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ABSTRACT A type of blood malignancies known as leukemia leads to elevated quantities of abnormally
formed blood cells and often originates in the bone marrow. An abrupt rise in the quantity of immature blood
cells is one of the distinctive characteristics of acute leukemia, that predominantly affects both children and
adults. The possibility exists to drastically lower the death rate associated with acute leukemia through early
detection and diagnosis. A significant and time-consuming task for the early detection of acute leukemia
is microscopic examination of blood cells. In this paper, a two-staged deep learning-based computer-aided
diagnosis system regarding microscopic blood smear images is proposed to assist hematologists and improve
the diagnosis accuracy of acute leukemia in which for the feature fusion-based ensemble, two deep neural
network branches adopting pretrained, fine-tuned EfficientNetB7 andMobileNetV3Large architectures were
employed, and feature maps generated from those branches were fused and fed to the second stage of the
architecture to achieve the final result. Additional dropout layers and ReLu activation were employed in the
architecture to speed up the network, and compound scaling, bottleneck, and fusion architectures enhanced
the overall performance. The ALLIDB1, ALLIDB2, and ASH databases were incorporated to evaluate the
performances of the proposed method. The experimental findings demonstrated that the proposed approach
detected acute leukemia (ALL, AML, Healthy) with an accuracy of 99.3%, F1-score of 99.3%, and AUC
score of 0.997. Whereas in detecting acute lymphocytic leukemia (ALL, Healthy) and acute myeloid
leukemia (AML, Healthy), the accuracies reached 100.0% and 99.8%, respectively. Thus, we believe that
clinics can adopt our proposed architecture for quick and automated diagnosis.

INDEX TERMS Acute leukemia detection, deep learning, transfer learning, feature fusion-based
ensembling, microscopic smear image.

I. INTRODUCTION
Leukemia is a type of blood malignancy that often develops
in the bone marrow and affects the replication process of
white blood cells (WBC), resulting in a large number of
abnormal white blood cells and loss of the human immune
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system, regardless of age. It has been anticipated that roughly
62,770 new leukemia cases will be recorded, which will
cause the death of 23,670 individuals in 2024 according to
the American Cancer Society [1]. Acute leukemia develops
rapidly, and crowding caused by the rapid increase in
the number of immature blood cells prevents the bone
marrow from producing healthy blood cells, resulting in
low hemoglobin and platelets, which then spill into the

54758

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0003-4122-0616
https://orcid.org/0000-0003-2966-7055
https://orcid.org/0000-0002-7476-2468
https://orcid.org/0000-0002-1461-0032


M. H. A. M. H. Himel et al.: Feature Fusion Based Ensemble of Deep Networks

bloodstream and spread to other organs. Acute Leukemia is
further classified as Acute Lymphocytic Leukemia (ALL)
and Acute Myeloid Leukemia (AML) in accordance with
the French-American-British (FAB) classification model [2].
ALL is the most prevalent kind of leukemia in young kids,
whereas AML affects adults significantly more than kids, and
men far more than women. Early diagnosis and appropriate
treatment may help to save lives. However, manual diagnosis
of acute leukemia is a time-consuming and error-prone
process that requires highly qualified hematologists with
extensive expertise to make an accurate early diagnosis.
Furthermore, this process is quite challenging due to the
complex structure of blood cells, the existence of noise,
blurriness, intensity inhomogeneity, weakly defined edges,
and cell overlapping [3], [4], [5], [6].

Many studies have recently been published on the use of
machine learning and deep learning to classify microscopic
blood smear images and develop effective computer-aided
diagnosis (CAD) systems for the early identification and
diagnosis of acute leukemia [3], [7], [8], [9], [10], [11], [12],
[13]. To categorize and identify leukemia using microscopic
smear images, a number of machine learning methods have
been proposed earlier. The most often used approach is
Support Vector Machine (SVM), which is followed by
K-Nearest Neighbor (KNN), Random Forest algorithm, and
other classification methods [3]. Many researchers have
proposed preprocessing and segmentation strategies before
performing classification [3], [9], [14], [15], [16], [17]. These
approaches have so far yielded a significant false-positive
rate. To overcome the constraints, numerous researchers have
proposed deep learning methodologies since deep learning
architectures can extract complicated features directly from
raw images. Because of the capability to extract deep as
well as multiscaled characteristics and combine them to aid
hematologists in making the final prediction, deep learning
techniques have shown to bemore effective than conventional
approaches for object recognition and classification in several
applications. The most frequently employed deep learning
architecture for dealing with medical image classification
problems is the convolutional neural network (CNN) [18].
Additionally, a significant number of cutting-edge archi-
tectures have been developed and are offering remarkable
results on medical images. Despite the fact that these
deep learning approaches have solved multiple constraints,
training deep learning models on inadequate data frequently
results in overfitting. Multiple strategies have been proposed
to address this problem. Because of their high degree of
efficiency, deep learning algorithms are rapidly adopting
data augmentation strategies [19]. The most popular classical
augmentation techniques, such as rotating, flipping, scaling,
etc., provide new images with the same semantic information
as the original ones. Additionally, Generative Adversarial
Networks (GANs) have been employed in the medical field
for augmentation by generating artificial images [20], [21].
We can observe from the relevant studies on classifying

