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ABSTRACT The classification of Land Use Land Cover (LULC) can be accomplished with the help of
hyperspectral imaging, which is a cutting-edge technology. Nevertheless, despite its efficacy, the utilization
of hyperspectral images for LULC classification continues to present difficulties and demands a significant
amount of time. The limited availability of training samples for hyperspectral images poses a challenge in
achieving accurate classification of LULC. Nevertheless, through meticulous deliberation and examination,
this impediment can be surmounted. To tackle the task of LULC classification, we have developed a Dilated
Neighbourhood Attention Transformer (DNAT). Firstly, we employ LeNet-5 to extract features from the
provided data. Subsequently, we perform band selection using Crow Search Optimization (CSO). Following
the extraction of features and selection of bands, we proceed to classify LULC. In our study, we used the
Salinas, Indian Pines (IP), and Washington DC Mall datasets for LULC classification. The performance
of our proposed classification approach is evaluated using the commonly used metrics, namely, Average
Accuracy (AA), Overall Accuracy (OA), and Kappa Coefficient (KC). We have achieved 99.85% as OA,
99.83% as AA, and 99.73% as KC for the Salinas Dataset. This is the highest accuracy we have achieved
using the DNAT classifier. The experimental results proved beyond a reasonable doubt that the proposed
method achieved the highest possible performance, surpassing all prior methods.

INDEX TERMS Crow search optimization, dilated neighborhood attention transformer, hyperspectral
image, land use land cover classification, LeNet-5.

I. INTRODUCTION
The use of hyperspectral imaging has been a huge boon
to remote sensing as a whole. It has become an essential
technology in the industry due to the accurate and com-
prehensive information it provides about the physical and
chemical properties of objects that are imaged. The technique
involves capturing and processing images across a wide range
of electromagnetic frequencies, providing a comprehensive
view of the spectral signature of the objects. The history of
hyperspectral imaging dates back to the 1970s when remote
sensing researchers started exploring the use of remote
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sensing technologies to study the Earth’s surface. At that
time, traditional remote sensing techniques relied on a limited
number of spectral bands to capture images, which provided
only a limited amount of information about the objects being
imaged. Hyperspectral imaging systems can now capture
images across hundreds of spectral bands with remarkable
accuracy and precision, thanks to recent developments in
sensor technology [1]. To obtain an image of a scene,
hyperspectral imaging systems use light with a variety of
wavelengths, from ultraviolet to infrared. These systems can
tell you a lot about the physical and chemical characteristics
of the objects in the image just by looking at how much light
reflects at different wavelengths. A three-dimensional data
cube is produced, with information regarding the reflectance
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of light at each wavelength contained in each pixel [2].
Hyperspectral imaging is a sophisticated technology that
finds extensive application in diverse industries, including
agriculture, environmental monitoring, mineral exploration,
healthcare, and military sectors. Hyperspectral imaging is
widely employed in agriculture to effectively monitor the
health of crops, identify pests and diseases, and optimize
the use of irrigation and fertilizers [3]. When it comes
to healthcare and the military, hyperspectral imaging is a
game-changer. Its non-invasive method has revolutionized
medical imaging, leading to more precise and time-saving
cancer diagnoses. Hyperspectral imaging is an essential
technology for military operations such as target detection,
reconnaissance, and situational awareness, which helps our
troops to remain ahead of enemy advances [4]. New
advancements in sensor technology continue to expand
the capabilities of hyperspectral imaging. For example,
the development of small and lightweight hyperspectral
sensors has made it possible to capture high-resolution
hyperspectral images from drones and other unmanned aerial
vehicles. These advancements are expected to open up new
applications for hyperspectral imaging in areas such as pre-
cision agriculture, disaster management, and infrastructure
monitoring [5].

An important and very accurate way to get useful infor-
mation about the surface of the Earth is LULC classification
using remote sensing [6], [7], [8]. Land use refers to
the specific way in which humans make use of the land.
It represents the actions and features of humans that are
connected to a specific geographical area. Multiple land uses
can coexist on the same type of land cover. For instance,
a forest can serve as a site for commercial logging or
be officially designated as a national park for recreational
purposes. By segregating land use, it becomes possible to
examine the effects of human activities and evaluate the
effectiveness of management strategies. Land cover pertains
to the tangible attributes found on the surface of the Earth.
These attributes can be either inherent to nature or created
by humans and are frequently examined and quantified from
a distance using satellite imagery, aerial photography, or on-
site investigations. A single land cover type, such as a forest,
can serve multiple purposes, such as being designated as a
national park or used for logging activities. Segmenting land
cover enables autonomous examination of the Earth’s surface
attributes. One state-of-the-art technique that can take images
of the Earth’s surface with astonishing detail is hyperspectral
imaging. This technology yields unparalleled precision and
accuracy by analyzing and interpreting the spectral signatures
of different surface materials. The hyperspectral remote
sensing images that are obtained consist of numerous
closely arranged and distinct spectral bands, providing a
comprehensive understanding of surface characteristics [9].
The LULC classification process using hyperspectral images
involves several stages. The first stage is the acquisition of
hyperspectral data, which is typically done using specialized
sensors mounted on aircraft or satellites. The acquired data

is then preprocessed to correct for atmospheric and sensor-
induced effects, as well as to remove unwanted noise and
artifacts. After preprocessing the hyperspectral data, the
following stage is to extract useful features that can accurately
distinguish between various land cover classes. Many things
influence how well LULC classifications turn out. These
include how well the hyperspectral data is processed, which
machine learning algorithms are used, and the quality of the
data itself. Agricultural monitoring, land-use planning, urban
planning, forest management, and environmental monitoring
are just a few of the many practical uses for LULC
classification using hyperspectral images [10]. Although it
has made significant progress in the classification of LULC,
this field still encounters various obstacles that hinder its
precision and efficiency. Hyperspectral images, which are
used for LULC classification, consist of a substantial quantity
of spectral bands. As the number of features (spectral bands)
increases, the process of training and applying classification
models becomes computationally burdensome. Obtaining
substantial quantities of excellent labeled data (accurate
and reliable information) for training classification models
can be costly, time-consuming, and restricted to specific
geographical areas. Accurate classification heavily relies on
the careful selection of the most informative features from
the high-dimensional data. Conventional feature extraction
techniques may not be ideal for hyperspectral images due
to their distinct characteristics. Training and implementing
intricate, deep learning models, which are frequently suc-
cessful for LULC classification, can require a significant
amount of computational power, particularly when resources
are limited.

To maximize the accuracy of the classification pro-
cess, feature extraction techniques are used to extract
the most valuable information from the data. Feature
extraction improves the precision of classification algo-
rithms by choosing the most pertinent data, facilitating
the differentiation of different objects or materials within
an image [11]. Additionally, feature extraction can reduce
the computational complexity of the analysis, making it
more efficient to process large datasets. Feature extraction
greatly improves the interpretability of data by reducing its
dimensionality. This results in a more efficient recognition
of patterns and connections, empowering data analysts to
make well-informed decisions with certainty [12]. Various
effective methods exist for extracting features, such as
PCA (Principal Component Analysis) [13], LDA (Linear
Discriminant Analysis) [14], t-SNE (Stochastic Neighboring
Embedding) [15], andAutoencoders (AE) [16]. An extremely
useful method for precisely determining the subspace of
principal components from input vectors is Principal Compo-
nent Analysis (PCA). Linear Discriminant Analysis (LDA)
is a powerful method for distinguishing between different
classes in a low-dimensional hyperspace. Nevertheless, these
global linear algorithms may exhibit suboptimal performance
when confronted with nonlinear scattered data scenarios.
To tackle this issue, researchers have proposed utilizing
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sophisticated nonlinear feature extraction algorithms for
hyperspectral images. These algorithms, such as Isometric
Mapping (ISOMAP), Local Linear Embedding (LLE) [17],
and Spherical Stochastic Neighboring Embedding (SSNE)
[18], are specifically tailored to process individual features,
specifically spectral features, as input. Through the appli-
cation of these methods, scientists can effectively extract
more advanced characteristics from hyperspectral images
with certainty. The feature extraction processes can be
particularly useful in scientific applications, where the goal
is to understand the underlying physical processes that are
reflected in the image. However, there are also some potential
disadvantages to feature extraction. One risk is that important
information may be lost during the process, particularly if
inappropriate methods are used [19]. Additionally, feature
extraction can introduce bias into the analysis if the methods
used are not carefully selected or if the results are not
validated. When working with big datasets, feature extraction
can be especially difficult because of how time-consuming
and computationally intensive [20]. To overcome the issue of
time-consuming we have used LeNet-5 for extraction of the
features from the given data.

