
Received 21 March 2024, accepted 8 April 2024, date of publication 15 April 2024, date of current version 22 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3388419

Platoon Joint EKF for Improved Road Friction
Estimation in Autonomous Platoons
LIANG SU 1, YAN CHEN 2,3, FENG ZHANG 2,3, (Member, IEEE),
YONG ZHANG2,3, (Member, IEEE), AND GANG GONG1
1Xiamen King Long United Automotive Industry Company Ltd., Xiamen 361023, China
2College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
3Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Xiamen 361021, China

Corresponding author: Feng Zhang (zhangfeng@hqu.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2021YFB2500704.

ABSTRACT The advantages inherent to autonomous vehicle platoons render them a pivotal component in
the evolution of intelligent transportation systems. Given the minimal spacing between vehicles in such a
platoon, ensuring collision-free travel necessitates a more rapid estimation of the road friction coefficient.
Capitalizing on the vehicle-to-vehicle (V2V) communication prevalent amongst platoonmembers, this paper
introduces a platoon joint extendedKalman filter (EKF) estimator to expedite the trailing vehicles’ estimation
of the road friction coefficient. A decision logic module is also designed within the EKF estimator of the
following vehicles to process signals transmitted from the leading vehicle, achieving the objectives of signal
assessment and reception. In the simulation scenarios presented in this study, the results of the platoon joint
EKF estimation for the road friction coefficient, when compared to the results of an individual vehicle EKF
estimation, show an improvement in estimation speed by 50% for butt roads and between 25%-80% for
split roads. This attests to the efficacy of the proposed method, offering a reference for autonomous vehicle
platoons to swiftly estimate road conditions and adjust inter-vehicle distances, thereby enhancing the safety
of the platoon when road information changes.

INDEX TERMS Autonomous vehicle platoon, extended Kalman filter, road adhesion coefficient, state
estimation.

I. INTRODUCTION
Autonomous vehicle platoons are characterized by vehicles
aligned in a single file with minimal spacing between them,
offering advantages such as energy conservation [1], [2],
reduction in greenhouse gas emissions [3], [4], and increased
road traffic capacity [5]. Vehicle-to-vehicle (V2V) commu-
nication is employed among platoon members for sharing
vehicular statuses and environmental information [6], [7],
ensuring the safe traversal of the convoy. Essential prereq-
uisites for platoon safety include collision-free movement
and secure information transmission. Collision-free not only
denotes the absence of collisions with other vehicles but
also mandates no collisions among the platoon members.
In scenarios where the road conditions remain constant and
communication is uninterrupted, the convoy members main-
tain roughly equal spacings due to identical road conditions.

The associate editor coordinating the review of this manuscript and
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However, when road conditions alter, the long formation of
the platoon implies varied road conditions for different mem-
bers, resulting in adaptive spacing adjustments to maintain
safety.

The safe spacing between platoon members is intrinsically
tied to their braking distances. Given the short intervals in
a platoon, there arises an immediate need for rapid estima-
tion of vehicle braking distances. Since braking distance is
inextricably linked to the road friction coefficient, a swifter
and more accurate estimation of this coefficient is crucial
for adjusting the safe distance between convoy members.
As highlighted in studies [8] and [9], enhancing the accu-
racy of estimating the friction coefficient directly boosts
the accuracy in vehicle braking distance estimations and,
consequently, the precise determination of safe distances
within the platoon.

Methods for estimating the road friction coefficient primar-
ily fall into two categories: experimental-based and model-
based approaches. Experimental-based techniques mainly
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correlate data from optical sensors and cameras, acoustic
sensors, and tire tread sensors with the road friction coef-
ficient for estimation purposes. Conversely, model-based
methods rely on wheel and vehicle dynamics, tire models,
and slip ratio techniques. Given that model-based strategies
obviate the need for expensive specialized sensors and pro-
duce accurate and replicable results, they are more favored
[10], [11], [12], [13].

