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ABSTRACT Concept drifts can occur due to various factors such as changes in the environment or sensor
degradation, posing significant challenges to machine learning systems by potentially skewing decision-
making processes. Therefore, detecting drifts is essential to maintain the integrity and functionality of these
systems. Automatic detectors based on statistical information are usually used to accomplish this task.
Optimizing drift detectors through tuning is crucial for effective concept drift analysis. However, relying on
user expertise or labeled data for supervised tuning can be challenging. In such cases, the use of unsupervised
tuning methods becomes a suitable alternative to adapt detectors to evolving data distributions. To address
this gap in the literature an unsupervised tuning method was proposed, leveraging a time series segmentation
method. This innovative approach aims to alleviate the reliance on labeled data or user expertise traditionally
associated with supervised methods, offering a more adaptive and automated means of tuning detectors.
Our results demonstrate that our proposed approach outperforms the default configuration in most evaluated
cases. Furthermore, we show that our approach can improve the hyperparameter tuning process when the type
of drift is known including supervised methods such as Random Search tuning. By adopting our approach,
we can achieve better performance in drift detection and improve the accuracy and reliability of systems that
rely on this critical task.

INDEX TERMS Algorithm tuning, concept drift, signal drift, drift detector.

I. INTRODUCTION
A sequence of signals, commonly referred to as a time
series, encapsulates representations of diverse natural phe-
nomena [1], [2], [3], [4]. Signal analysis is crucial for under-
standing historical trends, current states, and formulating
future predictions, organizing information sequentially while
preserving its temporal structure.

When a signal deviates from its expected trajectory,
a closer examination becomes necessary to determine if
the deviation arises from an inherent signal phenomenon or
external interference. Persistent deviations over time indicate
a phenomenon known as Concept Drift (CD), meaning a
fundamental change in the signal’s behavior. In such cases,
it is crucial to identify the exact moment when this CD
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occurred. To address this need, a methodology known as Drift
Detection (DD) is employed [5], [6].

DDs are specialized algorithms designed to quickly and
accurately identify CD instances in time-sensitive situations.
These detectors assess key performance metrics of a signal,
such as predictive accuracy or error rates, over consecutive
time intervals. By comparing these metrics across different
time frames, they detect statistically significant changes in
the model’s behavior, indicating the presence of CD. The
deployment of DDs is crucial across various domains [7],
[8], including signal processing [9], [10], [11], system
monitoring [12], process control [13], data analysis [14], [15],
and numerous other practical applications [16], [17].
Their main goal is to promptly identify substantial changes

in signals, indicating drifts, anomalies, trends, or other
critical events, to facilitate timely corrective actions. For
instance, in a healthcare monitoring system [18], a DD
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can quickly alert medical professionals to significant shifts
in a patient’s cardiac function, enabling swift intervention.
In financial analysis, the ability to identify trends in the
stock market [19] empowers investors to make well-informed
decisions. Furthermore, DDs are invaluable in detecting
fraudulent activities within financial systems [20], monitor-
ing security systems [21], and various other applications.
There is a clear need in the literature for the optimization

of DDs through tuning techniques that are independent of
user knowledge [22], [23], [24]. Despite the advancements in
this domain, the prevalent tuning techniques largely depend
on supervised learning paradigms [25], which may not
align with the practicalities of real-world implementations.
The challenge of acquiring labeled data for the purpose of
training and evaluating DDs presents a significant obstacle,
rendering the process not only impractical but also resource-
intensive. This limitation hinders detailed detector parameter
optimization, potentially resulting in suboptimal detection
and adaptive model performance. In this context, our research
aims to address this autonomous tuning process. To achieve
this goal, we propose an innovative unsupervised learning
approach to fine-tune DDs.

This unsupervised learning approach yields numerous
substantial advantages. Firstly, it amplifies the adaptability
and performance of detectors across diverse data distributions
which can be extended to real-world scenarios. The opti-
mizer facilitates automatic fine-tuning of hyperparameters,
alleviating the necessity for manual adjustments and expert
intervention. This, in turn, broadens the applicability of the
detectors. Furthermore, an efficient hyperparameter opti-
mizer contributes to heightened generalization capabilities
of DDs, ensuring robust performance on unseen data.
This aspect assumes a significance in unsupervised settings
where data distribution may dynamically evolve, requiring
detectors to adjust seamlessly without labeled information.
Additionally, an automated hyperparameter optimization
framework helps mitigate overfitting or underfitting issues,
thereby enhancing the overall reliability and accuracy of
change detection models.

We hypothesize that relying solely on default values for
DDs, commonly found in prevalent literature and libraries
like scikit-multiflow [26] and river [27], might not always
provide the optimal configuration. Building on this idea, our
methodology aims to enhance this decision-making process
by using an unsupervised approach for hyperparameter
tuning. This approach is grounded in the Change Detector
Segmentation (CDS) framework [28]. By leveraging the
principles of the CDS framework, our unsupervised tuning
strategy aims to surpass the limitations of default DDs
hyperparameters. It seeks a more precise configuration that
aligns with the dynamics of distribution shifts in signal data.

The unsupervised tuning method we propose begins by
segmenting a signal into various parts, followed by per-
forming a stationarity analysis on each segment. Within this
framework, we implement three specific heuristics anchored
in the principles of the Augmented Dickey-Fuller (ADF) test.

These heuristics establish new rules for identifying CD by
mapping the most change-prone and stable regions.

Given the nature of this unsupervised approach, which
does not inherently provide validation for the identification
of confirmed drift occurrences, we undertook a validation
process using a synthetic signal dataset. This dataset was
generated by the Configurable Signal Generator (CSG),
a novel tool introduced in our study. The CSG addresses
a notable void in the landscape of signal generation tools,
offering a mechanism for generating signals with precisely
defined change points. This capability ensures that the signal
generation process is fully configurable, enabling accurate
simulation and analysis of various signal behavior scenarios.

To fulfills a gap in existing signal generators by providing
precise information about where changes in the signal occur,
ensuring fully configurable signal generation to confirm
drift occurrences, we propose the Configurable Signal
Generator (CSG). The artificial signals produced by the
CSG are instrumental in evaluating the effectiveness of
our approach, offering a controlled environment to simulate
various scenarios of concept drift. This allows for a thorough
examination and confirmation of the unsupervised tuning’s
capability to adaptively identify and respond to changes

The paper includes a performance comparison of com-
monly used DDs, demonstrating that our proposed tuning
process generally surpasses the default configuration in most
cases. These findings advocate for the wide-scale adoption
of our approach in diverse real-world contexts, especially in
online drift detection scenarios such as data streams [29].
Additionally, we observed instances where our unsupervised
tuning outperforms supervised approaches like Random
Search [30]. It is important to emphasize that up to the time
when this study was conducted, no other unsupervised tuning
technique for DDs had been found.

The main contributions of this work are:

• An unsupervised approach for tuning DD
hyperparameters.

• A review of hyperparameter optimization techniques for
DDs.

• Identification of the most important factors for identify-
ing drifts in signals.

• The CSG, an artificial signal generator, for labeled drift
ocurrences within a signal.

The paper follows a structured approach. Section II lays
the groundwork by introducing essential definitions and
foundational concepts. Moving to Section III, we delve into
related work, highlighting the evaluated DDs and the tuning
process. In Section IV, we unveil our primary contribution:
an unsupervised approach for tuning DD configuration.
Section V details the materials and methods and the specific
configuration applied in our experiments. Within Section VI,
we present our experimental findings in detail, offering a
comprehensive analysis. Finally, Section VII concludes the
paper by summarizing our discoveries and pointing towards
potential future research directions.
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II. PRELIMINARIES
We begin by defining DDs. Next, we explore the crucial
relationship between the tuning process and stationarity,
a significant concept in this study. Understanding these
definitions is pivotal for grasping our forthcoming proposal.
Stationary signals possess specific statistical properties,
which the tuning process leverages to enhance DDs accuracy
and resilience in change detection. This process entails a
meticulous analysis of the input signal’s statistical properties
and the selection of optimal hyperparameters for the DD. This
fine-tuning enables the DD to respond more effectively to
dynamic changes.

