
Received 2 February 2024, accepted 17 March 2024, date of publication 15 April 2024, date of current version 22 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3388716

A Survey on Hardware-Based Malware
Detection Approaches
CRISTIANO PEGORARO CHENET , (Student Member, IEEE),
ALESSANDRO SAVINO , (Senior Member, IEEE),
AND STEFANO DI CARLO , (Senior Member, IEEE)
Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Stefano Di Carlo (stefano.dicarlo@polito.it)

This work was supported in part by the Project SERICS through the MUR National Recovery and Resilience Plan funded by the European
Union—NextGenerationEU under Grant PE00000014, and in part by the Vitamin-V Project funded by the European Union under Project
101093062.

ABSTRACT This paper delves into the dynamic landscape of computer security, where malware poses a
paramount threat. Our focus is a riveting exploration of the recent and promising hardware-based malware
detection approaches. Leveraging hardware performance counters and machine learning prowess, hardware-
based malware detection approaches bring forth compelling advantages such as real-time detection,
resilience to code variations, minimal performance overhead, protection disablement fortitude, and cost-
effectiveness. Navigating through a generic hardware-based detection framework, we meticulously analyze
the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
This survey is not only a resource for seasoned experts but also an inviting starting point for those venturing
into the field of malware detection. However, challenges emerge in detecting malware based on hardware
events. We struggle with the imperative of accuracy improvements and strategies to address the remaining
classification errors. The discussion extends to crafting mixed hardware and software approaches for
collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of
the correlation between hardware events and malware applications.

INDEX TERMS Cybersecurity, malware, hardware-based detection, hardware-based framework.

I. INTRODUCTION
Malware, short for malicious software, poses a significant
threat to computer security. It includes any code modification
within a software system aimed at causing harm or disrupting
the system’s intended function [1], [2].Malware attacks cover
spying, intrusive ads, email abuse, system damage, ransom
demands, data release, slowdown, browser manipulation,
and unauthorized access to sensitive information. Successful
attacks lead to consequences that can be categorized into
four groups: (i) unauthorized disclosure, where an autho-
rized entity gains access to data; (ii) deception, where
an authorized entity receives false data; (iii) disruption,
causing interruptions in system services; and (iv) usurpation,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

resulting in unauthorized control of system services [3].
Computing systems, including personal computers, mobile
phones, Internet of Things (IoT), 5G devices, Cyber-Physical
Systems (CPSs), and enterprise-wide systems, are vulnerable
to malware. The complexity and size of modern systems,
often indicated by a rising number of lines of code, amplify
the threat. Factors such as numerous bugs, unsafe program-
ming languages, improper configuration, and the ease of
concealing malicious code create potential vulnerabilities.
Additionally, the increased network connectivity expands
the security risks, making all devices potential targets for
attackers. For example, cybercrimes have seen a 70% increase
in online fraud accomplished through mobile platforms, with
a 30% rise in IoT malware in 2020 [4].
Globally, cybersecurity is paramount, with malware being

a primary vehicle for cybercrimes. The World Economic

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 54115

https://orcid.org/0000-0003-3974-9310
https://orcid.org/0000-0003-0529-7950
https://orcid.org/0000-0002-7512-5356
https://orcid.org/0000-0003-4704-5364


C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

ForumGlobal Risk Report 2023 ranks cyber insecurity eighth
among top global risks, alongside threats like climate change
and involuntary migration [5]. Cybersecurity Ventures pre-
dicts a 15 percent annual growth in international cybercrime
costs, reaching USD 8 trillion in 2023 and USD 10.5 trillion
annually by 2025 [5]. Global spending on cybersecurity
products and services is expected to exceed USD 1.75 trillion
from 2021 to 2025, growing 15 percent year-over-year [6].
Ransomware, a prevalent malware threat, was predicted to
cost USD 20 billion globally in 2021, with damage costs
projected to exceed USD 265 billion annually by 2031 [5].

Researchers have developed various malware detection
methods in response to these alarming statistics, leveraging
Machine Learning (ML) andDeep Learning (DL) techniques.
Surveys have evaluated and categorized research in this
domain, focusing on specific Operating Systems (OSs), such
as Windows, or mobile platforms like Android. Ye et al.
[7] conducted a comprehensive survey on intelligent mal-
ware detection using data mining techniques, emphasizing
the importance of Feature Extraction (FE) and algorithm
selection. Subsequently, Ucci et al. [8] provided an overview
of machine learning-based malware analysis, focusing on
analysis objectives, FE, and ML algorithms, albeit limited
to Portable Executable (PE) files. Gibert et al. [9] sys-
tematically reviewed ML and DL techniques for Windows
malware detection, comparing input features, classification
algorithms, and dataset characteristics. Similarly, Qiu et al.
[10] and Liu et al. [11] addressed deep Android mal-
ware detection, emphasizing supervised classification using
Multilayer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs) architectures. Catal et al. [12] conducted
an extensive literature review on DL techniques for mobile
malware detection, highlighting the prevalence of MLP and
CNN architectures, with a focus on supervised learning and
static features. Furthermore, Deldar and Abadi [13] proposed
a survey on DL techniques for zero-day malware detection,
targeting features extracted at the software level to address
emerging threats.

In the early 2010s, researchers initially proposed the idea of
Hardware-Supported Malware Detection (HMD) [14], [15].
HMD involves dynamically analyzing micro-architecture
events in a processor using ML algorithms to differenti-
ate between benign applications and malware. The shift
towards HMD is justified because of the potential of
enhanced security by leveraging robust hardware monitor-
ing infrastructures. This provides a more robust defense
against sophisticated attacks that may exploit vulnerabil-
ities in software-based approaches. Specifically, hardware
features reflect phase behavior in the underlying hardware,
as observed in prior studies [16], [17]. These phases often
correspond to time-behavioral patterns in micro-architectural
events, which vary significantly between programs, enabling
the distinction between malicious and benign applications.
Additionally, these hardware-based approaches address the
zero-day issue, as demonstrated in [18]. To the best of our

knowledge, a comprehensive overview of HMD methods is
still missing. This paper tries to cover this gap.

The structure is as follows: Section II covers the basics
of malware, serving as a foundation for understanding the
field. Section III presents a comprehensive overview of
software and hardware-based malware detection solutions,
with a detailed discussion of their strengths and weaknesses.
Section IV delves into crucial aspects of hardware-based
detection. Lastly, Section VI provides conclusions and
outlines research challenges.

II. MALWARE FUNDAMENTALS
Categorizing malware is difficult because of its growing
complexity and diverse properties. Yet, creating a malware
taxonomy provides valuable insights into understanding
it better. Before exploring the fundamentals of malware
operation, let us define a set of keywords commonly used to
describe different malware categories [1], [19]:

• Virus: malicious code with the capability of inserting
itself into other programs;

• Worm: malicious code that propagates similarly to
viruses but does not require a target software to replicate,
often exploiting connectivity such as emails;

• Trojan horse: malicious code that masquerades as a
useful program;

• Spyware: malicious code secretly installed into an
information system to transmit private user data to an
external entity;

• Adware: malicious code that displays computer adver-
tisements, primarily aiming for financial benefits;

• Ransomware: malicious code that denies access to a
user’s data, usually by encrypting it until a ransom is
paid;

• Backdoor: malicious code that opens systems to
external entities by subverting local security policies to
allow remote access and control over a network;

• Keylogger: malicious code designed to record
keystrokes, used to obtain passwords or encryption keys
to bypass security measures;

• Botnet: a network of infected computers controlled by
a remote criminal;

• Rootkit: malicious application attackers use to conceal
their activities and maintain control over a host.

Organizations like NIST [20] and ENISA [21] recognize
these malware types. In literature, three common properties
describemalware: (i) propagationmethod, categorizing based
on spread and purpose; (ii) concealment strategy, focusing
on hiding tactics against users and detection; and (iii) data
structure manipulation, dealing with software vulnerability
exploitation. Table 6 organizes malware based on these
categories.

Regarding concealment strategy, malware can be cat-
egorized into two main groups: (i) no concealment and
(ii) stealthy malware [22], [23], [24]. No concealed malicious
code lacks techniques to hide itself, making it easy to detect.

54116 VOLUME 12, 2024



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

TABLE 1. Malware categories based on propagation method, concealment strategy, and data structure manipulation.