Hyperspectral imaging is a highly potent and sophisticated
technology that allows for the detection and identification of
materials and objects by analyzing their distinct spectral sig-
natures. Hyperspectral imaging surpasses traditional imaging
techniques by capturing a wide range of spectral bands, from
ultraviolet to infrared, instead of being limited to only three
bands. This state-of-the-art technology has demonstrated
significant efficacy in diverse domains, such as agriculture,
geology, ecology, and medicine. The precision and accuracy
of this technology make it indispensable for any application
that necessitates the identification and analysis of materials
and objects [21]. This increased spectral resolution allows for
the identification of subtle differences in the reflectance and
absorption of light by different materials, thereby enabling
highly accurate classification and analysis of objects in
the image [22]. Choosing the suitable bands is a crucial
and determining stage in hyperspectral image analysis. This
is because not all spectral bands are equally informative
for every application. For instance, in mineral exploration,
specific spectral bandsmay bemore indicative of certainmin-
erals than others. In agriculture, certain bands may be more
useful for detecting crop stress or disease [23]. A novel band
selection technique, distinct from conventional methods, has
been proposed in the literature. Instead of choosing a limited
number of bands, this method promotes specific endmembers
for the process of spectral unmixing. Researchers are
currently concentrating on optimization-based band selection
methods as a means to enhance classification accuracy [24].
This has been accomplished through the extensive use of
global optimization algorithms like Genetic Algorithms (GA)
[25], Particle Swarm Optimization (PSO) [26], and Firefly
Algorithm (FA) [27]. Having said that, the slow convergence
speed of the Gravity Search Algorithm (GSA) makes it
seem like it might not be the ideal choice for global search

band selection [28]. Although genetic algorithms are great at
solving complicated optimization problems, dealing with all
of the parameters makes their execution a real challenge. This
can cause genetic algorithms to become stuck in local optima
at times, but with the right adjustments and preparation,
they can perform admirably in many different contexts. This
method is not appropriate for global search band selection.
Utilizing firefly algorithms results in a low band discovery
rate, low accuracy rate, and very slow convergence speed.
To overcome the above-mentioned issues, we have used Crow
Search Optimization (CSO) to select the appropriate bands
from the given data [29]. With the right selection of spectral
bands, hyperspectral imaging can be useful in many different
contexts. The practicality and usefulness of artificial intel-
ligence have been proven in many different settings. It can
detect and track pollution, locate and map mineral deposits,
aid in the discovery of previously unknown archaeological
sites, and monitor the health of crops and forests, among
other things. In each of these applications, hyperspectral
imaging provides a wealth of detailed information that
is not available through traditional imaging techniques,
making it an invaluable tool for scientific research and
analysis [30].
Hyperspectral image classification is an advanced proce-

dure that employs state-of-the-art hyperspectral sensors to
capture intricate images of the Earth’s surface. Hyperspectral
images differ from traditional RGB images in that they con-
tain numerous spectral bands, with each band representing
a specific narrow range of wavelengths. The technique of
image classification is highly dependable and accurate, and it
is extensively employed in diverse applications. This means
that hyperspectral images can reveal a wealth of information
about the surface features of the Earth, including the chemical
composition of soils, the health of vegetation, and the pres-
ence of minerals. To extract this information, analysts use a
range of techniques to classify pixels within the hyperspectral
image into different categories. Employing algorithms for
data analysis and statistical models for material or object
differentiation are effective approaches to achieving desired
outcomes [31]. To automate the process of accurately and
quickly analyzing massive amounts of data, machine learning
and deep learning algorithms are the preferred choices.
Multiple studies have demonstrated the efficacy of algorithms
like neural networks, support vector machines (SVM), and
random forests. We can trust that our data analysis will
be done quickly and accurately when you use them. These
algorithms use statistical models to identify patterns in the
hyperspectral data and classify them into different land cover
classes such as forests, water bodies, agricultural lands,
and urban areas [32]. The Convolutional Neural Network
(CNN) and Deep Learning Algorithm are highly efficient
techniques for LULC classification. The concealed layers of
CNN adeptly extract the essential characteristics for this task,
rendering it the preferred option for precise and dependable
outcomes [33]. A Deep-CNN is the optimal method for
categorizing Hyperspectral Images (HSIs) according to their

VOLUME 12, 2024 59363



G. Tejasree, A. Loganathan: Enhancing Hyperspectral Image Classification for Land Use Land Cover

spectral attributes. The 1D-CNN is employed to extract
spectral characteristics from hyperspectral images, but it
necessitates input in the form of a one-dimensional vector.
The 2D-CNN is a dependable approach for classifying
hyperspectral images. The design of this system is tailored
to consider both the spectral and spatial features of the
images, leading to enhanced classification results. The 2D-
CNN is a highly suitable choice for hyperspectral image
analysis applications because it combines both spectral
and spatial characteristics. However, the 2D-CNN might
overlook specific relevant information derived from spectral
features [34]. To overcome the issues mentioned above,
we have used DNAT. By using this we can classify
the data.

A. MOTIVATION AND CONTRIBUTIONS
The in-depth research and observations made by several
researchers worldwide have led to an enhanced understanding
of the significance of LULC classification analysis. As part
of this process, remote sensing scientists collaborated with
satellite data providers worldwide to gather real-time satellite
images, which were used for the LULC classification.
To ensure the accuracy of the classification, publicly available
benchmark datasets were pre-processed, and features were
subsequently extracted. The meticulous curation of bands
is a pivotal element in attaining accurate categorization
of hyperspectral images. This study has provided us with
a thorough comprehension of the importance of LULC
classification analysis, thereby bolstering our confidence
in this research field. The method’s capacity to enhance
the precision of land cover maps is genuinely remarkable.
This approach has demonstrated its efficacy in enhancing
the precision of these cartographic representations, which
serve various critical functions such as land-use allocation,
environmental analysis, and natural resource management.
The study aims to devise sustainable solutions that benefit
both humanity and the environment in the long run.
The contribution of our work is to classify LULC using
hyperspectral images. We have attempted DNAT for LULC
classification using hyperspectral images for the first time.
The feature extraction is done using the LeNet-5 architecture
to extract the significant features from the LULC data.
After extracting the features from the dataset, the extracted
features are sent to the bad selection. After selecting
the informative bands using Crow Search Optimization
(CSO), the DNAT classifier will classify the hyperspectral
images.

The paper is meticulously structured into discrete sections,
each fulfilling a precise objective. Section II contains a
comprehensive literature review. In section III, the proposed
methodology is elucidated with clarity and confidence.
Section IV contains the experimental results, which are
presented in a comprehensive and influential manner. The
findings are comprehensively examined and analyzed in
section V. Ultimately, readers will encounter a cogent and
logical conclusion to the paper.

II. RELATED WORKS
A. FEATURE EXTRACTION
Extracting meaningful features from hyperspectral images
is crucial for correct ground cover analysis. The curse of
dimensionality, however, means that classifications utilizing
the original data can end up less accurate. This obstacle has
been successfully handled by employing robust approaches
like feature extraction and selection [35]. This research
study presents a novel method for categorizing bands
in hyperspectral imaging by utilizing Normalized Mutual
Information (NMI) and Minimum Noise Fraction (MNF)
to identify distinctive characteristics. The NMI method
is employed for feature selection, while the performance
analysis is conducted using a kernel Support Vector Machine
(SVM). The suggested strategy has exhibited substantial
enhancements in classification accuracy and computing effi-
ciency compared to other established methods, as evidenced
by the analysis of two actual hyperspectral imaging datasets.