A. DRIFT DETECTOR
DD is commonly employed in handling data streams,
which consist of an infinite sequence of data denoted as
S = (x1, y1), (x2, y2), . . . , (xt , yt ), . . .. Here, each instance is
represented by (xt , yt ), where xt represents a d-dimensional
vector arriving at time stamp t , and yt denotes the class label
of xt [31].

For univariate time series, the DD algorithm analyzes each
sample X of the time series at time t . It anticipates that a given
point Xt+n, with n as a time shift, should have a distribution
similar to the point Xt . Any deviation prompts an alarm.
However, in unsupervised approaches, lacking yt information
complicates the DD process significantly.

DDs analyze past data patterns to predict potential
changes. They are commonly deployed to detect CD, which
means alterations in data behavior over time [19]. Such
changes are frequent in data stream analysis [32]. Calibrating
these detectors involves selecting hyperparameters that align
best with data behavior, often employing techniques for
enhancement.

This study seeks to enhance the process of drift detection
by leveraging insights from the analysis of time series
stationarity. A stationary time series is characterized by
consistent statistical properties over time, such as mean and
variance, implying that intervals exhibiting less stationarity
are more likely to be fertile grounds for identifying detection
points by DDs.

B. TUNING
Tuning in machine learning involves systematically optimiz-
ing a model’s hyperparameters to enhance its performance
on a specific task or dataset [33]. Hyperparameters are
preset configuration settings, not learned from the data, that
govern themodel’s behavior and characteristics. They include
parameters like learning rate, regularization strength, network
architecture, and kernel parameters, among others.

The tuning process entails exploring a predefined hyper-
parameter space to discover the value combination that
maximizes a selected evaluation metric, like accuracy,
precision, recall, or F1 score. Techniques for this search
include Grid Search, Random Search, Bayesian optimization,
and gradient-based optimization methods [34].

During tuning, several iterations occur, evaluating various
hyperparameter settings by training and testing the model
on a validation dataset. Each configuration’s performance is
measured using the selected evaluation metric, and the set of
hyperparameters that yields the best performance is chosen.

Tuning is an iterative and computationally demanding
process, involving repeated model training and evaluation
for different hyperparameter combinations. Yet, fine-tuning
the hyperparameters enhances the model’s generalization,
performance, and robustness to unseen data.

C. STATIONARITY
In the context of random processes [35], a discrete-time or
continuous-time random process X (t) is deemed stationary if
the joint distribution of any set of samples remains unchanged
regardless of the time origin. Put simply, the joint cumulative
distribution function of X (t1), X (t2),. . . , X (tk ) remains the
same as that of X (t1 + τ ), X (t2 + τ ),. . . , X (tk + τ ) for all
time shifts τ , all k , and all choices of sample times t1, . . . , tk .
In signal analysis, stationarity refers to a signal’s inherent

stability over time, implying consistent statistical properties.
trends can disrupt this stability, rendering the signal non-
stationary. A signal’s temporal profile, marked by alternating
periods of stability, may be interrupted by trend changes
that alter its behavior. These fluctuations, prompted by trend
shifts, challenge the signal’s stationarity, revealing a dynamic
interplay between stability and variability. This interplay
underscores the complex dynamics of signal behavior.

The effectiveness of DDs relies on their capacity
to adapt accurately to CD in data signals. Leveraging
stationarity-based techniques allows us to detect shifts in sta-
tistical properties, enhancing the robustness and adaptability
of DDs. This method ensures that DDs can address evolving
data distributions, aligning with the broader goal of achieving
superior performance in dynamic data environments.

III. RELATED WORK
This section provides a literature review of commonly used
DDs and their particularities. In many DD applications,
hyperparameters often receive less attention compared to the
obtained results. Furthermore, this section reviews studies
focusing on tuning processes for drift identification.

A significant study, outlined in [36], performed a compara-
tive analysis of 14 different DDs. This investigation evaluated
their accuracy in detecting actual drift instances within the
dataset. Among the assessed detectors were HDDMA, Fisher
Test Drift Detector (FTDD), Wilcoxon Rank Sum Test Drift
Detector (WSTD), FHDDM, and HDDMW. An unexplored
gap in this study lies in the absence of tuning techniques
for the DDs, given that all were compared with their default
configurations.

Santos et al. [37] discuss the concept of data streams
and CD, where the distribution of data changes over time.
Several approaches have been proposed to address CD,
including using ensembles, focusing on recurring concepts,
and CD detection methods. Various DD methods have been
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proposed, each with its own hyperparameters, and optimal
values vary depending on the datasets used. The paper
introduces a genetic algorithm designed to optimize DD
hyperparameters. This approach aims to identify suitable
configurations adaptable to diverse scenarios, facilitating a
fair comparison of methods by adjusting hyperparameter
values based on the dataset characteristics utilized in the
experiments.

Gemaque et al. [38] introduced a taxonomy for unsuper-
vised CD approaches via a systematic literature review. This
review revealed two primary categories within recent sci-
entific publications on CD detection: articles encompassing
surveys and analyses of diverse CD approaches, and articles
proposing unsupervised CD methods. The unsupervised
and semi-supervised drift detection methods were further
classified into batch-based and online-based methods. Upon
analyzing the batch-based methods, it was noted that their
primary distinction lies in whether they monitor significant
data distribution changes across the entire arriving batch
or solely on a selected instance set. The online-based
methods were also examined, subcategorized based on their
approach to comparing the two involvedwindows during drift
detection.

Agrahari and Singh [39] discuss data streams and the need
to analyze data near real-time. Data stream mining involves
detecting changes in non-stationary data distribution, which
is a major challenge. Data points in a stream are generated
sequentially and independently under some probability
distribution. To effectively mine data streams, examples must
be processed only once, learned under memory restrictions,
processed in a limited amount of time, and ready to predict
class labels on demand. In the context of data stream mining,
one of the biggest challenges is dealing with semi-supervised
or unsupervised data, which often have very few or no
labeled data available for training. Or even solutions based
on methods such asMeta-Learning and Active Learning [23].
This lack of labeled data makes it difficult to train supervised
learning models and demands the use of unsupervised
or semi-supervised methods. Therefore, developing effec-
tive unsupervised and semi-supervised methods for data
stream mining is crucial for making accurate predictions
and discovering valuable insights in these challenging
scenarios.

Some reviews focus on the study of DDs in the streaming
data environment [40]. One of the main challenges in this
context is the scarcity of labeled data due to the large volume
of data processed in a short period of time. However, the
accuracy of the analysis requires labeled data. Therefore,
there is a need to develop unsupervised or semi-supervised
algorithms to address this issue and achieve high accuracy.

In the domain of Hyperparameter Optimization [41], the
Random Search approach has been extensively studied [42],
[52]. Nevertheless, it is imperative to underscore that these
methodologies predominantly operate in a supervised con-
text, requiring validation through comparisons with labeled
datasets.

Upon a thorough analysis, a significant gap emerges in
the realm of hyperparameter tuning for DDs. Notably, prior
research in this domain has largely overlooked the exploration
of unsupervised tuning methods. Addressing this research
gap, this study introduces an unsupervised approach for
tuning hyperparameters. As far as our knowledge extends, our
approach appears to be the first to explicitly address these
concepts. Several works identified in the literature utilize
supervised approaches for hyperparameter tuning. However,
the primary novelty of this study lies in the autonomous
optimization process, eliminating the necessity for user
intervention or prior domain knowledge.

IV. PROPOSED APPROACH
Our approach is oriented towards achieving unsupervised
tuning for DDs. To fulfill this objective, we propose a
novel combination of stationarity criteria derived from the
Augmented Dickey-Fuller (ADF) test. At the core of our
methodology lies an unsupervised framework called Change
Detector Segmentation (CDS), which adjust the inherent
hyperparameters of DD. Importantly, the CDS framework
was initially introduced to eliminate non-stationary samples
in time series data. In this study, we adapt this framework to
apply to any signal type, shifting its focus from segmenting
samples to accurately identifying them as drifts.