However, as shown in Table 1, only a small subset of malware
does not employ concealment. File infectors like traditional
viruses or worms may not heavily focus on concealment,
spreading by attaching to executable files. Adware may not
invest heavily in hiding and may rely on user interactions.
Similarly, if achieved without sophisticated evasion, simple
trojans may prioritize their primary goal over concealment.

Conversely, stealthy malware is a general term for all kinds
of malicious code capable of hiding from users and detection
mechanisms [25], [26]. Its primary purpose is to remain
undetected for an extended period in the computing system,
allowing compromising computers and stealing information
before a suitable detection mechanism can be deployed to
protect against it. In general, the concealment actions aim
to hide the malware’s trails or code. Stealthy malware may
employ several techniques:

• Encryption/obfuscation: the oldest and simplest tech-
nique consists of a decryptor and an encrypted main
body.When the infected file runs, the decryptor recovers
the main body. The malware may use a different key
for each infection to hide its signature, making the
encrypted part unique. The decryptor small size com-
pared to the main body reduces detection probability.
Encryption complexity ranges from basic operations to
strong encryption methods [22], [23], [27];

• Oligomorphism and polymorphism: the encryption
technique limitation lies in the constant decryptor across
exploitations, enabling detection based on code patterns.
Oligomorphism employs a small set of decryptors,
using a different one for each infection. Polymorphism,
similar but with theoretically infinite decryptor vari-
ations, relies on obfuscation methods like dead-code
insertion and register reassignment for distinct decryptor
creation [22], [23], [28], [29];

• Metamorphism: the binary sequence is altered by
making a new malware version for each new infection
through a mutation engine. The mutation engine uses
code transforming and obfuscation to change the
malicious code [22], [23], [30].

Several classes of software vulnerabilities can be explored
to perform security attacks. This paper focuses on the
prevalent memory errors enabling memory corruption for
security attacks [31], which lead to two main exploit
categories: control-flow attacks and data-only attacks.

Control-flow attacks are common, easy to construct,
and demand minimal application-specific knowledge. They
exploit vulnerabilities like buffer overflows or injection
attacks to redirect the program’s execution flow, enabling
arbitrary code execution [15], [32], [33], [34], [35].
Techniques such as code injection [36], Return-Oriented
Programming (ROP) [37], or Jump-Oriented Programming
(JOP) [38] divert execution to specific memory loca-
tions housing malicious code, bypassing standard security
measures.

In contrast, data-only attacks are rarer, subtler, and require
advanced knowledge of program semantics. They manip-
ulate critical data while maintaining a valid control flow,
compromising target programs without injecting additional
code. These attacks alter essential data elements, such
as identification or configuration data, influencing target
application behaviors during runtime [39].

III. OVERVIEW OF MALWARE DETECTION
Malware detection involves determining whether a given pro-
gram exhibits malicious intent. Figure 1 offers an overview of
contemporary solutions for malware detection, categorized
into two main groups: software-based and hardware-based
approaches. This division is rooted in differing observation
points within the system stack and different detection
methodologies. Recent advancements, as underscored by [13]
and [18], increasingly rely on ML or Artificial Intelligence
(AI) techniques to facilitate detection.

This section presents an overview of software-based
and hardware-based malware detection (sub-sections III-B
and III-C), starting by reviewing the metrics used for
evaluating the performance and efficiency of the detectors
(sub-section III-A).

VOLUME 12, 2024 54117



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

FIGURE 1. Overview of the contemporary solutions for malware
detection. Elaborated by the authors based on [40].

A. EVALUATION METRICS
Before delving into specific malware detection techniques,
readers need to consider the evaluation metrics used to assess
their effectiveness. These metrics serve as quality indicators,
pivotal in determining the adoption of a technique on a
commercial scale. Since malware detection is a classification
problem, the quality evaluation of the detectors is based on
the standard classification metrics. They can be grouped as
performance metrics and efficiency metrics. Performance is
the degree to which a system or component accomplishes its
designated functions within given constraints, i.e., correctly
detects the malware. Efficiency is the degree to which a
system or component performs its specified functions with
minimum consumption of resources [41].
The primary evaluation tool for performance is the

confusion matrix. This matrix is fundamental in ML and
classification tasks, summarizing results in a tabular form.
It comprises four elements (see Table 2): True Positives
(TPs) represent instances where the model correctly predicts
malware presence, True Negatives (TNs) indicate correct
predictions of malware absence. In contrast, False Positives
(FPs) and False Negatives (FNs) denote incorrect predictions
of malware presence or absence, respectively.

TABLE 2. Confusion matrix for malware detection.

Such a matrix allows for the definition of more descriptive
metrics, and Table 3 summarizes the most common ones [7].
The accuracy summarizes the overall correctness of the
classification model by expressing the number of correct
predictions, making it one of the most widely used metrics.
In scenarios where it is crucial to avoid incorrect malware

predictions, precision provides an accurate measure of the
TPs among all positive predictions. Shifting the evaluation
focus to ensure no malware passes unnoticed, the True Posi-
tive Rate (TPR) (also known as Recall or Sensitivity) weighs
TPs against all positive samples. It has two counterparts:
(i) the False Positive Rate (FPR), representing the probability
of a TP being missed, and (ii) the specificity, also known
as True Negative Rate (TNR), indicating the probability of
an actual negative (TN) being correctly classified. Balancing
Precision and Recall is often essential, and the evaluation can
be accomplished using the F1-score, which represents their
harmonic mean.

Eventually, the Receiver Operating Characteristic (ROC)
curve offers a visual perspective to performance evaluation.
It plots the TPR against the FPR on a 2D graph, enabling a
visual comparison of different models and capturing multiple
classification aspects by inspecting the Area Under the
Curve (AUC). In simple terms, the larger the AUC, the
better the model. AUC is closely related to the robustness
of the classifier, indicating how effectively the classifier
distinguishes between malware and benign applications.

TABLE 3. Most common metrics for performance evaluation of
classification.

According to [41], efficiency is related to the resources
used for malware detection. Many metrics can be used to
evaluate the efficiency [42], but in the malware detection
field, latency, power consumption, and hardware cost are the
main interest:

• Latency is the time between collecting all features
analyzed by the malware detector and concluding its
detection. A low latency is vital for run-time detection
of malware that acts in a short interval of time;

• Power consumption indicates the energy the detector
consumes per unit of time. Two factors primarily impact
the power consumption of the detector: the hardware that
implements or where the classifier runs and the detection
algorithm (those with higher computing processing tend
to consume more);

• Hardware cost indicates the monetary cost of building
the detection system. This is important from both an

54118 VOLUME 12, 2024



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

industry and a research perspective to dictate whether
a system is financially viable. The main parameter to
evaluate the hardware cost is the chip area (usually
reported in square millimeters) in conjunction with the
process technology (for example, 45 nm). Sometimes,
the amount of memory is also used to evaluate the
hardware cost.

B. SOFTWARE-BASED MALWARE DETECTION
Software-based protection relies on specific software running
in the system and analyzing the potential malware presence
using different approaches. Authors in [13] and [40] proposed
a very comprehensive selection of them:

• Signature-based: the signature is a unique malware
feature extracted from structural properties (e.g., code
sequences) or run-time properties [43]. The detection
works as follows: features extracted from the executable
generate a signature stored in a signature database.
When the system is required to classify a potential
threat, the detector extracts the related features and
computes the signature, comparing it with signatures on
the database. The potential threat is marked as malware
if a hit occurs during the comparison. This approach is
widely used within commercial antivirus and does not
allow zero-day detection [13];

• Software behavior analysis: this approach is based
on dynamic characteristics from run-time executions of
programs [40]. Dynamic characteristics might include
processor and memory information, kernel usage (sys-
tem calls), file system activities, and network commu-
nications. They are extracted with monitoring tools,
a dataset is created, and a ML detector distinguishes
malicious and harmless applications. Software behavior
analysis can detect malware variants often missed by the
signature-based approach;

• Heuristic-based detection: this method relies on expe-
riences and techniques, including rules and ML. The
process involves two phases: first, the detector system
is trained with normal and abnormal data to identify
relevant characteristics. In the second phase, known
as monitoring or detection, the trained detector intelli-
gently assesses new samples to make decisions [44];

• Deep Learning: this falls under the umbrella of
ML algorithms, enabling computational models with
multiple layers to extract more advanced features from
raw input [13]. The FE aspect combines elements from
previous approaches, making it a novel method. Addi-
tionally, it proves highly effective for zero-day detection,
as the FE, employing multiple techniques, facilitates
context adaptation and model updates, as highlighted
in [13].