In terms of sampling, an Adaptive Multi-perceptual field
implicit Guided Sampling Generative Adversarial Network
(AMGSGAN) algorithm greatly improves long-range per-
ception [36]. The three powerful modules that make up the
generator are adaptive guided implicit sampling, precoding,
and feature extraction from multi-perceptual fields. These
modules collaborate harmoniously to provide exceptional
outcomes. In addition, the discriminator module employs
a CNN architecture exclusively, using robust approaches
like batch normalization and adaptive average pooling
layers. AMGSGAN has demonstrated superior performance
compared to other algorithms at resolutions of 4x, 8x, and
16x, establishing itself as the leading algorithm in the field of
AI-powered algorithms.

Superpixelwise Adaptive Singular Spectral Analysis
(SpaSSA) is a remarkable method for extracting features
from hyperspectral images by trustingly using local spa-
tial information [37]. Each superpixel acquired from an
over-segmented HSI undergoes a combination of conven-
tional SSA and 2-D SSA, which are applied with precision.
For feature extraction, we employ either 2-D SSA or SSA,
with the former being dynamically adaptable to the size of the
superpixel and the latter using SSA as a fallback. Regarding
computational complexity and classification accuracy, exper-
imental findings on three datasets show that SpaSSA firmly
beats both SSA and 2-D SSA. With principal component
analysis (PCA), SpaSSA-PCA can surpass many state-of-the-
art methods and significantly enhance the precision of land
cover analysis.

B. BAND (FEATURE) SELECTION
The authors of this article [38] presented a state-of-the-art
technique called Dimensionality Reduction Method based on
Rough Set Theory (DRM-RST) for feature selection using
rough set theory. The hyperspectral images was regarded
as a decision system, and the process of selecting effective
features was conducted based on information entropy. The
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performance of DRM-RST on dimensionality reduction was
assessed using the Washington D.C. Mall and New York
datasets. The findings indicated that DRM-RST successfully
deleted around 184-185 superfluous bands, attained an
overall accuracy of 94% by the utilization of an SVM
classifier, and decreased computation time by almost 85%.
Additionally, the study demonstrated that DRM-RST had
superior performance in terms of accuracy and stability
when compared to other approaches in the context of
dimensionality reduction. Ultimately, their research intro-
duces an innovative and advanced technique for reducing
the complexity of computations and successfully tackling the
problem of high dimensionality.

Band selection is a technique used to reduce the amount
of data in HSI for machine learning. It involves selecting
important bands and removing redundant and noisy infor-
mation. In [39], an unsupervised method for band selection
and feature extraction has been proposed. The method trains
a sub-neural network to identify important bands and project
the data to a reduced and informative space. Results show that
the proposed method enhances classification accuracy and
reduces computational time and data storage requirements
compared to other approaches.

A study analyzed the performance of algorithms Random
Forest (RF), Rotation Forest (RoF), and Canonical Correla-
tion Forest (CCF) for hyperspectral imagery classification
using three datasets [40]. The CCF algorithm achieved the
highest classification accuracies with statistically significant
improvements compared to RF and RoF. The individual
learners in the CCF ensemble were found to be more diverse
and accurate.

The authors have proposed a solution to extract invariant
features from hyperspectral imagery using the Invariant
Attribute Profiles (IAPs) method in [41]. IAPs extract
spatial invariant features with filter banks, convolutional
kernels, and superpixel segmentation. Invariant behaviors are
modeled using a continuous histogram of oriented gradients
in a Fourier polar coordinate. The result comprehensively
represents spatial-frequency invariant features suitable for
HSI classification.

C. CLASSIFICATION
Innovative multiclass spatial-spectral GAN (MSGAN) is
proposed in [42]. Two generators generate spatial and
spectral samples in MSGAN. Discriminators also extract
spatial-spectral features and output multiclass probabilities.
New adversarial objectives are created for multiclass scenar-
ios. The discriminator accurately classifies training samples
into their true classes and generates samples into any class
with equal probability. Generators deliberately deceive the
discriminator. Training the discriminator with the generators
improves its performance through adversarial learning. This
is done with discriminative samples.

The spectral-spatial random patches network (SSRPNet)
is proposed to classify hyperspectral images in [43]. It uses

image random patches as convolution kernels without
training. The SSRPNet spectral-spatial feature is combined
with shallow, deep, spectral, and spatial features to form a
high-dimensional vector. The high-dimensional vector is then
classified by graph-based learning algorithms. By randomly
selecting a subset of features from a small sample point to
build a graph, these algorithms can achieve high classification
accuracy.

The spectral-spatial feature tokenization transformer
(SSFTT) method is designed to capture spectral-spatial
features, as well as high-level semantic features in [44].
Firstly, a module is created to extract low-level features using
spectral-spatial feature extraction. This module comprises
a 3-D convolutional layer and a 2-D convolutional layer.
These layers are used to extract superficial spectral and
spatial characteristics. Furthermore, a feature tokenizer is
introduced that employs Gaussian weighting to assist in
the conversion of features. Subsequently, the transformed
attributes are inputted into the transformer encoder module
to acquire feature representation and to enhance the process
of learning. Ultimately, a linear layer is used to determine the
initial token that can be learned in order to obtain the label
for the sample.

In [45], an MS-RPNet is a multiscale superpixelwise clas-
sification network. Superpixel-based S3-PCA and Random
Patches Network-based 2D-SSA are used in this network.
The proposed framework uses data-driven and S3-PCA
to incorporate global and local spectral knowledge at the
super-pixel level. 2D-SSA simultaneously removes noise and
extracts spatial features. After random patch convolution
and RPNet cascade procedures, the final characteristics are
obtained. Layered extraction enhances land cover features
by combining spatial information into multi-scale spatial
features. The final fusion features are classified using Support
Vector Machines (SVM) to produce the final classification
results.

A novel classification framework called spatial-spectral
Transformer (SST) is introduced for hyperspectral image
(HSI) classification in [46]. The proposed SST utilizes a
well-structured CNN to extract spatial features. Additionally,
a modified version of the Transformer, known as Dense-
Transformer, is introduced to capture sequential spectra
relationships. Finally, a multilayer perceptron is employed to
carry out the ultimate classification task.

The ghost-module architecture, combined with a
CNN-based HSI classifier, aims to minimize computational
expenses while achieving an efficient and high-performing
classification method in [47]. They assess the effec-
tiveness of our new approach by comparing it to nine
established HSI classifiers and five enhanced deep-CNN
architectures.

In [48], a novel visual attention-based method for classify-
ing HSI is proposed. More precisely, they enhance a ResNet
by integrating attention mechanisms to more effectively
capture and analyze the spectral-spatial information present
in the data. Their novel approach computes a mask that is
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utilized to select the most favorable features obtained from
the network for classification.

III. PROPOSED METHOD
Deep learning techniques have shown significant efficacy
in the categorization of LULC through the utilization of
hyperspectral imagery. However, the presence of limited
labels still presents certain challenges. To address these
challenges, we have employed Natural Language Processing
models to classify the LULC using hyperspectral images.
We employed a DNAT to perform LULC classification.
Before conducting direct classification, we performed feature
extraction using LeNet-5 and band selection using the
Crow Search Optimization (CSO) technique. Following the
extraction of features, we have chosen specific bands from
the extracted features. Subsequently, we have identified the
bands that contain relevant information. Once the bands
have been chosen, they are forwarded to the classifier for
processing.

