing. Fog computing has an objective to minimize
latency (enhance response time) by bringing processing
capabilities closer to the end-users with the help of installing
extra resources in the proximity of users and at the edge
of the Cloud infrastructure. However, reducing latency or

improving response times without negatively affecting the
total energy consumption remains a challenge. In [34],
a novel genetic-based algorithm called GAMMR is proposed
to address the task scheduling problem in a fog-cloud-
based environment, achieving an optimal balance between
total consumed energy and total response time, outperform-
ing standard genetic algorithms in simulations on various
datasets.

Current real-time systems offer increased computational
power to handle CPU-intensive applications, but this leads
to higher energy consumption and heat dissipation [21].
To address these issues, system speed is dynamically adjusted
to meet application deadlines while reducing overall energy
consumption. Although multi-core technology presents
opportunities for energy-efficient scheduling, it remains
relatively unexplored. This paper proposes techniques to
optimize core speed for individual tasks and balance core
utilization, ensuring task deadlines are met, and overall
system energy consumption is minimized, with experimental
results demonstrating the effectiveness of the approach over
existing methods.

Reference [23] introduces a framework for analyzing and
designing embedded systems to minimize energy consump-
tion while meeting timing requirements. Realistic assump-
tions are made, including discrete operating modes for the
processor with associated speed and power consumption, and
consideration of energy overhead and transition delay during
mode switches. The method enables computation of the
optimal sequence of voltage/speed changes to approximate
the minimum continuous speed, ensuring the feasibility of
real-time tasks without deadline violations and is applicable
under both fixed and dynamic priority assignments.

The authors created a resource management framework
for cloud computing systems for the first time in [35]. This
framework clarifies the resource management process in
relation to cloud job scheduling. Next, we examine how the
physical resources of a Virtual Machine (VM) affect the
consistency of cloud service execution. Next, we created
an algorithm called priority-based fair scheduling (PBFS)
to schedule jobs in a way that ensures they have access to
the necessary resources at the best possible times. Three
important parameters—CPU time, arrival time, and work
length—have been taken into consideration when developing
the algorithm.We have developed a backfillingmethod called
Earliest Gap Shortest Job First (EG-SJF) that emphasizes
filling up schedule gaps in a certain sequence for the best
scheduling of cloud workloads. A novel method is proposed
in [36] to enhance the current Priority Rules (PR) for cloud
schedulers by creating a new dynamic scheduling algorithm
and adjusting the gaps in the cloud work schedule. First,
in order to schedule jobs so that they may access the
necessary resources at the best times, the Priority-Based
Fair Scheduling (PBFS) algorithm has been devised. Next,
a backfilling technique known as Shortest Gap - Priority-
Based Fair Scheduling (SG-PBFS) is created in an effort to
control the spaces in the cloud tasks’ schedule.

VOLUME 12, 2024 54881



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

The Johnson Sequencing algorithm is used by the authors
of [37] to provide a unique approach to work scheduling in
cloud computing across three servers. The Johnson Sequenc-
ing approach, which was first created for job scheduling
in a manufacturing setting, has shown efficaciousness in
addressing scheduling difficulties. In this case, we modify
this approach to deal with task scheduling amongst three
servers in a cloud computing setup. The algorithm’s main
goal is to reduce the makespan, which is a measure of the
overall amount of time needed to do all activities. The authors
provide a three-step procedure to implement the Johnson
Sequencing method for cloud computing work scheduling.
Initially, we create a precedence graph by examining the
connections between the various jobs. The precedence graph
is then assigned to servers, converting it into a two-machine
Johnson Sequencing issue. Lastly, in order to minimize
the makespan, we use the Dynamic Heuristic Johnson
Sequencing approach to figure out the optimal sequence of
jobs on each server. The relevant work to our proposed system
is summarized in Table 1. We think the data in this table will
enable readers to rapidly pinpoint areas in need of more study,
analysis, and development.

III. SYSTEM MODEL AND BACKGROUND
Before explaining the systematic process and background in
detail, the schematic symbols used in the research work are
given in Table 2.

A. MATHEMATICAL TASK MODEL
A periodic task model is used where a task τi is characterized
by the following three parameters.

• Period Pi
• Relative deadline Di
• Worst-case execution time Ci
A task τi needs Ci units of central processor shares by Di.

The set T = τ1, τ2, . . . τn comprises all n our tasks or
activities. The resources’ usage of a single task and total core
or handling system use is given by (1) and (2).

Ui =
Ci
Pi

(1)

U (δi) =

k∑
i=1

Ci
Pi

(2)

The core or system number i is represented by δi.
The rate-monotonic scheduler assigns high priorities to

tasks having smaller periods, i.e., priority τi ∝
1
Pi
.

The first feasibility test for RM scheduling is called
LL-bound (Liu and Layland) which states that inherent
deadline task proposed by Liu and Layland in [18]. Wherever
d = p is possible on core i if and only if (3) is satisfied:

n
(
2

1
n − 1

)
≥ U (1i) (3)

The hyperbolic bound (HB) test [26] shows that a task is
operatable on core i if (4) is satisfied:

2 ≥

n∏
h=1

(Ui(1i) + 1) (4)

When all cores function at low speed, the symmetric
performance of the multi-core system is possible [21].
The multi-core systems in edge-computing result in power
leakage when they operate at high speed. To avoid the
above-mentioned problem and conserve energy, the cores
need to operate at the same minimum possible frequency.
To formulate our problem, we assume that a 0 is schedulable
on a universal core. As indicated by authors in [16], the total
responsibility of τi any time occurrence t is the total execution
time demand of τi and the total workload of higher priority
tasks than τi. Mathematically, it is given by (5):

Li(t) = Ci +
i−1∑
j=1

⌈
t
Pj

⌉
· Cj (5)