Regarding software-based detection, it is also crucial to
distinguish among the types of analysis carried out to extract
the required information. According to [43], three ways are
possible: (i) via static analysis, using syntax or structural
properties of the program/process (e.g., code sequences),

(ii) via dynamic analysis, extracting the necessary data during
or after program execution, leveraging run-time information,
and (iii) via hybrid analysis, combining the two previous.
Selecting one of those also affects the expected latency of the
detection.While a static analysis aims to detect the threat even
before executing the malicious program, the other two might
require an entire execution before detection.

C. HARDWARE-BASED MALWARE DETECTION
Hardware-based detection, or HMD, addresses the perfor-
mance and computational overhead challenges of traditional
malware detection techniques by utilizing low-level micro-
architectural features of running applications on the target
system [18]. The concept that malware can be identified
through micro-architecture hardware events stems from the
observation that programs exhibit phase behaviors [16], [17].
Program phases, which vary significantly between programs,
manifest as patterns in architectural and micro-architectural
events. This variation enables the discrimination of programs
based on their time-behavioral hardware event patterns,
facilitating the differentiation between malicious and benign
applications. In 2011, Malone et al. [14] demonstrated the
feasibility of detecting program code modifications based
on the deviation of hardware events. In 2013, Demme et al.
[15] showed the feasibility of detecting Android malware and
Linux rootkits using hardware events values analyzed by a
ML classifier.

The idea of HMD is to perform dynamic analysis
leveraging micro-architecture hardware events monitored by
most modern microprocessors using Hardware Performance
Counters (HPCs) [45]. VariousML techniques can be applied
to the HPCs collected data [18]. One of the primary advan-
tages of HMD is that the analysis relies on real-time hardware
collected data, enabling fast ML classification; a few
milliseconds suffice to identify threats. This translates to low
latency, enabling runtime detection [46], [47], [48]. Unlike
static technique analysis employed by most software-based
antivirus solutions, which can be easily subverted by stealthy
malware using concealment techniques, dynamic analysis
via hardware-based approaches facilitates the detection
of code variants and unknown malware [15]. Moreover,
while software-based detection tools are software-based and
susceptible to bugs or oversights in the underlying system
software, hardware-based detection with secure hardware
significantly reduces the possibility of malware subverting
protection mechanisms [15], [34].

On the performance front, the dynamic analysis con-
ducted by software-based detection necessitates sophisti-
cated computation, often at the expense of significant
performance overhead. The increasing software size further
complicates dynamic software analysis [15]. Conversely,
in the hardware-based approach, understanding software
behavior provided by micro-architectural events simplifies
the analysis, reducing computational processing efforts and
the cost of hardware-based detection [15], [49].

VOLUME 12, 2024 54119



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

However, while the HPCs demonstrate their ability to
track behavioral deviations [50], [51], [52], their effec-
tiveness remains open to discussion. On the positive side,
[15], [34] demonstrated detector performance using this
approach, reporting accuracy consistently exceeding 80%,
deeming it effective. Conversely, [53] and [54] conducted
experiments challenging the effectiveness of hardware-based
detection. They argued that reported detection capabilities
often stem from tiny sample sizes and experimental setups
favoring the detection mechanism unrealistically. Even if
accurate, an 80% accuracy is insufficient in scenarios with
thousands of executables, risking many benign applications
being misclassified as malware. They also questioned the
causal link between low-level micro-architectural events and
high-level software behavior. Lastly, they illustrated the
hardware-based detector inability to distinguish ransomware
embedded in a benign application like Notepad++. In a
recent contribution, [55] acknowledged the absence of a
perfect malware detector and argued that hardware-based
detection is only effective for specific malware types.
In particular, [55] proposes its effectiveness in identifying
attacks exploiting architectural side-effects, citing examples
such as RowHammer [56], [57] (detectable through excessive
cache flushes [58]), ROP attacks [37] (identified by an
abundance of instruction misses [59]), and DirtyCoW [60]
(detectable through heightened paging activity). The authors
also emphasized the necessity for a maliciousness theory
to enhance the understanding of malware threats and assess
proposed defenses.

While HPCs have been used in the past for safety
and security, performance analysis, and optimization [61],
[62], [63], it is well-known that they may suffer from
inconsistency in implementation, leading to non-determinism
and overcounting [64]. Das et al. highlighted some of these
HPC challenges in security [65]. Recent studies address HPC
discrepancies, propose methodologies, analyze resilience,
and compare HPCs in various machines [66], [67], [68], [69].
Given that HPCs are hardware-based protections, detectors
may be designed for specific devices with characteristics
defined by the architecture and manufacturer. For instance,
processors may track different numbers of events simultane-
ously, and discrepancies in instruction counting methods are
possible [61]. These factors underscore the need for malware
detection applications to abstract software from the hardware
level.

Among the inconsistencies and limitations of HPCs, some
countermeasures can be deployed to stabilize the generated
data [61], [65]. They include per-process filtering of events
(applied by saving and restoring the counter values at context
switches), proper interrupt handling, and minimizing the
impact of non-deterministic events. In general, all works
acknowledge that the evolution and improvement of the
processors hardware monitoring units also tend to reduce this
issue. Eventually, the classification task built on top of the
HPC data is commonly a ML one. This frequently leads to

techniques that increase the complexity of such algorithms,
like ensemble learning and time series or even Deep Neural
Networks (DNNs) [18].

IV. HARDWARE-BASED MALWARE DETECTION BASICS
This section focuses on HMD techniques, outlining their key
components.

A. HARDWARE EVENTS AND PERFORMANCE COUNTERS
Modern processors have units to monitor hardware events.
In 2002, Sprunt [70] published a seminal paper on the
basics of PerformanceMonitoring Units (PMUs). These units
were developed to collect data about the performance of
applications, operating systems, and processors and to help
programmers tune algorithms and codes. Software dynam-
ically adjusted to resource utilization would also benefit
from the information collected. The proven advantages of
utilizing the PMUs, the continuous improvements of these
units, and their constant spreading among different devices
have led to their leverage for safety and security purposes
[50], [52], [62], [63].

Nowadays, PMUs can monitor several hardware events
(see Figure 2). Complex devices like high-end processors
have hundreds of events to monitor. These events include
retired instructions (branches, load, store, etc.), branch
predictions, cache hits and misses, floating-point operations,
hardware interrupts, elapsed core clock ticks, core frequency,
and temperature. However, to minimize hardware complex-
ity, only a few HPCs (e.g., 2 to 8 in high-end processors)
are generally available, thus limiting the number of parallel
events that can be monitored. Each HPC has an event detector
and an associated counter [71].

FIGURE 2. Hardware events and performance counters in a processor.
Elaborated by the author.

B. HARDWARE-BASED DETECTION FRAMEWORK
A generic framework can be a guiding structure to facilitate
the implementation of HMD, as illustrated in Figure 3. The
framework leverages the existing PMU within the processor
and consists of two primary components: (i) data collection

54120 VOLUME 12, 2024



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

FIGURE 3. A generic hardware-based detection framework. Elaborated by the author.

and preprocessing and (ii) malware detection. This section
provides a detailed overview of the implementation process.

Data collection involves FE and Feature Selection (FS)
[72], [73]. FE captures and stores HPCs in a vector space,
enabling the FS to select a subset that efficiently describes the
input data while minimizing noise and irrelevant variables,
ensuring optimal prediction results. FE can occur in the
time or event domain [70]. In the time-based domain,
the application execution is periodically interrupted to
record HPC values. Conversely, the event domain triggers
interruptions based on specific events or a set number of
executed instructions rather than regular intervals.