We have used LeNet-5 for feature extraction in our
work because it showcases the efficiency of CNNs in the
image classification tasks. It introduced key elements like
convolutional layers, pooling layers, and fully connected
layers in CNNs, establishing them as essential architectural
elements. To select the informative bands, we have used
CSO. It is a metaheuristic optimization algorithm that draws
inspiration from the intelligent behavior of crows, which is
based on nature. The objective is to identify the most effec-
tive hyperparameter configurations for a machine-learning
model by emulating the collaborative foraging behavior of
crows. It attains exceptional performance in training LULC
classification models, and surpassing traditional optimization
algorithms. And it will enhance the precision, effectiveness,
and resilience of the models. To classify the LULC we have
used the DNAT classifier, it will identify and address the
constraints of conventional LULC classification techniques
when applied to hyperspectral images. The selected bands
are the input to the classifier. In the DNAT model, the
Transformer architecture captures long-range dependencies
in spectral information to achieve a more comprehensive
understanding. Dilated convolutions incorporated into the
attention mechanism enable the model to effectively capture
spatial relationships at various scales within local neigh-
borhoods, thus overcoming the constraints of conventional
convolutions.

LeNet-5, a pioneering CNN created in the 1990s, marked
a notable breakthrough in the empire of image processing.
LeNet-5 obviated the necessity of manual feature engi-
neering, a laborious and error-prone process, by directly
extracting features from images. The convolutional layers of
the network acquired the ability to identify edges, lines, and
other fundamental patterns in images, resulting in concise
feature representations that efficiently captured pertinent
information. Furthermore, LeNet-5 employed subsampling
layers to decrease image dimensions while preserving
essential characteristics, leading to a notable enhancement

in computational effectiveness. Crows have an impressive
capacity to find their way across search locations, according
to the CSO awareness system. Consequently, it is anticipated
that the subset of bands discovered by this process would
outperform those discovered using greedy algorithms. The
equilibrium between exploration and exploitation in CSO
facilitates the algorithm in evading local optima and con-
verging towards more advantageous solutions. In addition,
CSO is relatively robust to initial parameter settings and can
effectively handle various types of hyperspectral data.

DNAT is a modern technique used for classifying hyper-
spectral images. It combines transformer architecture and
dilated convolutions. This method enables the detection of
intricate textures and spectral patterns in the images by
simultaneously capturing both long-range dependencies and
spectral patterns. Dilated convolutions play a crucial role in
capturing pixel relationships that are far apart in space, which
is essential for hyperspectral image classification. Moreover,
the transformer architecture empowers DNAT to take into
account the complete image while performing classification,
resulting in more thorough comprehension of the scene
and enhanced differentiation between spectral signatures.
Furthermore, DNAT often utilizes stacked encoder-decoder
structures that have different dilation rates. This enables
DNAT to extract features at various scales and capture both
intricate and broad details of the spectral data. Figure 1
depicts the suggested structure of the DNAT-based LULC
categorization.

A. DATASET DESCRIPTION
1) DATASET CHARACTERISTICS
Hyperspectral imaging is a powerful technology that has
found applications in various fields, ranging from remote
sensing to medical imaging. When it comes to building
models for hyperspectral data cubes, it is essential to take
into account several dataset characteristics that can affect the
model’s accuracy and generalization. These characteristics
include the size of the data cubes, which can impact the
computational resources required to process them; the spatial
and spectral resolutions, which determine the level of detail
captured in the images; the noise levels, which can reduce
the quality of the data, and any class imbalance that may be
present in the data, which can affect the model’s ability to
distinguish between different classes. By considering these
factors and referring to the dataset characteristics presented
in Table 1, which can be used to build models that are better
suited for real-world scenarios, ensuring accurate and reliable
performance.

2) WASHINGTON DC MALL
Providing a precise and comprehensive depiction of the
Washington DC Mall area, the Washington DC Mall dataset
is a massive compilation of hyperspectral images. The dataset
was rigorously generated in 1995 using the most sophis-
ticated HYDICE sensor, guaranteeing the utmost accuracy
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FIGURE 1. Proposed architecture of the DNAT Classifier.

TABLE 1. Dataset characteristics.

and precision. The dataset encompasses pixel response in
210 spectral bands, which covers the visible and infrared
spectrum range of 0.4 to 2.4 µm, making it an excellent
resource for researchers. However, to ensure the accuracy
of the data, bands in the 0.9 and 1.4 µm range, which are
not transparent due to the atmosphere, were not included,
resulting in a total of 191 bands. This dataset comprises
1208 scan lines, each containing 307 pixels, and has a size
of approximately 150 Megabytes. The high spatial resolution
of 1280 × 307 pixels makes it possible to examine the
scene’s detailed features. In addition, the dataset includes
a ground truth map, which makes it easier for researchers
to identify and classify seven different categories of objects
present within the scene. Figure 2 displays the RGB image,
Ground Truth, and the number of classes in the dataset about
the Washington DC Mall. In Table 2, we can see the dataset
details, such as the total number of training and test samples.

TABLE 2. Description of Washington DC Mall dataset.

3) INDIAN PINES (IP)
The dataset wasmeticulously collected in a northwest Indiana
region with a variety of vegetation using a high-tech AVIRIS
sensor. Pixels in the high-resolution image are 145 pixels
on a side. The image contains 224 distinct spectral bands,
with sizes ranging from 0.4 to 2.5 µm, for every pixel. The
dataset is organized into sixteen distinct classes; for example,
the ‘Oats’ class has twenty-five labeled samples, but the
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FIGURE 2. Washington DC Mall dataset (a) RGB composite image, (b) Ground truth, and (c) Classes present in the dataset.

TABLE 3. Description of Indian Pines dataset.

‘Soyabean-min-till’ class has twenty-four hundred and fifty-
five labeled pixels. Figure 3 displays a ground truth reference
map and an RGB composite image to provide a thorough
visual depiction. Additionally, Table 3 describes the classes
in detail, including their training and testing samples, thereby
providing a clear and concise framework for analysis.

4) SALINAS
The Salinas dataset is a valuable resource for image
analysis that was obtained using theAirborneVisible/Infrared
Imaging Spectrometer (AVIRIS). This dataset contains a
total of 16 classes that can be used to identify various
features in the images. The images are uniform in size,
measuring 512×217 pixels, and have a spatial resolution of
3.7 meters per pixel, providing high-quality details. Out of
the 204 spectral bands, only the high-quality bands have
been selected to ensure reliable and accurate data. To better
understand the dataset, you can refer to Figure 4 for the
RGB composite image and ground truth reference map.
Additionally, Table 4 provides detailed information about
each class, including their training and testing samples.

B. METHODOLOGY
1) LENET-5
LeNet-5 is a specialized version of the CNN that is
specifically designed to analyze pre-processed images and

TABLE 4. Description of the Salinas dataset.

extract feature vectors. The LeNet-5 architecture consists of
two convolutional layers, two max-pooling layers, and a fully
connected layer, making it one of the most extensive CNN
models currently accessible. The LeNet-5 algorithm employs
a robust method of extracting features by utilizing multiple
convolutional kernels in each layer. These kernels are then
convolved with the input matrix. LeNet-5 is widely regarded
as a highly dependable and effective technique for analyzing
images and extracting features. In Figure 5, the architecture
of the LeNet-5 is given.

Considering the input data as given in Equation (1)

x2 = x2ij |i = 1, 2, . . . . . . , I , j = 1, 2, . . . . . . .., J . (1)

In this case, I stand for the input image, and J for the data
quantity in the input image. The representation of LeNet-5’s
convolution kernel is given in Equation (2)

CK

= ckp,q|p = 0, 1, . . . , SCK − 1, q = 0, 1, . . . , SCK − 1.

(2)

A key component of the output from the convolutional
layer is the convolution kernel size, which is dictated by
the variable SCK. The output of the convolutional layer,
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FIGURE 3. Indian Pines dataset (a) RGB composite image, (b) Ground truth, and (c) Classes present in the dataset.

FIGURE 4. Salins dataset (a) RGB composite image, (b) Ground truth, and (c) Classes present in the dataset.

an integral part of the process, is represented by Equation (3)

OC i,j

=

f
SCK−1∑

p=0

SCK−1∑
q=)

ckp,qx2i+m, j+q + ot


i=1,2,....,I , j=1,2,........,J . (3)

The activation function is denoted as f(.), the offset term
as ‘ot’, and the convolution result as OC i,j. LeNet-5 employs
the Rectified Linear Unit (RELU) activation function, similar
to AlexNet.

