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ABSTRACT Today’s communication networks, especially those involving massive Machine-Type
Communications (mMTC), encounter challenges like channel congestion and high power consumption.
This paper introduces the Dynamic Transmission and Delay Optimization Random Access (DTDO-RA)
scheme to address these issues. The presented approach adjusts the backoff indicator (BI) value based
on the number of transmissions to optimize the success rate of the RA procedure. This is achieved while
concurrently reducing channel congestion and power consumption. The strategy employs reinforcement
learning algorithms, notably Q-learning and Deep Deterministic Policy Gradient (DDPG). Methods based
on these algorithms play a critical role in fine-tuning the Backoff Indicator (BI) value and the maximum
number of preamble transmissions (Max TX), thereby enabling efficient and responsive channel access
management. This paper highlights the critical influence of the BI value on preamble transmission delay and
overall access delay. The DTDO-RA method effectively manages the number of preamble transmissions
during the RA procedure, expanding the BI range in response to heavy RA traffic from UEs. Reducing
channel congestion and power consumption is crucial for enhancing the success rate of the RA procedure.
The simulation results in this paper evaluate the power consumption and channel congestion in relation
to the number of UEs and the number of Random Access Opportunities (RAOs), providing a comparative
perspective on the variations in the BI values achieved by the DTDO-RA scheme. The results of the paper
provide insights into the achievement of higher network efficiency, reduction of network congestion and
lower power consumption.

INDEX TERMS Power consumption, congestion avoidance, massive machine-type communications
(mMTC), random access (RA), access delay.

I. INTRODUCTION
The Machine-Type Communication (MTC) requirements
are service-specific and outlined in the 3rd Generation
Partnership Project (3GPP) standards document [1]. This
document distinguishes between MTC and human-to-human
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communication. The costs and efforts described in this
document, as well as the widespread use of communication
terminals, are further explored in [2]. The massive MTC
(mMTC) environment within 5th-generation new radio (5G
NR) communication highlights limitations stemming from
the restricted resources of the Physical RandomAccess Chan-
nel (PRACH) and Physical Uplink Shared Channel (PUSCH)
in current cellular networks. In response to these limitations,
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the application of reinforcement learning to communication
mechanisms has recently been on the rise, paralleling
advancements in hardware capabilities. [3], [4], [5]

Typically, User Equipment (UE) utilizes the Grant-Based
Random Access (GBRA) procedure, starting with the trans-
mission of a preamble signal to access a channel. This system
allocates communication resources and uplink channel access
privileges to UEs. However, not all UEs can receive grant
successfully. In such cases, the UE is configured to select
a random backoff delay from a specified Backoff Indicator
(BI) range before attempting retransmission. This random
backoff delay plays a pivotal role in preventing channel
collisions when multiple UEs try to connect simultaneously.
If the UE continues to send preamble requests with fixed
delay, power consumption rises, and channel congestion
ensues. To mitigate this, the UE modifies the preamble after
a pre-defined number of retransmissions to balance reduced
collision probability with system efficiency.

In this paper, we propose that a longer BI value and
a maximum number of preamble transmissions (Max Tx)
should be adopted in situations where a UE transmitting a
preamble in a congested channel satisfies certain constraints
relative to the number of retransmissions. This approach
effectively allows the UE to escape from congested channel
conditions and improves the performance of the overall
RA procedure. To select the optimal BI value and number
of transmissions for performance improvement, we apply
the reinforcement learning model with constraints presented
in this paper. The agent that performs the reinforcement
learning is set as the BS. The BS checks the status of UEs
in its coverage and learns to set the BI value and number
of transmissions for all UEs appropriately to increase the
success rate. We apply Q-learning [6] and deep deterministic
policy gradient [7] as learning techniques for this purpose.
The main goal of this paper is to reduce power consumption
during the RA procedure while improving metrics such as
success rate, access delay, and channel congestion without
requiring high computational complexity on the UE.

In Section II, we review previously proposed methods to
improve the performance of the RA procedure. Section III
provides a comprehensive overview of the system model
and the reinforcement learning algorithm to be applied
in this paper. Section IV describes in detail the method
proposed in this paper, the dynamic transmission and delay
optimization (DTDO) RA procedure. We also analyze the
constraints between the power consumption in the idle and
transmission states used in the DTDO-RA procedure, and
describe the learning methods of Q-learning and DDPG,
which use them to find the optimal BI value and Max
Tx. In Section V, we compare metrics such as success
rate, average access delay, power consumption, and channel
congestion of the RA procedure for different number of
UEs, BI values, and Max Tx values under experimental
conditions. Section VI concludes the paper by providing
insights and conclusions and suggesting areas for future
research. The simulation code for 5G Random Access

will be available at https://github.com/yaki-toki/5G-NR-
RandomAccess-ReinforcementLearning. It was written in
Python.

II. RELATED WORKS
This section discusses the fundamental aspects and advance-
ments of GBRA schemes, focusing on their application in
Long-Term Evolution (LTE) MTC and 5G NR environ-
ments. The discussion starts with [8] and [9], which lays
the foundation for GBRA schemes and provides essential
simulation results within LTE MTC settings. Building on
these foundations, [10] further elaborates on the fundamental
procedures and analytical frameworks required for perfor-
mance evaluation.

An important aspect of this discourse is the efficiency
of power consumption during RA procedures, especially
in the context of multiple retransmissions. In this vein,
[12] proposes an innovative approach using Non-Orthogonal
Multiple Access (NOMA) to mitigate collision problems
prevalent in Massive MTC (mMTC) environments. This is
complemented by the study in [13], which investigates the
power consumption dynamics associated with RA schemes
in the 5G NR framework and presents experimental results
aligned with the 5G standard Key Performance Indicators
(KPIs).

The literature also explores the interplay between channel
schedules, coverage classes and their impact on device battery
life. The pivotal work of [16] extends the findings of [17]
by elucidating the relationship between wider coverage,
increased battery drain, and latency in IoT devices. This
section also addresses the constraints and trade-offs in
physical channel design, emphasizing the need for a balanced
optimization strategy.

The role of small data transmission (SDT) schemes in
minimizing radio resource control (RRC) overhead during
RA procedures is explored in [18]. The paper contextualizes
the relevance of this technology for IoT devices, which
typically transmit smaller data packets, highlighting the
challenges of significant RRC overhead and subsequent
power inefficiency. In addition, the evolution of UE power
saving technologies from 3GPP Release 15 to Release 18 is
outlined in [21], with [22] discussing various power saving
techniques across multiple domains and their impact on data
transmission processes.

The adoption by 3GPP of the Access Class Barring (ACB)
method for RA procedures within the mMTC environment
is highlighted in [23] and [24]. While this strategy is
effective in managing PRACH congestion and prioritizing
UEs, it is known to increase access latency. To address this,
[25] introduces the Distribution Queue (DQ) mechanism,
which provides improvements in access latency and load
management.