blood microscopic smear images that prior to localizing the

white blood cell based on the position of the segmented
nucleus, in [22], the authors suggested color space conversion
and k-means algorithm-based nucleus segmentation to sepa-
rate them from the blood smear image. In order to classify
the localized blood cell image, a modified convolutional
neural network (CNN) architecture employing the concept
of feature fusion of the first and final convolutional layers
was proposed. In [5], the authors extracted the texture
features using a two-dimensional Discrete Orthonormal
S-Transform (DOST), and its dimensionality is reduced
using both Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). The reduced features are
then fed to the proposed AdaBoost combined with Random
Forest (ADBRF) classifier, that uses Random Forest as
the base classifier. Prior to applying the Gray Level Run
Length Matrix (GLRLM) for feature extraction, in [23],
the authors employed the Otsu Thresholding approach to
identify leukocytes, followed by Marker-based Watershed
to refine the line of irregularly shaped leukocytes. The
extracted features are then fed to the Support Vector Machine
(SVM) classifier. In [9], the authors applied Contrast Limited
Adaptive Histogram Equalization (CLAHE) to enhance
the image quality prior to lymphocyte segmentation using
a color-based K-means clustering technique, followed by
feature extraction using a Gray Level Co-Occurrence Matrix
(GLCM) and Gray Level Run Length Matrix (GLRLM)
methods. Then, dimensionality is reduced using Principal
Component Analysis (PCA), and the reduced features are
fed to the Support Vector Machine (SVM) classifier. In [24],
the authors proposed a hybrid transfer learning-based method
that employs MobilenetV2 and ResNet18, preserving the
advantages of both architectures and also introduced a
novel weight factor. In [25], the authors presented transfer
learning-based feature extraction utilizing MobileNetV2 fol-
lowed by classification employing Support Vector Machine
(SVM) in the classification layer of MobileNetV2. Prior
to classification utilizing the VGG16 architecture, in [26],
the authors suggested an adaptive unsharpening method for
image enhancement, which is made up of normalizing the
radius of the cells followed by estimating the focus quality
and enhancing the sharpness of the images adaptively using
VAR-PCANet. In [7], the authors utilized UNet to segment
the nucleus of cells, followed by deep feature extraction and
fusion using SqueezeNet, AlexNet, and GoogleNet. Then,
by utilizing mutual information (MI), recursive feature elim-
ination (RFE), and minimum recursive maximal relevance
(mRmR), features were selected. Furthermore, the intersected
features were fused before performing statistical analysis
using ANOVA, followed by classification utilizing Support
Vector Machine (SVM). In [27], the authors transformed
the images from RGB to CMYK color space and applied
histogram equalization, followed by segmentation utilizing
Zack’s algorithm. After that, by using roundness ratio, the
grouped and ungrouped lymphocytes were recognized and
separated. Later, color and shape features were extracted from
these lymphocytes, which were then fed to Support Vector
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FIGURE 1. Raw microscopic smear images and their corresponding enhanced images after applying image enhancement techniques.

Machine (SVM) classifier. In [28], the authors extracted the
green channel of the RGB image and enhanced the image
using median filtering and histogram equalization. After
that, the white blood cells (WBC) were segmented using
the thresholding-based segmentation technique. Later, from
the segmented cells, significant features like geometrical,
statistical, shape, and discrete cosine transform (DCT)-based
features were extracted and fed to Support Vector Machine
(SVM) classifier. In [29], the authors converted the color
space from RGB to CMYK, followed by image enhancement
using histogram equalization. Segmentation was performed
using thresholding estimation by Zack’s algorithm, and
features such as shape, color, texture along with hybrid
features were extracted from the segmented cells. Social
Spider Optimization Algorithm (SSOA) was employed to
select the appropriate features which were fed to K-Nearest
Neighbors (KNN) algorithm. Because of providing out-
standing performance on small datasets, transfer learning
has become a prominent medical image analysis technique.
In [10], the authors proposed a computationally efficient
and lightweight transfer learning-based approach employing
ShuffleNet, which achieved good results by preserving
the advantages of depthwise separable convolution, group
convolution, and channel shuffling.

Although it is debatable whether standard machine learn-
ing methods might be more efficient in cases of data scarcity,
data augmentation approaches can solve this problem.
It inspired us to design a new automated acute leukemia diag-
nosis system employing ensemble deep learning, in which the
segmentation process is not required, unlike other state-of-
the-art approaches. In this research work, we present a CAD
architecture regardingmicroscopic blood smear images based
on ensemble deep learning for the purpose of diagnosing
acute leukemia. The proposed architecture was evaluated
using the ALLIDB1 [30], ALLIDB2 [30], and American
Society of Hematology (ASH) [31] datasets. Due to the

limited availability of microscopic blood smear images to
use in training our proposed architecture, we adopted two
strategies:

• To increase the number of samples, traditional data
augmentation techniques were adopted to construct
transformed versions of microscopic smear images
(such as flipping and rotation).

