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ABSTRACT Intelligent transportation systems (ITSs) have witnessed a rising interest from researchers
because of their promising features. These features include lane change assistance, infotainment, and
collision avoidance, among others. To effectively operate ITSs for these functions, there is a need for edge
computing. One can install edge computing servers at the roadside units (RSUs). There must be seamless
communication between the edge servers and the cars. Additionally, there will be some cars that experience
higher delays and thus, are not preferable because they will highly degrade the performance. Therefore,
in this work, we consider a vehicular network scenario and define a cost function that takes into account
the latency that is determined by the car’s computing frequency, association, and resource allocation while
considering fairness constraints. Our cost function is to minimize the total latency (i.e., both local computing
latency and transmission latency). The cost of the optimization problem is minimized by optimizing the car’s
local frequency allocation, resource allocation, and association. The problem is separable, therefore, we first
compute the local frequencies of the cars using a convex optimizer. Next, we split the core problem into two
separate problems: (a) the distribution of resources and (b) association, because the last defined problem
(joint association and resource allocation) is NP-hard. We then suggest an iterative solution. In the end,
we offer numerical findings to support the suggested solution.

INDEX TERMS Intelligent transportation systems, resource allocation, association, fairness.

I. INTRODUCTION
The constantly growing landscape of technological advance-
ments in intelligent transportation systems (ITSs) will lead
to many novel applications/functions [1], [2], [3]. These
functions are lane change assistance, collision avoidance,
congestion control, and infotainment [4], [5]. All of these
applications/functions are based on emerging technologies
and schemes: mathematical optimization, machine learning,
graph theory, game theory, and matching theory [6], [7], [8].
Typically, a set of roadside units (RSUs) assisted by edge
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servers is installed to serve cars. Cars may have computing
resource constraints, therefore, they must offload the traffic
to the edge-empowered RSUs. The RSUs compute the car
tasks and then send them back the outcomes. For the above
tasks, the RSUsmust be effectively deployed. Also, the RSUs
must be connected using fast backhaul links.

Although edge computing-empowered cars will effec-
tively enable various applications, there are many challenges
associated with the design and deployment. These challenges
are due to a number of limited RSUs and edge computing
resources. Additionally, there will be a massive number of
communication devices in the future networks, therefore,
we must efficiently assign communication resources to the
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cars [9]. Other than communication resources, there must
be an efficient allocation of car frequencies. For instance,
if we consider deep reinforcement learning (DRL), where the
agents are trained at cars and then aggregated using federated
learning at the network edge (i.e., RSUs). In this case, all
the agents’ data should be received before the deadline.
Therefore, we must have some deadline on the transmission
latency of all cars (i.e., fairness constraint). Also, we must
carefully associate the cars with RSUs to minimize the
delay. Our work considers a cost function that accounts for
overall latency (i.e., local latency and transmission latency)
by optimizing cars operating frequencies, resource allocation,
and association while considering fairness constraints. Our
contributions are summarized as follows:

• We establish a cost function that takes into consideration
delay in general (e.g., transmission latency and car
computing latency). Next, we develop an optimization
problem that optimizes the car’s local operating fre-
quencies, resource allocation, and association in order
to minimize the cost.

• The problem is divided into two parts in order to be
solved: the joint resource allocation and association
problem (b) and the optimization of car operating
frequencies (a). Convex optimization is used straight
away to solve the first problem. An iterative approach
based on decomposition-relaxation is used to tackle the
second problem.

• Finally, the proposal is validated with numerical
findings.

This is how the remainder of the paper will be struc-
tured: The most recent developments in resource allocation
and association in automobiles are covered in Section II.
In Section III, the system model and problem formulation are
provided. Section IV presents the problem decomposition and
analytical solution. In Section V, we finally draw the paper’s
conclusion.