Unsupervised tuning methods eliminate the need for
annotated data, significantly reducing the time and resources
required for data labeling. This crucial advantage speeds
up the optimization process and extends the applicability
of tuning to contexts with limited availability or high costs
linked to acquiring labeled data, as seen in online scenarios.
This addresses a key concern in machine learning, where
access to abundant labeled data is often limited, offering a
promising opportunity to improve model performance under
resource constraints.

We present a comprehensive framework designed for
unsupervised tuning in signal. Our proposed approach
encompasses five key stages based on the CDS framework,
adeptly handling the complex challenge of precisely identi-
fying drift occurrences while optimizing the hyperparameters
governing DDs. The following steps outline the methodology
used in this study, enabling replication of the process:

A. STEP 1
Our investigation starts with the acquisition of a signal,
predominantly presented as a time series structure, serving
as the basis for evaluating and refining our approach. Within
the signal’s temporal evolution, CD become points of focus,
triggering subsequent steps in our process.

B. STEP 2
Step 2 encompasses segmenting the signal acquired in Step 1,
which can be executed in two manners:

1) For this study, we chose to divide the signal empirically
into 10 segments. This approach is advisable when the
user possesses limited prior knowledge of the signal.
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FIGURE 1. Unsupervised Tuning Methodology.

2) Alternatively, the signal can be segmented based on
its seasonality and requires knowledge of the signal’s
behavior by the user. Seasonality refers to recurring
cycles within the signal that display consistent behav-
iors over time.

Segmenting the signal serves a purpose: analyzing the
entire signal may complicate statistical information analysis,
reducing sensitivity to drifts. Utilizing smaller segments
enhances sensitivity, facilitating drift detection.

C. STEP 3
Step 3 defines the critical intervals, highlighted in red
in Fig. 1, alongside intervals indicating normal behavior,
marked in green. This distinction is established via the
stationarity test performed by the ADF test. To achieve this,
the following procedures are implemented:

1) Calculate the stationarity statistical value for the entire
signal.

2) Calculate the stationarity statistical value for each
segment.

3) Identify critical intervals as segments with a stationar-
ity statistical value higher than that obtained in Step 1.

We propose that regions with higher stationarity are less
likely to exhibit drifts compared to regions with lower
stationarity. Thus, we define critical intervals of the signal
by their lower stationarity.

D. STEP 4
The preceding steps are crucial for implementing unsuper-
vised tuning. Moving on to Step 4, we initiate our Heuristic
evaluation. The intervals derived from the segmented signal
guide us in configuring any DD appropriately. At this stage,
users can set a range of values for each DD hyperparameter
and employ our heuristics to identify the best choice.
Alternatively, users can use values empirically tested in
this study. Specifically, we explore four decay and growth
percentages relative to each detector’s default values. The
decay percentages are 95, 90, 75, 50, and 10, while the growth

percentages are 105, 110, 125, 150, and 1000. Our aim is to
categorize values showing slight and significant deviations
from default values to improve signal generalization.

For example, if a specific hyperparameter has a default
value of 10, the values used in this study to explore a wider
range of configurations will be as follows:

• Decay values: 9.5, 9, 7.5, 5, and 1.
• Growth values: 10.5, 11, 12.5, 15, and 100.

These values represent adjustments to the default value for
the hyperparameter under consideration.

E. STEP 5
Step 5 employs our heuristics to select the optimal hyper-
parameters, offering a specific combination that satisfies the
following definitions:

• Bigger in Smaller out (BISO): This heuristic selects the
hyperparameter configuration that detects the highest
number of drifts within the critical intervals while mini-
mizing detections outside of these intervals. BISO aims
for balanced sensitivity, focusing on placing themajority
of drifts within the critical intervals while reducing
detections in non-critical intervals. Consequently, BISO
is expected to effectively identify both abrupt and
gradual drifts.

• Bigger in (BI): This heuristic aims to select the
hyperparameter configuration that detects the highest
number of drifts within the critical intervals. BI is more
sensitive, potentially generating more false positives
compared to BISO. BI primarily excels in identifying
abrupt drifts. BI should exhibit efficacy in identifying
abrupt drifts.

• Smaller out (SO): In contrast to the previous heuristics,
SO prioritizes the hyperparameter configuration that
detects the lowest number of drifts outside the critical
intervals. However, its selective nature increases the
possibility of false negatives due to filtering out minor
variations.
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Our proposal orchestrates a methodical process that
combines unsupervised tuning and drift identification within
a signal. Through this innovative framework, we aim to tackle
the challenges inherent in drift detection, thereby advancing
unsupervised learning paradigms.

Additionally, our approach outlines a systematic steps
integrating unsupervised tuning and drift identificationwithin
a signal, shedding light on the complexities associated
with drifts. It offers a solution when users lack prior
knowledge about the analyzed signal, allowing them to
explore hyperparameter configurations surpassing the default
settings.

It is crucial to emphasize that our unsupervised tuning
extends its applicability to a wide range of DDs, regardless
of their specific characteristics.

V. MATERIALS AND METHODS
To validate our proposed approach in this study, it is crucial to
determine if our unsupervised tuning proves to be a feasible
alternative compared to the default configuration of DDs.
This validation hinges on demonstrating that our proposed
approach consistently outperforms the default configuration.
To accomplish this, we will outline the details of our
experimental setup.

To empirically study drift phenomena, it was essential to
create a reliable and carefully annotated synthetic database.
In this regard, the Configurable Signal Generator played a
crucial role, facilitating the generation of artificial signals
tailored to populate our designated database. This deliberate
use of synthetic data injection was intended to cultivate a
dataset characterized by the necessary qualities of precision
and reliability, thus providing an ideal basis for the systematic
execution of our experimental investigations.

To conduct the experiment, acquiring signals with
labeled CD samples—representing normal and CD-specific
instances—was indispensable. However, the absence of tools
providing such information was evident. Consequently, this
work developed the Configurable Signal Generator, ensuring
the mentioned specifications.

A. CONFIGURABLE SIGNAL GENERATOR (CSG)
Upon a comprehensive review of the current state of available
datasets, it becomes apparent that the majority lack sufficient
instances of concept drift or fail to provide proper labels
indicating the occurrence of such shifts, as discussed in [53].
This deficiency presents a substantial obstacle for researchers
and practitioners aiming to develop and evaluate models that
can effectively handle concept drifts in real-world scenarios.

Labeled datasets play a pivotal role in training and
validating machine learning models. However, in the context
of CD, the scarcity of labeled data reflecting dynamic changes
in the underlying data distribution hampers the progress in
developing adaptive and resilient models. The absence of
such datasets limits our ability to assess the generalization
and adaptability of models to changing environments.

To bridge this gap, the CSG, introduced in this study,
serves as an innovative tool designed to simplify the creation
of synthetic signals with adjustable hyperparameters and
labeled samples. Its purpose is to enable the generation of
signals with diverse statistical distributions. The main goal
is to empower users by providing precise control over the
signal’s amplitude and the introduction of perturbations based
on their preferences.

This signal generator operates based on five key hyperpa-
rameters, each for customizing the artificial signal to meet
specific requirements:

1) Number of Samples: this hyperparameter enables users
to specify the granularity of the generated signal by
defining the number of discrete data points or samples.
This configuration is important to achieve the desired
temporal or spatial resolution in the resulting signal.

2) Initial and Final Amplitude Values: this feature pro-
vides users with the flexibility to set the starting and
ending amplitude levels of the signal. It is instrumental
in modulating the signal’s intensity over a defined time
span or spatial region. Additionally, it facilitates the
creation of signals with varying amplitudes, such as
linear ramps or amplitude-modulated signals.

3) Minimum and Maximum Perturbation: perturbations
introduce deviations from the ideal or nominal signal,
incorporating stochastic elements into the generated
data. By specifying the minimum and maximum
perturbation values, users have precise control over
the level of randomness or noise added to the signal.
This capability allows for the creation of signals
that simulate real-world CD scenarios with inherent
variability and uncertainty.

Distinguished from prevailing signal generators [43], the
distinctiveness of the CSG arises from its ability to introduce
stochastic perturbance at various junctures within the signal’s
trajectory. Notably, the intervals demarcating these instances
of perturbation are recorded and provided as an output,
rendering the CSG an invaluable asset within the signal
generation paradigm.