• Instead of training the employed deep learning models
from scratch, we finetuned the pretrained version of
these models trained on the ImageNet dataset.

These two strategies assisted in training the proposed
architecture with the available microscopic smear images
and helped it to perform significantly on the test dataset
of 1248 images. We have included the Receiver Operating
Characteristic (ROC) curve and the area under the curve
(AUC) score to present a summary of the performance of the
proposed architecture and other pretrained, fine-tuned base
models.

This paper’s main contributions are as follows:

• An acute leukemia diagnosis system has been proposed
and evaluated on three individual publicly available
acute leukemia microscopic image datasets. The archi-
tecture was tested against other state-of-the-art methods
and other adopted base models.

• We created an augmented dataset of microscopic
smear images with multiclass labels (‘‘ALL’’, ‘‘AML’’,
‘‘Healthy’’) using traditional augmentation techniques
for detecting acute leukemia, which can serve as a
standard for the research community.

• We adjusted the pixel values of the images and applied
an edge-detecting Laplacian filter over the images for
enhancing the quality of the microscopic smear images.

• We proposed a two-staged feature fusion-based
stacked ensembling integrated CAD architecture
employing pretrained, fine-tuned EfficientNetB7 and
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MobileNetV3Large architectures for the detection of
acute leukemia.

The structure of the rest of this paper is as follows:
Sections II and III present a detailed description of
the employed materials and the proposed architecture,
respectively. The experimental analysis and discussion are
presented in Section IV. Finally, Section V brings the paper
to a conclusion.

II. MATERIALS
A. DATASET DESCRIPTION
In this research, the publicly accessible standard ALLIDB1
[30], ALLIDB2 [30], and American Society of Hematology
(ASH) [31] datasets were employed to evaluate the efficacy
of our suggested approach. All images in the ALLIDB1 and
ALLIDB2 datasets were captured in JPG format with a 24-bit
RGB color space using an optical microscope (magnification
ranging from 300 to 500) with a Canon PowerShot G5
camera. ALLIDB1 is made up of numerous leukocytes per
image, while ALLIDB2 is made up of blood smears with one
leukocyte per image. ALLIDB1 consists of 108 microscopic
images (59 healthy and 49 ALL) with a resolution of
2592×1944. ALLIDB2 consists of 260 microscopic images
(130 healthy and 130 ALL) with a resolution of 257×257.
In order to identify AML, 130 microscopic images of AML
were collected from the American Society of Hematology
(ASH) database.

III. PROPOSED ARCHITECTURE
This section introduces the architecture of the ensemble deep
learning-based CAD system that we have proposed for the
diagnosis of acute leukemia using blood microscopic smear
images. The whole approach is divided into two stages:
(i) Data Preprocessing and (ii) Detection. Each stage is
described in detail below:

A. DATA PREPROCESSING
A substantial quantity of labeled data is necessary for training
deep learning models. In terms of medical applications, most
acquired datasets show a scarcity of instances that are often
distributed unevenly, acting as a significant challenge when
attempting to train deep learning architectures [32]. Due
to the nature of our dataset, we only used rotation (0◦,
90◦, 180◦, 270◦) and flip as the traditional augmentation
techniques. The images were subsequently improved using
image enhancement methods. The microscope light is
adjusted to produce images of the blood samples when they
are studied under a microscope. As a result, the brightness of
the microscope fluctuates with time, as do the reflections, all
of which contribute to the worsening of deep learning model
performance. As a result, image enhancement methods are
beneficial. So, the brightness of the images was adjusted by
adding 30 to each pixel value and the contrast was adjusted
by scaling the pixel values by 1.4. Later, an edge-detecting
Laplacian filter [[0, −1, 0], [−1, 5, −1], [0, −1, 0]] was

FIGURE 2. Architecture of the pretrained, fine-tuned base model.

applied. This filter recognizes areas that are changing, such as
blast cells. Equations (1), (2), and (3) explain the operation of
the Laplacian filter. ∇2f represents a second order derivative
that ends up with a 1-pixel shift.

∇
2f =

∂2f
∂x2

+
∂2f
∂y2

(1)

∂2f
∂x2

= f (x + 1, y) + f (x − 1, y) − 2 f (x, y) (2)

∂2f
∂y2

= f (x, y+ 1) + f (x, y− 1) − 2 f (x, y) (3)

The enhanced images were then acquired. Figure 1 displays
both the original images and the corresponding enhanced
versions. Following that, we created a three-class dataset
by adding images from the ALLIDB2 dataset’s Healthy and
ALL classes along with images from the ASH dataset’s AML
class.