II. RELATED WORKS
A. ASSOCIATION
In [10], the authors have discussed the shortcomings of feder-
ated learning, and a new structure is proposed for autonomous
driving vehicles, namely, dispersed federated learning (DFL),
in order to offer efficient utilization of resources, robust
communication, and privacy-aware learning. The optimiza-
tion problem is of Mixed integer non-linear programming
(MINLP) kind that is expressed to cooperatively reduce
the loss in accuracy for the federated approach of learning
due to transmission latency and packet imperfections. The
proposed solution for the non-convex and NP-hard problem
is based on the Block Successive Upper-bound Minimization
(BSUM). The effectiveness of proposed work is shown in
the numerical results. In [11], the authors have solved the
problem of association in vehicular networks to balance the
load among various base stations. For achieving the feature of
consistencies in the spatial-temporal dimension in vehicular

connections, an online reinforcement learning approach
(ORLA) is proposed. ORLA is a good connection solution
verified through experiments on QiangSheng taxi movement
with greater balancing quality of load compared with various
well-known association methods. The issue of gateway
association is discussed in [12]. A scenario is developed as a
multiple knapsack problems with project limitations besides
proposing two distinct effective association strategies for
maximizing vehicles number assisted by gateways (Mobile).
The results of simulation showed that the suggested schemes
outclass the existing random and distance-based associations
in numerous situations with diverse traffic bulks.

Authors in [13], debated on vehicle-to-everything (V2X)
overview, where they have taken into consideration the
issue of primary cars’ control of entry and connection
for secondary units in a single cell down-link vehicular
system. The frequency of the network is 60 GHz which
is millimeter wave communication. The objective of the
study was to choose the most suitable topology connectivity
for vehicles that enhances the quantity of acknowledged
primary vehicles while ensuring coverage by associating all
secondary vehicles. The problem was, however, treated in a
combinatorial as well as NP-hard method. So, a sub-optimal
and dual-stage algorithm was proposed for its solution. The
suggested algorithm has achieved optimum performance.

In connection, an algorithm is presented for target
association, followed by a radar sensor that is basically
on board with the motion and position of data acquired
from the VANET in [14]. The presented algorithm is a
record-oriented multiple assertions tracker that is altered
for integrating data comprised in the messages of VANET.
The testing of algorithm is carried out, with the help of
a real scenario using two vehicles for experiment and
after that compared with further computational methods.
One of computation method comprises of a modest single
hypothesis technique for VANETmessages association while
the other is using the internal sensors only for the perception
of the environment to quantify the benefits of employing
wirelessly acquired information. For vehicular networks in
an entirely distributed way was proposed in [15] based
on a Bayesian positioning and data association scheme.
Non-cooperative features are detected by jointly-connected
vehicles followed by the association of local measurements
of sensors to the properties for the growth of standalone
GPS system. The proposed method performance showed
significant improvement especially in severe situations with
extremely denied or degraded GPS signals (e.g., urban
tunnels or canyons).

The work in [16], provides the combination of radar
measurements with deep neural network output using an
inventive extended objects monitoring (EOM) strategy built
on the hidden Markov models and random matrix model.
With the aid of fusion methodology, high clutter-rated
extended tracking in environments is shown to be possible.
Instance Segmentation is enhanced. The tracking accuracy
has been significantly improved with the inclusion of
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information regarding classification. Stationary objects are
tracked by developing stop-and-go estimator. In [17], the
examination of federated learning applications for vehicular
networks is carried out in terms of significant autonomous
vehicle mobility. Smooth connectivity amongst the end
devices onboard the vehicles and the RSUs may not be
approachable, which might cause standard federated learning
useless. To address this problem, a dispersed federated
learning (DFL) system for self-driving vehicles is proposed.
A DFL cost minimization challenge is also presented
through an iterative approach. The aforementioned proposal
is supported by thorough simulation outcomes. In [18],
a general framework was proposed for following multiple
targets simultaneously, without linking detailed information
with a uniform representation and predicting the dispersion
of their upcoming motions or states. The technique used
in [18] is, in fact a constrained mixture sequential Monte
Carlo (CMSMC) scheme. It was also suggested to apply
a general learning-based hierarchical time-series prediction
model (HTSPM) in the previous Bayesian state estimate as
an implicit proposal distribution. A numerical investigation
and practical on-road vehicle surveillance and behavioral
prediction challenge in highway-related situations were both
conducted to judge the proposed structure and models.
The outcomes reveal that the proposed CMSMC technique
surpasses KF variants with regard to both mean and variance
tracking accuracy.