Finally, advances in preamble detection and the redesign
of RA procedures are specifically addressed in [26], [27],
[28], [29], [30], and [31]. These studies focus on improving
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FIGURE 1. Network model.

detection efficiency and system accessibility. For example,
[26] highlights the need for new PRACH preamble and
protocol designs in 5G NR, recognizing the complexities
introduced by varying subcarrier spacing and analogue beam
usage. References [27] and [28] contribute designs aimed
at reducing collision frequencies, thereby improving success
rates in dense network environments. Reference [29] intro-
duces a multi-stage detection process to negate false peaks
resulting from difficult channel conditions. In particular,
[30] integrates machine learning algorithms such as Decision
Tree Classification, Naive Bayes and K-Nearest Neighbor
to improve system efficiency, especially in scenarios where
multiple devices share the same preamble. Finally, [31]
explores the use of device-to-device (D2D) communication
to facilitate network access, demonstrating its effectiveness in
collision reduction and delay minimization, while identifying
the need for further improvements in energy efficiency.

III. SYSTEM ENVIRONMENT
A. SYSTEM MODEL
Fig. 1 illustrates the system environment discussed in this
paper. We assume that the base station (BS) is centrally
located, and that NUE devices are randomly distributed
at locations (x, y) within the cellular boundary, which is
a subset of R2. The system is operated using a remote
controller. Remote observation centers and smart factories
are connected to the cellular networks and provide data
regarding operational state of the system, control outcomes,
and environmental inconsistencies under user supervision.
Remote observation centers frequently access the network as
they are required to transmit data in real-time. In contrast,
smart factories engage in network communication only
upon the occurrence of specific events or upon receiving
instructions from the remote control device. Consequently,
smart factory attempts to access the network are sporadic and
event-driven.

B. ANALYTICAL MODEL
The probability of preamble transmission, represented by
PTX (i,NTX ), indicates the likelihood that each device will
initiate a random access attempt. This probability is influ-
enced by several factors: Mi is the average number of
access attempts made by the UE within a certain period; R,
representing the number of RAOs; NTX , denoting the number
of preamble transmissions; and BI , which stands for the

backoff indicator.

PTX (i,NTX ) =
Mi

R
e−

Mi
R

1
1+ (NTX · BI )

(1)

The successful transmission probability defined by
PS (i,NTX ) implies the likelihood that each device will
successfully complete a random access attempt. As described
in equation (2), this probability of success is a function
containing the parameter being changed. Specifically, this
relies on the average number of access attempts Mi, the
available random access slot R, the number of transmissions
NTX , and the parameter B(NTX ) indicating the range of
backoff values that the UE selects for transmission. Here,
B(NTX ) is calculated in the form of BI × NTX .

PS (i,NTX ) =
Mi

R
e−

Mi
R · B(NTX ) (2)

The probability defined as PI (i,NTX ) represents the
likelihood that each UE is in an idle state. This is defined
by equation (3). Idle probability is crucial because it reflects
the frequency of UEs not participating in transmission, which
in turn indicates the operational efficiency of the network.
A high idle probability suggests that network congestion can
be minimized, while a low idle probability may imply that the
frequency of preamble transmission is high due to multiple
UEs attempting the RA procedure.

PI (i,NTX ) = e−
Mi
R (1− B(NTX )) (3)

The value B(NTX ) is normalized between 0 and 1,
taking into account the value of the maximum number of
transmissions NPTmax and the backoff length BI . i.e., in a
system environment with a BI value of 20 and a NPTmax value
of 10, values from 0 to 200 are normalized to values between
0 and 1. In particular, as the backoff interval increases, the
success probability of PS (i,NTX ) increases, while the idle
probability of UEs PI (i,NTX ) decreases because the number
of successful UEs increases. In addition, for Mi[n] where n
is 1, the channel access probability of UEs follows a beta
distribution. The equation (4) represents the average number
of successful random access attempts for a particular UE,
represented by UEi.

MS (i) =
NPTmax∑
NTX=1

Mi[n]
Mi

R
e−

Mi
R B(NTX ) (4)

These probabilities are summed up from 1 to the NPTmax
to obtain the overall average number of successful random
access attemptsMS (i) for UEi. In summary,MS (i) represents
the overall likelihood that a particular UEi will successfully
complete a RA procedure attempt, considering various
parameters such as the number of transmissions, BI, available
RAO slots, and so on.

C. TRAFFIC MODEL
The number of UEs initiating RA procedures follows a
probabilistic model described by a beta distribution. The beta
distribution is suitable for characterizing a wide variety of
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FIGURE 2. Beta distribution (UE: 15,000).

system scenarios because it can adapt to a myriad of shapes.
The probability density function (PDF) of this distribution is
defined as follows:

f (t;α, β) =
tα−1(T − t)β−1

T α+β−1Beta(α, β)
. (5)

In this context, t denotes the point in time when a UE
attempts the RA procedure within a determined total time
T . Here, the parameters α and β act as variables that shape
the beta distribution. Furthermore, the following equation (6)
represents the fraction of UEs that are activated at a given
time t:

r(t) = f (t;α, β). (6)

Here, integrating the beta distribution over time into tRAO
allows us to calculate the fraction of UEs initiating the
RA procedure at that time. Thus, the value NRAO, which
represents the number of UEs attempting access, can be
obtained by multiplying the total number of UEs,NUE , by the
integral of the beta distribution at that specific time.

NRAO =
∫
r(t)NUE dt. (7)

Fig. 2 shows the number of UEs accessing eachRAO slot in
a system environment with 15000 UEs. The approach based
on these traffic model allows for a more detailed specification
of UE activation timing and serves as a foundation for system
simulation.

D. REINFORCEMENT LEARNING ALGORITHM
Reinforcement learning is a branch of machine learning in
which an agent learns to interact with its environment in
a way that maximizes its reward. This learning process is
achieved through a series of decisions, each of which affects
not only the immediate reward but also the long-term reward.
In reinforcement learning, the agent observes the state (s) of
the environment and selects an action (a) based on the state.
The selected action (a) is applied to the environment, and the
environment returns the reward (R) for the action (a) and
the new state (s) to the agent. The agent learns from these
experiences, and over time it learns a method (or policy) for
choosing an action (a) that maximizes reward (R).

1) Q-LEARNING
Q-learning [6] is one of the classic algorithms in reinforce-
ment learning, where an agent learns an optimal action value
function (Q-function) by interacting with its environment.
It is a model-free and off-policy learning method, where the
agent learns by finding a balance between exploration and
exploitation. Q-learning uses a table called a Q-table to store
values for each state and action pair. The Q-table is then
updated using a learning rate (α) to reflect learning and a
discount factor (γ ) to determine how much to apply future
rewards to current values. The equation (8) below shows the
process of updating the Q-table.

Q(s, a)← Q(s, a)+ α

[
R + γ max

a ′
Q(s′, a ′)− Q(s, a)

]
,

(8)

where s is the current state, a is the selected action, R is the
reward received, s′ is the next state caused by the currently
selected action a, and a ′ is all possible actions in the next
state s′.

2) DEEP DETERMINISTIC POLICY GRADIENT
Deep deterministic policy gradient (DDPG) [7] is a rein-
forcement learning algorithm suitable for problems with
continuous action spaces. DDPG uses an actor-critic structure
and uses deep learning to approximate policies and value
functions in complex environments. DDPG combines ideas
from Q-learning with gradient descent to learn policies that
directly output continuous actions. Actor approximates a
policy function that determines an action based on the current
state. Critirc approximates the Q-value for a given state and
action. Target actor and target critic are networks that are
introduced for learning stability, slowly tracking the weights
of the original actor and critic. The replay buffer stores and
randomly samples experiences to reduce the correlation of
the data used for training. Actors and critics are updated in
the following steps.