In terms of strategies to perform FE, we envision
four alternatives: (i) instrument the source code with the
employment of a library, like PAPI [74]; (ii) develop of a
proprietary kernel module or driver, as performed in [34];
(iii) use of an available utility that performs tasks mainly
in the OS kernel, like PERF [75]; and (iv) use of a
micro-architectural simulator to model the processor as it
executes the application, like gem5 [76] and GVSoC [77].
During FE, the sampling strategy is crucial. In the

time-based domain, parameters such as period, frequency,
or number of cycles determine when HPCs are sampled.
In the event-based domain, sampling depends on the number
of event or instruction occurrences. The chosen FE strategy
influences these definitions. A proprietary kernel module or
driver allows programmers to choose between time-based or
event-based domains, set parameters for sampling triggering,
and specify values. However, configurations are limited when
libraries like PAPI and PERF are used. Regarding sampling
values, in time-based sampling, there is no fixed ideal period
or frequency, varying based on the experiment and goal.
Hardware-based detection experiments typically use periods
in the order of milliseconds or seconds. Striking a balance
between low and high sampling frequencies is essential,
considering the trade-off between computational processing,
data quantity, and system effects.

FS offers multiple advantages, including addressing the
Curse of Dimensionality in ML [78], enhancing data under-
standing, reducing computation requirements, and improving
predictor performance. Filter-based algorithms dominate the
FS in the HMD field, ranking features based on a scoring
criterion, using a threshold for variable selection. They
are valued for simplicity and practical application success,
focusing on the relevancy of features. Prominent methods

include Principal Component Analysis (PCA) (used by [47],
[53], [79], and [80]), Fisher Score [81] (used by [34] and
[51]), Pearson Correlation Coefficient [82] (used by [46],
[47], [48], [79], and [80]) and Information Gain (Mutual
Information) [83] (used by [84] and [85]). The Scikit-learn
[86] library for the Python andWeka [87] are tools frequently
used in the HMD field for FS.

Since the number of events that can be potentially
monitored exceeds the available HPCs, some studies (for
example, [14], [32], [48]) also perform a preliminary manual
FS before data collection, thus reducing the number of
software executions required to collect data. The selection is
based on architectural andmicro-architectural knowledge and
other studies.

Eventually, in HMD, ML algorithms play a crucial
role. Supervised and unsupervised learning techniques are
employed in hardware-based malware detection. While for
supervised detection, both benign and malignant samples,
adequately annotated, are necessary, in unsupervised mal-
ware detection, the classifier is trained only with benign
applications to perform anomaly detection [88]. Unsuper-
vised detection has two exciting advantages: (i) it does
not require a malware dataset for training, and (ii) the
classifier can detect zero-day malware [18]. On the other
side, unsupervised algorithms are complex, requiring more
sophisticated analysis and resulting in complex hardware
implementations.

Several traditional classification algorithm families are
employed in HMD: linear regression (LinearRegression
and SimpleLinearRegression), logistic regression (Logistic
and SimpleLogistic), Bayesian network (BayesNet and
NaiveBayes), decision trees (J48 and REPTree), rule-based
(JRIP, OneR and PART), Artificial Neural Network (ANN)
(MultiLayerPerceptron), K-Nearest Neighbors (KNN) (IBk),
ensemble learning (AdaBoostM1, Bagging and RandomFor-
est) and Support Vector Machines (SVM) (SMO) [78]. The
algorithms in parentheses refer to specific Weka implemen-
tations, which are commonly used in the context of HMD.
Further details on these families and their implementations in
Weka can be found in [87].
Eventually, a crucial consideration is the trade-off between

monitoring more events for better application characteriza-
tion and detector performance and the impact on runtime
applicability. Some studies used many events, exceeding
available HPCs, necessitating multiple application runs [15],

VOLUME 12, 2024 54121



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

[84], [89]. This trade-off is further addressed in ML solutions
discussed in Section V-C.

V. HARDWARE-BASED DETECTION ASSESSMENT
The following sections analyze the performance and effi-
ciency of the state-of-the-art in HMD and explore ML
techniques to enhance detector performance.

A. PERFORMANCE
Tables 4 and 5 provide a comprehensive overview of the
literature contributions in the field, aiming to facilitate fair
comparisons by presenting the best-case results in Table 4.
Metrics were directly sourced from the paper’s text whenever
feasible, with manual extraction from reported ROC curves
employed onlywhen necessary. The ‘‘Classification’’ column
denotes the classification algorithm associated with the
best result, with the Weka implementation serving as a
reference. Conversely, Table 5 outlines, for each contribution
in Table 4, the range of considered scenarios in terms of
malware, classifiers, and system characteristics. The values
in Table 4 underscore the efficacy of HMD in supporting
malware detection and highlight the overall high quality of
the findings.

Among all contributions reported in Table 4, authors
in [93] showcase the effectiveness of HMD on real
scenarios: DARPA Rapid Attack Detection, Isolation and
Characterization Systems (RADICS), Intel Threat Detection
Technology (TDT), and Microsoft Defender. This is a
tangible exploitation ofHMD into actual products. Still, using
a single type of classifier (i.e., SVM) leaves room for research
and improvements.

As most of the current works on HMD rely on ML
classifiers, the analysis conducted by Patel et al. [48],
summarized in Table 6, is particularly interesting. The authors
thoroughly analyze eleven ML classification algorithms
(based on Weka [87] implementations). The goal was to
understand the trade-offs between the design parameters
offered by the algorithms. The chosen metric to evaluate
performance was accuracy. The dataset used for training
and testing the algorithms was extracted using the PERF
tool in intervals of 10 ms executed in an Intel Haswell
Core i5-4590 processor running Ubuntu 14.04 with Linux
kernel 4.4. The baseline of benign application comprises
the Mibench benchmark suite [94], Linux system programs,
browsers, text editors, and word processors. The malware
came from the VirusTotal dataset. Since the HPCs available
in an Intel architecture are considerable, the accuracy of
ML algorithms covers different numbers (i.e., 32, 8, 4, 2,
and 1) of hardware events. Table 6 reports the accuracy
for 4 hardware events, a reasonable quantity for concurrent
monitoring in most modern processors, even in embedded
scenarios [50]. JRIP (rule-based) presented the top accuracy,
followed by four classifiers with the same top-two accuracy:
J48 (decision-tree), OneR and PART (rule-based), and SGD.
In this case, most classifiers have accuracy above 80%.
Another interesting observation is that reducing the hardware

events below four significantly impacts the performance of
most classifiers.

Similar findings are reported in Torres and Liu [51]. While
the authors concentrated on a particular malware subclass
(data-only exploits from [92]), they implemented two dif-
ferent experiments on different classifiers, distinguishing
between using the complete set of 50 features or a smaller set
of 6 features. The findings report a very high accuracy on the
complete set of features (as seen on the first of the two rows
dedicated to the paper in Table 4) and a degradation when
only a subset is used.

B. EFFICIENCY
Alongside the detection quality, the HMD aims to reduce
the detectors cost in terms of resources. As the data
required for the classification come from the hardware layer
of the system stack, most studies evaluate FPGA-based
implementations of ML classifiers, providing measures for
the power consumption and the area as the goal is to
understand the trade-offs between the design parameters
offered by the algorithms. When the classifier is software-
based, the evaluation usually includes the latency, avoiding
further monitoring of other resources. Unfortunately, as seen
in Table 4, not all works report the latency of the detection
or, more in general, the costs of it. Generally, whenever the
detection is performed at the software level, the latency is
less than 1 ms. At the same time, more optimized hardware
implementations can scale down to tens or hundreds of ns.

As reported in the previous section, the work from Patel
et al. [48] covered a thorough analysis and, for this reason,
is undoubtedly an excellent candidate to show the efficiency
of the methodology. For hardware implementation, authors
used the Xilinx Virtex 7 FPGA, implemented Weka models
in C code, and used the Xilinx High-Level Synthesis (HLS)
compiler to generate the final bitstream. The latency was
evaluated both in software and hardware implementations.
Authors implemented the classification algorithms in soft-
ware at the OS kernel level, which includes the time to read
the HPC and execute the classifiers. Eventually, the Intel
Turbo Boost technology was disabled, as it might introduce
errors in the time measurement, and the CPU governor was
operating at a constant frequency of 800 MHz. The IP cores
with the algorithms were synthesized in Vivado to estimate
the power consumption, considering a 100MHz clock. Power
estimation contains both static power and dynamic power
consumption of digital logic.