B. RESOURCE ALLOCATION
Effective work related to resource allocation for vehicular
networks is depicted in [19]. These works are listed in [20],
[21], [22], [23], [24]. In [20], Kalsoom et al. proposed an
architecture based on fifth-generation network technology
for the Cooperative Driving System (CDS) that includes
a resource allocation scheme based on D2D technology.
It improves the quality of service for CDS and hence road
traffic efficiency. The planned scheme is compared with
the prevailing D2D approaches. The algorithm used for the
implementation of the proposed scheme is the density-based
scattered clustering algorithm with noise (DBSCAN) for
vehicular clustering. The foremost motivation is an effective
application for the wireless resources with increasing quality
of service requirement for CDS with the constraint that
requires devices in communication which must accomplish
in a real-time scenario. In [21], Ashraf et al. have proposed a
novel, dynamic load awareness and proximity-based alloca-
tion of resources from vehicle to vehicle (V2V) network. The
approach guarantees periodic (or continuous) transmission
prospects for vehicular applications like an independent
safety facility in the V2V underlay while dropping control
overhead as well as being interfered with other vehicles.
The optimization problem is solved in two phases. First,
the zoning of vehicles using a dynamic mechanism of
clustering is proposed according to proximity data and traffic
flow. Second, for the resource allocation of individual V2V
pairs inside each zone, a matching game is proposed. The

many-to-one matching game trick is cast-effective where
resource blocks (RBs) and V2V pairs rank one another for
their service delay reduction. The projected game is exposed
to fit to matching games with an externalities type class. This
game is resolved using a distributed algorithm so that RBs
and V2V pairs collaborate to attain stable matching.

In [22], Liu et al. have focused on the improvement
of traffic efficiency and travel safety under multi-vehicle
cooperation scenarios. The three main scenarios summa-
rized are (i) Formation control (ii) Convey driving and
(iii) Intersection management. A generalized solution for
resource allocation is formulated for multi-vehicle cooper-
ation in which a couple of resource allocation schemes are
formulated for intersection management. Finally, the antic-
ipated performance structures are compared and evaluated.
In [23], He et al. have grounded on an architecture of
heterogeneous type containing both cellular base stations
(BSs) for extensive exposure and roadside infrastructure
of cognitive-radio-enabled. A resource-sharing arrangement
based on a semi-Markov decision process (SMDP) is planned
to enable the utilization of video transmission in peak
signal-to-noise ratio (PSNR) terms and even playback.
The optimum resource allocation, targeting improving the
standard of streaming video and assuring the user’s call-level
efficiency in the background, is attained by mentioning two
interconnected combinations comprising of Call Admission
Control (CAC) as well as channel allotment issues for cellular
networks and roadside network infrastructure. The authors
in [24] have emphasized on effective control and power
spread allocation that guarantees an anticipated data rate
for individual pairs of V2V communication with an ideal
transmit power. Hence, a power spread allocation model by
means of game theory is proposed in a vehicular wireless
network of C-V2X mode. A generalized Nash equilibrium
(GNE) game model is presented to allocate and regulate the
convey strength of V2V combinations over devoted channels.
The introduced game intended to find a reliable power source
that assurances aminimized transmit power and essential data
rate for the individual user. In [25], the main objective is
to put forward a V2V offloading technique which improves
resource utilization and user experience. In order to optimize
the use of self-driving vehicles–as determined by a weighted
average of operation time and cost of computation–the
issue of employing offloading of mobility activities in
VEC systems was investigated. Unlike previous efforts, the
decisions about unloading were made while considering both
the opportunity and challenges presented by the automobile’s
mobility. A pair of hop client vehicles were used along with
one hop, to speed up job processing subject to feasibility.
To solve the stated offloading problem, a semidefinite
relaxation technique and an adaptive adjustment algorithm
were used. The simulation findings have revealed that the
suggested V2V unloading method has significantly improved
the performance delay in comparison to advanced designs.