• Critic update:

y = R + γTargetCritic(s′,TargetActor(s′))

LossCritic = MSE(y,Critic(s, a)) (9)

Consider y as the target Q-value designated for the
update of critic network. This value amalgamates the
immediate reward with the anticipated future rewards.
Define R as the reward instantly procured upon
executing a chosen action in the prevailing state.
The term TargetCritic(s′,TargetActor(s′)) represents
the anticipated Q-value for the subsequent state s′,
as approximated by the target critic network. Notably,
the action in this context is proposed by the target actor
network. Furthermore, s′ signifies the state transitioned
into as a result of the action taken in the current
state.
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• Actor update:

∇θµJ ≈ Es∼D[∇aQ(s, a|θQ)|a=µ(s)∇θµµ(s|Qµ)]

(10)

The symbol ∇ represents the gradient, which is a
vector indicating the partial derivative of a function
with respect to its input vector, given a scalar output.
The notation θµ signifies the parameters (or weights)
of the actor network. The term J stands for the
objective function of actor network, and in the context
of DDPG, the algorithm seeks to learn the optimal
policy by maximizing this function. The symbol E
denotes expectation, essentially reflecting the average
over states s sampled from the replay buffer D. The
expression ∇aQ(s, a|θQ) conveys the gradient of the
Q-value (output of the critic network) with respect
to the action a, where θQ is a parameter set of the
critic network. The function µ(s) designates the action
determined by the actor network for the current state s.
Lastly, ∇θµµ(s|θµ) represents the gradient of the action
(output of the actor network) with respect to the actor
network’s parameter θµ.

• Target network update:

θ ′← αθ + (1− α)θ ′ (11)

where θ is the weight of the original network, θ ′ is the
weight of the target network, and α is the learning rate.

IV. PROPOSED METHOD: DTDO-RA PROCEDURE
A. RANDOM ACCESS PROCEDURE
Before initiating the RA procedure, UEs receive a pilot signal
from the BS according to the schedule established by the
3GPP standard. Upon receiving the pilot signal, the UE
activates and schedules a RACH (Random Access Channel)
procedure to attempt the RA process autonomously. The
UE then transmits MSG 1 (RACH preamble) to the BS via
PRACH. In this phase, the UE that has transmitted MSG
1 waits for MSG 2 (RAR, Random Access Response) for a
preset RAR window time. The BS sends MSG 2 to those UEs
that have transmitted MSG 1 without experiencing preamble
collisions.

UEs that successfully receive the RAR in MSG 2 proceed
to request resources for MSG 3 (RRC Connection Request)
after preprocessing the message. Once MSG 3 is transmitted,
UEs wait for an RRC (Radio Resource Control) connection
response, denoted as MSG 4, and remain in this state for
a predefined connection resolution time. Upon receiving
MSG 3, the BS performs an internal preprocessing step and
responds with MSG 4, allocating resources to the UEs within
a predefined range. Once this procedure is complete, the UE
is granted the necessary resources and gains access to the
channel for data transmission. Fig. 3 illustrates the process
of the RA procedure and the associated delay for successful
completion.

UEs that fail to receive MSG 2 within the allocated
RAR window time select a random backoff (BO) count

FIGURE 3. The time flow of RA procedure.

from a predefined fixed value range specified by the BI.
This selected BO count serves as a crucial factor in the
transmission process. Specifically, it significantly impacts
the delay that the UE experiences during transmission
attempts. The delay associated with preamble retransmission
is calculated as:

tdelay = tRAO +WRAR + BO+L (12)

Here, tRAO represents the time when the PRACH is
scheduled, WRAR is the RAR window timer that waits for
the RAR to be received, and BO represents the randomly
determined BO count. L denotes the remaining time until
the next RAO is scheduled, calculated from the sum of
WRAR + BO. Fig. 4 illustrates the operational process of the
UE that failed to receive MSG 2 due to a preamble collision.

FIGURE 4. Preamble collision and RARs not received.

B. DTDO-RA PROCEDURE
According to the RA procedure, the UE sends MSG 1
(preamble) to the BS. If the BS does not receive MSG 1 or if
there is a preamble number collision, the UE must retransmit
MSG 1. In this process, the traditional RA procedure
mechanism selects a random BO value from a range of fixed
BI values. In other words, the BI value is an important
value that determines how long the UE should wait before
attempting to retransmit after a failed MSG 1 transmission in
the RA procedure. This is reducing channel congestion and
optimizing power consumption can be effective.

To calculate the power consumption, we consider both
standby power and power consumption due to retransmis-
sions. First, during idle periods, the UE operates in a
low-power state. Power consumption is calculated as the
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FIGURE 5. Adaptive backoff range with increasing retransmissions.

product of the power consumed per unit time in this low-
power state (ωIdle) and the waiting time (TIdle). Therefore, the
total power consumption during standby is ωIdle · TIdle. The
waiting time TIdle can be calculated as the product of the BI
value and the number of transmissions, with a random value
selected fromwithin this range. In other words, the maximum
power consumption during the idle time can be expressed as
indicated in equation (13).

ωIdle · NTX · BI ,NTX ∈ NPTmax (13)

Subsequently, the power consumption for retransmissions
is calculated. Preamble retransmission occurs in UEs that
have not received MSG 2 and MSG 4, and for this,
the UE must perform additional transmission. Therefore,
the total power consumption for preamble transmission is
calculated by multiplying the power consumption per unit
time (�TX ), the transmission time (TTX ), and the number of
retransmissions (NTX ). This is equivalent to equation (14).

NTX · (ωTX · TTX ) ,NTX ∈ NPTmax (14)

This paper explores the relationship between power con-
sumption during idle periods and power consumption during
preamble retransmissions to optimize overall power usage.
To achieve this, we compare equations (13) and (14), which
respectively represent power consumption due to latency
and power consumption due to preamble retransmission.
Equation (15) demonstrates that power consumption due
to delay time must be lower than that due to preamble
retransmission.

ωIdleNTXBI < ωTXNTXTTX ,NTX ∈ NPTmax (15)

Equation (15) can be used to balance the power consumed
during transmission with the power consumed during idle
time while waiting for the next transmission opportunity.
This balance can improve power efficiency and reduce
channel congestion. Equation (15) can be reformulated as
equation (16) by reducing it to an inequality for BI .