B. DETECTION
The detection stage is divided into two stages. In the first
stage, pretrained, fine-tuned basemodels are employed and in
the second stage, the generated feature maps are fused and fed
to the fully connected meta-classifier to get the final detection
result.

1) MODIFIED PRETRAINED FINE-TUNED EFFICIENTNETB7
EfficientNetB7 [33] architecture has introduced a compound
scaling method that uniformly scales the dimensions of
depth (d), width (w), and resolution (r) of the base
model architecture, EfficientNetB0. Multi-objective Neural
Architecture Search (NAS) is introduced to develop the
base model architecture that incorporates mobile inverted
bottleneck convolution (MBConv). Then, the compound
scaling method is utilized using Equation (4) to scale up the
base model architecture for developing EfficientNetB7.

d = αφ
; where α ≥ 1

w = βφ
; where β ≥ 1
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FIGURE 3. The proposed two-staged feature fusion-based stacked ensemble architecture incorporated with pretrained, fine-tuned base models and
ensemble of feature maps in order to classify acute leukemia.

r = γ φ
; where γ ≥ 1 (4)

The values of α, β, and γ are determined by a small grid
search, and the compound coefficient φ denotes the available
computational resources. The ImageNet dataset [34] was
used primarily to train the architecture to classify 1000 differ-
ent classes. Amodified pretrained, fine-tuned EfficientNetB7
architecture is then created by employing a dense layer with
1024 nodes and a ‘‘ReLu’’ activation function, followed by a
dropout layer with a drop probability of 0.3 and another dense
layer with 3 nodes and a ‘‘Softmax’’ activation function.
Later, the preparedmulticlass leukemia dataset is used to train
the whole architecture to classify microscopic smear images.

2) MODIFIED PRETRAINED FINE-TUNED
MOBILENETV3LARGE
MobileNetV3Large [35] architecture has improvised the lin-
ear bottleneck and inverted residual structure of the previous
version by introducing squeeze and excitation in the bottle-
neck structure. Also, hard-swish nonlinearity is introduced
to the layers. The inclusion of squeeze and excitation aids
in creating the output feature map by assigning unequal
weights to distinct channels from the input. A platform-
aware Neural Architecture Search (NAS) is introduced to
find the overall network architecture by optimizing each
network block alongside the NetAdapt algorithm that is used
to determine the optimal amount of filters for each layer.
Similar to theModified Pretrained Fine-tuned EfficientNetB7
architecture, intially, the ImageNet dataset [34] was used to
train the initial architecture to classify 1000 different classes.
We then make a modified fine-tuned MobileNetV3Large
architecture by employing a Dense layer with 1024 nodes

and a ‘‘ReLu’’ activation function, followed by a Dropout
layer with a drop probability of 0.3, and another Dense layer
with 3 nodes and a ‘‘Softmax’’ activation function. Finally
the whole architecture is trained on the prepared multiclass
leukemia dataset to classify microscopic smear images.

3) FEATURE FUSION BASED ENSEMBLE
In this stage, a feature fusion-based ensembling has been
proposed to recognize acute leukemia.

In the first stage, two modified pretrained deep neural
networks were introduced which belong to EfficientNet
and MobileNet architectures. Pretrained models are used to
retrain the models on a different dataset using previously
learned weights. It is possible to reduce the time required
to train by utilizing this method without requiring a large
amount of data [36], [37], [38], [39], [40], [41]. As a
consequence, it is ideal for image-based medical applications
that deal with small training datasets having just a few images
per class. Our proposed methodology employs two pretrained
deep CNN architectures. Figure 2 depicts how the modified
pretrained, fine-tuned base models were adapted in the first
stage of the proposed architecture. To create pretrained, fine-
tuned base models, the layers of the base models were
made frozen. Here, the number of features produced by the
probabilistic confidence map created by Softmax activation
is equivalent to the number of classes in the dataset. The
entire set of pretrained, fine-tuned base models was retrained
after that. The weights of the pretrained, fine-tuned base
models were preserved. Later, to train the whole two-staged
feature fusion-based ensembling architecture, these saved
weights were loaded and kept frozen. Due to the high
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TABLE 1. Hyperparameters of the proposed architecture.

memory requirements involved in parallelly training two
pretrained, fine-tuned base models, this two-staged approach
was adapted. Additionally, our proposed architecture allowed
the pretrained, fine-tuned base models to preserve their
underlying behavioral traits of extracting impactful features
by keeping the weights intact. As a result, during the feature
fusion-based ensemble, they were not affected by each other.

As feature maps are ensembled in the feature fusion-based
ensembling method, the two feature maps generated by the
pretrained, fine-tuned base models belong to two different
deep neural network architecture families (EfficientNet
and MobileNet) were concatenated in the second stage.
Equation (5) explains how the feature maps were concate-
nated. As we are concatenating the feature maps generated
from the Dense layer of the pretrained, fine-tuned base
models, Nk denotes the number of nodes, and the value is the
same for each model. k denotes the number of feature maps,
and FMAP denotes the final concatenated feature map.