Different from the existing works [10], [11], [12],
[13], [14], [15], [16], [18], [20], [21], [22], [23], [24], our
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FIGURE 1. System model.

work considers cost optimization issue in cars with fairness
constraints. The cost takes into account the transmission
latency and local computing latency that is minimized by
optimizing local devices operating frequencies, resource
allocation, and association. Next, we discuss our system
model in detail along with problem formulation.

III. SYSTEM MODEL
Consider a system that consists of a set C ofC cars. A setB of
B roadside units (RSUs) assisted by edge computing servers
are used to serve cars. Every car c has a task Tc(ac, bc, dc),
where ac, bc, and dc denote the task size (i.e., bits), computing
resource (i.e., CPU-cycles/sec) for processing a single point,
and the computing deadline, respectively. Table 1 lists the
key parameters. Every car computes a partial task due to
computing resources constraints and the remaining task is
offloaded to the RSU for further computation. Note that
are many RSUs and cars, therefore, there is a need for an
efficient association of cars with the RSUs. Additionally,
the communication resources must be efficiently utilized
to minimize the delay. On the other hand, there must be
an efficient computing resource allocation for cars. For
instance, if the local task is the partial local model for
split federated learning. In this case, the edge servers at
RSUs will wait for learning data from cars. Therefore,
wemust allocate local computing resources to cars. Similarly,
for traditional federated learning, the edge servers wait
for a certain deadline before receiving the local models
from the cars. Therefore, we must efficiently allocate local
computing resources. On the other hand, an increase in local

TABLE 1. Summary of key notations.

computing resources causes an increase in energy consump-
tion. Therefore, we must make a tradeoff between the local
computing resources assignment and energy consumption.
Next, we discuss the local task computing model.

A. COMPUTATION MODEL
To compute the local task at car cwith operating frequency fc
for the task Tc(ac, bc, dc), one can use the following equation.

tlocal = bc

(
ac
fc

)
(1)

VOLUME 12, 2024 67927



A. Rashid et al.: Resource-Optimized Vehicular Edge Networks With Fairness Constraints

(1) shows that an increase in frequency will minimize the
local computing time, but at the cost of an increase in local
energy consumption. The set F of F computing resources
(i.e., frequencies) will be used to denote frequencies of all
cars. The local energy consumption for a device c with
CPU-dependent constant ρc can be given by:

elocal = ρcbcac(fc)2, (2)

(2) shows that energy consumption varies with the square
of the operating frequency. Therefore, there is a need for
efficient utilization of local devices’ frequency selection.
The frequencies assigned to all devices must not exceed the
maximum limit.

C∑
c=1

fc ≤ Fmax (3)

Other than the total local computing frequencies constraint,
there must be some range of frequencies, each car can take.

fmin ≤ fc ≤ fmax, ∀c ∈ C (4)

Next, we discuss the communication model.

B. COMMUNICATION MODEL
In this case, our focus is on the use of orthogonal frequency
division multiple access (OFDMA) for car-to-RSU commu-
nication. To do so, we consider a setR of R resource blocks.
These resource blocks are owned by cellular users and reused
for efficient reuse of the limited communication resources.
This will make efficient use of communication resources for
serving more users. In our system model, a single car should
not get more than a maximum allowed (e.g., 3) resource
blocks.