During the estimation of the friction coefficient, accuracy
often falls short due to the interference of measurement noise
or other factors. Scholars have put forth a myriad of methods
to address this issue: Some methods aim to refine the mea-
surement of tire forces. Reference [14] adopts load-sensitive
bearings to measure accurate tire forces for friction coef-
ficient estimation, obviating dependence on tire models.
Reference [15] introduces a novel tire model to enhance
force measurement, yielding favorable results across vari-
ous maneuvers and combined maneuvers simulations. Others
directly counteract measurement noise. Reference [16] dis-
regards noisy time-domain data, opting instead for a fusion
approach in the frequency domain leveraging steering and
in-wheel motor drive systems to eliminate noise interference.
Reference [17] employs fuzzy logic to correct the cubature
Kalman filter (CKF) measurement noise and uses the ant
colony algorithm to optimize input-output membership func-
tions, enhancing estimation accuracy. Some methods parti-
tion the estimation of the friction coefficient. Reference [18]
devises an integrated road friction estimator that treats tire
slip rate, side slip angle, and front-wheel steering angle
as combined excitations, estimating the friction coefficient
in segments for improved accuracy. Reference [19] bases
its estimation on a partitioning principle that combines
longitudinal-lateral dynamics and demonstrates effectiveness
in the non-linear region of tire dynamics. Novel estima-
tors have also been presented to improve overall accuracy.
Reference [20] proposes a low-cost dual EKF that operates
and communicates simultaneously to enhance estimation pre-
cision, also supplying information for active control systems.
Reference [21] constructs a new estimator capitalizing on
the advantages of indirectly estimating the road adhesion
coefficient using the friction coefficient and the explicit
HSRI equation, showing promising results on high, low, and
variable friction surfaces.

For particular models or conditions, specialized methods
exist. For four-wheel-drive electric vehicles, [22] suggests an
estimation method exploiting the difference in longitudinal
tire forces between the left and right sides, which also doesn’t
compromise motion control or trajectory tracking. Address-
ing the complex scenarios of an 8-wheel hub motor car,
[23] uses the unscented Kalman filter (UKF) to estimate tire-
road forces, followed by the recursive least squares method
for friction coefficient estimation, enhancing accuracy. For
steering conditions, [24] proposes an iterative algorithm for
estimating the road friction coefficient of two steering wheels
using the self-aligned torque of a single tire. Reference [25]
proposed a friction coefficient estimation method combining

braking, driving, and steering conditions for complex maneu-
vering conditions, and verified its real-time performance with
actual vehicles.

To avoid model inaccuracies in the aforementioned phys-
ical modeling methods, data-driven approaches have been
widely used. For example, [26] employs both a longitudi-
nal dynamics model and a single-wheel dynamics model
to obtain the frequency domain function of the in-wheel
motor drive system. A parallel spatio-temporal convolutional
neural network is then constructed to extract features in
the time domain and time-frequency domain. This learn-
ing strategy is devised to tackle the challenge of accurately
estimating the coefficient of adhesion during maneuvers
involving straight-line stationary driving. Reference [27] pro-
poses a method that represents friction as a function related
to the slip ratio. This approach initially employs Monte
Carlo Markov Chain techniques to determine the parameters
of the Pacejka tire model. Subsequently, it integrates the
Maximum Likelihood Estimation method with the Adaptive
Metropolis algorithm to accurately deduce the road surface
adhesion coefficient. Reference [28] adopts a hybrid estima-
tion approach for the road adhesion coefficient. For common
low-excitation scenarios, a Generalized Regression Neural
Network is utilized. During high-excitation conditions, the
estimation is carried out using the Bayesian Theorem in
conjunction with the Pacejka tire model. In addition, there
are methods such as long short-term memory neural net-
works [29], deep neural networks [30], etc.
However, these methods are all proposed for a single