Values in Table 6 show the considerable difference between
the latencies in software and hardware implementations.
Software implementations have latencies almost in the order
of milliseconds (ranging from 0.624ms to 0.870ms, best
and worst cases). In contrast, hardware implementations are
in the order of nanoseconds (ranging, in this case, from
10ns to 3020ns). The authors underlined that these slow
profiles displayed by classifiers in the kernel space are three
orders bigger than several malware executions (ranging in
microseconds). Other findings related to latency are crucial

54122 VOLUME 12, 2024



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

TABLE 4. Summary of best-case performance from main studies in the hardware-based malware detection approach. # HPCs column refers to the
number of hardware events the classifiers consider. Classification algorithm labels are based on Weka implementations used in the referenced studies.
Evaluation metrics as defined in Section III-A: A is Accuracy, P is Precision, S is Specificity, and F1 is the F1-Score.

to highlight. In software implementations, the latency for
reading the HPC is negligible when monitoring a single
core but may increase significantly whenmonitoringmultiple
cores. Moreover, the more HPCs to read, the longer it
takes. Concerning the classification algorithms, BayesNet
(Bayesian network), PART (rule-based), and SimpleLogistic
(logistic regression) showed the lowest latency values when
implemented in software. Conversely, none of these three
are on the list of the top three low latencies in hardware.
NaiveBayes (Bayesian network), MLP (ANN), and J48
(decision tree) are the three best hardware implementations.

This paradox demonstrates the uncorrelation between the
algorithms’ latencies when comparing implementations at the
kernel space and hardware.

C. MACHINE LEARNING TECHNIQUES CONSIDERATIONS
Recent studies have explored variousMLmethods to enhance
the performance of HMD detection approaches, especially
in the last five years. These techniques aim to overcome the
challenge of limited application characterization due to the
concurrent capacity of PMUs to monitor hardware events.
While these methods show performance improvements, they

VOLUME 12, 2024 54123



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

TABLE 5. Reference studies including details on the full list of targets and classifications approaches tested and details on the reference systems.

often introduce increased complexity in classifiers, resulting
in reduced efficiency, i.e., higher power consumption and
increased area requirements. This section discusses ensemble
learning, specialization, adaptive detection, and time series
ML techniques in HMD.

In ensemble learning, multiple ML algorithms are trained
separately to create a classifier, combining their results to
improve decision accuracy [95]. In HMD, ensemble classi-
fiers leverage the characteristics of individual algorithms to
detect various types of malware while minimizing hardware
events for runtime detection [32], [46], [47]. However, the
performance gains come with increased complexity and
efficiency overhead [46], [79].
Sayadi et al. [46] assessed the efficiency impact of ensem-

ble learning in a malware detector on Xilinx Virtex 7 FPGA.
Significant latency increases were observed when comparing

a general classifier with 8 HPCs to a Boosted classifier [96]
with 4 HPCs. When Boosted, the general MLP algorithm
passed from a latency of 3020ns to a latency of 5910ns.
OneR increased from 10ns to 700ns, and J48 increased from
90ns to 670ns. In terms of hardware cost, the largest area
increases were observed in OneR (from 2.1% to 5.1%), JRIP
(from 2.5% to 5.3%), and BayesNet (from 11.5% to 13.6%).
Conversely, J48, REPTree, and MLP showed smaller area
increases. The findings highlight substantial overhead in both
latency and hardware costs.

Another interesting ML technique is the specialization.
Instead of training a single multi-class classifier able to
recognize several malware categories, different classifiers are
trained, each specialized in detecting a specific malware.
Authors in [32] discuss and explore specialized detectors
in HMD. They used a logistic regression-based classifier

54124 VOLUME 12, 2024



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

TABLE 6. Performance and efficiency of classifiers based on Weka
implementations. Extracted from [48].

for each malware class. As a result, the proposed detectors
reduced the false positive rate by more than half compared
to a single detector while increasing the detection rate. The
authors proposed a two-level detector in the same paper,
mixing a first level based on the hardware detection approach
and a second level based on the software detection approach.
The hardware detector was based on specialized ensemble
techniques. The latency of this scheme was compared with
malware detection purely based on software methods. As a
result, they reported average latency reduced to 1/6.6 when
the fraction of malware is low and latency reduced to
1/3.1 when 20% of the programs are malware.

In 2019, Sayadi et al. [47] introduced a specialized
two-stage malware detector, leveraging ensemble learning
techniques, significantly improving accuracy. The first stage
classifies applications into benign or malware categories
(virus, rootkit, backdoor, and trojan horse). The second
stage deploys an ML classification algorithm that works
best for each category of malware. Their 2021 work [80]
continued using specialization for an accurate and run-time
stealthy malware detector. They also evaluated the efficiency
overhead of their specialized and ensemble learning malware
detector, implemented on Xilinx Virtex 7 FPGA. A compari-
son of a general classifier with 4 HPCs to a Boosted classifier
with 4 HPCs revealed notable latency increases for MLP
(from 1.020 to 5.910 ms), OneR (from 10 to 700 ns), J48
(from 30 to 670 ns), and JRIP (from 20 to 560 ns). MLP (from
43.2% to 61.7%), JRIP (from 0.26% to 5.3%), OneR (from
0.49% to 5.1%) and J48 (from 0.93% to 4.3%) exhibited
considerable increases regarding hardware cost. The findings
emphasize substantial latency and hardware cost overhead.

Adaptive detection was proposed by Gao et al. [79] to
optimize the performance versus cost. It targets higher or
similar performance as ensemble learning, with a reduced

cost. The technique leverages the concept that the ML
algorithm employed in the detector strongly correlates both
the nature of the scrutinized malware and the overall
performance metric. Adaptive detection involves a dynamic
framework that assesses all underlying ML algorithms in real
time, opting for the optimal classifier to identify malicious
patterns effectively. The implementation encompasses two
primary online stages: (i) algorithm selection and (ii) malware
detection. Consequently, only the most efficient ML-based
detector is employed to differentiate malware from the benign
class, eliminating the need to acquire results from individual
base detectors and enhancing overall efficiency.

In the adaptive detector proposed by Gao et al. [79],
the algorithm selection step is done by a lightweight tree-
based decision-making algorithm that accurately selects
the most efficient model for inference. As a result, the
scheme showed up to a 94% detection rate while improving
the cost-efficiency by more than 5X compared to existing
ensemble-based malware detection methods.

Eventually, time series classification is fundamental
to understanding the key concept behind hardware-based
malware detection. The intuition driving this technique
stems from the program’s phase behavior, transforming
malware detection into a time series classification problem.
In addressing this challenge, Sayadi et al., as outlined in [97]
and [80], introduced a time series ML technique designed
to identify stealthy malware in real time. In scenarios where
attackers embed malicious files within benign programs on
target hosts, executing both applications as a single thread,
traditional signature-based antivirus tools falter. Embedded
malware remains elusive even when the exact malware
signature is in the detector database. The authors proposed
a classifier based on a Fully Convolutional Neural Networks
(FCNNs) and exclusively utilized branch instructions as a
low-level feature in their solution. The results demonstrated
the efficacy of their technique, achieving a remarkable
average detection performance of 94% with only one HPC
feature, surpassing state-of-the-art detection methods. This
enhanced performance, however, comes at a higher computa-
tional cost associated with employing a deep-learning-based
solution.

While not explicitly implementing a time series technique,
also [93] reports similar results on the Intel TDT use
case. Although no specific numbers are provided, the paper
compares the Fast Fourier Transform (FFT) counting traces
of the branch instructions and branch misprediction events
for the WannaCry ransomware, underlining the significant
difference with or without the ransomware.

VI. CONCLUSION AND RESEARCH CHALLENGES
In summary, this paper provided a comprehensive overview
of HMD field, with a detailed analysis of hardware-based
detection, harnessing the power of HPCs and ML. The
advantages of HMD include resilience to malware subverting
the protection mechanism, adaptability to code variants and

VOLUME 12, 2024 54125



C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

unknown malware, low complexity and overhead, potential
for run-time detection, and cost reduction.

However, challenges persist in HMD. The detection
accuracy is the most significant challenge as classifiers have
a statistical nature. Thus, their results are not deterministic,
and ongoing research aims to minimize errors by explor-
ing complex classifiers. In cases where high accuracy is
unattainable, a potential solution combines software and
hardware-based detectors concurrently, with hardware as the
primary defense. Moreover, ensuring consistency, accuracy,
and standardization of hardware monitoring units (including
HPCs) is crucial for trustworthiness. Chip manufacturers can
contribute by designing appropriate modules and providing
comprehensive documentation. The limited number of HPCs
inmobile and IoT devices poses a feasibility challenge for this
approach in these domains. Addressing these challenges will
contribute to the continued advancement and effectiveness of
HMD.