The CSG sets itself apart from existing signal generators
by its unique capability to introduce labeled random dis-
turbances at different points along the signal’s path. What
makes it particularly noteworthy is that it records and outputs
the specific intervals where these disturbances occur. Other
signal generators commonly lack the explicit demarcation of
regions where perturbations are introduced. This drawback
becomes especially significant when trying to pinpoint the
exact areas in the signal’s path that have encountered
perturbations, hindering a detailed understanding of the
perturbation dynamics. This feature makes the CSG an
invaluable asset in the field of signal generation.

A pseudocode outlining the implementation of the CSG
is available in Algorithm 1. The function returns the
generated signal and a list of indices corresponding to the
positions where perturbations occurred, simulating CDs in
this generator.
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Algorithm 1 Generate Random Stream
1: procedure GenerateRandomStream
2: input: samples, ▷ represents the desired number of samples to generate for the signal,, e.g.: 10.
3: initial_amplitude, ▷ indicates the initial value of the signal’s amplitude, e.g.: 10.
4: final_amplitude, ▷ indicates the final value of the signal’s amplitude,, e.g.: 100.
5: min_perturbation, ▷ represents the minimum perturbation value to be applied,, e.g.: 1.
6: max_perturbation ▷ indicates the maximum perturbation value to be applied,, e.g.: 10
7: output: signal, ▷ represents the signal generated possibly containing perturbations.
8: perturbation_indices ▷ list of indices labeled as perturbations along the signal.
9:

10: signal ← initial_amplitude+ random(samples) ∗ final_amplitude
11: intervals← obtain_intervals(signal)
12: perturbation_indices← []
13: for i in range(intervals) do
14: perturbation← min_perturbation+ random(samples) ∗ max_perturbation
15: signal[i]← signal[i] ∗ perturbation
16: perturbation_indices.add(i)
17: end for
18: return signal, perturbation_indices
19: end procedure

FIGURE 2. Random signal generated from CSG. Initial amplitude = 10,
final amplitude = 60.

In this study, we consider the points where perturbations
were introduced as representations of CD. These marked
points will act as indicators, enabling us to evaluate whether
our unsupervised tuning approach can surpass the default DD
configuration.

Figs. 2 and 3 depict outputs generated by the CSG.
In these figures, it is evident that each generated signal
exhibits a random behavior with distinct characteristics. This
simulation aims to emulate the representation of real-world
data, capturing the inherent variability and unpredictability
often observed in practical datasets.

B. EXPERIMENTAL SETUP
We utilized various configurations during signal generation
to mimic natural signals and demonstrate the effectiveness

FIGURE 3. Random signal generated from CSG. Initial amplitude = 10,
final amplitude = 60.

of the proposed unsupervised tuning approach for DDs.
Table 1 showcases the diverse experimental setups involving
the generation of random perturbations for each signal.
The Signal column denotes the number of signals used
for the experiments. Each signal is generated with random
distributions. The Size column indicates the sample sizes for
the signals, set at 100, 1000, and 5000 samples, respectively.

Additionally, the Amplitude column details the amplitude
variation for each configuration. This variation is calculated
by determining the difference between the final and initial
amplitudes set during signal creation. The Perturbation col-
umn quantifies the degree to which the signal’s samples were
perturbed, with higher values indicating increased variability.
Here, perturbation values of 1.5 and 2 are considered as low
variations, while values of 4 and 10 are categorized as high
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TABLE 1. Signal generation configurations.

variations. A perturbation value of 1 means signals without
any perturbations.

To assess the efficacy of the unsupervised tuning process,
we evaluated various DDs: PH, ADWIN, DDM, HDDMA,
HDDMW, and KSWIN. Our evaluation aimed to validate
the performance of the default configuration by examining
the accuracy of each configuration in identifying drifts.
Initially, we visualized the Correct Detection of each DD
for every configuration using boxplots. Next, we analyzed
how detection was influenced by the number of samples in
the signal. Finally, we employed Friedman’s statistical test to
determine any significant statistical differences between the
techniques.

We used the default configuration as our starting point.
Additionally, we conducted a comparative analysis against
the Random Search (RS) tuning strategy, which acts as
a fundamental benchmark. RS aims to identify the best
hyperparameter configuration within a predefined range
by employing a random selection process rather than
exhaustively exploring all possible configurations [30]. It is
important to note that RS assumes a supervised context and
may not thoroughly explore the entire configuration space.

C. DRIFT DETECTORS
The selected DDs for experimentation in this study will
be delineated herein, with particular emphasis on the
hyperparameters associated with each of them, which will be
evaluated during the unsupervised tuning process.

1) PAGE-HINKLEY
The Page-Hinkley (PH) detector operates by maintaining
simultaneous averages of the ongoing analysis moment,
focusing solely on capturing detections without necessitating
alert generation. It leverages the Page-Hinkley test [44] to
discern deviations within the data. The pivotal determiner
in the drift detection process is the parameter lambda,
serving as a threshold value. The instantiation of a detec-
tion is prompted when the prevailing mean surpasses
the stipulated lambda value, thus activating the detection
mechanism.

2) PAGE-HINKLEY HYPERPARAMETERS
There are several key hyperparameters to consider in PH
detector. First, the hyperparameter mi refers to the minimum
number of instances that must be evaluated before the detec-
tor can accurately identify a change. This hyperparameter is
critical for ensuring that the detector is reliable and produces
accurate results. Another important hyperparameter is delta
(δ), which represents the delta factor for the Page-Hinkley
test. This hyperparameter plays a key role in determining the
sensitivity of the detector to changes in the data. The change
detection threshold (t) is another critical hyperparameter
in the PH detector. This threshold is used to determine
when a change has occurred in the data, based on the
magnitude of the change relative to the threshold. Finally,
the alpha (α) hyperparameter is the forgetting factor used to
weight the observed value and themean. This hyperparameter
is important for ensuring that the detector can adapt to
changes in the data over time, while still maintaining a
stable baseline for comparison. By carefully adjusting these
hyperparameters, it is possible to build a PH detector that is
highly effective at detecting changes in a wide range of data
sets.

3) ADWIN
ADWIN is a change detection algorithm proposed by Bifet
and Gavalda [45]. Its objective is to monitor a data stream and
maintain statistical information about it. The algorithm uses
a sliding window approach, where small portions of the data
stream are analyzed. The size of the window is predefined,
and statistical information such as the mean and variance
are calculated for each window. The ADWIN algorithm then
compares the mean of two adjacent windows, and if the
difference between the twomeans is greater than a predefined
threshold value referred to as delta (δ), it is considered as a
change point or drift in the data stream. ADWIN does not
issue alerts for every change detected but rather keeps track
of the changes and adjusts the window size accordingly to
adapt to the new data distribution.

4) ADWIN HYPERPARAMETERS
In the assessment of ADWIN, the focus was directed solely
towards the δ hyperparameter, meaning the confidence level
required for initiating a contraction of the sliding window
size. The complementary hyperparameter associated with
the sliding window dimensions, denoted as W , was not
subject to explicit tuning. This restraint was exercised owing
to ADWIN’s intrinsic capacity for autonomous adaptation,
ensuring the real-time adjustment of the window size in
response to the continuous influx of data.

5) DDM
To detect significant changes in data patterns, datamonitoring
systems frequently use error rate and standard deviation
analysis [7]. When the error rate increases beyond a certain
threshold, it is assumed that a change has been detected.

VOLUME 12, 2024 54263



R. P. Silva et al.: Unsupervised Tuning for Drift Detectors Using Change Detector Segmentation

This approach is known as the Drift Detection Method
(DDM). The DDM is commonly used in machine learning
applications to track model performance and detect changes
in data distribution over time.

6) DDM HYPERPARAMETERS
The DDM detector has a hyperparameter denoted as mi,
which specifies the minimum number of samples that need
to be analyzed before a change can be detected. In addition
to mi, DDM also has two other hyperparameters, wl and
ocl , which adjust the confidence levels for the warning and
out-of-control signals, respectively. Specifically, wl sets the
threshold for raising a warning signal, while ocl sets the
threshold for raising an out-of-control signal.