R∑
r=1

yc,r ≤ rn, max, (5)

where rc, max denotes the maximum number of resource
blocks that a car c can take. There can be many ways to
select the number of resource blocks for cars. Generally,
an increase in the number of resource blocks for a car will
improve the signal-to-noise-plus-interference ratio (SINR).
However, there are limitations on the availability of resource
blocks, therefore, there is a need for efficient management
of resource blocks while maintaining the car’s performance
in terms of SINR or throughput. To do so, there must be a
mechanism that allows to allocation least possible resources
to cars to fulfill their minimum throughput requirements.
Some of the devices have very poor SINR performance for a
single resource block, therefore, there is a need for the upper
limit of resource blocks assigned to cars to avoid extra usage
of communication resources. As a result, the total number of
resource blocks allocated to every automobile should either
be fewer than or equal to the entire amount of resources that
are accessible.

C∑
c=1

yc,r ≤ RMAX, (6)

Now, we define a binary variable xc,b (i.e., xc,b = 1 if car c is
associated with an RSU b and otherwise xc,b = 0) that shows
the association of a car c with an RSU b. The throughput of a
car c using resource block R with bandwidthW can be given
by:

ζc = W log2

1 +

(
pchc,b∑L

l=1 plhl,b + N 2
o

) , ∀c ∈ C (7)

where pc and hc,b denote the transmit power of cars and
channel gain between gain c and RSU b, respectively. Where∑L

l=1 plhl,b is interference due to cellular users on the
resource block R used by the car. Note that cars with poor
SINR performance will induce more delays in transferring
the offloaded task, and thus might not be desirable. To avoid
such delays, there is a need for a fairness constraint, such as
the latency of every device should not be more than a certain
threshold, as follows.

uc

W log2

(
1 +

(
pchc,b∑L

l=1 plhl,b+N
2
o

)) ≤ φmax, ∀c ∈ C, (8)

where φmax denotes the minimum allowed value of SINR.
Every device’s transmission power needs to be within a
certain range.

pmin ≤ pc ≤ pmax. ∀c ∈ C (9)

There are limitations on the available backup power of cars.
Therefore, there should be constraint on the transmit power
allocation. The total power allocated to all devices must not
be more than the total available power.

C∑
c=1

pc ≤ PMAX. (10)

On the other hand, note that there are computing
capacity limitations of RSUs to serve cars. A particular RSU
must not serve the maximum limit of RSUs.

C∑
c=1

xc,b ≤ Lb, ∀b ∈ B (11)

On the other hand, a car must not be associated with more
than one RSU.

B∑
b=1

xc,b ≤ 1, ∀c ∈ C (12)

Note that (12) there might be cars that are in the middle of
coverage areas of the RSUs. In our scenario, we will deploy
RSUs whose coverage will overlap to avoid this issue. The
transmission taken by cars for transferring the offloaded data
to the RSU can be given by:

tntrans =
uc
ζc

, (13)
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where uc denotes the size of the offloaded information to
the RSU by the car c. Similarly, the energy required for
transmission can be given by:

entrans =
ucpc
ζc

, (14)

The total cost that accounts for local latency and transmission
latency can be given by:

T (f , x, y, p) =

 C∑
c=1

tclocal(f )

+

 C∑
n=1

tctrans(x, y, p)

 ,

(15)

C. PROBLEM FORMULATION
Our problem is to minimize the cost associated with latency
(i.e., both local computing and transmission) and energy (i.e.,
transmission).

P : minimize
f ,x,y,p

 C∑
c=1

tclocal(f )

+

 C∑
n=1

tctrans(x, y, p)


(16)

subject to: pmin ≤ pc ≤ pmax. ∀c ∈ C, (16a)
C∑
c=1

pc ≤ PMAX, (16b)

C∑
c=1

fc ≤ Fmax, (16c)

fmin ≤ fc ≤ fmax, ∀c ∈ C, (16d)
R∑
r=1

yc,r ≤ rn, max, (16e)

C∑
c=1

yc,r ≤ RMAX, (16f)

xc,byc,ruc

W log2

(
1 +

(
pchc,b∑L

l=1 plhl,b+N
2
o

))
≤ φmax, ∀c ∈ C, (16g)
C∑
c=1

xc,b ≤ Lb, ∀b ∈ B, (16h)

B∑
b=1

xc,b ≤ 1, ∀c ∈ C, (16i)

xc,b ∈ {0, 1}, ∀l ∈ L, r ∈ R, (16j)

yc,b ∈ {0, 1}, ∀r ∈ R, c ∈ C, r ∈ R.