vehicle. For the case of small vehicle platoon spacing in
motion, methods with general estimation effects are not
suitable for vehicle platoon, and methods with good results
are not suitable for high-economy vehicle platoon charac-
teristics [31]. Therefore, this paper adopts a low-cost EKF
estimator widely used in real vehicle applications, and based
on the advantages of vehicular platoon internal V2V com-
munication, proposes a vehicle platoon joint EKF estimator
based on 7-DOF vehicle model, which can accelerate the
estimation of road adhesion coefficient of following vehicles
in an autonomous vehicle platoon. Section II delineates the
Dugoff tire model and the 7-DOF vehicle model employed
by the homogeneous autonomous vehicle platoon. Section III
outlines the structure of the platoon joint EKF estimator and
the design steps for the decision logic module in the EKF esti-
mator of the following autonomous vehicles. In Section IV,
we conduct simulation validation, analyzing and discussing
results from individual autonomous vehicle platoon member
estimations against collective platoon estimations. We con-
clude and indicate future research directions in the final
section.

II. VEHICLE MODEL
A. DUGOFF TIRE MODEL
Given that the Dugoff tire model can depict the contact force
between the tire and the road with relatively few unknown
parameters and considerable accuracy, this study employs this
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tire model for the estimation of the friction coefficient. The
expressions for the longitudinal force and the lateral force of
the tire are as follows:

Fx = µFzCx
λ

1 − λ
· f (L) (1)

Fy = µFzCy
tan (α)

1 − λ
· f (L) (2)

where, µ is the road adhesion coefficient, Fz is the vertical
load on the tire, Cx and Cy are the longitudinal and lateral
stiffness of the tire, λ is the slip rate, and α is the tire slip
angle. The expression for f (L) is:

f (L) =

{
L (2 − L) , L < 1
1, L ≥ 1

(3)

L =
1 − λ

2
√
C2
x λ

2 + C2
y tan2 α

(4)

The slip rates for braking and driving are:

λ = 1 −
v
Rω

> 0 (Braking) (5)

λ =
Rω

v
− 1 < 0 (Driving) (6)

where R is the radius of the tire, ω is the wheel speed, and
v is the center speed of the wheel.

To facilitate the EKF algorithm to solve the Jacobian and
neglect the effect of the road adhesion coefficient, the nor-
malized form of the Dugoff tire model is used.

Fx = µF0
x = µFzCx

λ

1 − λ
· f (L) (7)

Fy = µF0
y = µFzCy

tan (α)

1 − λ
· f (L) (8)

where F0
x and F0

y are the longitudinal and transverse normal-
ized forces, respectively.

The vertical load of four wheels is calculated as follows:

Fzfl = mg
lr
2l

− max
hg
2l

− may
lrhg
bf l

(9)

Fzfr = mg
lr
2l

− max
hg
2l

+ may
lrhg
bf l

(10)

Fzrl = mg
lr
2l

+ max
hg
2l

− may
lf hg
br l

(11)

Fzrl = mg
lr
2l

+ max
hg
2l

+ may
lf hg
br l

(12)

where lf and lr are the distances between the center of mass
of the vehicle and the front and rear axles, respectively, and
l = lf +lr . bf and br are the front and rear wheelbases, respec-
tively. ax and ay are the longitudinal and lateral acceleration,
respectively. hg is the height of the center of mass and m is
the mass of the vehicle.

The tire side angle is expressed as follows:

αfl = δ − arctan

(
vy + lf r

vx −
bf
2 r

)
(13)

FIGURE 1. 7-DOF vehicle model.

FIGURE 2. Model for estimating the road adhesion coefficient of an
autonomous vehicle platoon.

αfr = δ − arctan

(
vy + lf r

vx +
bf
2 r

)
(14)

αrl = arctan

(
−vy + lrr

vx −
br
2 r

)
(15)

αrr = arctan

(
−vy + lrr

vx +
br
2 r

)
(16)

where δ is the front wheel angle and r is the yaw velocity.

B. 7-DOF VEHICLE MODEL

A 7-DOF nonlinear vehicle model is established based on
the longitudinal and lateral forces Fx and Fy in the tire
model. The model includes longitudinal, transverse, yaw,
and four-wheel rotation motions. The model is shown in
Fig. 1.