From (5), it can be observed that a task τi is possible on
a general core δi at any time occurrence t if and only if the
following (6) is satisfied:

t ≥ min
t∈Si

Li(t) (6)

In (6), Si represents scheduling points and t represents a
scheduling point and set it in appropriate way such that the
criteria in (7) is met:

Si = {l · Pi | j = 1, . . . , i; l = 1, . . . , ⌊Pi/Pj⌋} (7)

After signifying the feasibility of a task, the task set 0 suits
possible when criteria in (8) is met:

1 ≥ max
i=1,...,k

{
mint∈Si Li(t)

t

}
(8)

The authors in [21] incorporated the speed component in
the task’s schedulability analysis, which expresses that a task
is operatable with speed fi when it is schedulable at any point
of t ∈ Si. Formally, it can be mathematically written as given
in (9):

fi ≥ min
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

t

 (9)

In the author’s previous work [21], the lowest speed for
a task τi processing was obtained by testing all values of
t ∈ Si. The lowest possible speed termed as the LeFeS can
be obtained by (10).

fi ≥ min

max
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

t

 (10)

The mathematical formulations and obtained results reveal
that speed gained through FiFeS ≥ LiFeS and therefore,
power consumption (energy use) spent by LeFeS is in a

54882 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

TABLE 1. Summary of the related work, closest to GA-LeFeS, with respect to various evaluation criteria.

TABLE 2. List of notations and symbols.

smaller amount than or equivalent to the power consumed by
FiFeS i.e., FiFeSpower ≥ LeFeSpower . In the present research,
the FiFeS paradigm is further extended by hybridizing
with a genetic algorithm in order to further improve the
system speed, which in turn improves the system power.
This hybridized technique is known as the GA-FiFeS
technique [31], [32].

IV. THE PROPOSED MODEL
In Fig. 1, we elaborate on the working process of the proposed
method. The whole process is divided into two sub-processes;
the first feasible speed calculation and the optimization using
genetic algorithm. The process of the first feasible speed
calculation is denoted by the red box. Initially, for a generic
task, τi using (7) the scheduling points set is calculated. Then
task workload on scheduling points is determined by (5).
Using (6) the execution possibility of a task τi on a core
is checked. The system speed by using this t is calculated
by (9), if the task τi is possible at a point t , which excludes
further scheduling points from feasibility analysis amid this
speed called FiFeS. If the task τi is not viable at the point t ,

then the next t is tested. Thus, this interaction goes on until
the first possible point is reached by reusing a similar cycle.
It becomes the initial population for the Genetic algorithm
if FiFeS for every task in the task set 0 = τ1, τ2, . . . , τn is
calculated.

The process of GA is shown in Fig. 1 outside the red box.
In GA, further processing the values of phenotype must be
converted into genotype because the FiFeS values behave in
phenotype. As such, for further steps, the FiFeS values are
necessary to transform into binary form because its values are
in decimal form. In the initial population, all the offsprings’
fitness values are calculated. But in (11) the fitness function
in our case is given.

min
fi

Such that

min

max
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

t


≤ fi and fi ≥ fi−1 (11)

This condition fi is the FiFeS obtained by (10) are satisfied
because by min(fi) we mean minimizing the FiFeS. The
next step is the selection of offspring, when the fitness
values are calculated then the offspring’s selection has many
ways such as: (i) tournament selection, (ii) roulette wheel
selection, and (iii) random selection [30]; because each of
the selections has its pros and cons. Due to the likelihood
of the concept of GA [29] ‘‘survival of the fittest’’, the
author of [29] uses a tournament selection method. For the
cross-over phase, selecting two offsprings from the original
population is achieved and then the tournament is applied
to randomly selecting four offsprings in the selection phase.
As our problem is a minimization problem, that is why we
select the offspring havingminimum speed in the Tournament
Selection Process (TSP). The whole TSP mechanism is
pictorially presented in Fig. 2.

A. KEY DRIVERS OF THE GENETIC ALGORITHM
The key drivers of the GA algorithm are mutation and cross-
over. The Mutation process happens in a single offspring,
while for the cross-over process, at least two offsprings are
mandatory.

VOLUME 12, 2024 54883



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

FIGURE 1. The workflow of the proposed model.

FIGURE 2. The Tournament selection process.

1) THE CROSS-OVER PROCESS
The cross-over is the process of reproduction where parents
meet to produce children/offspring. The offspring get some
characteristics of their own but also inherit some features
from their parents. Between two offsprings, both at single or
multiple points, the cross-over occurred. These points may
vary or be fixed, but the authors used a single-point cross-
over while this point is not fixed. The following Fig. 3 (a)
and Fig. 3 (b) show the cross-over process.

2) THE MUTATION PROCESS
Traits are transmitted from parents to offspring through
cross-over, and mutation is liable for the offspring’s specific
qualities. A minor change in the structure of children’s genes
is called Mutation. After crossover, the mutation occurs in
a single offspring and also can be single-bit or bitwise.
But usually, the probability of mutation is retained very
low, which is why mutation does not occur in offspring
occasionally. In the objective function, there are high hazards

of convergence, if the probability is high of the mutation.
To trap out from local minima, the mutation is utilized.
But in our case, the probability of mutation is 0.1 because
the authors used single-point mutation. First authors check
the possibility that mutation will occur at the point or not,
authors arbitrarily select a mutation point and the bit altered
consequently, if it fulfills the mutation probability. In any
case, leaves the offspring, all things considered, on the off
chance that it is absurd. Fig. 4 shows the process of mutation.
In the single-point-mutation process, we select randomly

a point and checked only once the probability of mutation
occurrence. In bitwise-mutation, the chance is tested at each
piece to transform the piece or hold it, all things considered.
Using (11) the fitness values are calculated for the fresh
offspring next to the mutation and cross-over processes. If the
offspring’s old fitness value is greater than the new fitness
value of an offspring, then all old offsprings are replaced with
the new offsprings as shown in (12).