(16k)

Problem P is a non-convex problem and therefore, one
cannot simply apply convex optimization schemes. Con-
straint (16a) shows the lower and upper limit of the transmit
power. Constraint (16b) limits the total transmit power

FIGURE 2. Solution approach.

of devices. Constraint (16c) denotes that the frequencies
assigned to all devices should not exceed the maximum
allowed limit. (16d) sets the upper and lower limits of the car
operating frequencies. (16e) shows the total resource blocks
assigned to a particular car must not be more than the allowed
resource block for one car. (16f) limits the allocation of
resource blocks to all cars. (16g) is the fairness constraint
that shows the delay encountered for a car must not be more
than the maximum deadline. (16h) denotes that number of
cars associated with a certain RSU must not be more than its
serving capacity. (16i) shows that a single car not be assigned
to more than one RSU. Finally, the constraints (16j) and (16k)
show their binary nature.

IV. PROPOSED SOLUTION
An NP-hard problem P like this renders it hard to solve
using a convex optimization. As a result, we divide this main
problem into three smaller problems: the resource allocation
problem, the association problem, and the local comput-
ing resource optimization problem. The local computing
sub-problem can be written as:

P − 1 : minimize
f

T (f ) (17)

subject to: (16c), (16d) (17a)

Convex optimizers can be used to solve problem (P-1)
since it is a convex optimization problem.

Lemma 1 (Convexity of Sub-problem P-1): Here, the
convexity of P-1 is demonstrated for every possible value of
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the variable c using a hessian matrix. The following formula
can be used to calculate the Hessian matrix values for P-1
[26], [27].

γi,j =
∂2T (f )
∂fi∂fj

, ∀i = 1, 2, . . . ,C, j = 1, 2, . . . ,C (18)

A summation of terms with fi i = 1, 2, . . . ,C makes
up f . 0 will be obtained by taking a double derivative of the
terms that are not diagonal terms.With each diagonal element(

2bcac
f 3n

)
, from (18), we derive a C × C diagonal matrix γ ,

where fn denotes the computational resources allotted to car
n. The following is the form for the positive semidefinite.

CT γC ≥ 0, (19)

It is evident that (19) is satisfied for all conceivable
positive values (i.e., between cmin and cmax) of the variable
c. This demonstrates that P-1’s objective function is a convex
function. The constraints are also based on linear inequality.
Thus, sub-problem P-1 is an optimization problem that is
convex.

For a fixed local computing resource allocation, the sub-
problem (P-2) can be rewritten as:

P − 2 : minimize
x,y,p

T (x, y, p)

subject to:(16a) − (16b), (16e) − (16k). (20)

Sub-problem (P-2) has a non-convex nature due to the
presence of two binary variables x and y. Also, solving
the problem (P-2) is difficult due to the constraint (14d).
Constraint (14d) is about ensuring fairness such that every
user should get minimum throughput so that their delay
should not exceed the maximum allowed limit. To solve
P-2, one can use a heuristic scheme that suffers from
high complexity. Therefore, one can use decomposition-
relaxation-based schemes to solve P-2. To do so, there
is a need to transform the binary resource allocation and
association variables into continuous variables. Problem P-2
can be rewritten as:

P − 3 : minimize
x̂ ,̂y,p

T (̂x, ŷ, p) (21)

subject to: pmin ≤ pc ≤ pmax. ∀c ∈ C, (21a)
C∑
c=1

pc ≤ PMAX, (21b)

R∑
r=1

ŷc,r ≤ rn, max, (21c)

C∑
c=1

ŷc,r ≤ RMAX, (21d)

x̂c,b̂yc,ruc

W log2

(
1 +

(
pchc,b∑L

l=1 plhl,b+N
2
o

))
≤ φmax, ∀c ∈ C, (21e)

Algorithm 1 BCD Algorithm

1: Initialization Phase: Set k = 0, ϵ1 > 0. Then, compute
the initial feasible solutions, (X̂ (0), Ŷ (0)).