Using the pooling layer to lower the data’s dimensionality
allows feature extraction to be accomplished. In order to
get the most valuable points, this pooling layer employs
the maximum pooling method. The definition of maximum
pooling as pool (mpl−1

n ) is given in Equation (4).

mpln = pool (mpl−1
n ). (4)

The preceding layer, mpln and mp
l−1
n , are represented by n

and nth, respectively.
Usually, the fully connected layer functions as the ultimate

layer of the CNN. Every neuron in the network employs

the RELU activation function, establishing connections
with neurons in the previous levels. The purpose of this
completely linked layer is to combine and integrate the
localized information that helps to differentiate between
various classes. Equation (5) represents the outcome of the
completely linked layer (l).

fcln = f
(
ck l .fcl−1

n + ot l
)

. (5)

Combining convolution, pooling, RELU activation, and
fully connected layers allows for feature extraction from an
input image.

C. CROW SEARCH OPTIMIZATION (CSO)
CSO is a metaheuristic optimization method that operates
on a population-based approach. The underlying principle
of CSO is rooted in the collective behavior of crow flocks.
Crows reside in communal clusters. They investigate culinary
establishments and commit the most exceptional ones to
memory. Crows often engage in food site reconnaissance
by closely observing and tracking other crows to identify
potential sources of food, which they then exploit by
pilfering. Furthermore, when a crow perceives the presence of
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FIGURE 5. Architecture of the LeNet-5.

another crow tailing it, it will promptly escape to an arbitrary
destination instead of its usual feeding grounds. In Figure 6,
the selected band subset from the IP dataset has been given.

Let’s examine a search space with d dimensions and
a population of N crows. At iteration ‘itr’, the position
of each crow i is represented by a vector ai, itr =[
ai, itr1 , ai, itr2 , . . . . . . , ai, itrd

]
. Each crow symbolizes a

prospective resolution for the issue. The variable A represents
the spatial coordinates of all crows, as indicated by Equa-
tion (6).

A =


a11 a12 . . . a1d
a21 a22 . . . a2d
. . . . . . . . . . . .

aN1 aN2 . . . aNd

 . (6)

The fitness of each crow’s position is evaluated using
an objective function. Every crow possesses a memory that
retains the location that is presently the most suitable. During
iteration ‘itr’, the memory of each crow i is represented
by a vectorBi, itr =

[
Bi, itr1 , Bi, itr2 , . . . . . . , Bi, itrd

]
valve

regurgitation, also known as mitral insufficiency, is a
condition where the mitral valve of the heart does not
close properly, causing blood to flow backward into the left
atrium. This can lead to various symptoms and complications.
A matrix, denoted as MEM, stored the memory of all crows
and was represented in Equation (7)

MEM =


B11 B12 . . . B1d
B21 B22 . . . B2d
. . . . . . . . . . . .

BN1 BN2 . . . BNd

 . (7)

Essentially, the MEM variable stores the whereabouts of
the food that each crow has concealed. At each iteration, the

ith crow generates a new location by randomly following the
jth crow. There are two likely states in this situation:
Stage 1: The jth Crow is clueless to the fact that the ith

Crow is chasing it.

ai,itr+1
= ai,itr + ri × FL i, itr × (Bj, itr

− ai, itr ). (8)

The flight length, denoted as FL, is a measure of the
distance covered by a crow in a single journey. The variable
ri represents a random value ranging from 0 to 1.
Stage 2: The jth Crow is apprised of the fact that the ith

Crow is looking for it.

ai,itr+1
= Any Random Position. (9)

CSO employs a variable known as Awareness Probability
(AP) to quantify the probability that a crow is cognizant of
being chased. The merging of AP Equation (8), Equation (9)
is done as follow Equation (10):

ai,itr+1

= ai,itr+1
+ 1 = ai, itr + riFLi, itrBj, itr − ai, itr

whererj > APj, itr

AnyRandomPositionOtherwise (10)

Equation (10) shows that Within the context of the CSO
algorithm, when a crow detects the presence of other crows
trailing behind it, it relocates itself to a randomly selected
location within the search space. Consequently, CSO is more
efficient in investigating unexplored domains.

The crow at the ith position updates its stored information
using Equation (11).

Bi,itr+1

= ai,itr+1ifFitnessai,itr+1isbetterthanFitness(Bi, it)

NoChangeotherwise (11)
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FIGURE 6. Selected bands from Indian Pines dataset.

The fitness function is calculated by using Equation (12)

Bi,itr = ai,itr + Bij +MEM (12)

Here, the fitness function represents the fitness value. It is
calculated by using the position of each crow represented
by a vector ai,itr , and distance calculation is done by
using Bhattacharya distance calculation is defined by using
Bij, which is given in Equation (13), and the Maximum
information between bands, i.e., MEM is also calculated. it is
given in Equation (7).
Here, Bij is the Bhattacharyya distance. It is defined as

Bij =
1
8
(mi − mj)T

(∑
i +
∑

j

2

)
(mi − mj)

+
1
2
In

[
|(
∑

i +
∑

j)/2|

|
∑

i |
1/2|

∑
j |
1/2

]
(13)

Here,mi,mj are representing the mean vector of the classes
and

∑
i,
∑

j are representing the class covariance

D. NEIGHBOURHOOD ATTENTION(NA)
Neighbourhood Attention (NA) refers to a unique attention
mechanism that enables individual pixels to concentrate on
their adjacent pixels. This mechanism is commonly referred
to as sliding-window attention. Its purpose is to facilitate the
localization of self-attention, a potent mechanism that has
significantly advanced deep learning. In contrast to Swin’s
WSA and SWSA, NA uses overlapping sliding windows
to function without sacrificing translational equivariance.
This implies that the model’s output remains unchanged
even in the presence of image displacement in the input.

The NA’s sliding window pattern bears a resemblance to
SASA, but it confines the self-attention mechanism solely to
its adjacent neighbors, thereby imposing a direct constraint
on self-attention. As the window size of NA increases,
it exhibits self-attention. The significance of this lies in
the fact that self-attention has demonstrated its efficacy as
a potent mechanism in deep learning, enabling models to
capture extensive interdependencies present in the input data
effectively. Nevertheless, a significant obstacle associated
with sliding-window attention is its potential for high
computational costs, as there are currently no deep learning or
CUDA libraries that offer direct support for these operations.
In order to address a particular issue, the implementation of
NA was used in conjunction with N ATTEN, an extension
including very efficient CPU andGPU kernels. By combining
NA with other attention modules like Window Self Attention
(WSA) / a pixel-shifted Window Self Attention (SWSA),
NA is possible to outperform them in terms of both
performance and memory consumption. The Neighborhood
Attention Transformer (NAT) is a sophisticated model that
effectively utilizes the capabilities of NA to capture local
interconnections and the hierarchical architecture of the Swin
Transformer to capture global interdependencies. Neural
Architecture Transformation (NAT) is a robust and adaptable
technique in the field of deep learning that may be efficiently
used for a wide range of tasks, including image identification,
segmentation, and creation. The NAT and Swin models differ
primarily in their approach to downsampling layers. The
NAT model employs convolutions with overlapping regions,
whereas the Swin model utilizes convolutions with non-
overlapping patches. It is safe to say that NAT models
have a deeper architecture and smaller inverted bottlenecks
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FIGURE 7. Algorithm of LULC classification using DNAT.

to get parameter counts and FLOPs that are on par with
Swin models. Nevertheless, NAT demonstrates exceptional
outcomes in image classification, highlighting the efficacy
of overlapping convolutions. Furthermore, NATdemonstrates
strong performance on tasks that follow, highlighting its
versatility for various applications.