In the single-point-mutation process, we select randomly
a point and check only once the probability of mutation

54884 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

FIGURE 3. The process of cross-over.

FIGURE 4. The mutation process.

occurrence. In the bitwise-mutation, the chance is tested
at each piece to transform the piece or hold it, all things
are considered. Using (11) the fitness values are calculated
for the fresh offspring next to the mutation and cross-over
processes. If the offspring’s old fitness value is greater than
the new fitness value of an offspring, then all old offsprings
are replaced with the new offsprings as shown in (12).

Old(fi) > New(fi) (12)

For further iterations, in the population the values are
retained if the offspring whose new fitness value is not less
than its old fitness.

By summing up the above conversation, GA-FiFeS works
on the acquired fi through FiFeS by utilizing the primary
drivers of GA, with the end goal that the new speed is not
more than that got through LeFeS. Thus, we can undoubtedly
get fi that FiFeS ≥ GA − FiFeS ≥ LeFeS. Various steps in
the proposed process are described in Alg. 1.

B. FEASIBILITY CHECKING THROUGH GA-FiFeS
APPROACH
A task τi execution is possible using the FiFeS technique if
and only if, By rearranging (9) and (10), we get (13):

t ≥ min
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

fi

 (13)

And using LeFeS if, and only if, a task τi is feasible if (14)
holds:

t ≥ min

max
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

fi

 (14)

Like FiFeS ≥ GA − FiFeS ≥ LeFeS, as we determine
that the fi acquired through LeFeS, FiFeS and GA-FiFeS
and the required execution time increases if the fi value
decreases. If a task execution is possible at FiFeS, it may also
be possible at LeFeS as presented in [21]. We can determine
that LeFeStime ≥ GA−FiFeStime ≥ FiFeStime from the above
discussion. Therefore, it might be possible to execute a task
at GA-FiFeS, if a task is viable at LeFeS. Fig. 5 elaborates on
the flow of the GA-FiFeS technique.

C. COMPUTATIONAL COMPLEXITY
As discussed in [2], the time complexity of FiFeS is mlog(n)
where m shows the amount of time taken in calculating the
number of scheduling points and log(n) is the amount of
time taken to find the first feasible point i.e. to calculate
the speed at that particular point. The time complexity of
LeFeS is O(mn), where m shows the amount of time taken
in calculating the number of scheduling points, and n is
the amount of time taken in calculating the speed at every
feasible point, and finally selecting minimum speed among
the calculated speeds. The time complexity of GA-FiFeS is

VOLUME 12, 2024 54885



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

Algorithm 1 The GA-FiFeS Algorithm
Input: GA-FiFeS values
Output: Set of min(fi) values
Calculate individual fi of all the offsprings in the initial population (FiFeS) ;
for epoch:1 to total number of epochs do

Step 1: Tournament selection ;
Select randomly Offi where i41 and arrange a tournament between Off (1, 2) and (3, 4). ;
Select those Off as parent whose fi > opponent i.e. Handle ties arbitrary ;
Step 2: Cross over ;
Select p where 1 ≤ p ≤ size(Off ) ;
Cross over the two parents Off at p. Step 3: Mutation ;
Select p where 1 ≤ p ≤ size(Off ) ;
if probmut lies in the range of thresholdmut then

mutate the bit at p ;
else

retain the bit as it is ;
end
Step 4: Calculate fi of the two new Off ;
if New(fi) < Off (fi) i.e. Handle ties arbitrary then

Replace old Off with new Off ;
else

Retain the old Off as it was (before crossover and mutation) ;
end
epoch = epoch +1 ;

end
return

O(mlog(n) + k), where mlog(n) is the amount of time taken
by the FiFeS and k is the amount of time taken by the genetic
algorithm portion of the GA-FiFeS algorithm. The amount of
k depends on the number of iterations (epochs/population)
in the genetic algorithm. If the value of k is high enough
to the amount of n then the GA-FiFeS will take more time
than LeFeS and if the value of k is small then GA-FiFeS will
take less time than the LeFeS technique. However, existing
counterparts for the FiFeS beat our both proposed approaches
if time is the comparison parameter [38], [39].

As we know that f = 1/t which is of concern i.e.
we are interested in lowering the speed (frequency) of the
CPU and, hence, power consumption (energy); therefore, the
relationship of GA and LeFeS methods may become like
f = LeFeS ∈ O(g(FiFeS)). This means that if the speed
of the CPU is taken as a comparison parameter then the
FiFeS approach is the upper bound for the LeFeS method i.e.
0 ≤ f (LeFeS) ≤ C(g(FiFeS)) and if time is the comparison
parameter then all these terms occurs in a reverse order.
However, if speed is the comparison parameter then the above
relationship can also be written as f (FiFeS) ∈ ω(g(LeFeS)).
This means that the LeFeS method is the lower bound for the
FiFeS technique i.e. 0 ≤ C(g(LeFeS)) ≤ f (FiFeS).

V. RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
For experimental results and analysis, the three tech-
niques FiFeS, GA-FiFeS, and LeFeS were compared using

numerical simulations in the MATLAB software. With a
step size of 1, random task sets with sizes between [5, 50]
were created in order to evaluate and compare the three
methods. The average values of 300 runs for each of the task
sets 5 through 50 are evaluated and visually plotted in the
following sections. The task durations were chosen at random
from a range of [100, 10,000] that was evenly distributed.
In order to derive the relevant task execution needs Ci for τ1,
uniformly distributed random values were selected from the
range [1,Pi]. The tasks were prioritized in accordance with
the Rate Monotonic (RM) scheduling guidelines. In other
words, the job priority increases with a shorter task period
and vice versa. We first maintain the system utilization at
0.69 or ln(2), which is rather low, in order to have a viable
RM schedulable task set. Moreover, the CPU runs at various
speeds, i.e. frequencies, where a lower speed has a lower
energy consumption and vice versa. We assume that a pro-
cessor has 10 major operational levels as detailed in Table 3.