REFERENCES
[1] G. McGraw and G. Morrisett, ‘‘Attacking malicious code: A report to

the infosec research council,’’ IEEE Softw., vol. 17, no. 5, pp. 33–41,
Sep. 2000.

[2] T. Alsmadi and N. Alqudah, ‘‘A survey on malware detection techniques,’’
in Proc. Int. Conf. Inf. Technol. (ICIT), Jul. 2021, pp. 371–376.

[3] W. Stallings and L. Brown, Computer Security: Principles and Practice,
3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2014.

[4] SonicWall. New Sonicwall Research Finds Aggressive Growth in
Ransomware, Rise in IoT Attacks. Accessed: Sep. 18, 2023. [Online].
Available: https://www.sonicwall.com/news/new-sonicwall-research-fin
ds-aggressive-growth-in-ransomware-rise-in-iot-attacks/

[5] (Jan. 2023). Global Risk Report 2023. [Online]. Available: https://www.
weforum.org/publications/global-risks-report-2023/in-full/

[6] Cisco and C Ventures. 2023 Cybersecurity Almanac: 100 Facts, Figures,
Predictions and Statistics. Accessed: Sep. 18, 2023. [Online]. Available:
http://cybersecurityventures.com/cybersecurity-almanac-2023/

[7] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, ‘‘A survey on malware
detection using data mining techniques,’’ ACM Comput. Surv., vol. 50,
no. 3, pp. 1–40, Jun. 2017, doi: 10.1145/3073559.

[8] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey of machine learning
techniques for malware analysis,’’ Comput. Secur., vol. 81,
pp. 123–147, Mar. 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167404818303808

[9] D. Gibert, C. Mateu, and J. Planes, ‘‘The rise of machine learning
for detection and classification of malware: Research developments,
trends and challenges,’’ J. Netw. Comput. Appl., vol. 153, Mar. 2020,
Art. no. 102526. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1084804519303868

[10] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surv., vol. 53, no. 6, pp. 1–36, Dec. 2020, doi: 10.1145/3417978.

[11] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, ‘‘Deep learning for Android
malware defenses: A systematic literature review,’’ ACM Comput. Surv.,
vol. 55, no. 8, pp. 1–36, Dec. 2022, doi: 10.1145/3544968.

[12] C. Catal, G. Giray, and B. Tekinerdogan, ‘‘Applications of deep
learning for mobile malware detection: A systematic literature review,’’
Neural Comput. Appl., vol. 34, no. 2, pp. 1007–1032, Jan. 2022, doi:
10.1007/s00521-021-06597-0.

[13] F. Deldar and M. Abadi, ‘‘Deep learning for zero-day malware detection
and classification: A survey,’’ ACMComput. Surv., vol. 56, no. 2, pp. 1–37,
Sep. 2023, doi: 10.1145/3605775.

[14] C. Malone, M. Zahran, and R. Karri, ‘‘Are hardware performance
counters a cost effective way for integrity checking of programs,’’ in
Proc. 6th ACM Workshop Scalable trusted Comput. New York, NY,
USA: Association for Computing Machinery, Oct. 2011, pp. 71–76, doi:
10.1145/2046582.2046596.

[15] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online
malware detection with performance counters,’’ ACM SIGARCH
Comput. Archit. News, vol. 41, no. 3, pp. 559–570, Jun. 2013, doi:
10.1145/2508148.2485970.

[16] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
‘‘Discovering and exploiting program phases,’’ IEEE Micro, vol. 23, no. 6,
pp. 84–93, Nov. 2003.

[17] C. Isci, G. Contreras, and M. Martonosi, ‘‘Live, runtime phase monitoring
and prediction on real systems with application to dynamic power man-
agement,’’ in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Dec. 2006, pp. 359–370.

[18] Z. He, T. Miari, H. M. Makrani, M. Aliasgari, H. Homayoun, and
H. Sayadi, ‘‘When machine learning meets hardware cybersecurity:
Delving into accurate zero-day malware detection,’’ in Proc. 22nd Int.
Symp. Quality Electron. Design (ISQED), Apr. 2021, pp. 85–90.

[19] M. Christodorescu, S. Jha, D. Maughan, D. Song, and C. Wang, Advances
in Information Security: Malware Detection, 1st ed. New York, NY, USA:
Springer, 2007.

[20] NIST. Glossary. Accessed: Mar. 7, 2023. [Online]. Available: https://csrc.
nist.gov/glossary

[21] ENISA. Botnets. Accessed: Mar. 7, 2023. [Online]. Available: https://
www.enisa.europa.eu/topics/incident-response/glossary/botnets

[22] J. Aycock, Computer Viruses and Malware (Advances in Information
Security). New York, NY, USA: Springer, 2006.

[23] I. You and K. Yim, ‘‘Malware obfuscation techniques: A brief survey,’’ in
Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., Nov. 2010,
pp. 297–300.

[24] B. Bashari Rad, M. Masrom, and S. Ibrahim, ‘‘Camouflage in malware:
From encryption to metamorphism,’’ Int. J. Comput. Sci. Netw. Secur.,
vol. 12, pp. 74–83, Jan. 2012.

[25] S. J. Stolfo, K. Wang, andW.-J. Li, ‘‘Towards stealthy malware detection,’’
in Malware Detection, M. Christodorescu, S. Jha, D. Maughan, D. Song,
and C. Wang, Eds. Boston, MA, USA: Springer, 2007, pp. 231–249.

[26] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, ‘‘A survey of stealth
malware attacks, mitigation measures, and steps toward autonomous
open world solutions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 1145–1172, 2nd Quart., 2017.

[27] M. Nadim, D. Akopian, andW. Lee, ‘‘A review on learning-based detection
approaches of the kernel-level rootkit,’’ in Proc. Int. Conf. Eng. Emerg.
Technol. (ICEET), Oct. 2021, pp. 1–6.

[28] W. Wong and M. Stamp, ‘‘Hunting for metamorphic engines,’’ J. Comput.
Virol., vol. 2, no. 3, pp. 211–229, Nov. 2006.

[29] E. Konstantinou, ‘‘Metamorphic virus: Analysis and detection,’’ Ph.D. dis-
sertation, Dept. Math., Univ. London, London, U.K., 2008.

[30] K. Brezinski and K. Ferens, ‘‘Metamorphic malware and obfuscation:
A survey of techniques, variants, and generation kits,’’ Secur. Commun.
Netw., vol. 2023, pp. 1–41, Sep. 2023, doi: 10.1155/2023/8227751.

[31] V. Van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, ‘‘Memory
errors: The past, the present, and the future,’’ in Research in Attacks,
Intrusions, and Defenses, D. Balzarotti, S. J. Stolfo, and M. Cova, Eds.
Berlin, Germany: Springer, 2012, pp. 86–106.

[32] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, ‘‘Ensemble learning for low-level hardware-supported
malware detection,’’ in Proc. 18th Int. Symp. Recent Adv. Intrusion
Detect., vol. 9404. Berlin, Germany: Springer-Verlag, 2015, pp. 3–25, doi:
10.1007/978-3-319-26362-5.

[33] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
‘‘Malware-aware processors: A framework for efficient online malware
detection,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2015, pp. 651–661.

[34] A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomaly-
based malware detection using hardware features,’’ in Research in Attacks,
Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds.
Cham, Switzerland: Springer, 2014, pp. 109–129.

[35] X. Wang and R. Karri, ‘‘NumChecker: Detecting kernel control-flow
modifying rootkits by using hardware performance counters,’’ in Proc.
50th ACM/EDAC/IEEE Design Autom. Conf. (DAC), May 2013, pp. 1–7.

[36] D. Ray and J. Ligatti, ‘‘Defining code-injection attacks,’’ ACM
SIGPLAN Notices, vol. 47, no. 1, pp. 179–190, Jan. 2012, doi:
10.1145/2103621.2103678.

[37] M. Prandini andM. Ramilli, ‘‘Return-oriented programming,’’ IEEE Secur.
Privacy, vol. 10, no. 6, pp. 84–87, Nov. 2012.