BI <
ωTXTTX

ωIdle
(16)

This suggests that the delay time should be greater than
a specific multiple of the preamble transmission time. This

multiple is dictated by the ratio of power consumed per unit
time during preamble transmission to that during standby.
This enables the UE to minimize power consumption by
selecting an appropriate delay time. Building on the above
equation, the optimization problem aimed at minimizing
power consumption is defined as follows.

min
TIdle,NTX

PUE =
1

NUE

NUE∑
i=1

{
Ni,TX (ωi,TXTi,TX )+ ωi,IdleTi,Idle

}
s.t. Ti,Idle, Ni,TX ≥ 0, Ni,TX ∈ NPTmax

BI <
ωTXTTX

ωIdle
(17)

Equation (17) represents the average power consumption
due to preamble transmissions and power consumption
during the standby state for all UEs in the set i ∈ NUE .
The optimization problem aims to identify the most efficient
number of preamble transmissions NTX and the BI value to
manage the delay time. By doing this, the UE can determine
the most efficient way to utilize power while maintaining
communication performance. The effect of adjusting the
number of preamble transmissions and the delay time is as
follows:

1) BI : By adjusting the delay time, the power ωIdleNTXBI
consumed during the waiting period for each UE can
be altered. Longer delay times reduce the number of
preamble transmissions, but they can also increase the
overall system delay; therefore, an optimal balance is
needed.

2) NTX : When the number of preamble transmissions is
adjusted, the power consumption NTX (ωTXTTX ) due
to preamble transmissions can be altered for each
UE. Reducing the number of preamble transmissions
decreases power consumption, but if the network is in
poor condition, the reliability of data transmission may
be compromised.

Therefore, we aim to minimize the power consumption
P by tuning the two variables. This allows us to find the
right balance between low power consumption and network
performance. Equation (17) represents the average power
consumption of the UE, from which the power consumption
per RAO slot can be calculated. Equation (18) represents the
average power consumption for all RAO slots. Specifically,
for each slot r ∈ NRAO,PUE,r means the power consumption
of the UE activated in the r th RAO slot.

PRAO =
1

NRAO

NRAO∑
r=1

PUE,r , r ∈ NRAO (18)

Algorithm 1 outlines the pseudocode of the RA process
and the DTDO-RA procedure proposed in this paper.
The procedure consists of four steps: Send_PREAMBLE,
Receive_RAR, Send_MSG_3, Receive_MSG_4.

1) TRANSMIT_PREAMBLE (lines 1-9): Here, the UE
selects a preamble for random access. If BACK-
OFF_COUNT is zero, the selected preamble is trans-
mitted to the BS. If BACKOFF_COUNT is not zero,
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Algorithm 1 Pseudo Code
1: procedure Transmit_Preamble
2: Select random preamble
3: if BACKOFF_COUNT == 0 then
4: Transmit the selected preamble to the BS
5: else
6: BACKOFF_COUNT -= 1
7: Return to TRANSMIT_PREAMBLE procedure
8: end if
9: end procedure

10: procedure Receive_RAR
11: if Random Access Response (RAR) is received

within the RAR windows then
12: Uplink resource allocation from the RAR
13: else
14: Apply the backoff count indicated by the BI
15: RETRANSMIT_COUNT += 1
16: BI = RETRANSMIT_COUNT * BI
17: Select random BACKOFF_COUNT in BI range
18: Return to TRANSMIT_PREAMBLE procedure
19: end if
20: end procedure
21: procedure Transmit_MSG_3
22: Construct a MSG 3 including the necessary control

information
23: Transmit the MSG 3 to the BS using the uplink

resources received in RAR
24: end procedure
25: procedure Receive_MSG_4
26: if MSG 4 is received within the predefined time

(Contention Resolution timer) then
27: The contention resolution is successful
28: else
29: Apply the backoff count indicated by the BI
30: RETRANSMIT_COUNT += 1
31: BI = RETRANSMIT_COUNT * BI
32: Select random BACKOFF_COUNT in BI range
33: Return to TRANSMIT_PREAMBLE procedure
34: end if
35: end procedure

BACKOFF_COUNT is decremented by one, and the
TRANSMIT_PREAMBLE step is repeated.

2) RECEIVE_RAR (lines 10-20): The RECEIVE_RAR
step checks if the UE has received the RAR within
the RAR window. If the RAR is successfully received,
the UE is allocated uplink resources in the RAR.
There are two cases in which the UE may not receive
the RAR: the first case occurs when the selected
preamble is also chosen by another UE, leading to
a conflict; the second case happens when the BS
is unable to respond due to a lack of grant. If the
UE does not receive the RAR, it increments the
RETRANSMIT_COUNT by 1, and the BI is updated

as the product of RETRANSMIT_COUNT and a
predefined BI. Then, a random BACKOFF_COUNT
within the BI range is selected, and the process returns
to the TRANSMIT_PREAMBLE step.

3) TRANSMIT_MSG_3 (lines 21-24): The UE con-
structs an MSG 3 containing the required control
information. It transmits the MSG 3 to the BS using
the uplink resource received from the RAR.

4) RECEIVE_MSG_4 (lines 25-35): The UE checks
if it has received MSG 4 within the predefined
connection resolution timer. If MSG 4 is received,
the RA procedure is successful, and data transmission
can proceed. If MSG 4 is not received, RETRANS-
MIT_COUNT is incremented by 1, and the BI is
updated as the product of RETRANSMIT_COUNT
and a predefined BI, following the same procedure
as in lines 12-16 of the RECEIVE_RAR step. After
that, a random BACKOFF_COUNT within the BI
range is selected, and the process returns to the
TRANSMIT_PREAMBLE step.

C. DTDO-RA WITH REINFORCEMENT LEARNING
Among the elements used in Q-learning and DDPG, the agent
is assumed to be the BS. The BS calculates the reward using
the success rate (RS ) and average access delay (RD) for UEs
attempting RA procedures in an episode n(n ∈ N), and the
average power consumptionPRAO for all RA slots. Since each
factor is composed of different values, a logarithmic scale is
applied. The equation (19) below shows how the reward is
calculated.

Rn = WS log(RS )−WD log(RD)−WP log(PRAO) (19)

where WS ,WD,WP are the weights of success rate, average
access delay, andmean power consumption, respectively. The
state sn observed in episode n ∈ N is the selected BI value,
NPTmax value, and the observed resultsRS ,RS ,RD,PRAO for
sn(BI ,NPTmax ,RS ,RD,PRAO). The Fig. 6 shows the learning
process for each episodes of a BS that is the subject of
learning.

FIGURE 6. Reinforcement learning process of BS.

The actor-critic model of the DDPG algorithm employs
a deep neural network (DNN) [33]. Technical terms are
explained upon first use. Logical structure and a clear
and balanced presentation are emphasized. To reduce the
computational complexity of the system, this study adopts a
ResNet model [34] with five residual blocks. The input for
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FIGURE 7. Model architecture of actor network.

the actor network is the state information from the previous
episode. The citation style adheres to the chosen style
guide. Grammatical correctness is ensured. The language
is objective, precise, and free from filler words, biased
language, and informal expressions. The model comprises
a multi-output layer that yields values for BI and NPTmax ,
respectively. The Critic model leverages state information,
together with action and reward data randomly selected from
the replay buffer, to compute the error. Themodel architecture
of Actor network and residual block configuration are
depicted in Fig. 7.