7) HDDMA AND HDDMW
Both HDDMA and HDDMW detectors [46], [47] are based on
Hoeffding’s bounds inequality, which is a statistical theory
used to determine the minimum number of observations
needed to estimate a distribution. These detectors estimate
CD using different statistics.

HDDMA estimates CD through the mean and has three
possible output states: stable, warning, and drift. The drift
state is the most relevant because it indicates a significant
change in the data stream. HDDMW, on the other hand,
uses the Exponentially Weighted Moving Average (EWMA)
statistic as a change estimator. Like HDDMA, it also has three
possible output states: stable, warning, and drift.

8) HDDMA AND HDDMW HYPERPARAMETERS
The HDDMA and HDDMAdetectors have similar param-
eterizations, with one notable difference: HDDMA has an
additional hyperparameter called lambda option (lo), which
controls the weight given to recent data. Specifically, smaller
values of lo correspond to less weight given to recent data.
Both detectors share two hyperparameters: dc, which sets the
confidence level for detecting a drift, and wc, which sets the
confidence level for issuing a warning.

9) KSWIN
KSWIN is a change detector proposed by Kolmogorov-
Smirnov, named after its basis in the Kolmogorov-Smirnov
(KS) statistical test [48]. It operates using a sliding window,
hence the name KSWIN. The detector identifies CD by
comparing the distance of the empirical cumulative data
distribution of different statistical windows with the last
identified CD.

Santos et al. [49] employed a differential evolution
algorithm, a technique that emulates the principles of natural
selection to optimize solutions in multidimensional problem
spaces, in order to derive optimal configurations for DDs.
Their investigation encompassed an array of detectors,
leading to the observation that the DDM in conjunction with
the Naive Bayes classifier exhibited superior performance.
The research additionally presented a comprehensive tabular

representation enumerating the hyperparameters associated
with each individual detector.

To enhance the clarity of hyperparameterization patterns
across detectors, a refinement was introduced to Table 2
based on the insights garnered from Santos et al.’s work. The
modified rendition of the table has been thoughtfully curated
to exclusively encompass the detectors examined within this
current study. This strategic choice ensures that the perti-
nent hyperparameter details are highlighted without undue
complexity, thereby facilitating a succinct and illuminating
overview of the studied detectors’ configurations.

The ‘‘range variation’’ column encompasses a spectrum
of values that were meticulously assessed during the course
of the unsupervised tuning process. This process involved
an exhaustive exploration of potential values within this
specified range to discern the optimal hyperparameter
configuration for each detector. The ultimate values derived
from the tuning process were rounded to ensure the detector’s
operation was not compromised.

D. EVALUATION METRICS
The experimental validation used metrics to evaluate DD
performance. One of these metrics, ‘‘Correct Detection’’,
inspired by the confusion matrix [50], calculates the dif-
ference between the number of accurately identified CD
(True Positives - TP) and the non-drift samples mistakenly
classified as CD (False Positives - FP). This difference is
divided by the total number of CD in the analyzed signal,
represented as N . Equation 1 outlines the calculation for this
value.

Correct Detection =
TP− FP

N
× 100 (1)

Other metrics such as Accuracy were not a valid choice due
to the natural imbalance in this application, where the amount
of normal signals far outweighs those classified as CDs.
Precision was also deemed inappropriate since only TP with
FP would be evaluated, without taking into account the actual
quantity of CDs present in the signal. Similarly, conventional
metrics like Recall suffer from the same limitation, as they
only consider TP with False Negatives (FN).

It is important to note that the outcome in Equation 1
is presented as a percentage. When the number of FP
equals or surpasses the TP, the result becomes 0%. Also,
the parameter N represents the count of intervals with
perturbations in the analyzed signal. TP indicates correct
detections where the DDs identified a drift within intervals
genuinely containing a perturbation. It is relevant to mention
that each interval receives only one count, regardless of the
number of detections within it.

We also used Friedman’s statistical test alongside the
Nemenyi post-hoc test to evaluate the statistical differences
between the different configurations of DDs. The Friedman’s
test provides an unbiased evaluation of the techniques by
considering both mean differences and ranking order. This is
crucial when performance metrics show substantial variation
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TABLE 2. Drift detector parameter values.

across techniques. Additionally, it determines if there are
statistically significant differences in performance between
the techniques.

E. UNSUPERVISED TUNING ALGORITHM
To enhance the comprehension of our proposed approach,
Algorithm 2 outlines the necessary steps to conduct the
unsupervised tuning process for any DD that incorporates a
set of hyperparameters. In Algorithm 2, the CDS method is
applied to our adaptation of the Change Detector Segmenta-
tion framework, allowing us to obtain critical intervals in the
signal. Subsequently, the drift_detector method generalizes
the application of our unsupervised approach to any Drift
Detector (DD). Following this, we derive the heuristics BISO,
BI, and SO through the compare_drift method based on
the DD detections and the assessment of critical intervals.
Finally, our Correct Detection metric is calculated based on
the accuracy of the detections according to our proposed
architecture. The output of this method is precisely the
heuristic with the configurations of BISO, BI, and SO, along
with the Correct Detection metric for each of them.

It is essential to underscore that the functionality of our
unsupervised tuning proposal does not rely on the input
perturbation_indices, as it is designed to operate effectively
on unlabeled datasets. The inclusion of perturbation_indices
in this pseudocode is solely for the purpose of validating
the metric Correct Detection that evaluates the performance
viability of the technique.

VI. RESULTS AND DISCUSSION
This study aims to address specific Research Questions (RQ)
concerning signal drift identification via unsupervised tuning.
The RQs are outlined as follows:

1) Can unsupervised tuning for DDs based on stationary
analysis improve the drift identification process?

2) What is the most impactful factor in detecting drifts in
signals?

To address RQ1, we assessed six different DDs and
illustrate the outcomes for four of them in Fig. 4 to
Fig. 7 using a boxplot analysis. These figures portray the
Correct Detection level achieved by each hyperparameter
configuration in drift detection. Higher Correct Detection
percentages mean superior performance. The ADWIN and
DDM detectors were omitted from the analysis as they
consistently yielded a 0% result, regardless of tuning. The
aim of these evaluations is to analyze various signal behaviors
amid concept drift presence.

Figs. 4 and 5 present outcomes associated with low
amplitude variations, representing items A to J in Table 1.
Fig. 4 displays results without perturbations in the signal,
pertaining to items A and F in Table 1. In contrast, Fig. 5
includes perturbations, corresponding to items B, C, D, E,
G, H, I, J in Table 1. These boxplots compare the default
configuration of each detector against the BISO, BI, and SO
tuning heuristics proposed in this study.

Figs. 6 to 7 depict outcomes obtained from high amplitude
variations using the same configurations as those utilized for
low amplitude variations.

Fig. 6 demonstrates results from high amplitude variations
without perturbations, referring to item K in Table 1.
Conversely, Fig. 7 exhibits the results from high amplitude
variations with perturbations, relating to items L, M, N, and
O in Table 1.

In Fig. 4, it is evident that the BISO and BI configurations
outperformed the default configuration across all DDs, except
for BI in the HDDMW detector. Fig. 5 shows a similar trend,
except in the case of the HDDMW detector, where the BISO
heuristic performed worse than the default configuration.
However, the SO heuristic stood out in this scenario,
indicating that in instances of increased signal variability and
low amplitudes, a less sensitive heuristic is more appropriate.
Another notable observation is that the PH detector was more
affected by the introduction of perturbations compared to
the HDDM detectors, as inferred from the Correct Detection
metric.

In Fig 6, the BI detector demonstrated exceptional perfor-
mance across most cases, failing to improve drift detection
only for the HDDMA detector. Fig. 7 depicts a similar
pattern, where the BI heuristic closely matched the default
configuration and underperformed only in the HDDMW
detector. Notably, the BI heuristic was the sole approach to
achieve results above 0% for the KSWIN detector, which is
an interesting observation.