Local attention-based models are highly efficient and
effective in a wide range of vision tasks because they possess
the ability to preserve locality. Nevertheless, they fail to
encompass the global context, which is an essential compo-
nent of vision. Self-attention is a mechanism that can capture
the global context by attending to all positions in a feature
map. Receptive fields of localized attention processes are tiny
and progressively grow, much like convolutions. In contrast,
self-attention utilizes a receptive field that spans the entire
size of the input. This enables it to acquire a comprehensive
global context, which proves beneficial in diverse vision tasks
such as object detection and segmentation. Various studies
have investigated the concept of global receptive fields in
vision, such as Non-local Neural Networks. Non-local Neural
Networks employ self-attention mechanisms to capture
dependencies that span across long distances. Nevertheless,
operations that have unbounded global receptive fields
typically encounter significant computational complexities

in comparison to operations that have restricted receptive
fields, which can be either local or sparse. Nevertheless, the
investigation of global receptive fields in vision continues
to be a vibrant field of study, and further progress in this
domain could potentially enhance performance in diverse
vision-related tasks.

E. DILATED NEIGHBOURHOOD ATTENTION
TRANSFORMER (DNAT)
This section will provide a detailed explanation of DNAT,
which we propose as an expansion of NA. DNAT’s flexible
architecture can handle a variety of hyperspectral datasets
with different resolutions and characteristics. DNAT effi-
ciently extracts local and global contextual information from
hyperspectral images using dilated convolutions and attention
mechanisms. This combination lets themodel extract features
at different scales to find complex patterns and subtle details
in the data. It uses neighborhood attention to focus on
relevant hyperspectral spatial connections. The model can
accurately classify LULC by considering neighboring pixels
with different dilation rates to capture spatial dependencies at
various scales. Dilated convolutions improve model receptiv-
ity while reducing computational complexity. DNAT handles
hyperspectral images well, making it ideal for large-scale
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applications with limited computational resources. We will
analyze the consequences of DNAT on the receptive field
and then discuss our model, DNAT. In addition, we will
offer precise information on how to implement DNAT
and seamlessly integrate it with the existing N ATTEN
package. The Algorithm of the proposed DNAT classifier
for LULC classification is given in Figure 3-C. In Figure 8
(a) Architecture of the Dilated Neighbourhood Attention
Transformer(DNAT), (b) DNAT Block
To maintain simplicity, we restrict our notations to

single-dimensional NA and DNAT. Let X be an input matrix
in Rn×d , where each row represents a d-dimensional token
vector. There are two more linear projections of X that we
have: Q for query and K for key. On top of that, there are
relative positional biases (B (i, j)) between any two tokens
i and j. We multiply matrices in order to determine the
neighborhood attention weights, represented as Aki , for the i

th

tokenwith a neighborhood size of k. Specifically, wemultiply
the query projection of the ith token with the key projections
of its k nearest neighboring tokens defined in Equation (14).

Aki =


QiKT

p1(i) + B(i, p1(i))
QiKT

p2(i) + B(i, p2(i))
...

QiKT
pk(i) + B(i, pk(i))

 . (14)

Here, pj(i) represents the jth nearest neighbor of i.
We define neighboring values, V k

i , as a matrix where each
row represents the k nearest neighboring value projections of
the ith token given in Equation (15).

V k
i = [Vp1iTVp2(i)T . . .Vpk(i)T ]T . (15)

A linear projection of X, denoted by the symbol V, may
be used to represent the Neighborhood Attention output
for the ith token, given a neighborhood size of k. This
formulation delineates the procedure through which the
attention mechanism analyzes the input data, proficiently
capturing the contextual information within the vicinity.
The definition of Neighborhood Attention output offers
a thorough comprehension of the underlying mechanisms
involved, facilitating enhanced analysis and interpretation of
the outcomes defined in Equation (16).

NAk (i) = softmax

(
Aki
√
d

)
V k
i . (16)

The sign √ denotes the mathematical operation of finding
the square root. In this particular context, the symbol ‘‘d’’ is
used to denote the scaling parameter, whereas it also signifies
the embedding dimension. In the context of DNAT, when a
dilation value √ is provided, we define pδ

j (i) as the j
th closest

neighbor of token i that meets the condition: j mod δ = i
mod δ. The δ-dilated neighborhood attention weights for the
ith token, with a neighborhood size of k, may be defined as

A(k, δ)
j in Equation (17).

A(k, δ)
i =


QiKT

pδ
1(i)

+ B(i, pδ
1(i))

QiKT
pδ
2(i)

+ B(i, pδ
2(i))

...

QiKT
pδ
k (i)

+ B(i, pδ
k (i))

 . (17)

We define δ-dilated neighboring values for the ith token
with a neighborhood size of k as V (k, δ)

i is in Equation (18).

V (k,δ)
i = [V T

pδ
1(i)

V T
pδ
2(i)

. . . V T
pδ
k (i)

]T . (18)

The DNAT output for the neighborhood size k of the ith

token is subsequently defined in Equation (19).

DNAT δ
k (i) = softmax

(
A(k,δ)i
√
dk

)
V (k,δ)
i . (19)

DNAT offers a noteworthy architectural hyperparameter:
per-layer dilation settings. The maximum value for the
dilation parameter is defined as the quotient of [ nk ], where n
represents the number of tokens and k denotes the size of the
kernel or neighborhood. The purpose of this is to guarantee
the presence of precisely k expanded neighbors for every
token. The minimum value is consistently set at 1, which is
the same as vanilla NA. Consequently, the dilation value in
each layer of the model will be a hyperparameter that depends
on the input and can take any integer δ within the range
of [1,

[ n
k

]
]. The flexibility of receptive fields is achieved

through the changeability of dilation values.

IV. EXPERIMENTAL ANALYSIS
A. EVALUATION METRICS
Employing a dependable set of assessment criteria is essential
when evaluating a LULC classification algorithm. Metrics
such as the Kappa coefficient (KC), Overall Accuracy
(OA), and Average Accuracy (AA) can yield dependable
and precise results. When it comes to testing pixels and
using confusion metrics to assess the classifier’s performance
confidently, thesemetrics are widely accepted and considered
the gold standard [8].

OA: The overall accuracy metric is considered to be of
utmost importance when it comes to measuring the quality
of image classification algorithms. This metric represents the
percentage of pixels that are accurately classified in an image
compared to all the pixels in that image. Its significance
lies in the fact that it allows us to evaluate the performance
of an algorithm and serves as a benchmark for comparing
different methods. Therefore, it’s crucial to ensure that the
overall accuracy is as high as possible while developing
image classification algorithms. The following Equation (20)
depicts how overall accuracy is calculated:

OA =
1
T

C∑
c=1

Tcc. (20)
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FIGURE 8. (a) Architecture of the Dilated Neighbourhood Attention Transformer (DNAT), (b) DNAT Block.

In this case, T stands for the selected classifier’s confusion
matrix and Tcc for the number of testing pixels.

AA: It’s important to note that in image classification, both
average accuracy and per-class accuracy are crucial metrics.
It is crucial to acknowledge that per-class accuracy is a more
precise metric compared to average accuracy, as it quantifies
the percentage of accurately classified pixels in each class.
Below is Equation (21), we can see the AA equation.

AA =
1
C

C∑
c=1

Tcc∑C
c′ Tcc′

. (21)

Here, T represents the number of difficult pixels, and Tcc’
signifies the confusion matrix of a given classifier.

KC: The Kappa coefficient is a statistical measure that
serves to account for the possibility of chance agreement
when evaluating the degree of concordance between two
raters or measurements. In essence, this coefficient adjusts
the observed agreement (OA) by reducing its value to account
for the likelihood that the agreement could have arisen by
chance. By taking chance agreement into account, the Kappa
coefficient produces amore accurate and dependable estimate
of the degree of agreement between the two measures. This,
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TABLE 5. Class-wise results of the proposed method along with existing systems using the Washington DC Mall dataset.

FIGURE 9. Classification accuracy of Proposed method Vs State-of-the-art systems for Washington DC Mall dataset
(a) Overall accuracy, (b) Average accuracy, and (c) Kappa coefficient.

in turn, enhances the validity and interpretability of the
results obtained from these measures. And it is given in
Equation (22).