V. SIMULATION RESULTS AND DISCUSSION
A. PARAMETERS AND ENVIRONMENT
As described in Table 1, the system parameters are configured
according to the specifications provided in the 3GPP stan-
dards document [1]. For the traffic model, a beta distribution
is chosen to simulate a scenario with sudden channel access
requests. The simulation runs for 10 seconds. RAO slots for
RA procedures are provided at 1 ms, 6 ms, and 5 ms intervals
for subcarriers, according to the PRACH configuration index
of 6. The number of grants available in each RAO slot is
limited to 3 uplink grants per RAR and 4 CCEs per PDCCH.
This means that the BS can allocate a total of 12 grants per
RAO slot for UEs attempting RA procedures, assuming a
scenario with limited resource availability.

TABLE 1. Simulation parameters from Table 6.2.2.1.2 in [1].

In the simulation, the propagation delay is configured to
comply with the regulations specified in the 3GPP standard
document [32]. According to this configuration, the UE sets

FIGURE 8. RA procedure delay from Talbe B.1.1.1-1 in [32].

a scheduling window of 1 ms to initiate the RA procedure.
During this procedure, each message transmission incurs a
propagation delay of 1ms. It is worth noting that, according to
the guidelines set forth in the aforementioned 3GPP standard
document [32], the processing delay times are established at
5 ms for the UE and 4 ms for the BS. Fig. 8 shows an RA
procedure that reflects this.

Table 2 shows the power consumption used in the RA
procedure steps. The power values are in microjoule (µJ )
and refer to [12]. One thing to note from the Table 2
is the high power consumption in the transmission phase.
The MSG 3 and Data transmission phases each consume
100 µJ , accounting for the largest portion of the total power
used. It can be seen that the power consumed during the
transmission of the MSG 1 preamble is 14 µJ , which is
significantly lower than the power consumption for MSG
3 and data transmission. Both MSG 2 and MSG 4 received
by the UE require the same power consumption of 20 µJ .
Subsequently, the power consumption for processing the
received MSG 2 and MSG 4 is 12.5 and 30 µJ , respectively.
As a result, the minimum power consumption for the RA
procedure can be calculated as 296.5 µJ .

TABLE 2. The amount of power used by the RA procedure [12].

In each simulation, we evaluate multiple performance met-
rics. These include the success rate of UEs that successfully
complete the RA procedure and the average access delay.
Both of these metrics are analyzed as functions of the BI
value and the Max TX. Additionally, we compare power
consumption, varying it according to the number of UEs and
the RAO slots, as well as analyze its relationship with channel
congestion.

1) Success Rate: The success rate is defined as the
percentage of UEs that successfully complete the RA
procedure out of the total number of UEs. This reflects
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the efficiency of the RA procedure and the capacity of
the system to handle a large number of simultaneous
access attempts.

2) Average Access Delay: Average access delay mea-
sures the average time it takes for a UE to successfully
complete the RA procedure. The lower the delay,
the faster the UE can start transmitting data, which
reflects the responsiveness of the system and the user
experience.

3) Power Consumption (mJ ): Power consumption is
an important aspect of wireless networks, especially
when devices often rely on battery power. Power
consumption can be affected by a number of factors,
including the number of UEs (more devices means
more power consumption) and RAO slot usage (inef-
ficient RAO slots use increases power consumption).
We also consider the size of the resulting graph, which
is expressed in µJ to mJ .

4) Network Congestion: Congestion measures the load
on the network based on the number of UEs trying to
access the system at the same time. High congestion
can cause RA procedures to fail due to preamble
collisions and increase power consumption due to
preamble transmissions.

By comparing these metrics, we can evaluate the effec-
tiveness of the DTDO-RA procedure in terms of minimizing
power consumption, managing network congestion, and
improving RA performance.

The performance of reinforcement learning is evaluated
by the total reward per episode. The reward per episode is
the sum of the immediate feedback that the agent receives as
it interacts with the environment, and is a direct indication
of the performance of the learning process. To evaluate
the effectiveness of a reinforcement learning algorithm,
we typically use two main metrics

1) Raw parameter value: The raw parameter value
received by the agent in each episode, represented as
time series data, captures the immediate performance
of the algorithm. This value can vary significantly from
episode to episode andmay reflect instability during the
initial learning process.

2) Moving Average: Calculate a moving average of
the raw parameter value to assess the long-term
performance trend. Moving averages smooth out short-
term volatility and clearly show the stability of the
learning process and the overall improvement trend.

As shown in Table 3, the learning parameters for Q-
learning. The agent in Q-learning learns the Q-table to select
the optimal behavior for a given state. The value of learning
rate, which determines how quickly the agent accepts new
information when updating the Q-table, is set to 0.001 to
enable stable convergence. Discount factor, which determines
the value of future rewards, is set to 0.99. The exploration rate
is initially set to 1.0 to allow the agent to explore all possible
actions, and then decreases to 0.01 over time to allow for

TABLE 3. Q-learning parameters.

optimal behavior as learning progresses. Exploration decay
rate is set to 0.001, which acts as a rate to decrease the
exploration rate as the agent learns.

TABLE 4. DDPG parameters.

As discussed in Table 4, the parameters used in the
training environment of DDPG. The DDPG is a policy-based
reinforcement learning algorithm that uses an actor-critic
model and is effective in continuous action space. Set the
Replay buffer to 10,000, which indicates the size that the
agent can store past experiences and reuse them for learning.
Set the Batch size to 32 to indicate the size of the batch
of experiences used for training. This allows the agent to
use mini batch gradient descent to increase the efficiency
of learning. Set the discount factor to 0.99, the same as for
Q-learning. For the learning rate, we use 0.001 for the actor
model and 0.001 for the critic model. Soft update rate is set
to 0.001, which acts as a soft update parameter used to update
the target network of the actor-critic network.

B. PERFORMANCE EVALUATION
1) SUCCESS RATE AND AVERAGE ACCESS DELAY
Fig. 9 compares the simulation results when following the
traditional RA procedure (Base RA) with the simulation
results obtained by changing the BI and Max Tx values.

Subfigures (a) and (b) in Fig. 9 present the impact of
varying the BI value on the success rate and average access
delay. When relying on the Base RA procedure, the success
rate sees a significant decline at 10,000 UEs. In contrast,
using the DTDO-RA procedure, the success rate starts to
decrease when the number of UEs reaches 15,000 with a
BI of 20. This results suggests that adjusting the backoff
range can effectively reduce congestion. Specifically, setting
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FIGURE 9. Compare success rate and average access delay by BI and Max
Tx.

the BI value to 100 maintains a high success rate even with
20,000 UEs. However, it should be noted that a higher BI
value also leads to an increase in the average access delay,
which can escalate to approximately 812.8173 ms when there
are 20,000 UEs.

Subfigures (c) and (d) in Fig. 9 illustrate the effects
of altering the Max Tx value. Reducing the number of
preamble transmissions naturally limits the scalability of the
randomized backoff range. In other word, when the Max
Tx is set to 2, the maximum backoff range is 40, which
similar with the specifications of the Base RA procedure.
However, as in the Max Tx 10 graphs in subfigures (c)
and (d), allowing various backoff ranges helps UE better
explore highly congested areas, an advantage similar to that
observed when adjusting BI. Moreover, the average access

FIGURE 10. Compare power consumption by BI and Max Tx.

delay is reduced by up to 4.3 times compared to adjustments
in the BI, given that the backoff range does not substantially
increase.