B. EVALUATION METRICS
We use three evaluation metrics to compare the results of
the proposed algorithm with the closest rivals: (i) speed;
(ii) energy consumption; and (iii) execution time. Note that
speed is related to the CPU frequency (measured in Hz) that
denotes the CPU speed for a particular task set. We assume
that the CPU operates at multiple speeds i.e. dynamic
voltage and frequency scaling (DVFS). Energy consumption
is measured in Watts hours (Wh) and denotes the amount of

54886 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

TABLE 3. Operational levels and the respective speed ranges.

TABLE 4. Experimental results in terms of task set sizes, required speeds, normalized energy consumption, and required execution times for various
techniques.

energy consumed by all CPUs at the end of each experiment.
Note that energy consumption is directly proportional to the
speed of the CPU. Finally, execution time is measured in
seconds (s) and denotes the total CPU time for all tasks in
a particular task set.

C. RESULTS DISCUSSION
The empirical results and evaluation of FiFeS, LeFeS, and
GA-FiFeS are considered in this section. The obtained results
for various techniques, in terms of task set sizes, required
speeds, normalized energy consumption, and required exe-
cution times are shown in Table. 4.

Under the FiFeS, LeFeS, and GA-FiFeS procedures,
we plot the speeds essential for task sets viability shown in
Fig. 5. which show, obviously, that FiFeS is fewer high-speed
runs than GA-FiFeS, and that is why FiFeS performs better
than GA-FiFeS. Fig. 5 (a) is based on 150 and Fig. 5 (b) is on
400 epochs for GA-FiFeS. The LeFeS is the optimal solution
sowith an increase in the number of epochs (new populations)
the GA-FiFeS will behave like LeFeS while as the number of
epochs decreases then the GA-FiFeS approach behaves like
the FiFeS technique.

Following are some of the inferences, justifications, and
mathematical perspectives that are discussed based on our
empirical evaluation, the results obtained, and their analysis:

• When speed is used as a testing attribute, then GA-FiFeS
achieves better than FiFeS. From a Justification and
mathematical perspective, for speed calculation, FiFeS
uses (9), and the result of this is the input for the
GA-FiFeS. We also apply mutation and cross-over
operations due to the optimization properties of
GA-FiFeS that improve the outcomes obtained by FiFeS
due to the objective or fitness function of the GA-FiFeS
which is min(fi). At the point when the speed is thought
about, we noted that the GA-FiFeS method outperforms
the FiFeS technique.

• If speed is the testing criterion, the supremacy of LeFeS
over FiFeS and GA-FiFeS is shown in Fig. 5. From
the obtained results, anyone can easily conclude that
the LeFeS algorithm runs with less feasible speed than
GA-FiFeS and FiFeS. We observed from justification
and mathematical perspective; that when speed is under
consideration, LeFeS is efficient [21]. Hence, as clear
from GA-FiFeS constraints, we set a restriction that the
speed got through GA-FiFeS should not be exactly the
speed acquired by the LeFeS technique. This is evident
from the GA-FiFeS constraints given by (15):

min

max
t∈Si

Ci +
∑i−1

j=1

⌈
t
Pj

⌉
Cj

t

 ≤ fi (15)

VOLUME 12, 2024 54887



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

FIGURE 5. Flow chart of the Genetic Algorithm based First Feasiable Speed (GA-FiFeS) Technique.

FIGURE 6. The required speeds for LeFeS, FiFeS, and GA-FiFeS approaches [lower graphs denote minimum CPU speed for tasks
execution] – The GA-FiFes method performs better than FiFes and for higher epoch GA-FiFes is comparable to the LeFes approach.

The energy usage of GA-FiFeS, LeFeS, and FiFeS
algorithms are shown in Fig. 6, respectively. Fig. 6 (a)
used 150 and Fig. 6 (b) used 400 epochs for the
GA-FiFeS technique.

• The GA-FiFeS does not have as much power (energy)
as compared to the FiFeS method. The mathematical
viewpoint and justification is, that it is evident from the
first inference that the speed got through GA-FiFeS is

not exactly as of FiFeS. As we know that P = V 2
× f

and E = P × T and the power (energy) values for
GA-FiFeS will outperform FiFeS values, as we put the
speed values acquired by FiFeS and GA-FiFeS in the
previous relations.

• The LeFeS uses less energy or power than GA-FiFeS
and FiFeS, the mathematical perspective and justifi-
cation are, as clear from the justification of previous

54888 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

FIGURE 7. The Normalized energy usage of LeFeS, FiFeS, and GA-FiFeS approaches [lower graphs denote minimum energy consumption
for tasks execution] – The GA-FiFes method performs better than the FiFes approach and for higher epoch GA-FiFes is comparable to the
LeFes approach.

implications 2 and 3. The essential execution times of
GA-FiFeS, LeFeS, and FiFeS approaches are shown in
Fig. 7 and it is clear that when desirable execution-time
is the analysis factor, GA-FiFeS defeats LeFeS. The
results based on 150 epochs and 400 epochs are shown
in Fig. 7 (a) and Fig. 7 (b) for GA-FiFeS, respectively.

• In the required execution time, the proposed GA-FiFeS
defeats the LeFeS approach. In the justification, for the
detection of the least feasible speed, the LeFeS method
checks all scheduling points of every task. Therefore,
it takes extra execution time. Whereas, GA-FiFeS takes
the first feasible point, for each task, and subsequently
uses GA for optimization. The GA-FiFeS takes a
negligible portion of performance time. Thus, GA-FiFeS
overthrows LeFeS in the viewpoint of expected execu-
tion time. The execution times are shown in Fig. 8.