KC =

1
T

∑
c Tcc −

1
T 2 (
∑

c′ Tcc′ )(
∑

c′ Tc′c)

1 −
1
T 2 (
∑

c′ Tcc′ )(
∑

c′ Tc′c)
. (22)

B. COMPARISON WITH EXISTING TECHNIQUES
To evaluate the precision of the classification achieved
using our suggested approach (DNAT), we performed a
comprehensive analysis by comparing it with several cutting-
edge algorithms. We meticulously assessed the outcomes
derived from each algorithm, taking into account mul-
tiple metrics and parameters. By undertaking this rigor-
ous procedure, we successfully assessed the efficacy of
our suggested approach in attaining the highest level of
classification performance. We have used the following
algorithms to compare our model effectiveness, and they are
MSGAN (Multiclass Spatial-Spectral Generative Adversarial
Networks) [42], RPNet (Random Patches Network) [43],
SSFTT (spectral-spatial feature tokenization transformer)

[44], MSRPNet [45], SST (spatial-spectral Transformer)
[46], Ghostnet [47], A-ResNet [48]. Table 8 gives the AA,
OA, and KC of all the datasets with existing systems.

1) MSGAN: The MSGAN model employs a dual-
generator approach to produce samples that incorporate
both spatial and spectral information. The discrimina-
tor has been meticulously designed to extract accu-
rate spectral and spatial characteristics. Consequently,
it offers highly reliable probabilities for a significant
number of categories. The model establishes novel
adversarial goals for the task of multiclass classifica-
tion. The discriminator is responsible for determining
whether training samples are part of the genuine
classes or if generated samples are part of any of
the classes with equal likelihood. The adversarial
learning process involves deliberately designing the
generators to challenge the discriminator in a cutthroat
battle. By producing high-quality samples that are
better able to differentiate between classes, this process
greatly enhances the discriminator’s classification
abilities.
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FIGURE 10. Classification maps of the Washington DC Mall dataset (a) RGB Image (b) Ground truth (c) SST, (d) Ghostnet,
(e) MSGAN, (f) RPNet, (g) SSFIT, (h) A-ResNet, (i) MSRNet, and (j) Proposed approach.

2) RPNet: The Random Patches Network (RPNet)
method utilizes random hyperspectral image (HSI)
patches as convolution kernels without the need
for pre-training. RPNet seamlessly integrates shal-
low and deep convolutional features, leading to
multi-scale analysis that adeptly adjusts to HSI
classification, even in the presence of objects with
varying scales. We conducted comprehensive exper-
iments on three benchmark HSI datasets to evaluate
RPNet, as well as two variations, RandomNet and
RPNet-single.

3) SSFTT: An extremely effective method for obtaining
spectral-spatial data and complicated semantic features
is the SSFTT. It is based on a cutting-edge spectral-
spatial feature extraction module that uses a 2-D and
3-D convolution layer. These layers are highly skilled
at extracting low-level features. These layers are highly
effective at capturing surface-level spectral and spatial
characteristics. Furthermore, a feature tokenizer that
utilizes Gaussian weighting is utilized to convert the
features. These converted features are then fed into
the transformer encoder module to be processed and
learned. Ultimately, a linear layer is utilized to ascertain
the initial trainable token, which is crucial for obtaining
the sample label.

4) MSRPNet: This study introduces a new classification
network for hyperspectral imaging (HSI) called MS-
RPNet. TheMS-RPNet framework utilizes the Random
Patches Network (RPNet) to integrate multiscale
superpixel-wise RPNet with 2D singular spectrum
analysis (2D-SSA). This innovative framework is
designed to effectively incorporate data-driven tech-
niques that merge local and global spectral information
at the super-pixel level. Projects that necessitate sophis-
ticated spectral analysis greatly profit from its utiliza-
tion. The implementation of 2D-SSA improves the net-
work’s ability to remove noise and extract spatial fea-
tures. The final characteristics are obtained by employ-
ing random patch convolution and other procedures
that rely on RPNet’s cascade structure. The process of
extracting layered spatial data and creating multi-scale
spatial features significantly enhances the character-
istics of different land covers. To achieve the most
precise classification results, the final step involves
utilizing SVM to cluster the amalgamated attributes.
The proposed framework presents a viable solution to
the HSI classification problem, showcasing its efficacy
in achieving enhanced classification performance.

5) SST: The spatial-spectral Transformer (SST) is a
new classification framework designed specifically for
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FIGURE 11. Classification accuracy of proposed method Vs State-of-the-art systems for Indian Pines dataset (a) Overall
accuracy, (b) Average accuracy, and (c) Kappa coefficient.

FIGURE 12. Classification accuracy of proposed method Vs State-of-the-art systems for Salinas dataset (a) Overall accuracy,
(b) Average accuracy, and (c) Kappa coefficient.

classifying hyperspectral imagery (HSI). SST makes
use of a carefully crafted CNN for the extraction of
spatial properties and a DenseTransformer, a variant of
the Transformer model, for the capture of relationships
between sequential spectra. A multilayer perceptron
is used to complete the classification task. To further
improve the model’s generalizability and combat
overfitting, we have integrated a method known as

dynamic feature augmentation into the SST (SST-FA).
Furthermore, to tackle the issue of a restricted number
of training samples in hyperspectral image (HSI)
classification, the technique of transfer learning has
been integrated with spectral-spatial-temporal (SST)
analysis, resulting in the creation of an alternative
classification framework known as transferring-SST
(T-SST). In order to mitigate the problem of overfitting
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FIGURE 14. (a) Accuracy (b) Loss of Washington DC Mall dataset, (c) Accuracy (d) Loss of Salinas dataset, and
(e) Accuracy (f) Loss of Indian Pines dataset for the proposed method.

and enhance the precision of classification, the T-SST-
based classification framework (T-SST-L) proposes the
utilization of a method known as label smoothing.
The SST, SST-FA, T-SST, and T-SST-L methods
are evaluated using three widely used hyperspectral
datasets.

6) Ghostnet: This study presents a groundbreaking
method to greatly decrease the computational complex-
ity of a CNN-based HSI classifier while maintaining
a high level of classification accuracy. By combining
the ghost-module architecture with the CNN-based
HSI classifier, we have effectively improved efficiency
and reduced computational costs, thereby establishing
the proposed method as a highly effective solution
for HSI classification tasks. The proposed method is
assessed against nine established HSI classifiers and
five enhanced deep CNN architectures, utilizing five
widely recognized HSI datasets for the purpose of
algorithm benchmarking.

7) A-ResNet: This research paper presents a state-of-
the-art method for classifying HSI that utilizes visual
attention to improve the precision of the outcomes.
By integrating attention mechanisms into a ResNet
model, their groundbreaking approach significantly
improves the data’s representation of spectral-spatial
information. The suggested technique efficiently gen-
erates a mask that, given a set of network features, can
identify and choose the most important ones for classi-
fication. This method represents a major advance in the
field because of how well it produces accurate results.

C. DISCUSSION
Using the Washington DC Mall dataset, a comparative
analysis was conducted to evaluate the effectiveness of the
proposed DNAT method compared to the current techniques.
The study found that existing methods frequently failed
to accurately depict the different categories. The current
methods, such as SST, exhibit lower accuracy in classifying

59380 VOLUME 12, 2024



G. Tejasree, A. Loganathan: Enhancing Hyperspectral Image Classification for Land Use Land Cover

FI
G

U
RE

15
.

Cl
as

si
fi

ca
ti

on
m

ap
s

of
Sa

lin
as

da
ta

se
t

(a
)

RG
B

im
ag

e,
(b

)
G

ro
un

d
tr

ut
h,

(c
)

SS
T,

(d
)

G
ho

st
ne

t,
(e

)
M

SG
A

N
,(

f)
R

PN
et

,(
g)

SS
FI

T,
(h

)
A

-R
es

N
et

,(
i)

M
SR

N
et

,a
nd

(j
)

Pr
op

os
ed

ap
pr

oa
ch

.