FMAP =

n∑
k=1

Nk (5)

Prior to this process, the last Dense layer of each pretrained,
fine-tuned base model was discarded, and after the concate-
nation of two feature maps, a Dense layer with 1000 units
and sigmoid activation, followed by a Dense layer with
100 units and ReLu activation, and a dense layer with 10 units
and sigmoid activation, were added to create a two-layer
metaclassifier model. Finally, the output Dense layer with
Softmax activation was added. Following the individual
training (modified pretrained, fine-tuned EfficientNetB7 and
modified pretrained, fine-tuned MobileNetV3Large) using
the corresponding dataset in the first stage, Figure 3 depicts
how the feature maps of each pretrained, fine-tuned base
model were generated and fed into the proposed feature
fusion-based stacked ensemble architecture as inputs for the
final prediction in the second stage. For training the model,
we employed 70% of the augmented dataset along with
ImageDataGenerator, 10% for validation, and the remaining
20% for testing. As mentioned earlier, the training process of
the proposed architecture had two stages since the pretrained,
fine-tuned base models were retrained separately while
training the whole proposed architecture. This approach not
only decreases training time and memory consumption but
also retains the unique architectural traits of each pretrained,
fine-tuned base model to choose the optimal collection of

features among all the extracted features of the pretrained,
fine-tuned base models.

C. HYPERPARAMETERS FOR PROPOSED ARCHITECTURE
The loss function, activation function, batch size, optimizer,
number of epochs, etc. are all important factors to consider.
All of these factors have been considered as hyperparameters
for training the proposed architecture. In the hidden layers of
the modified layers of the first stage and in the meta-classifier
of the second stage, the ‘‘sigmoid’’ and the ‘‘ReLu’’
activation functions are employed. Additionally, ‘‘Softmax’’
is used for multiclass classification in the output layer. Table 1
displays the hyperparameter values that were employed.

D. PERFORMANCE METRICS
Performance metrics are used to evaluate each machine
learning architecture’s performance. The effectiveness of
classificationmay be evaluated inmany different ways. In this
study, we employed the accuracy, precision, recall, F1-score,
area under the curve (AUC) score, and confusion matrix
for the performance evaluation of acute leukemia detection.
As indicated in Equation (6), Accuracy is the proportion of
correctly predicted data points among all the data points,
where TP stands for the number of correct positive predic-
tions, TN for the number of correct negative predictions,
FP for the number of incorrect positive predictions, and
FN for the number of incorrect negative predictions. The
accuracy of the positive predictions is measured by Precision
whereas the completeness of the positive predictions is
measured by Recall. The harmonic mean of the recall values
and precision values is represented by the F1 − score.
The ‘‘macro’’ average is utilized to calculate the AUC
score. Furthermore, a confusion matrix is created from these
measures to demonstrate the trade-off between the predicted
acute leukemia class labels and the actual acute leukemia
class labels.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − score =
2 × TP

2 × TP + FP + FN
(9)

IV. EXPERIMENTATION AND PERFORMANCE ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The hardware utilized for conducting the experiments
regarding this study was a Windows 11 PC equipped with
a 2.20 GHz Intel(R) Xeon(R) processor, 16 GB of RAM,
and an NVIDIA Tesla P100 GPU. All experiments using our
proposed two-staged feature fusion-based stacked ensemble
architecture to detect acute leukemia were carried out using
Python 3.10.10 and TensorFlow 2.9.0.
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TABLE 2. Acute leukemia detection performance on the test data.

FIGURE 4. Performance comparison of the proposed method and the
modified pretrained, fine-tuned base models which are employed in the
proposed method regarding acute leukemia detection.

FIGURE 5. ROC curves of the proposed method and the employed
modified pretrained, fine-tuned base models demonstrating the detection
performance.

B. PERFORMANCE EVALUATION OF DETECTION
The results and performance comparison of the proposed
two-staged feature fusion-based acute leukemia detection
architecture with other pretrained, fine-tuned base models
to identify acute leukemia are shown in Table 2. The mod-
ified pretrained, fine-tuned EfficientNetB7 model and the
modified pretrained, fine-tuned MobileNetV3Large model
outperformed the other basemodels andwere employed in the
two branches of the proposed two-staged feature fusion-based
stacked ensemble architecture. The parameter description
regarding the proposed architecture, the employed modified
pretrained, fine-tuned base models, and the other modified
pretrained, fine-tuned testing models are shown in Table 3.
The required time for testing is also included, where the
number of steps for testing was 39. As demonstrated in

TABLE 3. Parameter description for acute leukemia detection.

FIGURE 6. Precision/recall curves of the proposed method and the
employed modified pretrained, fine-tuned base models demonstrating
the detection performance.