54126 VOLUME 12, 2024

http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1145/3417978
http://dx.doi.org/10.1145/3544968
http://dx.doi.org/10.1007/s00521-021-06597-0
http://dx.doi.org/10.1145/3605775
http://dx.doi.org/10.1145/2046582.2046596
http://dx.doi.org/10.1145/2508148.2485970
http://dx.doi.org/10.1155/2023/8227751
http://dx.doi.org/10.1007/978-3-319-26362-5
http://dx.doi.org/10.1145/2103621.2103678


C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

[38] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘‘Jump-oriented program-
ming: A new class of code-reuse attack,’’ in Proc. 6th ACM Symp. Inf.,
Comput. Commun. Secur.NewYork, NY,USA:Association for Computing
Machinery, Mar. 2011, pp. 30–40, doi: 10.1145/1966913.1966919.

[39] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, ‘‘Non-control-data
attacks are realistic threats,’’ in Proc. 14th Conf. USENIX Secur. Symp.,
vol. 14, 2005, p. 12.

[40] Ö. A. Aslan and R. Samet, ‘‘A comprehensive review onmalware detection
approaches,’’ IEEE Access, vol. 8, pp. 6249–6271, 2020.

[41] ISO/IEC/IEEE International Standard—Systems and Software
Engineering-vocabulary, Standard 541, 2017.

[42] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient Processing of Deep
Neural Networks (Synthesis Lectures on Computer Architecture Series).
Cham, Switzerland: Springer, 2020.

[43] N. Idika and P. Mathur, ‘‘A survey of malware detection techniques,’’
Purdue Univ., West Lafayette, IN, USA, Tech. Rep., 2007. [Online].
Available: https://api.semanticscholar.org/CorpusID

[44] K. Alzarooni, ‘‘Malware variant detection,’’ Ph.D. dissertation, Dept.
Comput. Sci., Univ. College London, London, U.K., 2012.

[45] M. Alonso, D. Andreu, R. Canal, S. Di Carlo, C. Chenet, J. Costa,
A. Girones, D. Gizopoulos, V. Karakostas, B. Otero, G. Papadimitriou,
E. Rodríguez, and A. Savino, ‘‘Validation, verification, and testing (VVT)
of future RISC-V powered cloud infrastructures: The vitamin-V horizon
Europe project perspective,’’ in Proc. IEEE Eur. Test Symp. (ETS),
May 2023, pp. 1–6.

[46] H. Sayadi, N. Patel, S. M. P. D., A. Sasan, S. Rafatirad, and H. Homayoun,
‘‘Ensemble learning for effective run-time hardware-based malware
detection: A comprehensive analysis and classification,’’ in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[47] H. Sayadi, H. M. Makrani, S. M. Pudukotai Dinakarrao, T. Mohsenin,
A. Sasan, S. Rafatirad, and H. Homayoun, ‘‘2SMaRT: A two-stage
machine learning-based approach for run-time specialized hardware-
assistedmalware detection,’’ inProc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2019, pp. 728–733.

[48] N. Patel, A. Sasan, and H. Homayoun, ‘‘Analyzing hardware based
malware detectors,’’ in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf.
(DAC), Jun. 2017, pp. 1–6.

[49] H. Sayadi, M. Aliasgari, F. Aydin, S. Potluri, A. Aysu, J. Edmonds, and
S. Tehranipoor, ‘‘Towards AI-enabled hardware security: Challenges and
opportunities,’’ in Proc. IEEE 28th Int. Symp. On-Line Test. Robust Syst.
Design (IOLTS), Sep. 2022, pp. 1–10.

[50] S. Dutto, A. Savino, and S. Di Carlo, ‘‘Exploring deep learning for in-
field fault detection in microprocessors,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Feb. 2021, pp. 1456–1459.

[51] G. Torres and C. Liu, ‘‘Where’s Waldo? Identifying anomalous behavior
of data-only attacks using hardware features,’’ in Proc. 19th ACM Int.
Conf. Comput. Frontiers. NewYork, NY, USA: Association for Computing
Machinery, May 2022, pp. 75–84, doi: 10.1145/3528416.3530226.

[52] D. Kasap, A. Carpegna, A. Savino, and S. Di Carlo, ‘‘Micro-architectural
features as soft-error markers in embedded safety-critical systems:
Preliminary study,’’ in Proc. IEEE Eur. Test Symp. (ETS), May 2023,
pp. 1–5.

[53] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, ‘‘Hardware per-
formance counters can detect malware: Myth or fact?’’ in Proc. Asia Conf.
Comput. Commun. Secur.NewYork, NY,USA:Association for Computing
Machinery, May 2018, pp. 457–468, doi: 10.1145/3196494.3196515.

[54] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, ‘‘A cautionary
tale about detecting malware using hardware performance counters and
machine learning,’’ IEEE Des. Test. Comput., vol. 38, no. 3, pp. 39–50,
Jun. 2021.

[55] M. Botacin and A. Grégio, ‘‘Why we need a theory of maliciousness:
Hardware performance counters in security,’’ in Information Security,
W. Susilo, X. Chen, F. Guo, Y. Zhang, and R. Intan, Eds. Cham,
Switzerland: Springer, 2022, pp. 381–389.

[56] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, ‘‘Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,’’ ACM SIGARCH
Comput. Archit. News, vol. 42, no. 3, pp. 361–372, Jun. 2014, doi:
10.1145/2678373.2665726.

[57] O. Mutlu and J. S. Kim, ‘‘RowHammer: A retrospective,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 8, pp. 1555–1571,
Aug. 2020, doi: 10.1109/TCAD.2019.2915318. https://doi.org/10.1109/
TCAD.2019.2915318

[58] C. Li and J.-L. Gaudiot, ‘‘Detecting malicious attacks exploiting hardware
vulnerabilities using performance counters,’’ in Proc. IEEE 43rd Annu.
Comput. Softw. Appl. Conf. (COMPSAC), vol. 1, Jul. 2019, pp. 588–597.

[59] X.Wang and J. Backer, ‘‘SIGDROP: Signature-based ROP detection using
hardware performance counters,’’ 2016, arXiv:1609.02667.

[60] NIST. (Jan. 31, 2024). National Vulnerability Database: CVE-2016–
5195 Detail. [Online]. Available: https://nvd.nist.gov/vuln/detail/cve-
2016-5195

[61] V. M. Weaver and S. A. McKee, ‘‘Can hardware performance counters be
trusted?’’ in Proc. IEEE Int. Symp. Workload Characterization, Oct. 2008,
pp. 141–150.

[62] A. Carelli, A. Vallero, and S. D. Carlo, ‘‘Shielding performance monitor
counters: A double edged weapon for safety and security,’’ in Proc. IEEE
24th Int. Symp. On-Line Test. Robust Syst. Design (IOLTS), Jul. 2018,
pp. 269–274.

[63] A. Carelli, A. Vallero, and S. Di Carlo, ‘‘Performance monitor counters:
Interplay between safety and security in complex cyber-physical systems,’’
IEEE Trans. Device Mater. Rel., vol. 19, no. 1, pp. 73–83, Mar. 2019.

[64] V. M. Weaver, D. Terpstra, and S. Moore, ‘‘Non-determinism and
overcount on modern hardware performance counter implementations,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2013,
pp. 215–224.

[65] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
‘‘SoK: The challenges, pitfalls, and perils of using hardware performance
counters for security,’’ inProc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 20–38.

[66] J. Barrera, L. Kosmidis, H. Tabani, E. Mezzetti, J. Abella, M. Fernandez,
G. Bernat, and F. J. Cazorla, ‘‘On the reliability of hardware event monitors
in MPSoCs for critical domains,’’ in Proc. 35th Annu. ACM Symp. Appl.
Comput. New York, NY, USA: Association for Computing Machinery,
Mar. 2020, pp. 580–589, doi: 10.1145/3341105.3373955.

[67] S. P. Kadiyala, P. Jadhav, S.-K. Lam, and T. Srikanthan, ‘‘Hardware
performance counter-based fine-grained malware detection,’’ ACM Trans.
Embedded Comput. Syst., vol. 19, no. 5, pp. 1–17, Sep. 2020, doi:
10.1145/3403943.