2) POWER CONSUMPTION PER UES
Fig. 10 (a), (b) shows the power consumption as the BI value
changes. At low numbers of UEs (especially below 10,000),
the transmit power consumption for different BI values shows
a similar trend. For instance, Fig. 10-(a) reveals that at
10,000 UEs, the power consumption of Base RA is 0.041
mJ , while it is 0.038 mJ for BI 100—a negligible difference
of 0.003 mJ . This means that the power consumption is
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constant at low numbers of UEs. However, as the number
of UEs increases to 15,000, there is a sharp difference in
transmit power consumption. If you compare the transmit
power consumption of Base RA and BI 100 with increased
BI value at 15,000 UEs, you can see a reduction of about
98.06%, which is 3.71 mJ and 0.072 mJ , respectively. This
shows that adjusting the BI value can reduce the amount
of preamble transmissions in congestion channels, thereby
reducing collisions and saving transmission power. However,
in Fig. 10-(b), the power consumption in the idle state
continues to increase as the BI value increases. In particular,
for the more long time simulations, the DTDO-RA procedure
consumes more standby power in the idle state than Base RA.
Based on this result, it can be seen that a proper adjustment of
the BI value is required rather than unconditionally increasing
the BI value to achieve a high success rate and reduce channel
congestion.

Fig. 10 (c), (d) shows the variation of power consumption
with Max Tx value. In an environment with less than
10,000 UEs, the difference in transmit power consumption
between Base RA and Max Tx is negligible, similar to (a) in
Fig. 10. Starting from the results for more than 15,000 UEs in
Fig. 10-(c), the difference in transmission power consumption
becomes significant. It can be seen that when the value
of Max Tx is reduced using the DTDO-RA procedure, the
results of Max Tx 10 and Max Tx 2 increase the transmission
power consumption by about 192.73%, from 0.55 mJ to
1.61 mJ . In other words, this result shows that the smaller
the value of Max Tx, the higher the transmission power
consumption can be. The power consumption at idle state in
Fig. 10-(d) shows the lowest power consumption of 2.56 mJ
when applying the technique proposed in this paper at a
number of 15,000 UEs with Max Tx of 10. However, as the
number of UEs increases, the power consumption in the idle
state continues to increase. For example, when the number
of UEs is 50,000, the power consumption is 5.11 mJ for
the Base RA, but it is higher at 5.24 mJ with the technique
proposed in this paper and Max Tx set to 10. These results
show that reducing the maximum number of transmissions to
reduce the transmission power leads to an increase in power
consumption in the idle state. Therefore, it is necessary to
adjust the number of Max Tx appropriately, and if it is set
to too small a number, it is difficult to obtain a gain in the
success rate as shown in Fig. 9-(c).

3) COMPARISON OF POWER CONSUMPTION PER RAO
SLOTS
Fig. 11 shows the average power consumption per RAO
slot during the RA procedure. Fig. 11 (a) and (b) reflect
the variation in power consumption per RAO slot with BI
value, while (c) and (d) reflect the variation associated with
differentMax Tx counts. A clear observation from Fig. 11-(a)
is that for RAO slots fixed at 2,000, there is a power
consumption difference of about 3.64706 mJ . Referring to
the data described in Table 5 for Fig. 11 (a) and (b), we can
see that as the BI value increases, the power consumption

FIGURE 11. Power consumption per RAO slot with varying BI and Max Tx
for UE 20,000 and 50,000.

TABLE 5. Average power consumption per RAO slot according to BI.

decreases in parallel. This confirms that improving BI tasks
an important role in optimizing power efficiency.

In Fig. 11 (c) and (d), the results show the relationship
between the decrease in the Max Tx count and the
power consumption per RAO slot. In particular, the power
consumption increases as the Max Tx count decreases. This
trend can be attributed to the limited ability to adjust the
backoff range as the Max Tx count decreases. In general,
it is expected that the power consumption will decrease as
the number of transmissions decreases, but it can be seen that
this is due to the continuous transmission of the preamble as
the success rate of the RA procedure decreases. Fig. 11-(e)
shows the power consumption in an environment with a
Max Tx count of 2, where the backoff range is limited to
BI 20 * 2, requiring a select of ranges up to 40 ms. This
causes the UE to initiate approximately 1.4822 mJ more
preamble transmissions compared to when Max Tx is 10,
which increases power consumption.With this reduced range,
the UE will struggle to operate efficiently in congested
channel conditions. This can be correlated to the lower
success rate of the RA procedure, as shown by the results in
Fig. 9-(c).
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TABLE 6. Average power consumption per RAO slot according to Max Tx.

The data presented in Table 6 offer more details about
power consumption per RAO slot for configurations with
20,000 and 50,000 UEs. A consistent trend emerges: power
consumption increases as the Max Tx count decreases. For
instance, when we examine the results for 20,000 UEs, the
power consumption in RAO slot number 2,000 is 0.7975 mJ
with a Max Tx count of 10. This figure stands in contrast
to the 2.0480 mJ observed when the Max Tx count is
set to 2. Similarly, for 50,000 UEs, power consumption in
the same RAO slot rises from 1.0963 mJ with a Max Tx
count of 10 to 2.5785 mJ when the Max Tx count is set
to 2. These observations indicate that the Max Tx count
plays a significant role in power efficiency, emphasizing the
need for careful parameter selection in the RA procedure.
Thus, it becomes evident that excessively reducing the Max
Tx count in an attempt to decrease transmission power
consumption could have adverse effects on the goal.

FIGURE 12. Compare congestion per RAO slot by BI for UE 20,000 and
50,000.

4) COMPARISON OF CONGESTION PER RAO SLOTS
Fig. 12 shows the congestion level of each RAO slot for
an environment of two UEs, 20,000 and 50,000. The results
compare between the conventional RA procedure and the
DTDO-RA procedure under various BI settings. Congestion
is defined by the ratio of UEs attempting the RA procedure to
the total number activated in a specific RAO slot. The initial
RAO slots show high congestion values due to the few UEs
that complete the RA procedure. As an example, if 20 UEs are
activated in one RAO slot and only 2 succeed, the congestion
ratio becomes 18/20.

In Fig. 12-(a) for 20,000 UEs, the Base RA experiences
a sudden increase in channel congestion level after the
500th RAO slot. This rise in congestion is attributed to
the limited resources that prevent UEs from completing
the RA procedure. Furthermore, UEs that are unsuccessful
in preamble transmission attempt preamble transmission in
subsequent RAO slots, which further affects UEs trying
the RA procedure in later slots. However, with the DTDO-
RA procedure, UEs can select from a wider range of
RAO slots for preamble transmission compared to the Base
RA procedure. Thus, one can avoid congested channel
environments made by limited resources. The findings from
Fig. 12-(a) indicate that adjusting wait times is an effective
way to address the congestion problem. While using a
higher BI value might lead to increased access delay, it is
advantageous when a significant number of UEs initiate
the RA procedure simultaneously. But, in Fig. 12-(b) for
50,000 UEs, a mere adjustment of the BI is not enough
to alleviate congestion. Nevertheless, when applying a BI
value of 20 using the DTDO-RA procedure, the increase in
congestion is tempered than Base RA. These results indicate
that the adjustment of BI values has a positive effect in a
scenario where the UE is massive. The efficacy of the DTDO-
RA procedure, particularly with a BI of 100, stands out in
handling congestion during peak traffic times.