The DDs results showcase promising median performance
following the unsupervised tuning process. Upon analyzing
the figures, it becomes apparent that the primary factor
influencing a decrease in Correct Detection of DDs is
the presence of signal perturbation, which addresses RQ2.
Notably, for the PH detector, it is clear that unsupervised
tuning using the BISO and BI approaches consistently
delivered better results across all scenarios, slightly favoring
the BI approach. This validates our RQ1.

To precisely identify drifts, it is vital to detect them within
their actual occurrence range. Any identification beyond
this range leads to a FP. Remarkably, the BI configuration
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Algorithm 2 Unsupervised Tuning
1: procedure UnsupervisedTuning
2: input: signal, ▷ refers to the signal for which the existence of CDs will be evaluated.
3: perturbation_indices, ▷ indicates the labeled perturbations in the signal.
4: dd_hyperparameters_percentages ▷ represents the percentages of hyperparameters to be evaluated, as described in

Step 4 in Section IV.
5: output: BISO, ▷ as described in Step 5 in Section IV.
6: BI, ▷ as described in Step 5 in Section IV.
7: SO, ▷ as described in Step 5 in Section IV.
8: correct_detection, ▷ returns a list containing the Correct Detection metric for each of the heuristics.
9:

10: for i in range(dd_hyperparameters_percentages) do
11: intervals← CDS(signal)
12: detections← drift_detector(signal, dd_hyperparameters_percentages)
13: BISO← compare_drifts(detections, intervals)
14: BI ← compare_drifts(detections, intervals)
15: SO← compare_drifts(detections, intervals)
16: end for
17: correct_detection← (BISO,BI , SO, perturbation_indices)
18: return BISO,BI , SO, correct_detection
19: end procedure

FIGURE 4. Boxplot of low amplitudes variation without perturbations on signal experiments.

FIGURE 5. Boxplot of low amplitudes variation with perturbations on signal experiments.

showcased the most favorable performance in the conducted
assessments. We carried out experiments employing various
signal sizes, amplitudes, and perturbation levels to ensure
the method’s applicability across different scenarios and to
simulate the behavior seen in natural phenomena.

Overall, our experiments highlighted the proposed
method’s viability as an alternative for configuring DDs.
Notably, the SO heuristic displayed comparatively weaker
performance among the heuristics, mainly due to its
conservative design. It focuses on identifying the fewest drifts
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FIGURE 6. Boxplot of high amplitudes variation without perturbations on signal experiments.

FIGURE 7. Boxplot of high amplitudes variation with perturbations on signal experiments.

FIGURE 8. Boxplot of our tuning process vs Random Search.

outside critical intervals to reduce false positives, potentially
missing actual drifts occurring within these regions.

One potential explanation for KSWIN frequently yielding
0% results could be misconfigured hyperparameters. For
instance, if the window size does not align well with
the data’s change rate, subtle CD might not be detected.
Similarly, setting a high change threshold could cause the
algorithm to overlook changes below that threshold. ADWIN
and DDM detectors might have faced similar issues due
to their operational characteristics. Additionally, sudden or
large changes in data magnitude could pose challenges for
detection, especially using a sliding window approach to
calculate CD statistics.

A. UNSUPERVISED TUNING VS RANDOM SEARCH
In light of the current void in the literature pertaining to
unsupervised tuning approaches, a pragmatic decision has
been made to introduce Random Search (RS) [52], [54]
as a competitor in our study. Unsupervised tuning, in its
nuanced complexities, poses a unique set of challenges that,
unfortunately, has not been extensively addressed in existing
research. The absence of established methodologies and
benchmarks for unsupervised tuning strategies underscores
the need for an adaptable and exploratory approach.

Fig. 8 presents a comparison between our unsupervised
tuning method and supervised Random Search (RS) tuning.
RS is known for accurately defining hyperparameters but
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FIGURE 9. Correct drift detection without perturbations in signals with
default, RS and BI configuration.

relies on a supervised approach, which might not always be
feasible in real-world scenarios.

FIGURE 10. Correct drift detection with perturbations in signals with
default, RS and BI configuration.

Given that these experiments were intentionally designed
with deliberate data perturbations, all configurations listed in
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FIGURE 11. Friedman’s statistcal test on experiment J, size = 5000.

FIGURE 12. Friedman’s statistcal test on experiment O, size = 5000.

Table 1 were utilized. As expected, the RS method showed
superior results across most test cases compared to our
tuning approach. However, our method notably outperformed
the supervised approach specifically for the PH detector.
Moreover, in all other experiments, our method consistently
matched the results generated by the RS method. This
comparison validates the effectiveness of our proposed tuning
approach and supports RQ1 based on the achieved outcomes.

B. NUMBER OF SAMPLES IMPACT
For a more thorough validation of RQ2 and to analyze how
the number of samples affects the accurate detection of
drifts, we conducted a new assessment. Fig. 9 and Fig. 10
illustrate this impact on DDs performance by comparing
three detection configurations: default, RS, and BI. Fig. 9
displays artificial signals generated by the CSG without
perturbations, while Fig. 10 shows signals generated by the
CSG with perturbations. This evaluation encompassed all
instances detailed in Table 1.
In Fig. 9, we noticed a tendency: as the number of samples

increased, Correct Detection also tended to rise. This trend
might be due to the detectors retaining more statistical
information about the signal being evaluated. A similar trend
was observed in Fig. 10, albeit with a lower percentage
of correct detections. Additionally, the default configuration
outperformed other setups only for the HDDMA detector.
In Fig. 10, the results for the PH detector show that despite

RS benefiting from its supervised approach, the BI heuristic
achieved better Correct Detection. Also, the BI heuristic

consistently outperformed the default configuration in most
cases for the DDs.

The findings across Figs. 9 to 10 reaffirm that the presence
of perturbations in the signal significantly reduces the Correct
Detection of DDs, further supporting RQ2, highlighting that
the foremost influencing factor is the presence of these
perturbations.

C. STATISTICAL ANALYSIS
To examine the noticeable differences between DDs config-
urations, we utilized Friedman’s statistical test alongside the
Nemenyi post-hoc test. Friedman’s test involves ranking the
observations of each configuration in ascending order and
calculating the sum of differences between these observed
ranks and the expected ranks, which would be identical if all
samples had the same median.

For this test, we focused on configurations J and O from
Table 1. These configurations represent the most complex
settings highlighted in our evaluations. This specific selection
aimed to illustrate the test within the most complex scenario
for drift detection in comparison to the other experiments.

From the results depicted in Fig. 11, it is evident that
the KSWIN, HDDMA, and HDDMW approaches displayed
no statistically significant differences between the default
configuration and the tuned configurations. However, con-
cerning the PH detector, both PH with BI and PH with RS
configurations exhibited statistically significant differences
compared to the default setting. A similar trend is observed in
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Fig. 12, where only the PH configuration showed substantial
differences compared to the standard configuration.

VII. CONCLUSION
This study presents critical findings about the impact of dif-
ferent hyperparameter setups on drift detection performance
across various scenarios. The RS configuration stands out
as the most effective in identifying drifts, yet it relies on
user knowledge and labeled databases, limiting its use in
real-world unsupervised settings.

Conversely, the BI tuning approach offers an unsupervised
solution independent of specialized supervision or labeled
datasets. It shows promise, especially in scenarios with high
amplitudes and significant variations, consistently outper-
forming default configurations in multiple detectors. This
highlights the importance of unsupervised tuning methods in
practical applications for detecting drifts.

The current landscape of labeled datasets for CD is
inadequate to meet the growing demands of developing
adaptive machine learning models. Recognizing the urgency
of this issue is imperative to undertake initiatives for
generating artificial but controlled datasets such as CSG to
simulate the complexities of CD.

Future research aims to broaden the tuning process by
including various DDs and real-world signal datasets. This
expansion, once validated, is expected to demonstrate robust
performance not only in offline scenarios but also in dynamic
online contexts, like data stream analysis. This advancement
holds significant potential for improving the practical use of
drift detection techniques across diverse domains.