Figure 4, our proposed two-staged feature fusion-based
stacked ensemble technique outperformed the other pre-
trained, fine-tuned base models along with the employed
modified pretrained, fine-tuned base models with varied
numbers of deep layers in terms of Accuracy, Precision,
Recall, and F1-score. The feature fusion-based ensemble
learning strategy was emphasized in the findings to improve
performance, and we can observe improvements in the
Accuracy, Precision, Recall, F1-score, and AUC score. The
Accuracy, precision, Recall, and F1-score of our proposed
two-staged feature fusion-based stacked ensemble approach
were all 99.3%. Additionally, the AUC score was used to
compare the acute leukemia detection results.

1) CONFUSION MATRIX
As confusion matrix is taken into consideration for demon-
strating the performance, the confusion matrix in Figure 7
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TABLE 4. Overall performance of the proposed two-staged feature fusion-based stacked ensemble approach in detecting acute leukemia, acute
lymphocytic leukemia and acute myeloid leukemia.

FIGURE 7. Confusion matrix of the proposed method highlighting
significant classification trade-offs among classes regarding acute
leukemia detection.

reflects the performance of the proposed architecture in
determining acute leukemia. The normalized confusion
matrix highlights significant classification trade-offs across
classes (ALL, AML, Healthy). It is noticed that among the
images of the test set, all the images of the AML class
were classified perfectly and only 1% test images of both
the ALL class and the Healthy class were misclassified
by the proposed architecture, whereas 1% test images of
the AML class and 5% test images of both the ALL class
and the Healthy class were misclassified by the modified
pretrained, fine-tuned EfficientNetB7 base model and the
modified pretrained, fine-tuned MobileNetV3Large base
model misclassified 2% and 3% test images of the ALL class
and the Healthy class respectively and predicted all the test
images of the AML class perfectly, clearly indicating that
the proposed architecture can detect acute leukemia more
accurately than the employed base models.

2) ROC AND PRECISION/RECALL CURVES
It is noticeable in Table 2 that the AUC score regarding
the proposed architecture and the employed two modified
pretrained, fine-tuned base models are the same which is
0.99 and to interpret it graphically, ROC curves were taken
into consideration. Figure 5 shows the plots of the ROC
curves of the True Positive Rate against the False Positive
Rate regarding the proposed architecture and the employed
base models. The proposed two-staged feature fusion-based
stacked ensemble architecture has a larger area under the
ROC curve than the employed two base models.

TABLE 5. Class-wise performance of acute leukemia detection on the test
data.

To prove the robustness of the proposed architecture,
Precision-vs-Recall curves were also taken into consider-
ation. For various thresholds, the precision-vs-recall curve
illustrates the trade-off between precision and recall. A strong
recall is correlated with a low false negative rate, whereas
a low false positive rate is indicative of excellent precision.
Both high recall and precision are denoted by a substantial
area under the curve. Figure 6 shows the plots of the
precision-vs-recall curves of the Precision values against
the Recall values regarding the proposed architecture and
the employed base models. The proposed two-staged feature
fusion-based stacked ensemble architecture has a larger
area under the curve than the employed two base models.
So the evidence of the enhanced performance of the
proposed two-staged feature fusion-based stacked ensemble
architecture is clearly visible from these comparisons.

3) CLASSWISE PERFORMANCE
Apart from the confusion matrix, Precision, Recall, and
F1-score were also taken into consideration to show more
detailed class-wise performance in detecting acute leukemia.
Table 5 shows the class-wise performance in detecting
acute leukemia. In detecting the test images of the ALL
class, the proposed two-staged feature fusion-based stacked
ensemble architecture achieved highest precision, recall, and
F1-score of 98.8%, 99.0%, and 98.9%, respectively whereas
in detecting the test images of the AML class the proposed
architecture achieved the perfect score of 100.0% and in
detecting the test images of the Healthy class the proposed
architecture achieved a precision of 99.0%, recall of 98.8%,
and F1-score of 98.9% which are significant improvement
from the scores of the employed two modified pretrained,
fine-tuned base models’ scores.

4) COMPARATIVE ANALYSIS
The preceding comparison shows that the proposed strategy
yields the best results in detecting acute leukemia. Therefore,
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FIGURE 8. ROC curves of the proposed two-staged feature fusion-based
stacked ensembling integrated architecture and the employed pretrained,
fine-tuned base models demonstrating acute lymphocytic leukemia
detection performances on both the ALLIDB1 and ALLIDB2 datasets, and
acute myeloid leukemia detection performance on the ASH dataset.

we applied the proposed two-staged feature fusion-based
stacked ensemble approach on both the ALLIDB1 and the
ALLIDB2 datasets for detecting acute lymphocytic leukemia
and on the ASH dataset for detecting acute myeloid leukemia.
Table 4 describes the overall performance of our proposed
two-staged feature fusion-based stacked ensemble approach