In traffic model 2 based on section II, the simulation
environment is characterized by a sudden increase in UEs
attempting to access at a certain point in time. This sudden
increase in the number of UEs attempting access can be
seen when the RAO slot of the simulation approachs 200.
In Fig. 12, the change in congestion can be seen from the
point where the RAO slot is 200, as shown by the green
arrow (<—->) of each graph. In this area, it can be seen
that the congestion increases rapidly and its performance
is reversed. When the BI is set to 100, the congestion
level during the initial RAO slot (before 200th RAO slot)
is measured higher than when the Base RA is used. This
increases the backoff range and can inevitably result in
a longer delay during preamble transmission. As a result,
fewer UEs successfully complete the initial RA procedure
in an environment with a BI value of 100. However, as the
density of UEs increases, different results are shown. Looking
at the previous simulation result Fig. 9, a larger BI value
significantly increases the success rate in the RA procedure.
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Therefore, congestion tends to gradually decrease because the
success rate in the RA procedure increases as the BI value
increases. These observations show that in a scenario where
UEs suddenly increase, optimizing BI can be important to
improve both congestion and success rate of RA procedures,
and can alleviate congestion in other RAO slots.

C. COMPARATIVE ANALYSIS OF Q-LEARNING AND DDPG
RESULTS IN DTDO-RA
Both Q-learning and DDPG algorithms perform learning up
to 4,000 episodes in a network environment with 50,000 UEs.
The learning agent dynamically configures the environment
of the RA procedure according to the network state by
selecting the BI value and Max Tx value respectively. The
BI value is selected between 10 and 400 ms, and the Max Tx
value is selected between 2 and 40. The results of the learning
are summarized in the form of reward accumulation, success
rate, and power consumption as shown in Fig. 13, 14, 15, 16
and Tables 7, 8, 9, 10.

TABLE 7. Summary statistics: rewards.

Fig. 13 (a), (b) and Table 7 ‘w/o PUSCH’ show the
evolution of the rewards obtained by the agents of each
learning algorithm in without PUSCH. We can see that the
average reward ofQ-learning is lower than the average reward
of DDPG. This indicates that DDPG obtained a higher reward
for the given problem. As the standard deviation of the reward
of DDPG is higher than the standard deviation of Q-learning,
the DDPG algorithm shows a higher variability in its reward.
Thismay indicate that DDPG is better suited tomore complex
environments with greater policy diversity.

Fig. 13 (c) and (d), as well as Table 7 ‘w/ PUSCH’ show the
rewards obtained by the agents using each learning algorithm
when considering PUSCH. The results show that DDPG con-
sistently achieves higher rewards than Q-learning, indicating
a more efficient policy in the given context. However, the
inclusion of PUSCH resources adds an additional layer of
complexity. The simulations involving PUSCH indicate that
the Q-learning algorithm encounters difficulties in adjusting
to the expanded action space, resulting in a decrease in
average rewards. In contrast, DDPG demonstrates robust
performance even with PUSCH, although the variability in
its rewards suggests susceptibility to the dynamic access
conditions introduced by PUSCH.

Fig. 14 (a), (b) and Table 8 ‘w/o PUSCH’ show the
trend of the success rate for two learning algorithms as the

FIGURE 13. Comparison of Q-learning and DDPG performance metrics:
rewards.

TABLE 8. Summary statistics: success rate.

network environment changes when not considering PUSCH.
The findings simulation that the DDPG algorithm has a
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FIGURE 14. Comparison of Q-learning and DDPG performance metrics:
success rate.

mean success rate that is over twice as high as Q-learning.
Specifically, Success rate of DDPG distribution appears more
widely spread, indicating a higher likelihood of achieving
greater success rates. Q-learning has a comparatively low
success rate; however, the standard deviation remains small,
and the median, 25th, and 75th percentiles have similar
values, demonstrating that the success rate is reasonably
consistent. The consider of PUSCH in the simulation has a
significant impact on the performance metrics.

As demonstrated in Fig. 14 (c), (d) and Table 8 ‘w/
PUSCH’, the success rate is significantly increased, particu-
larly for the Q-learning algorithm. This improvement can be
explained by the improved data transmission capability and
more efficient channel utilization with PUSCH. The standard
deviation of the success rate with PUSCH still indicates
variability in performance, but the range has narrowed,
suggesting amore stable and reliable communication process.
The increase in the average success rate for Q-learning
with PUSCH implies that the algorithm adapts well to
the added complexity and benefits from the additional
transmission opportunities provided by PUSCH. The near-
optimal maximum success rate highlights the effectiveness
of PUSCH in supporting the RA procedure. However, for
DDPG, the success rate performance is lower than that of
Q-learning, despite the high reward performance. This is
attributed to the weight of the parameters that determine
the reward of the learning algorithm. It is suggested that
each weight used to calculate the reward should be adjusted
appropriately according to the network environment.

TABLE 9. Summary statistics: average access delay.

Fig. 15 (a), (b) and Table 9 ‘w/o PUSCH’ show the trend
of the average access delay for both algorithms as they
learning when PUSCH is not considered. The significant
finding from this result is that Q-learning has a notably lower
average access delay than DDPG. This demonstrates that
Q-learning has superior efficiency in decision-making for cer-
tain environments. On the other hand, DDPG exhibits a high
standard deviation in access delays, which implies that certain
episodes could experience excessively high access delays.
Consequently, DDPG may have prolonged access delays
in more intricate environments, but it could also display
brief access delays in some cases. By comparing the median
and interquartile range, it becomes apparent that Q-learning
exhibits consistently low access delays, whereas DDPG
demonstrates a higher median, but very high access delays in
the upper quartile. This implies that DDPGmay have unstable
performance in certain situations and therefore, Q-learning
may be a more reliable choice for network environments
where access delay must be consistently low. Fig. 15 and
Table 9 demonstrate the progression of average access delay
for Q-learning and DDPG algorithms, considering PUSCH.
Q-learning maintains its superior efficiency with PUSCH,
resulting in a lower average access delay compared to DDPG.
This consistency in Q-learning highlights its robustness
in environments where PUSCH is a significant factor.
The use of PUSCH reveals the variability in performance
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FIGURE 15. Comparison of Q-learning and DDPG performance metrics:
average access delay.

of DDPG, as its higher standard deviation suggests the
potential for both significantly high and reasonably low
access delays depending on the network scenario. Themedian
and interquartile ranges indicate that Q-learning remains
consistently reliable with PUSCH, while DDPG performance
is more variable, with a higher median delay and peak delays,
particularly in the upper quartile. When deploying DDPG in
network environments where PUSCH plays a crucial role,

FIGURE 16. Comparison of Q-learning and DDPG performance metrics:
power consumption.

careful consideration is necessary to avoid unpredictability
in access delays.