[68] M. Ritter, A. Tarraf, A. Geiß, N. Daoud, B. Mohr, and F. Wolf,
‘‘Conquering noise with hardware counters on HPC systems,’’ in Proc.
IEEE/ACM Workshop Program. Perform. Visualizat. Tools (ProTools),
Nov. 2022, pp. 1–10.

[69] M. A. Sasongko, M. Chabbi, P. H. J. Kelly, and D. Unat, ‘‘Precise event
sampling on AMD versus intel: Quantitative and qualitative comparison,’’
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 5, pp. 1594–1608,
May 2023.

[70] B. Sprunt, ‘‘The basics of performance-monitoring hardware,’’ IEEE
Micro, vol. 22, no. 4, pp. 64–71, Jul. 2002.

[71] N. C. Doyle, E. Matthews, G. Holland, A. Fedorova, and L. Shannon,
‘‘Performance impacts and limitations of hardware memory access trace
collection,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2017, pp. 506–511.

[72] H. M. Abdulwahab, S. Ajitha, and M. A. N. Saif, ‘‘Feature selection
techniques in the context of big data: Taxonomy and analysis,’’ Appl.
Intell., vol. 52, no. 12, pp. 13568–13613, Sep. 2022, doi: 10.1007/s10489-
021-03118-3.

[73] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection methods,’’
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014, doi:
10.1016/j.compeleceng.2013.11.024.

[74] S. Browne, C. Deane, G. Ho, and P. Mucci, ‘‘PAPI: A portable interface to
hardware performance counters,’’ in Proc. Dept. Defense HPCMP Users
Group Conf., 1999, pp. 1–8.

[75] I. Molnar and T. Gleixner. (Jul. 5, 2023). Performance Counters for Linux.
[Online]. Available: https://lwn.net/Articles/337493

[76] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011,
doi: 10.1145/2024716.2024718.

[77] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi,
‘‘GVSoC: A highly configurable, fast and accurate full-platform simulator
for RISC-V based IoT processors,’’ in Proc. IEEE 39th Int. Conf. Comput.
Design (ICCD), Benin, Oct. 2021, pp. 409–416.

[78] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org

VOLUME 12, 2024 54127

http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/3528416.3530226
http://dx.doi.org/10.1145/3196494.3196515
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1109/TCAD.2019.2915318
http://dx.doi.org/10.1145/3341105.3373955
http://dx.doi.org/10.1145/3403943
http://dx.doi.org/10.1007/s10489-021-03118-3
http://dx.doi.org/10.1007/s10489-021-03118-3
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1145/2024716.2024718


C. P. Chenet et al.: Survey on Hardware-Based Malware Detection Approaches

[79] Y. Gao, H. M. Makrani, M. Aliasgari, A. Rezaei, J. Lin, H. Homayoun,
and H. Sayadi, ‘‘Adaptive-HMD: Accurate and cost-efficient machine
learning-driven malware detection using microarchitectural events,’’ in
Proc. IEEE 27th Int. Symp. On-Line Test. Robust Syst. Design (IOLTS),
Jun. 2021, pp. 1–7.

[80] H. Sayadi, Y. Gao, H. M. Makrani, J. Lin, P. C. Costa, S. Rafatirad,
and H. Homayoun, ‘‘Towards accurate run-time hardware-assisted stealthy
malware detection: A lightweight, yet effective time series CNN-based
approach,’’ Cryptography, vol. 5, no. 4, p. 28, Oct. 2021. [Online].
Available: https://www.mdpi.com/2410-387X/5/4/28

[81] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Hoboken, NJ, USA: Wiley, 2000.

[82] K. Pearson, ‘‘Note on regression and inheritance in the case of two
parents,’’ Proc. Roy. Soc. London, vol. 58, pp. 240–242, Jan. 1895.

[83] H. Peng, F. Long, and C. Ding, ‘‘Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238,
Aug. 2005.

[84] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, ‘‘On the
detection of kernel-level rootkits using hardware performance counters,’’
in Proc. ACM Asia Conf. Comput. Commun. Secur. New York, NY,
USA: Association for ComputingMachinery, Apr. 2017, pp. 483–493, doi:
10.1145/3052973.3052999.

[85] A. Kwan. (Jan. 31, 2024). Malware Detection at the Microarchitec-
ture Level Using Machine Learning Techniques. [Online]. Available:
https://scholarworks.calstate.edu/downloads/mk61rp641

[86] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[87] E. Frank,M.A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H.Witten,
‘‘Weka—Amachine learning workbench for data mining,’’ inDataMining
and Knowledge Discovery Handbook. Berlin, Springer: Springer, 2005,
pp. 1305–1314. [Online]. Available: http://researchcommons.waikato.
ac.nz/handle/10289/1497

[88] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A
survey,’’ ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009, doi:
10.1145/1541880.1541882.

[89] H. Sayadi, N. Patel, A. Sasan, andH.Homayoun, ‘‘Machine learning-based
approaches for energy-efficiency prediction and scheduling in composite
cores architectures,’’ in Proc. IEEE Int. Conf. Comput. Design (ICCD),
Nov. 2017, pp. 129–136.

[90] Chronicle. (Jun. 29, 2023). Virustotal. [Online]. Available: https://www.
virustotal.com/gui/home/upload

[91] Y. Qiao, X. Yun, and Y. Zhang, ‘‘How to automatically identify the homol-
ogy of different malware,’’ in Proc. IEEE Trustcom/BigDataSE/ISPA,
Aug. 2016, pp. 929–936.

[92] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, ‘‘Automatic
generation of data-oriented exploits,’’ in Proc. 24th USENIX Conf. Secur.
Symp., 2015, pp. 177–192.

[93] C. Konstantinou, X.Wang, P. Krishnamurthy, F. Khorrami,M.Maniatakos,
and R. Karri, ‘‘HPC-based malware detectors actually work: Transition to
practice after a decade of research,’’ IEEE Des. Test. Comput., vol. 39,
no. 4, pp. 23–32, Aug. 2022.

[94] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, ‘‘MiBench: A free, commercially representative embedded
benchmark suite,’’ in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization, Dec. 2001, pp. 3–14.

[95] T. G. Dietterich, ‘‘Ensemble methods in machine learning,’’ in Multiple
Classifier Systems. Berlin, Germany: Springer, 2000, pp. 1–15.

[96] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of
on-line learning and an application to boosting,’’ J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S002200009791504X

[97] H. Sayadi, Y. Gao, H. H. Makrani, T. Mohsenin, A. Sasan,
S. Rafatirad, J. Lin, and H. Homayoun, ‘‘StealthMiner: Specialized
time series machine learning for run-time stealthy malware detection
based on microarchitectural features,’’ in Proc. Great Lakes Symp. VLSI.
New York, NY, USA: Association for Computing Machinery, Sep. 2020,
pp. 175–180, doi: 10.1145/3386263.3407585.

CRISTIANO PEGORARO CHENET (Student
Member, IEEE) is currently pursuing the Ph.D.
degree with the Department of Computer and
Control Engineering, Politecnico di Torino. His
current research interest includes cybersecurity.

ALESSANDRO SAVINO (Senior Member, IEEE)
received the Ph.D. degree from Politecnico di
Turin, Turin, Italy. He is currently an Associate
Professor with the Department of Control and
Computer Engineering, Politecnico di Torino.
His research interests include approximate com-
puting, reliability analysis, safety-critical sys-
tems, software-based self-test, operating systems,
imaging algorithms, machine learning, and audio
manipulation.

STEFANO DI CARLO (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in computer
engineering and information technology from
Politecnico di Torino, Italy, in 1999 and 2003,
respectively. Since 2021, he has been a Full
Professor with the Department of Control and
Computer Engineering, Politecnico di Torino. His
research interests include diverse range, including
reliability analysis, FPGA design, memory testing,
NVM memory reliability with ECC, design for

testability, built-in self-test, fault simulation, and automatic test genera-
tion. With over 200 peer-reviewed publications in esteemed IEEE/ACM
TRANSACTIONS, journals, and conference proceedings, he also contributes to
the editorial board of top-tier journals. His involvement extends to serving
on various organizing and program committees for major IEEE and ACM
conferences and symposia. Notably, he is recognized as a Golden Core
Member of the IEEE Computer Society and has received both Outstanding
and Meritorious Awards for his volunteer efforts within the society.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

54128 VOLUME 12, 2024

http://dx.doi.org/10.1145/3052973.3052999
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/3386263.3407585