FIGURE 9. Precision/recall curves of the proposed two-staged feature
fusion-based stacked ensembling integrated architecture and the
employed pretrained, fine-tuned base models demonstrating acute
lymphocytic leukemia detection performances on both the ALLIDB1 and
ALLIDB2 datasets, and acute myeloid leukemia detection performance on
the ASH dataset.

in detecting acute leukemia, acute lymphocytic leukemia, and
acute myeloid leukemia, which denotes that the proposed
approach achieved an accuracy of 99.3% in detecting acute
leukemia, 100.0% and 99.4% in detecting acute lymphocytic
leukemia on the ALLIDB1 and the ALLIDB2 datasets,
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FIGURE 10. Input images and the corresponding superimposed images generated by the Grad-CAM regarding the base models of the two
branches of the first stage of the proposed two-staged feature fusion-based stacked ensemble architecture.

respectively, and 99.8% in detecting acute myeloid leukemia
on the ASH dataset.

By employing the test data from the ALLIDB1 and the
ALLIDB2 datasets, our proposed approach was compared
with the state-of-the-art methods for the detection of acute
lymphocytic leukemia. As shown in Table 6, we compared
the results of our proposed two-staged feature fusion-based
stacked ensemble approach to the results of existing state-
of-the-art methods for the detection of acute lymphocytic
leukemia and found that it performed significantly on the
ALLIDB1 dataset by achieving 100% Accuracy, Precision,
Recall, and F1-score. On top of that, the proposed approach
had the highest AUC score (1.0).

Similarly, as shown in Table 7, we also compared the
results of our proposed two-staged feature fusion-based
stacked ensemble approach to the results of existing state-
of-the-art methods for the detection of acute lymphocytic
leukemia and found that it performed better on the ALLIDB2
dataset as well. In terms of Accuracy, our proposed approach
outperformed the methods used in [7], [10], [11], [24], [25],
[26], [29], and [47] by margins of 1.2%, 2.7%, 1.2%, 2.2%,
1.2%, 2.6%, 3.7%, and 0.7%, respectively. When compared
to the Precision, themethods used in [7], [10], [11], [24], [25],
and [26] were outperformed by 0.2%, 2.4%, 0.9%, 0.9%,
1.8%, and 3.2%, respectively. When compared to the Recall,
the methods used in [7], [10], [11], [24], [25], [26], and [47]
were outperformed by 1.3%, 2.9%, 1.4%, 3.5%, 0.4%, 1.9%,
and 1.4%, respectively.

When compared to the F1-score, the methods used in
[7], [10], [11], [24], [25], and [26] were outperformed
by 3.1%, 2.7%, 1.2%, 2.2%, 1.1%, and 2.5%, respec-
tively. Furthermore, the proposed approach achieved an
outstanding AUC score of 0.99. Additionally, since confusion
matrix, ROC curve, and Precision-vs-Recall curve were also
employed to examine the predictions, Figure 8 represents
the ROC curves, and Figure 9 represents the Precision-vs-
Recall curves demonstrating the capability of distinguishing
between classes regarding the ALLIDB1, ALLIDB2, and
ASH datasets, whereas Figure 11 represents normalized
confusion matrices that reveal substantial classification
trade-offs across classes for all three datasets.

C. GRAD-CAM EVALUATION
The Gradient Weighted Class Activation Mapping
(Grad-CAM) offers a comprehensible representation of
deep learning architectures. Grad-CAM provides a clear
explanation for every interconnected neural network archi-
tecture, helping to get insight into the architecture during the
detection task. Grad-CAM was taken into consideration to
evaluate whether the normal and the blast cell sections present
in the input images had significant impacts on detecting
acute leukemia and to observe the evidence of detection
visually. The Grad-CAMdetermines the gradient of the target
class on each feature map and then averages them to figure
out the relevance of each map. Grad-CAM is an efficient
approach that maintains the execution speed without any
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FIGURE 11. Confusion matrices of the proposed feature fusion-based stacked ensembling integrated architecture highlighting significant
classification trade-offs among classes regarding acute lymphocytic leukemia detection on both the ALLIDB1 and ALLIDB2 datasets, and acute
myeloid leukemia detection on the ASH dataset.

TABLE 6. Performance comparison with the state-of-the-art methods on ALLIDB1 dataset utilizing our proposed method.

requirement for additional specifically built components.
A single test image regarding each class was taken as input
by the Grad-CAM and applied the proposed architecture,
where the last convolutional layer was utilized to obtain
the visualizations. Grad-CAM leveraged the gradients of
the last convolutional layer and developed a heatmap that
emphasized the most significant sections of an input image.
When the heatmapwas placed on the original input image, the
specific areas based on which classification was done were
determined. Figure 10 shows the class activation maps of the

two modified pretrained, fine-tuned base models employed
in the two branches of the first stage of the proposed
architecture. We can see how significantly these two base
models considered the normal and the blast cells of the input
images to detect acute leukemia.