The power consumption results are displayed in Fig. 16
and Table 10. The comparison indicates in Fig. 16 (a)
and (b) that Q-learning needsmore average power per episode
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TABLE 10. Summary statistics: power consumption (mJ).

compared to DDPG with the average power consumption
being almost four times higher when without PUSCH.
Nevertheless, power consumption of Q-learning converges
as the training progresses. Conversely, DDPG exhibits a
low mean power consumption but a high standard deviation,
suggesting that its power consumption fluctuates under
varying network conditions. DDPG may be more suitable for
power-critical scenarios, whereas Q-learning would be more
apt for environments with fewer power constraints.

Fig. 16 (c) and (d) show the results considering PUSCH.
The consider of PUSCH results in high power consump-
tion during the initial stages of learning when employing
Q-learning. However, the use of PUSCH leads to a sig-
nificant reduction in power requirements, suggesting that
Q-learning benefits from channel optimization. This indicates
an adaptive capability within Q-learning that, when leveraged
with PUSCH, can lead to substantial energy savings. The
convergence of power consumption in Q-learning suggests
a stabilization in its decision-making process, optimized
for energy efficiency when PUSCH is considered. On the
other hand, DDPG consistently exhibits lower mean power
consumption, with and without PUSCH, indicating a natural
efficiency within the DDPG algorithm for power manage-
ment. However, the higher standard deviation suggests that
the performance of DDPG is sensitive to different network
conditions. The addition of PUSCH appears to improve the
performance of DDPG by reducing the variability and further
reducing the power consumption, making it more suitable for
power critical scenarios.

D. DISCUSSION
1) EFFECT OF BACKOFF INDICATOR
The simulation results presented in Fig. 9, as well as in
Fig. 10 and 11, demonstrate that adjusting the BI value plays
a pivotal role in managing both the success rate and the
power consumption during the RA procedure. Furthermore,
the impact of the BI value grows increasingly significant as
the number of UEs escalates, when compared to the Base
RA method. Specifically, the data in Fig. 12 reveal that in
congested channel conditions, elevating the BI value can
serve as an effective strategy to alleviate channel congestion.
This is attributed to the fact that a higher BI value expands
the range of RAO slots that a UE can opt for, thereby
effectively reducing the likelihood of preamble collisions.

Consequently, the UE gains a higher probability of steering
clear of congested channels. Viewed from a theoretical
perspective, this suggests that the BI value can be harnessed
not merely as a parameter for backoff time management, but
also as a crucial tool for optimizing power usage and averting
channel congestion.

2) EFFECT OF MAXIMUM PREAMBLE TRANSMISSIONS
The results of controlling the Max Tx value provide insight
into power consumption. Comparing the success rate and
average access delay in Fig. 9, we can see that there is not
much difference from the basic RA. However, looking at
the power consumption in Fig. 10 and Fig. 11, we can see
that reducing the Max Tx value to an extreme extent does
not significantly reduce the transmission power consumption.
In other words, the DTDO-RA procedure requires more
transmissions to successfully complete the RA procedure
when the number of preamble transmissions is reduced,
which increases the power consumption.

3) MINIMIZATION OF POWER CONSUMPTION
From the simulation results, we can see in ig. 10 and 11
that the power consumption of the mMTC network can be
reduced by adjusting the BI value andMax Tx. As the mMTC
environment evolves, especially due to the proliferation of
devices and the resulting resource constraints, the need for
energy savings becomes more and more important. From the
results in Fig. 10, we can compare the power consumption
in transmission and idle for each parameter, and we can see
that the power consumption obviously decreases with the
increase of the BI value. When adjusting the Max Tx value,
setting it too low will result in increased transmit power,
but the increase in idle power is not significant. Changes in
BI and Max Tx play an important role in reducing power
consumption during network operation, as shown in Fig. 11.
An important implication is that BI, which has only been
recognised as a parameter for managing backoff time, can
be an important factor in determining power consumption,
i.e. under congested channel conditions, careful selection
of BI values can significantly reduce power consumption.
Similarly, setting the Max Tx value correctly can balance the
number of preamble transmissions with power consumption.

4) CHANNEL CONGESTION IN MMTC SCENARIOS
As the number of UEs increases, the challenge of effectively
managing channel congestion becomes increasingly impor-
tant, especially in mMTC environments where many devices
must compete for limited channel resources. Efficient chan-
nel access mechanisms are essential to minimize delay time
and reduce power consumption while maintaining reliable
communications. One of the main factors that contribute to
channel congestion in mMTC environments is the increasing
frequency of preamble collisions. As shown in Fig. 2, as the
number of UEs attempting RA procedures simultaneously
increases, the preamble collision rate increases accordingly.
This can also be seen in Fig. 12, where we see a sharp increase
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in channel congestion at a certain point. If the RA procedure
fails due to preamble collisions, the UE will retry in the next
RAO slot, which is likely to further exacerbate the congestion.
To address this issue, in this paper we propose that channel
congestion can be effectively mitigated by expanding the
range of selectable RAO slots by adjusting the BI value.

5) INSIGHTS INTO APPLYING REINFORCEMENT LEARNING
Reinforcement learning applied to the RA procedure shows
that DDPG generally outperforms Q-learning in achieving
higher rewards and success rates, but with greater variability
in success rates, indicating that it is effective in a variety of
environments. The ability of DDPG to discover the optimal
action policy, along with its efficiency in complex scenarios,
helps in the selection of learning algorithms where power
is critical due to the low power consumption required to
maintain performance. With its stability, Q-learning is well
suited for consistent environments, while DDPG is more
adaptive to complex and changing conditions. However, the
integration of PUSCH significantly improves the success
rate of Q-learning, allowing it to better respond to the
dynamic network environment despite its initially high power
consumption, and reduces power consumption by optimizing
channel usage, increasing the adaptability of Q-learning for
energy efficiency.

As a result, the apply of reinforcement learning has a posi-
tive impact on RA procedures in bursty traffic environments.
For example, in an environment where power is sufficient
but the success rate needs to be increased, Q-learning can
work effectively to increase the number of retransmissions
by choosing a low BI value to increase the success rate
by increasing the number of retransmissions. On the other
hand, when there is not enough power and the network
environment is more complex and constrained, DDPG is an
effective learning method and can adjust to increase the BI
value to increase access delay and avoid congested channel
environments. In this way, the application of reinforcement
learning plays an important role in optimizing RA procedures
to balance power consumption and success rate.

VI. CONCLUSION
The DTDO-RA method was presented in this study as
a means of minimizing power consumption and channel
congestion in mMTC networks. The approach focuses on
optimizing the BI and Max Tx values in the RA procedure.
By dynamically adjusting these parameters, the method
effectively mitigates interference and channel congestion,
enhancing the efficiency of RA procedures. And also, the
use of Q-learning and DDPG algorithms allows for adaptive
optimization of BI and Max Tx values, taking into account
the dynamic features of the network environment.

The efficiency of the DTDO-RA scheme has been
validated through extensive simulations, showing significant
improvements in power efficiency and RA success rates,
especially in congested network conditions. Optimizing Max
Tx helps to balance network reliability and efficiency.

However, it is important to calibrate it carefully to prevent
increased power consumption due to excessive transmissions.
These findings provide insights for future improvements of
the DTDO-RA procedure, with the aim of customizing it to
various network scenarios and requirements.
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