The motion equation of the model is as follows:

ax =
1
m

(
Fxfl cos δfl − Fyfl sin δfl

+Fxfr cos δfr − Fyfr sin δfr + Fxrl + Fxrr
)

(17)

ay =
1
m

(
Fxfl sin δfl + Fyfl cos δfl

+Fxfr sin δfr + Fyfr cos δfr + Fyrl + Fyrr
)

(18)

ṙ = 0/Iz (19)
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FIGURE 3. EKF construction of the following vehicles.

FIGURE 4. Arrangement of the platoon of autonomous vehicles.

0 = lf
(
Fxfl sin δfl + Fyfl cos δfl

)
−
bf
2

(
Fxfl cos δfl − Fyfl sin δfl

)
+ lf

(
Fxfr sin δfr + Fyfr cos δfr

)
+
bf
2

(
Fxfr cos δfr − Fyfr sin δfr

)
−

(
lrFyrl +

br
2
Fxrl

)
+

(
br
2
Fxrr − lrFyrr

)
(20)

where Iz is the moment of inertia of the vehicle around the
z-axis.

The vehicle parameters are shown in Table 1.

TABLE 1. Parameters.

The vehicles used by the autonomous vehicle platoon in
this paper are homogeneous, that is, the vehicle parameters
are consistent.

III. ROAD ADHESION COEFFICIENT ESTIMATION
A. MODEL FOR ESTIMATING THE ROAD ADHESION
COEFFICIENT OF AN AUTONOMOUS VEHICLE PLATOON
The 7-DOF vehicle model input is front wheel angle δ, wheel
torque Tij, Dugoff tire input is vertical and horizontal acceler-
ation ax , ay, vertical and horizontal speed vx , vy, wheel speed
ωij, and δ. The EKF algorithm is used to estimate the road
adhesion coefficient. The input to the EKF is δ, together with
the longitudinal and transverse normalizing forces of the tires
F0
xij, F

0
yij. In an autonomous vehicle platoon, all the remaining

vehicles except the lead vehicle receive an estimate of the

FIGURE 5. (a)Steering wheel angle input, (b)Lateral acceleration, (c)Yaw
rate.

road adhesion coefficient transmitted by the vehicle ahead of
them [32]. The estimation model is shown in Fig. 2.

When transmitting the estimated road friction coefficient
between two consecutive vehicles, the following vehicle
decides whether to receive the data based on a predefined
logic. Upon reception, the estimation results of the lead
vehicle are integrated into the EKF estimator of the trailing
vehicle for further computation. Autonomous vehicle pla-
toons travel in a sequential order along the same trajectory
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FIGURE 6. Single estimate result.

(disregarding scenarios with significant trajectory errors),
meaning that the following vehicle will traverse the same road
surface that the preceding vehicle had covered t time units
earlier. As a result, the friction coefficient estimated by the
leading vehicle and received by the trailing one pertains to the
road surface that the latter will encounter after t time units.
Given this setup, when there is a change in the road friction

coefficient (such as when transitioning to a butt road surface),

FIGURE 7. Joint estimate result.

vehicles in the rear of the platoon can benefit from the results
that the vehicles ahead have already estimated for t time units
in the future, thereby accelerating the convergence speed of
their estimations.

B. ROAD ADHESION COEFFICIENT ESTIMATION
ALGORITHM
The EKF algorithm implements a simple linearization of
the nonlinear model by performing a Taylor expansion of
the nonlinear function around the best-estimated point and
discarding the second-order and higher-order components.
For a vehicle nonlinear system, the equation of state and
measurement equations of the EKF algorithm are as follows.

ẋ (t) = f (x (t) , u (t) ,w (t))

y (t) = h (x (t) , u (t) , v (t)) (21)

where w (t) and v (t) are the process and measurement noise,
x (t) and u (t) are the state and control input variables, respec-
tively, and y (t) is the quantity measurement.