D. ABLATION STUDY
Apart from the preceding comparisons, we performed more
experiments regarding the proposed architecture to obtain a
more precise ablation analysis. We performed the detection
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TABLE 7. Performance comparison with the state-of-the-art methods on ALLIDB2 dataset utilizing our proposed method.

process only employing a single branch in the first stage of the
proposed architecture to observe the effect of feature fusion
of two different feature maps belonging to two completely
different base model architectures. From Table 8 we can see
that when the modified pretrained, fine-tuned EfficientNetB7
was only employed in the single branch of the first stage,
it achieved an Accuracy, Recall, and F1-score of 96.4%
whereas 96.5% as Precision which is 0.1% greater when the
modified pretrained, fine-tuned EfficientNetB7 was simply
applied to detect acute leukemia, as shown in Table 2. When
the modified pretrained, fine-tuned MobileNetV3Large was
only employed in the single branch of the first stage,
it achieved an Accuracy, Precision, Recall, and F1-score of
98.8% which is 0.4% greater when the modified pretrained,
fine-tuned MobileNetV3Large was simply applied to detect
acute leukemia, as shown in Table 2. When both the base
models were employed in the two branches in the first
stage of the proposed architecture, we can see the Accuracy,
Precision, Recall, and F1-score reached to 99.3% which is
clearly superior than the single branch operation. And it
clearly signifies the effect of the feature fusion technique
on two different feature maps belonging to two completely
different base model architectures.

E. DISCUSSION
To detect acute leukemia using microscopic smear images,
our proposed two-staged feature fusion-based stacked ensem-
ble integrated CAD system explores the difficulties and
addresses the problems with significant performance. Fur-
thermore, it has shown superior performance in detecting
acute lymphocytic leukemia and acute myeloid leukemia
as well. UNet, Zack’s algorithm, threshold-based tech-
niques, Random Forest, ADBRF, SVM, KNN, ResNet18,
VGG16, MobileNetV2, ShuffleNet, and other state-of-the-
art segmentation and classification algorithms, as well as
hybrid algorithms combining both machine learning and
deep learning algorithms, have been proposed to address
the difficulties regarding this. When the performance of our
proposed feature fusion-based stacked ensemble integrated
CAD system is compared with the performance of the state-
of-the-art approaches (as shown in Table 6 and Table 7), it is
obvious that our proposed method can greatly exceed the
prior efforts.

Three key elements were responsible for the improved
performance. To begin, rather than immediately feeding the

TABLE 8. Ablation study of acute leukemia detection on the test data.

raw images into our proposed two-staged feature fusion-
based stacked ensemble integrated CAD architecture, the raw
images were converted to improved images by adjusting the
intensity of brightness and contrast. The Laplacian filter also
assisted in defining the poorly defined edges and overcoming
the blurriness problem.

Secondly, the underlying pretrained structure of our
proposed approach provided robust baseline feature map
representations, enabling the method to leverage freshly
acquired features as well as previously discovered universal
features and gradients during training. This transfer learning
strategy enhanced the convergence and overall performance.
Also, it required very little time to retrain the pretrained, fine-
tuned base models and instances to identify key patterns for
improved performance.

Finally, the feature fusion-based stacked ensembling
approach utilized the key features from the fusion of feature
maps generated by two pretrained, fine-tuned base models
belong to two different deep neural network architecture
families (EfficientNet and MobileNet), preserving unique
architectural traits, which boosted the overall performance
significantly. In addition, the compound scaling architec-
ture and the squeeze and excitation integrated bottleneck
architecture of the pretrained, fine-tuned base models greatly
influenced the overall performance, whereas the two-staged
training approach greatly reduced the amount of time and
memory needed for training the whole architecture.

V. CONCLUSION
We evaluated the effectiveness of feature fusion-based
stacked ensembling incorporating deep learning to diagnose
acute leukemia using microscopic smear images in this
study. Furthermore, an automated CAD System for diag-
nosing acute leukemia is proposed, to which other cutting-
edge approaches, such as transfer learning and ensemble
techniques are adapted.
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For acute leukemia detection, a two-staged feature
fusion-based stacked ensembling integrated CAD sys-
tem employing pretrained, fine-tuned EfficientNetB7 and
MobileNetV3Large models is presented. Initially, enhanced
microscopic smear images were generated from raw smear
images, and the proposed architecture performed signifi-
cantly well in detecting acute leukemia. This led us to
employ our proposed approach in detecting acute lympho-
cytic leukemia and acute myeloid leukemia, and it showed
superior performance on the ALLIDB1, ALLIDB2, and ASH
datasets, obtaining 100.0%, 99.4%, and 99.8% accuracies,
respectively.

Our proposed automated CAD system aims to provide
hematologists with a clinical tool that can be used as a
second recommendation for automated acute leukemia diag-
nosis utilizing microscopic smear images by demonstrating
exceptional performance. Despite the fact that it has showed
excellent results, there is still opportunity for improvement.
We will be working on this in the future to add more
perfection to our proposed architecture.
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