• In required execution (response) time, FiFeS defeats
both the GA-FiFeS and LeFeS approaches. In its jus-
tification, as clear from previous inferences, in terms of
execution time GA-FiFeS defeats the LeFeS approach.
The result of FiFeS turns into input for GA-FiFeS.
Consequently, in the required execution time, the FiFeS
defeats LeFeS and GA-FiFeS approaches.

• If GA-FiFeS is used, a task execution is possible
using GA-FiFeS if a task finishes within its assigned
deadline. Themathematical perspective and justification
is, as inferred from inference 5, the necessary execution
time of GA-FiFeS is not as much as reported for the
LeFeS technique i.e., LeFeStime ≥ GA − FiFeStime.
Furthermore, the outcomes in [19] show that a task is
feasible at FiFeS, it might likewise be possible at the
LeFeS. From this, we can determine that LeFeStime ≥

GA− FiFeStime ≥ FiFeStime.

• Survival of the fittest proof through GA is as follows.
For the Justification, the concept of Darwin’s philosophy
and hence of GA is ‘‘Survival of the fittest’’ [29]. It is
clear from the results that when the amount of epochs
is less, then the GA-FiFeS works like FiFeS as shown
in Fig. 5, Fig. 6, and Fig. 7. But the fittest values are
attained when the number of epochs increases, then the
GA-FiFeS acts like the LeFeS method as the number of
iterations increases.

• The last inference is, through the GA-FiFeS, the
obtained fi values are non-decreasing. For this justifi-
cation, the second constraint of the fitness function is
referred to where it is clear, that fi ≥ f(i− 1). Therefore,
through the GA-FiFeS technique, the fi values are
non-decreasing.

D. CRITICAL ANALYSIS AND SCALABILITY
With the size increase of the task set, as evident from the
experiments, the proposed solution has shown no significant
performance improvements over the FiFeS algorithm. There
are two possible reasons for this situation: (i) existing tradeoff
between task parameters; and (ii) resource utilization [9].

In respect to (i), the characteristics of the tasks themselves
might be influencing the performance comparison due to
the fact that certain types of tasks may favor one algorithm
over another, depending on factors like task dependencies,
resource requirements, or deadlines [28]. In respect of (ii),
a solution might perform similarly in terms of raw execution
time but bemore resource-efficient. Therefore, further assess-
ment is needed whether your proposed solution effectively
utilizes available resources (e.g., CPU, memory) compared
to the FiFeS technique [19].

VOLUME 12, 2024 54889



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

FIGURE 8. Execution times for FiFeS, GA-FiFeS, and LeFeS approaches [lower graphs denote minimum execution times for tasks] – The
GA-FiFes method performs better than the FiFes approach and for higher epoch GA-FiFes is comparable to LeFes approach.

Moreover, the complexity of the GA algorithm can also
affect the overall performance of the proposed GA-FiFeS
method. In case both algorithms i.e. GA-FiFeS and FiFeS
have similar time complexities, then it is expected that their
performance would be comparable, regardless of the size of
the task set.

The scalability of a task scheduling algorithm for real-
world large-scale scenarios is essential for ensuring that it
can effectively handle increasing workloads, task volumes,
and system demands [40], [41]. This should be noted that
GA-FiFeS incorporates load-balancing mechanisms, which
can lead to balanced resource utilization in large-scale scenar-
ios. Ensuring efficient load balancing becomes increasingly
important as the number of tasks and resources grows to
prevent the overloading of individual resources andmaximize
overall system throughput. Moreover, the proposed algorithm
can easily be modified with fault-tolerance approaches.

We studied the scalability of the proposed method under
various workload conditions, task set sizes, task resource
utilization, number of processors or cores, and heterogeneity
of resources. We observed an existing tradeoff among various
performance evaluation metrics. Moreover, the FiFeS is
known for its simplicity and efficiency, often with a time
complexity that is linear or close to linear with respect to the
number of tasks and resources [42], [43]. We believe, that the
GA method can make the complexity of GA-FiFeS a bit high
but still, it is very close to linear. Therefore, linear scaling
makes it well-suited for handling large-scale task scheduling
scenarios efficiently.

VI. CONCLUSION AND FUTURE WORK
In this research, we focused on energy and performance-
efficient scheduling of real-time tasks on high-performance
edge computing systems while ensuring that they meet
their deadlines. By using the concepts of GA, we enhanced

the power and speed viewpoints of the classical FiFeS
approach, and this improved variation of the FiFeS algorithm
is named as GA-FiFeS technique. We observed that the
GA-FiFeS method is more effective in power and speed
consumption than the FiFeS approach which is proved
through several plausible assumptions and experimental
results. The GA-FiFeS algorithm has improved results as
compared to the LeFeS method while taking the expected
time of execution as an assessment feature for analysis.

For future directions, we suggest that the analysis of
the performance of a specific task time of execution Ci
through alteration in speed fi will give reasonable results.
Furthermore, for a distinct task, the correlation between Ci
and fi is Ci ∝

1
fi
and the value of Ci decreases consequently if

there is an increase in fi. In addition, this is for a singular task,
but if there are multiple dependent and independent tasks
then what will be the impact? Another alternative for future
direction is to balance the load among the processing units or
cores in edge computing if there are dependent tasks and what
will be the impact on individual execution unit speed when
tasks are independent. we will also investigate the scalability
of our approach to large-scale cloud computing servers while
accounting for the heterogeneity of resources and workloads.

ACKNOWLEDGMENT
This research has received support from the Department of
Computer Science, Abdul Wali Khan University, Mardan
(AWKUM), Pakistan; the University of Buner, Khyber
Pakhtun Khwa, Pakistan; and Kardan University, Kabul,
Afghanistan. The study was carried out within the framework
of the Ph.D. program.