2: repeat
3: Use index set Ik ;
4: For a fixed X̂ and P̂, compute Ŷ using convex

optimizer, such as Ŷ (k+1)
i ∈ min Ti

(
Ŷ(kC1)
i );

5: For a fixed Ŷ , and P̂ compute X̂ using convex
optimizer, such as X̂ (k+1)

i ∈ min Ti
(
X̂(kC1)
i );

6: For a fixed Ŷ and X̂ , compute P̂ using convex
optimizer, such as P̂(k+1)

i ∈ min Ti
(
P̂(kC1)
i );

7: until ∥
T (k)
i − T (k+1)

i

T (k)
i

∥ ≤ ϵ1

8: Then, set
(
X̂ (k+1)
i , P̂(k+1)

i , Ŷ (k+1)
i

)
as the desired solution.

C∑
c=1

x̂c,b ≤ Lb, ∀b ∈ B, (21f)

B∑
b=1

x̂c,b ≤ Lb, ∀c ∈ C, (21g)

0 ≤ x̂c,b ≤ 1, ∀c ∈ C, r ∈ R, (21h)

0 ≤ ŷc,b ≤ 1, ∀r ∈ R, c ∈ C, r ∈ R.

(21i)

To solve P-3, we decompose the main problem P-3 into
two sub-problems and then solve the individual problems
iteratively, as depicted in Fig. 2. For a fixed association, one
can write the resource allocation problem as follows.

P − 4 : minimize
ŷ

T (̂y)

subject to: (21c) − (21e), (21i). (22)

Lemma 2 (Convexity of Sub-problem P-4): Initially, we
examine the constraints and the objective function across the
entire range of the optimization variable ŷ. The function T (̂y)
is a linear function of the variable ŷ. We can now see the
constraints. Since there are only linear inequality constraints,
the problem P-4 can be classified as a convex optimization
problem.

Like sub-problem P-4, an association problem for
resource allocation of fixed type can be written as
follows.

P − 5 : minimize
x̂

T (̂x)

subject to: (21e) − (21h). (23)

Lemma 3 (Convexity of Sub-problem P-5): The objec-
tive function and constraints are explained below for the
optimization variable x̂ along its whole range. The function
T (̂x) is a linear function of the variable x̂. We can now
perceive the limitations. It is possible to classify the problem
P-5 as a convex optimization problem because all of the
constraints are linear inequality constraints.
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FIGURE 3. Simulation scenario overview.

Now, we write the transmit power allocation problem
as

P − 6 : minimize
p

T (p)

subject to: (21a) − (21b). (24)

Problem P-6 has a convex nature that can be proved
using the following lemma.

Lemma 4 (Convexity of Sub-problem P-7): The objec-
tive function and constraints are tested below for the
optimization variable p along its whole range. The function,
T (f ) is convex for p. By taking the derivative twice and
comparing its values to every possible value of input p, this
may be demonstrated. We can now perceive the constraints.
It is possible to classify the problem P-6 as a convex
optimization problem because all of the constraints are linear
inequality problems.

We are going to discuss the complexity of the proposed
strategy. The proposed scheme has two parts: (a) convex opti-
mization to solve operating frequencies and (b) joint resource
allocation, association, and power allocation. Our proposed
scheme for joint resource allocation, association, and power
allocation uses iterative approach that further uses convex
optimizer. A Convex optimizer converges fast (i.e., within
less iterations). Therefore, one can say that the proposed
scheme has a reasonable complexity. To run the proposed
scheme, one can use edge severs or cloud server. Furthermore,
the complexity is low and it will not significantly affect
performance of other applications/schemes.