REFERENCES
[1] R. A. Roberts and C. T. Mullis, Digital Signal Processing. Reading, MA,

USA: Addison-Wesley, 1987.
[2] Q. Xu, Q.Wen, and L. Sun, ‘‘Two-stage framework for seasonal time series

forecasting,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 3530–3534.

[3] R. Kumar, A. Jain, A. K. Tripathi, and S. Tyagi, ‘‘COVID-19 outbreak:
An epidemic analysis using time series prediction model,’’ in Proc.
11th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence), Jan. 2021,
pp. 1090–1094.

[4] F. Jiang, Z. Zhao, and X. Shao, ‘‘Time series analysis of COVID-19
infection curve: A change-point perspective,’’ J. Econometrics, vol. 232,
no. 1, pp. 1–17, Jan. 2023.

[5] O. I. Provotar, Y. M. Linder, and M. M. Veres, ‘‘Unsupervised anomaly
detection in time series using LSTM-based autoencoders,’’ in Proc. IEEE
Int. Conf. Adv. Trends Inf. Theory (ATIT), Jul. 2019, pp. 513–517.

[6] E. B. Gulcan and F. Can, ‘‘Unsupervised concept drift detection for multi-
label data streams,’’ Artif. Intell. Rev., vol. 56, no. 3, pp. 2401–2434,
Mar. 2023.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, ‘‘Learning with drift
detection,’’ in Advances in Artificial Intelligence—SBIA. Berlin, Germany:
Springer, 2004, pp. 286–295.

[8] D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen,
T. Kempitiya, D. De Silva, D. Alahakoon, and D. Pothuhera, ‘‘Online
incremental machine learning platform for big data-driven smart traffic
management,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12,
pp. 4679–4690, Dec. 2019.

[9] X.-D. Zhang, Modern Signal Processing. Berlin, Germany: Walter de
Gruyter, 2022.

[10] P. Gangsar and R. Tiwari, ‘‘Signal based condition monitoring techniques
for fault detection and diagnosis of induction motors: A state-of-the-art
review,’’Mech. Syst. Signal Process., vol. 144, Oct. 2020, Art. no. 106908.

[11] V. C. Silva, B. B. Zarpelão, E. Medvet, and S. Barbon, ‘‘Explainable
time series tree: An explainable top-down time series segmentation
framework,’’ IEEE Access, vol. 11, pp. 120845–120856, 2023.

[12] S. L. Ullo and G. R. Sinha, ‘‘Advances in smart environment monitoring
systems using IoT and sensors,’’ Sensors, vol. 20, no. 11, p. 3113,
May 2020.

[13] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and
C. Peng, ‘‘Networked control systems: A survey of trends and techniques,’’
IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020.

[14] R. H. Hariri, E. M. Fredericks, and K. M. Bowers, ‘‘Uncertainty in big data
analytics: Survey, opportunities, and challenges,’’ J. Big Data, vol. 6, no. 1,
pp. 1–16, Dec. 2019.

[15] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and Q. Gouil,
‘‘Opportunities and challenges in long-read sequencing data analysis,’’
Genome Biol., vol. 21, no. 1, pp. 1–16, Dec. 2020.

[16] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, ‘‘$CADE$: Detecting and explaining concept drift samples
for security applications,’’ in Proc. 30th USENIX Secur. Symp. (USENIX
Security), 2021, pp. 2327–2344.

[17] I. Mavromatis and A. Khan, ‘‘Demo: LE3D: A privacy-preserving
lightweight data drift detection framework,’’ in Proc. IEEE 20th Consum.
Commun. Netw. Conf. (CCNC), Jan. 2023, pp. 917–918.

[18] H. Tian, N. L. D. Khoa, A. Anaissi, Y. Wang, and F. Chen, ‘‘Concept drift
adaption for online anomaly detection in structural health monitoring,’’
in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 2813–2821.

[19] T. Liu, X. Ma, S. Li, X. Li, and C. Zhang, ‘‘A stock price prediction method
based on meta-learning and variational mode decomposition,’’ Knowl.-
Based Syst., vol. 252, Sep. 2022, Art. no. 109324.

[20] A. R. Masegosa, A. M. Martínez, D. Ramos-López, H. Langseth,
T. D. Nielsen, and A. Salmerón, ‘‘Analyzing concept drift: A case study
in the financial sector,’’ Intell. Data Anal., vol. 24, no. 3, pp. 665–688,
May 2020.

[21] M. Andreoni Lopez, D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle,
‘‘Toward a monitoring and threat detection system based on stream
processing as a virtual network function for big data,’’ Concurrency
Computation: Pract. Exper., vol. 31, no. 20, p. e5344, Oct. 2019.

[22] B. Veloso, J. Gama, B. Malheiro, and J. Vinagre, ‘‘Hyperparameter self-
tuning for data streams,’’ Inf. Fusion, vol. 76, pp. 75–86, Dec. 2021.

[23] V. E. Martins, A. Cano, and S. Barbon Junior, ‘‘Meta-learning for dynamic
tuning of active learning on stream classification,’’ Pattern Recognit.,
vol. 138, Jun. 2023, Art. no. 109359.

[24] H. Yu, Q. Zhang, T. Liu, J. Lu, Y. Wen, and G. Zhang, ‘‘Meta-ADD: A
meta-learning based pre-trained model for concept drift active detection,’’
Inf. Sci., vol. 608, pp. 996–1009, Aug. 2022.

[25] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, ‘‘A
survey on contrastive self-supervised learning,’’ Technologies, vol. 9, no. 1,
p. 2, Dec. 2020.

[26] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, ‘‘Scikit-multiflow: A
multi-output streaming framework,’’ J. Mach. Learn. Res., vol. 19, no. 72,
pp. 1–5, 2018.

[27] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse,
A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and A. Bifet, ‘‘River:
Machine learning for streaming data in Python,’’ J. Mach. Learn. Res.,
vol. 22, no. 1, pp. 4945–4952, 2021.

[28] R. P. Silva, B. B. Zarpelão, A. Cano, and S. B. Junior, ‘‘Time series segmen-
tation based on stationarity analysis to improve new samples prediction,’’
Sensors, vol. 21, no. 21, p. 7333, Nov. 2021, doi: 10.3390/s21217333.

[29] J. Read, R. A. Rios, T. Nogueira, and R. F. de Mello, ‘‘Data streams are
time series: Challenging assumptions,’’ in Proc. Conf. Artif. Intell. (SBIA),
Rio Grande, Brazil. Berlin, Germany: Springer-Verlag, 2020, pp. 529–543.

[30] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, no. 2, pp. 1–25, 2012.

[31] N. L. A. Ghani, I. A. Aziz, and M. Mehat, ‘‘Concept drift detection
on unlabeled data streams: A systematic literature review,’’ in Proc.
IEEE Conf. Big Data Analytics (ICBDA), Nov. 2020, pp. 61–65, doi:
10.1109/ICBDA50157.2020.9289802.

[32] A. Cano and B. Krawczyk, ‘‘Kappa updated ensemble for drifting data
stream mining,’’Mach. Learn., vol. 109, no. 1, pp. 175–218, Jan. 2020.

[33] Y. Xie, C. Zhu, W. Zhou, Z. Li, X. Liu, and M. Tu, ‘‘Evaluation of machine
learning methods for formation lithology identification: A comparison
of tuning processes and model performances,’’ J. Petroleum Sci. Eng.,
vol. 160, pp. 182–193, Jan. 2018.

54270 VOLUME 12, 2024

http://dx.doi.org/10.3390/s21217333
http://dx.doi.org/10.1109/ICBDA50157.2020.9289802


R. P. Silva et al.: Unsupervised Tuning for Drift Detectors Using Change Detector Segmentation

[34] L. Yang and A. Shami, ‘‘On hyperparameter optimization of machine
learning algorithms: Theory and practice,’’ Neurocomputing, vol. 415,
pp. 295–316, Nov. 2020.

[35] A. L. Garcia, Probability and Random Processes for Electrical Engineer-
ing. India: Pearson Education, 1994.

[36] R. S. M. Barros and S. G. T. C. Santos, ‘‘A large-scale comparison of
concept drift detectors,’’ Inf. Sci., vols. 451–452, pp. 348–370, Jul. 2018,
doi: 10.1016/j.ins.2018.04.014.