REFERENCES
[1] H. Hussain et al., ‘‘A survey on resource allocation in high performance

distributed computing systems,’’ Parallel Comput., vol. 39, no. 11,
pp. 709–736, 2013.

54890 VOLUME 12, 2024



H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

[2] H. Hussain, M. Shoaib, M. B. Qureshi, and S. Shah, ‘‘Load balancing
through task shifting and task splitting strategies in multi-core environ-
ment,’’ in Proc. 8th Int. Conf. Digit. Inf. Manage. (ICDIM), Sep. 2013,
pp. 385–390.

[3] A. Burmyakov, E. Bini, and C.-G. Lee, ‘‘Towards a tractable exact test for
global multiprocessor fixed priority scheduling,’’ IEEE Trans. Comput.,
vol. 71, no. 11, pp. 2955–2967, Nov. 2022.

[4] W. Shu, K. Cai, and N. N. Xiong, ‘‘Research on strong agile response
task scheduling optimization enhancement with optimal resource usage in
green cloud computing,’’Future Gener. Comput. Syst., vol. 124, pp. 12–20,
Nov. 2021.

[5] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani,
J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya,
C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich,
and P. Bouvry, ‘‘An overview of energy efficiency techniques in cluster
computing systems,’’ Cluster Comput., vol. 16, no. 1, pp. 3–15, Mar. 2013.

[6] S. Bharany, S. Badotra, S. Sharma, S. Rani, M. Alazab, R. H. Jhaveri,
and T. R. Gadekallu, ‘‘Energy efficient fault tolerance techniques in green
cloud computing: A systematic survey and taxonomy,’’ Sustain. Energy
Technol. Assessments, vol. 53, Oct. 2022, Art. no. 102613.

[7] F. Pinel, J. E. Pecero, S. U. Khan, and P. Bouvry, ‘‘Energy-efficient
scheduling on milliclusters with performance constraints,’’ in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun., Aug. 2011, pp. 44–49.

[8] L. Wang, S. U. Khan, D. Chen, J. Kołodziej, R. Ranjan, C.-Z. Xu, and
A. Zomaya, ‘‘Energy-aware parallel task scheduling in a cluster,’’ Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1661–1670, Sep. 2013.

[9] A. Chhabra, G. Singh, and K. S. Kahlon, ‘‘Performance-aware energy-
efficient parallel job scheduling in HPC grid using nature-inspired hybrid
meta-heuristics,’’ J. Ambient Intell. Humanized Comput., vol. 12, no. 2,
pp. 1801–1835, Feb. 2021.

[10] S. Ullah Khan, ‘‘A goal programming approach for the joint optimization
of energy consumption and response time in computational grids,’’ in Proc.
IEEE 28th Int. Perform. Comput. Commun. Conf., Dec. 2009, pp. 410–417.

[11] D. Chen, L. Wang, X. Wu, J. Chen, S. U. Khan, J. Kołodziej, M. Tian,
F. Huang, and W. Liu, ‘‘Hybrid modelling and simulation of huge crowd
over a hierarchical grid architecture,’’ Future Gener. Comput. Syst., vol. 29,
no. 5, pp. 1309–1317, Jul. 2013.

[12] C. Wen, J. Yang, L. Gan, and Y. Pan, ‘‘Big data driven Internet of Things
for credit evaluation and early warning in finance,’’ Future Gener. Comput.
Syst., vol. 124, pp. 295–307, Nov. 2021.

[13] D. Kanakadhurga and N. Prabaharan, ‘‘Demand side management in
microgrid: A critical review of key issues and recent trends,’’ Renew.
Sustain. Energy Rev., vol. 156, Mar. 2022, Art. no. 111915.

[14] C.-G. Wu, W. Li, L. Wang, and A. Y. Zomaya, ‘‘An evolutionary fuzzy
scheduler for multi-objective resource allocation in fog computing,’’
Future Gener. Comput. Syst., vol. 117, pp. 498–509, Apr. 2021.

[15] O. M. AlMendah and S. M. Alzahrani, ‘‘Cloud and edge computing secu-
rity challenges, demands, known threats, and vulnerabilities,’’ Academic
J. Res. Sci. Publishing, vol. 2, no. 21, pp. 156–175, 2021.

[16] J. P. Lehoczky, ‘‘Fixed priority scheduling of periodic task sets with
arbitrary deadlines,’’ in Proc. 11th Real-Time Syst. Symp., Dec. 1990,
pp. 201–209.

[17] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. S. Qureshi, H. Hussain,
I. Rentifis, N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, and
A. Y. Zomaya, ‘‘Survey on grid resource allocation mechanisms,’’ J. Grid
Comput., vol. 12, no. 2, pp. 399–441, Jun. 2014.

[18] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[19] H. Hussain, ‘‘Power efficient resource allocation in high performance
computing systems,’’ Ph.D. dissertation, Dept. Comput. Sci., COMSATS
Inst. Inf. Technol., Islamabad, Pakistan, 2016.

[20] Y. Chang, C. Gu, and F. Luo, ‘‘Energy efficient virtual machine
consolidation in cloud datacenters,’’ in Proc. 4th Int. Conf. Syst. Informat.
(ICSAI), Weihai, China, Nov. 2017, pp. 61–72.

[21] N.Min-Allah, H. Hussain, S. U. Khan, and A. Y. Zomaya, ‘‘Power efficient
rate monotonic scheduling for multi-core systems,’’ J. Parallel Distrib.
Comput., vol. 72, no. 1, pp. 48–57, Jan. 2012.