VOLUME 12, 2024 59381



G. Tejasree, A. Loganathan: Enhancing Hyperspectral Image Classification for Land Use Land Cover

TA
B

LE
8.

Co
m

pa
ra

ti
ve

an
al

ys
is

of
th

e
cl

as
si

fi
ca

ti
on

re
su

lt
s

of
pr

op
os

ed
Vs

.S
ta

te
-o

f-
th

e-
ar

t
sy

st
em

s.

59382 VOLUME 12, 2024



G. Tejasree, A. Loganathan: Enhancing Hyperspectral Image Classification for Land Use Land Cover

roofs and trees. The accuracy of the classes ‘‘tree’’ in
Ghostnet, ‘‘roof’’ and ‘‘road’’ in MSGAN, ‘‘grass’’ and
‘‘road’’ in RPNet, ‘‘grass’’ and ‘‘roof’’ in SSFIT, ‘‘grass’’
and ‘‘shadow’’ in A-ResNet, and ‘‘water’’, ‘‘road’’, and
‘‘shadow’’ in MSRNet has been found to be lower compared
to the accuracy achieved by the proposed DNAT method.
Table 5 displays the classification accuracy of theWashington
DC Mall dataset using both existing methods and a proposed
method. It indicates that the existing methods have lower
accuracy compared to the proposed method. Furthermore,
Figure 9 depicts the accuracy graphs of the proposed method
in contrast to the existing methods. The classification maps
of the Washington DC Mall dataset, both the current systems
and the suggested approach, are presented in Figure 10.

Figure 9 is the visual representation of the classification
accuracies of the proposed method and the existing methods
of the Washington DC Mall dataset. Figure 9 (a) shows
that the OA, Defines the percentage of total pixels that are
correctly classified. By using our proposed method we have
achieved better individual class accuracy, for the class tree
we got 99.74% OA. Figure 9 (b) shows that the Average
AA is calculated by using the average of the percentage of
pixels that are correctly classified per class; we have achieved
98.31% as an AA. Figure 9 (c) represents the KC; it is
a quantitative measure of the level of correctly classified
pixels by the relationship between the chance agreement
and the actual agreement. By using our proposed method,
we got 97.89% of KC. Based on these constraints, we have
drawn Figure 9 with our proposed system along with existing
systems.

Figure 11 displays the classification accuracies of the
proposed method and existing methods for the Indian Pines
dataset. Figure 11 (a) illustrates that the OA represents
the proportion of total pixels that are accurately classified.
Through the implementation of our proposed methodology,
we have successfully attained improved accuracy for each
class. Specifically, we achieved an impressive 100% overall
accuracy for the class corn-min, and we have got low-class
accuracy for Alfalfa, i.e., 94.26%. In Figure 11 (b), the AA
is determined by calculating the average of the percentage of
pixels that are accurately classified for each class. In this case,
we have achieved an AA of 98.16%. Figure 11 (c) depicts the
KC, which is a quantitative metric that assesses the accuracy
of pixel classification by comparing the level of chance
agreement with the actual agreement. Our proposed method
achieved a KC score of 98.93%. By considering all these
values, we have drawn a diagram of the proposed system,
as well as the existing systems, in the form of Figure 11.
Figure 12 illustrates the classification accuracies of both

the proposed method and existing methods for the Salinas
dataset. Figure 12 (a) demonstrates that the OA represents
the ratio of correctly classified pixels to the total number of
pixels. By implementing our proposed methodology, we have
achieved enhanced accuracy for every class. Our results
show that we achieved a remarkable 100% overall accuracy
for the celery class and Fallow_smooth class. Figure 12

(b) calculates the AA by determining the average of the
percentage of pixels that are accurately classified for each
class. Our achievement, in this case, is an AA rating of
99.83% Figure 12 (c) illustrates the KC, a quantitative
measure that evaluates the precision of pixel classification
by comparing the degree of random agreement with the
actual agreement. The method we proposed obtained a KC
score of 99.73%. After taking into account all of these
values, we have drawn a diagram illustrating the proposed
system, as well as the state-of-the-art systems, in the form of
Figure 12.
Comparing the proposed DNAT approach to established

methods using the IP dataset assessed its efficacy. The
study showed that current methods often misrepresented
diverse categories. Existing methods like SST, Ghostnet,
MSGAN, RPNet, SSFIT, and A-ResNet had lower accuracy
in classifyingAlfalfa, corn, woods, oats, grass, grass pastures,
and Building grass pastures. DNAT outperformed these
methods in accuracy and efficiency. Table 6 showed the
IP dataset’s high classification accuracy, demonstrating
the DNAT method’s superiority over other methods. The
accuracy graphs of the proposedmethod compared to existing
methods are shown in Figure 9. In Figure 12, the classification
maps of current and proposed systems show the DNAT
approach’s clear success. The study concluded that the DNAT
method is promising for accurately representing dataset
classes. It’s more accurate and efficient than current methods.
In Figure 14 (a) Accuracy, (b) Loss of Washington DC
Mall dataset has given represented. Figure 14 represents (c)
Accuracy, (d) Loss of Salinas dataset, and in Figure 14 (e)
Accuracy, (f) Loss of Indian Pines dataset is given. To know
the accuracy and loss of our proposed method, we have
trained our model with 100 epochs; in the graph, it is given
as 1, 2,.. 10 units. Here, 1 unit represents 10 epochs.

The effectiveness of the proposed DNAT approach
was evaluated by performing a comparative analysis with
established techniques using the Salinas dataset. The
study revealed that the current methods often lacked
precision in representing various categories. The accuracy
of existing methods, including SST, Ghostnet, MSGAN,
RPNet, SSFIT, and A-ResNet, was found to be lower
when classifying different categories such as Fallow,
Celery, Vineyard_vertical_trellis, Lettuce_romainc_4wk,
Lettuce_romainc_5wk, and Vineyard_untrained. Both the
accuracy and efficiency of the DNAT approach were higher
than those of these other methods. The proposed DNAT
method outperformed the existing methods, as shown
in Table 7 that presented the classification accuracy of
the Salinas dataset. Figure 13 depicted the classification
maps of the current systems and the proposed method,
effectively demonstrating the superior performance of the
DNAT approach. An additional Figure 10 presented the
accuracy graphs of both the suggested approach and current
methods, facilitating a thorough evaluation of their respective
performance. To summarize, the study concluded that the
DNAT approach is a highly promising method for precisely
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representing various classes in datasets. It outperforms
current methods in terms of both precision and effectiveness.

V. CONCLUSION
Hyperspectral imaging is an advanced technology that has
demonstrated great utility in the classification of LULC.
Even though it is effective, the utilization of hyperspectral
images for the classification of LULC continues to be
fraught with challenges and requires a considerable amount
of time. Accurate classification of LULC is difficult to
achieve due to the limited number of training samples that
are available for hyperspectral images. This is the primary
challenge that arises. In order to accomplish the task of
LULC classification, we attempted the classification using a
Dilated Neighbourhood Attention Transformer, also known
as a DNAT. To begin, we make use of LeNet-5 in order
to extract features from the data that has been provided.
After that, we use CSO to select the informative bands
for better performance. Following feature extraction and
meticulous band selection, we move on to the next stage of
our investigation, namely LULC classification using Salinas,
IP, and Washington DCMall datasets. AA, OA, and KC were
the metrics we used to assess the efficacy of our classification
strategy. The proposed method achieved the highest level
of performance, surpassing the existing methods, according
to our experimental results. The proposed model could fail
to recognize important contextual details from hyperspectral
images if it excessively emphasizes local characteristics. This
has the potential to adversely affect tasks such as LULC
classification, which requires a thorough understanding of
the broader landscape context. By creating computationally
optimized versions of DNAT or investigating alternative
attention mechanisms that produce comparable outcomes
with reduced complexity. To enable the DNAT model to take
into account both local and global information, resulting in a
greater understanding of the scene.
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