[37] S. G. T. C. Santos, R. S. M. Barros, and P. M. G. Júnior, ‘‘Optimizing the
parameters of drift detection methods using a genetic algorithm,’’ in Proc.
IEEE 27th Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2015, pp. 1077–1084.

[38] R. N. Gemaque, A. F. J. Costa, R. Giusti, and E. M. dos Santos, ‘‘An
overview of unsupervised drift detection methods,’’ WIREs Data Mining
Knowl. Discovery, vol. 10, no. 6, p. e1381, Nov. 2020.

[39] S. Agrahari and A. K. Singh, ‘‘Concept drift detection in data stream
mining: A literature review,’’ J. King Saud Univ. Comput. Inf. Sci.,
vol. 34, no. 10, pp. 9523–9540, Nov. 2022, doi: 10.1016/j.jksuci.2021.
11.006.

[40] H. Hu, M. Kantardzic, and T. S. Sethi, ‘‘No free lunch theorem for concept
drift detection in streaming data classification: A review,’’ WIREs Data
Mining Knowl. Discovery, vol. 10, no. 2, p. e1327, Mar. 2020.

[41] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A. Boulesteix, D. Deng, and M. Lindauer,
‘‘Hyperparameter optimization: Foundations, algorithms, best practices,
and open challenges,’’ WIREs Data Mining Knowl. Discovery, vol. 13,
no. 2, p. e1484, Mar. 2023.

[42] A. Nugroho and H. Suhartanto, ‘‘Hyper-parameter tuning based on
random search for DenseNet optimization,’’ in Proc. 7th Int. Conf. Inf.
Technol., Comput., Electr. Eng. (ICITACEE), Sep. 2020, pp. 96–99, doi:
10.1109/ICITACEE50144.2020.9239164.

[43] H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, ‘‘An overview of
signal processing techniques for terahertz communications,’’ Proc. IEEE,
vol. 109, no. 10, pp. 1628–1665, Oct. 2021.

[44] E. S. Page, ‘‘Continuous inspection schemes,’’ Biometrika, vol. 41, nos. 1–
2, p. 100, Jun. 1954.

[45] A. Bifet and R. Gavaldà, ‘‘Learning from time-changing data with adaptive
windowing,’’ in Proc. 7th SIAM Int. Conf. Data Min., 2007, pp. 443–448.

[46] I. Frías-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, R. Morales-
Bueno, A. Ortiz-Díaz, andY. Caballero-Mota, ‘‘Online and non-parametric
drift detection methods based on Hoeffding’s bounds,’’ IEEE Trans.
Knowl. Data Eng., vol. 27, no. 3, pp. 810–823, Mar. 2015, doi:
10.1109/TKDE.2014.2345382.

[47] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, ‘‘MOA:Massive online
analysis,’’ J. Mach. Learn. Res., vol. 11, pp. 1601–1604, Apr. 2010.

[48] C. Raab, M. Heusinger, and F.-M. Schleif, ‘‘Reactive soft prototype com-
puting for concept drift streams,’’ Neurocomputing, vol. 416, pp. 340–351,
Nov. 2020, doi: 10.1016/j.neucom.2019.11.111.

[49] S. G. T. C. Santos, R. S. M. Barros, and P. M. Gonçalves, ‘‘A differential
evolution based method for tuning concept drift detectors in data streams,’’
Inf. Sci., vol. 485, pp. 376–393, Jun. 2019.

[50] M. Heydarian, T. E. Doyle, and R. Samavi, ‘‘MLCM: Multi-label
confusion matrix,’’ IEEE Access, vol. 10, pp. 19083–19095, 2022.

[51] J. Carrasco, S. García, M. M. Rueda, S. Das, and F. Herrera, ‘‘Recent
trends in the use of statistical tests for comparing swarm and evolutionary
computing algorithms: Practical guidelines and a critical review,’’ Swarm
Evol. Comput., vol. 54, May 2020, Art. no. 100665.

[52] N. Buslim, I. L. Rahmatullah, B. A. Setyawan, and A. Alamsyah,
‘‘Comparing Bitcoin’s prediction model using GRU, RNN, and LSTM by
hyperparameter optimization grid search and random search,’’ in Proc. 9th
Int. Conf. Cyber IT Service Manage. (CITSM), Sep. 2021, pp. 1–6, doi:
10.1109/CITSM52892.2021.9588947.

[53] O. A. Mahdi, E. Pardede, N. Ali, and J. Cao, ‘‘Fast reaction to sudden
concept drift in the absence of class labels,’’ Appl. Sci., vol. 10, no. 2,
p. 606, Jan. 2020.

[54] M. Zhou, X. Zhong, Y. Sun, and L. Gan, ‘‘Prediction model of coal
consumption based on random forest variable selection and random-
grid hyperparametric optimization algorithm,’’ in Proc. Int. Conf. Power
Syst. Technol. (PowerCon), Sep. 2023, pp. 1–5, doi: 10.1109/power-
con58120.2023.10331350.

RICARDO PETRI SILVA received the bachelor’s
and master’s degrees in computer science from
Universidade Estadual de Londrina, where he
is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, with a
focus on online machine learning. He is also
a Professor of computer science courses with
UniFil, Londrina, Brazil, where he coordinates an
extension project. This project aims to facilitate
community access to technology and to develop

socially impactful projects addressing societal needs.

SYLVIO BARBON JUNIOR received the B.Sc.
degree in computer science and the M.Sc. degree
in computational physics from the University of
São Paulo, in 2005 and 2007, respectively, and the
degree in computational engineering and the Ph.D.
degree in computational physics from IFSC/USP,
in 2008 and 2011, respectively. He is currently an
Associate Professor with the Department of Engi-
neering and Architecture, University of Trieste
(UNITS), Italy. He is also the Co-Director of the

Machine Learning Laboratory. Prior to this, he led the Research Group
dedicated to the study of machine learning with the Computer Science
Department, State University of Londrina (UEL), Brazil, from 2012 to 2021.
His research interests include computer vision, pattern recognition, and
machine learning, with a current emphasis on meta-learning, stream mining,
and process mining.

BRUNO BOGAZ ZARPELÃO received the B.Sc.
degree in computer science from the State Uni-
versity of Londrina, Brazil, and the Ph.D. degree
in electrical engineering from the University of
Campinas, Brazil. Since 2012, he has been an
Associate Professor with the Computer Science
Department, State University of Londrina (UEL).
From March 2018 to February 2019, he was a
Visiting Postdoctoral Researcher with the City,
University of London. His research interests

include data science in cybersecurity, intrusion detection, and the Internet
of Things.

LEONIMER FLAVIO DE MELO received the
degree and master’s degrees in electrical engi-
neering and the Ph.D. degree in mechanical engi-
neering from the State University of Campinas,
in 1985, 2002, and 2007, respectively. He is
currently an Associate Professor and a Professor
of the postgraduate master’s program in elec-
trical engineering with the State University of
Londrina (UEL), and a Professor of associate
doctorate program in electrical engineering with

UEL/UTFPR-CP. He has experience in the area of electrical engineering and
mechatronic engineering, involved mainly in the following areas: industrial
automation, production engineering, embedded control systems, robotics,
autonomous vehicles, industrial mechatronic systems, machine learning,
deep learning, and artificial neural networks.

Open Access funding provided by ‘Università degli Studi di Trieste’ within the CRUI CARE Agreement

VOLUME 12, 2024 54271

http://dx.doi.org/10.1016/j.ins.2018.04.014
http://dx.doi.org/10.1016/j.jksuci.2021.11.006
http://dx.doi.org/10.1016/j.jksuci.2021.11.006
http://dx.doi.org/10.1109/ICITACEE50144.2020.9239164
http://dx.doi.org/10.1109/TKDE.2014.2345382
http://dx.doi.org/10.1016/j.neucom.2019.11.111
http://dx.doi.org/10.1109/CITSM52892.2021.9588947
http://dx.doi.org/10.1109/powercon58120.2023.10331350
http://dx.doi.org/10.1109/powercon58120.2023.10331350