[22] X.Huang, K. Li, andR. Li, ‘‘A energy efficient scheduling base on dynamic
voltage and frequency scaling for multi-core embedded real-time system,’’
in Algorithms and Architectures for Parallel Processing: 9th International
Conference, ICA3PP 2009, Taipei, Taiwan, June 8–11, 2009. Proceedings
9. Berlin, Germany: Springer, 2009, doi: 10.1007/978-3-642-03095-6.

[23] E. Bini, G. Buttazzo, and G. Lipari, ‘‘Minimizing CPU energy in real-
time systems with discrete speed management,’’ ACM Trans. Embedded
Comput. Syst., vol. 8, no. 4, pp. 1–23, Jul. 2009.

[24] D. Ramegowda and M. Lin, ‘‘Energy efficient mixed task handling on
real-time embedded systems using FreeRTOS,’’ J. Syst. Archit., vol. 131,
Oct. 2022, Art. no. 102708.

[25] B. Khodabandeloo, A. Khonsari, P. Behnam, A. Majidi, and
M. H. Hajiesmaili, ‘‘Stereo: Assignment and scheduling in MPSoC
under process variation by combining stochastic and decomposition
approaches,’’ IEEE Trans. Comput., vol. 71, no. 11, pp. 2940–2954,
Nov. 2022.

[26] J. Huang, R. Li, J. An, H. Zeng, and W. Chang, ‘‘A DVFS-weakly
dependent energy-efficient scheduling approach for deadline-constrained
parallel applications on heterogeneous systems,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 40, no. 12, pp. 2481–2494,
Dec. 2021.

[27] S. Jadon and R. S. Yadav, ‘‘Deadline-constrained tasks’ scheduling in
multi-core systems using harmonic-aware load balancing,’’ Arabian J. Sci.
Eng., vol. 46, no. 4, pp. 3099–3113, Apr. 2021.

[28] K. S. Garud, S. Jayaraj, and M. Lee, ‘‘A review on modeling of solar
photovoltaic systems using artificial neural networks, fuzzy logic, genetic
algorithm and hybrid models,’’ Int. J. Energy Res., vol. 45, no. 1, pp. 6–35,
Jan. 2021.

[29] R. Smith, ‘‘Darwin and his critics. The reception of Darwin’s theory of
evolution by the scientific community,’’ Brit. J. Hist. Sci., vol. 7, no. 3,
pp. 278–285, Nov. 1974.

[30] E. K. Burke et al., Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. New York, NY, USA:
Springer, 2014, doi: 10.1007/978-1-4614-6940-7.

[31] S. Moulik, Z. Das, R. Devaraj, and S. Chakraborty, ‘‘SEAMERS: A semi-
partitioned energy-aware scheduler for heterogeneous MulticorE real-time
systems,’’ J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101953.

[32] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘HEALERS: A heterogeneous
energy-aware low-overhead real-time scheduler,’’ IET Comput. Digit.
Techn., vol. 13, no. 6, pp. 470–480, Nov. 2019.

[33] Q. Jiang, X. Xin, L. Yao, and B. Chen, ‘‘METSM: Multiobjective energy-
efficient task scheduling model for an edge heterogeneous multipro-
cessor system,’’ Future Gener. Comput. Syst., vol. 152, pp. 207–223,
Mar. 2024.

[34] A. Khiat, M. Haddadi, and N. Bahnes, ‘‘Genetic-based algorithm for task
scheduling in fog–cloud environment,’’ J. Netw. Syst. Manage., vol. 32,
no. 1, p. 3, 2024.

[35] S. A. Murad, Z. R. M. Azmi, A. J. M. Muzahid, M. M. H. Sarker,
M. S. U. Miah, M. K. B. Bhuiyan, N. Rahimi, and A. K. Bairagi, ‘‘Priority
based job scheduling technique that utilizes gaps to increase the efficiency
of job distribution in cloud computing,’’ Sustain. Comput., Informat. Syst.,
vol. 41, Jan. 2024, Art. no. 100942.

[36] S. A. Murad, Z. R. M. Azmi, A. J. M. Muzahid, M. K. B. Bhuiyan,
M. Saib, N. Rahimi, N. J. Prottasha, and A. K. Bairagi, ‘‘SG-PBFS:
Shortest gap-priority based fair scheduling technique for job scheduling in
cloud environment,’’ Future Gener. Comput. Syst., vol. 150, pp. 232–242,
Jan. 2024.

[37] P. Banerjee, S. Roy, A. Sinha, M. M. Hassan, S. Burje, A. Agrawal,
A. K. Bairagi, S. Alshathri, and W. El-Shafai, ‘‘MTD-DHJS: Makespan-
optimized task scheduling algorithm for cloud computing with
dynamic computational time prediction,’’ IEEE Access, vol. 11,
pp. 105578–105618, 2023.

[38] M. Zakarya, A. A. Khan, M. R. C. Qazani, H. Ali, M. Al-Bahri,
A. U. R. Khan, A. Ali, and R. Khan, ‘‘Sustainable computing across
datacenters: A review of enabling models and techniques,’’ Comput. Sci.
Rev., vol. 52, May 2024, Art. no. 100620.

[39] S. Wang, Z. Ding, and C. Jiang, ‘‘Elastic scheduling for microservice
applications in clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1,
pp. 98–115, Jan. 2021.

[40] M. Zakarya, L. Gillam, K. Salah, O. Rana, S. Tirunagari, and R. Buyya,
‘‘CoLocateMe: Aggregation-based, energy, performance and cost aware
VM placement and consolidation in heterogeneous IaaS clouds,’’ IEEE
Trans. Services Comput., vol. 16, no. 2, pp. 1023–1038, Mar. 2023.

[41] P. Hosseinioun, M. Kheirabadi, S. R. Kamel Tabbakh, and R. Ghaemi,
‘‘A new energy-aware tasks scheduling approach in fog computing using
hybrid meta-heuristic algorithm,’’ J. Parallel Distrib. Comput., vol. 143,
pp. 88–96, Sep. 2020.