V. NUMERICAL RESULTS
Here, we present numerical results for validating the
performance of our proposed model with the solution.
An area of 1000 × 1000 m2 is considered for simulation,
as shown in Fig. 3. The locations of RSUs are fixed, whereas,
the locations of cars are randomly changed for different
simulation runs. To implement vehicular networks, one can
use two approaches, such as LTE-based implementation
and dedicated short-range communication-based implemen-
tation. Similar to many works [10], we use the LTE-based
implementation of vehicular networks. The sample scenario
is shown in Fig. 4. To show the effectiveness of our scheme

FIGURE 4. Sample scenario overview.

FIGURE 5. Cost vs. iterations for different schemes.

FIGURE 6. Cost vs cars for various schemes.

compared to existing schemes, two baselines, such as (a)
baseline-(RA+PA+Local latency)) (i.e., resource allocation,
power allocation and cars’ local frequency allocation)
and (b) baseline-(AS+PA+Local latency) (i.e., association,
power allocation, and cars’ local frequency allocation) are
considered.

Fig. 5 shows the performance comparison of various
schemes for different iterations. It is evident from Fig. 5
that our scheme outperformed different baselines. The
main cause of this performance improvement is due to
the fact that the proposed scheme considers car frequency
allocation, wireless resource allocation, power allocation, and
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FIGURE 7. Cost vs RSUs for various schemes.

FIGURE 8. Cost vs RSUs for proposed and matching-based schemes.

association. On the other hand, baseline-(RA+PA+Local
latency) considers only local car frequency allocation,
power allocation, and resource allocation, whereas baseline-
(AS+PA+Local latency) performs cars’ local frequency
allocation, power allocation, and association. If we see the
performance trends, Fig. 5 follows the trend from best
to worsts as proposed, baseline-(AS+PA+Local latency),
and baseline-(RA+PA+Local latency). According to this
performance trend, the cost for resource allocation for the
specified scenario and settings is less dependent compared
to association. The cost of the recommended approach for
cars for a fixed number of RSUs for different schemes is
displayed in another figure, 6. Figure 6 makes it evident
that the suggested approach functions fairly for a range of
car counts. This demonstrates the proposal’s viability for
modified real-time applications. Similar to Fig. 6, Fig. 7
shows the cost for a proposed scheme for different numbers
of RSUs using a fixed number of cars. It is clear from Fig. 7
that the proposed scheme performs reasonably for various
numbers of RSUs. All the above Figs. 5, 6, and 7 shows that
proposed scheme outperforms all others.

Fig. 8 shows the performance comparison of the pro-
posed scheme with matching based schemes. Two variant of
matching-based schemes are considered, Matching (RA+PA)
and Matching (AS+PA). Matching (RA+PA) considers pro-
posed power allocation and matching game-based resource
allocation [28]. Matching (AS+PA) considers proposed
power allocation and matching game based association [29].

FIGURE 9. Proposed vs. equal power for proposed scheme.

FIGURE 10. Local computing latency vs cars for different schemes.

Fig. 8 demonstrates that proposed scheme outperforms the
matching based schemes. Finally, we discuss Fig. 10 that
compares proposed vs random local computing frequencies
allocation. It is clear from Fig. 10 that proposed scheme
outperforms the random scheme.

VI. CONCLUSION
We have investigated a vehicle network with computational
workload offloading in this paper. We establish a cost
function that takes into account the total latency, which
includes the latency from task offloading and local process-
ing. To minimize the cost, we proposed a decomposition-
relaxation-based scheme, that enables cars’ local frequency
allocation, resource allocation, and association problem.
Finally, numerical results are provided to reveal the effec-
tiveness of the proposed solution. Our proposed scheme out-
performed other baselines. We concluded that our proposal
can be used effectively as a guideline for future works with
fairness constraints. Although the proposed system model
and solution offer many benefits, there is still a room for
more work to further improve the performance. For instance,
one can propose another novel solution to further minimize
the approximation errors caused in BCD-based solution due
to approximation (e.g., approximation error in conversion of
the binary resource allocation variable into continuous for
solution and then transformation back to binary after finding
a solution). Additionally, one can add more constraints (e.g.,
reliability constraints in terms of outage probability and
mobility constraints).
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