VOLUME 12, 2024 54891

http://dx.doi.org/10.1007/978-3-642-03095-6
http://dx.doi.org/10.1007/978-1-4614-6940-7


H. Hussain et al.: Energy Efficient Real-Time Tasks Scheduling

[42] P. Pirozmand, A. A. R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi,
S. Mirkamali, and A. Slowik, ‘‘Multi-objective hybrid genetic algorithm
for task scheduling problem in cloud computing,’’ Neural Comput. Appl.,
vol. 33, no. 19, pp. 13075–13088, Oct. 2021.

[43] X. Fu, Y. Sun, H. Wang, and H. Li, ‘‘Task scheduling of cloud computing
based on hybrid particle swarm algorithm and genetic algorithm,’’ Cluster
Comput., vol. 26, no. 5, pp. 2479–2488, Oct. 2023.

HAMEED HUSSAIN received the bachelor’s
degree in information technology from Gomal
University, Dera Ismail Khan, Pakistan, in 2007,
and the M.S. and Ph.D. degrees in computer sci-
ence from the COMSATS Institute of Information
Technology (CIIT), Pakistan, in 2009 and 2017,
respectively. He is currently an Active Researcher.
He is the author of several international publica-
tions. His research interests include optimization,
machine learning, fog and edge computing, the

Internet of Things, algorithms real-time systems, resource allocation, and
load balancing in high-performance computing.

MUHAMMAD ZAKARYA (Senior Member,
IEEE) received the Ph.D. degree in computer
science from the University of Surrey, Guildford,
U.K. He is currently an Assistant Professor
with the Faculty of Computing and Information
Technology (FCIT), Sohar University, Oman, and
the Department of Computer Science, Abdul Wali
Khan University Mardan (AWKUM), Pakistan.
His research interests include cloud computing,
mobile edge clouds, the Internet of Things (IoT),

performance, energy efficiency, algorithms, and resource management.
He has a deep understanding of theoretical computer science and data
analysis. Furthermore, he also has a deep understanding of various statistical
techniques, which are largely used in applied research. His research has
appeared in several international conferences, journals, and transactions of
repute. He is a TPC Member of a few prestigious international conferences,
includingCCGrid, GECON, ICCCI, FIT, andUCC.He is anAssociate Editor
of IEEE ACCESS, Journal of Cloud Computing (Springer), and Journal of
Cluster Computing (Springer). He is the Program Director of the iFuture: a
leading Research Group, AWKUM, which has research collaboration with
the CLOUDS Laboratory, The University of Melbourne, Australia, and the
IoT Laboratory, Cardiff University, U.K.

AHMAD ALI received the Ph.D. degree from
Shanghai Jiao Tong University, China. He is
currently a Postdoctoral Researcher with the
Department of Computer Science and Engineer-
ing, Shenzhen University, China. His current
research interests include deep learning, big data
analytics, data mining, urban computing, cloud
computing, and fog computing. He is a Reviewer
of various SCI-journals, including Information
Sciences, Multimedia Tools and Applications,

Neural Computing and Applications, IEEE ACCESS, IEEE Internet of Things
Magazines, and Journal of Healthcare Engineering.

AYAZ ALI KHAN received the Ph.D. degree
in computer science from Abdul Wali Khan
University, Pakistan. He is currently an Assistant
Professor with the Department of Computer
Science, University of Lakki Marwat, Pakistan.
His research interests include cloud computing,
mobile edge clouds, the Internet of Things (IoT),
performance, energy efficiency, algorithms, and
resource management. He has a deep under-
standing of theoretical computer science and data

analysis. Furthermore, he also has a deep understanding of various statistical
techniques, which are largely used in applied research. His research has
appeared in several international conferences, journals, and transactions of
repute.

MOHAMMAD REZA CHALAK QAZANI
received the Bachelor of Engineering degree in
manufacturing and production from the University
of Tabriz, Tabriz, Iran, in 2010, the master’s
degree in robotic andmechanical engineering from
Tarbiat Modares University, Tehran, Iran, in 2013,
and the Ph.D. degree in modeling and simulation
of a motion cueing algorithm using prediction
and computational intelligence techniques from
the Institute for Intelligent Systems Research and

Innovation (IISRI), Deakin University, Australia, in 2021. He is currently
with the Department of Computer Science and Information Systems, Murray
State University, Murray, KY, USA, and an Assistant Professor with the
Faculty of Computing and Information Technology, Sohar University, Oman.
He is also an Alfred Deakin Post-Doctoral Research Fellow with IISRI,
Deakin University. His current research interests include model predictive
control, motion cueing algorithms, and soft computing controllers.

MAHMOOD AL-BAHRI received the Ph.D.
degree from Saint Petersburg State University
of Telecommunications, Saint Petersburg, Russia.
He has held prestigious academic positions at
renowned institutions. While pursuing the Ph.D.
degree, he was a Lecturer with the Department of
Communication Networks andData Transmission,
Saint Petersburg State University of Telecommu-
nications, from 2017 to 2019. Following that,
he was an Assistant Professor with the University

of Nizwa, Oman, from 2019 to 2020. Since 2020, he has been an Assistant
Professor with the Faculty of Computing and Information Technology, Sohar
University. His research interests include computer systems, networks, the
Internet of Things, and info-communication devices.

MUHAMMAD HALEEM received the M.S.C.S.
degree from the Department of Computer Science,
Abdul Wali Khan University, Mardan, Pakistan.
He is currently an Assistant Professor with the
Department of Computer Science, Faculty of Engi-
neering, Kardan University, Kabul, Afghanistan.
His research interests include the Internet of
Things, machine learning, cloud computing, par-
ticle swarm optimization, power systems, and data
analytics.

54892 VOLUME 12, 2024