For the system equation of pavement adhesion coefficient
estimation, the state variable x (t) =

[
µfl µfr µrl µrr

]T ,
measurement variable y (t) =

[
ax ay r

]T , and input variable
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FIGURE 8. Compare the estimated results of the F1.

u (t) =

[
δ F0

xij F
0
yij

]T
are combined with equation (17)-(20)

to form the measurement equation. In a short period, the road
adhesion coefficient is regarded as unchanged [33], that is:

F =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (22)

In the measurement equation,

H =


F0
xfl cos δ−F0

yfl sin δ

m
F0
xfr cos δ−F0

yfr sin δ

m
F0
xrl
m

F0
xrr
m

F0
xfl sin δ+F0

yfl cos δ

m
F0
xfr sin δ+F0

yfr cos δ

m
F0
yrl
m

F0
yrr
m

H (3, 1) H (3, 2) H (3, 3)H (3, 4)


(23)

where H (3, 1) =
lf
(
F0
xfl sin δ+F0

yfl cos δ
)
−
bf
2

(
F0
xfl cos δ−F0

yfl sin δ
)

Iz
,

H (3, 2) =
lf
(
F0
xfr sin δ+F0

yfr cos δ
)
+
bf
2

(
F0
xfr cos δ−F0

yfr sin δ
)

Iz
,

H (3, 3) =
−
br
2 F

0
xrl−lrF

0
yrl

Iz
, H (3, 4) =

br
2 F

0
xrr−lrF

0
yrr

Iz
.

In contrast to the EKF estimator used for a single vehicle,
the design logic module is added to the EKF estimator used
for vehicles by the autonomous vehicle platoon, as shown
in Fig. 3. Below Fig. 3, V2V in this paper uses only the
predecessor-following communication topology [34], [35].

The logic module chooses whether to receive the value
from the vehicle ahead based on whether it enters a new road
or not. The judging logic is shown in Table 2:

TABLE 2. Logical table.

The platoon joint estimation process is as follows:
In the table, k serves as the threshold. If the condition is

met, it is assigned a value of 1; Otherwise, it is 0. Y is the
decision logic value. A value of 1 indicates acceptance of the
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FIGURE 9. Compare the estimated results of the F2.

Algorithm 1 Platoon Joint Estimation Process
1. The estimated value of the adhesion coefficient of the front
car to the new road: xk (t).
2. xk (t) is transmitted to the judgment module of the rear
vehicle’s EKF.
3. The judgment module, based on the logic table, gives a
feedback value: Y.
4. if Y=1

xk+1 (t) = xk (t);
The rear vehicle begins to estimate the new road.

else
xk+1 (t) = xk+1 (t)
The rear vehicle is driving on the old road.

end

data transmitted from the preceding vehicle, while 0 signifies
rejection. The term (x(t + i+1)-x(t + i))/T represents the
rate of change between the i + 1th estimation and the ith
estimation. As demonstrated in the table, only when the first
rate of change is within the threshold, and the subsequent two
exceed the threshold does it signify the vehicle has entered a

new road surface. At this juncture, the vehicle receives the
estimation value transmitted from the preceding vehicle once
and will not receive it again afterward [36]. To ensure that the
two exceedances in the rate of change are due to convergence
towards a new value and not mere fluctuations, the product of
the two rate changes must also be greater than zero.

In this paper, the autonomous vehicle platoon of three vehi-
cles is taken as an example to conduct simulation experiments
in Matlab/Simulink. The EKFmeasurement noise covariance
matrix for the platoon members is R = 104 · I3×3, the process
noise covariance matrix is Q = 0.001 · I4×4, and the initial
error covariance matrix is P = 0.5 · I4×4, respectively.

IV. SIMULATION RESULT ANALYSIS
Basic assumptions of autonomous vehicle platoon:

a) The members of the autonomous vehicle platoon are
traveling in a team at the same speed, 10m apart from
the center of mass of the members.

b) The autonomous vehicle platoon uses V2V communi-
cation, and the communication is not interrupted during
the driving process, and the transmitted information is
not lost.
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FIGURE 10. Single estimate result.

The queue arrangement of the autonomous vehicle platoon is
shown in Fig. 4.

A. BUTT ROAD VERIFICATION
With the lead car as the standard, the first 5s is the road with
an adhesion coefficient of 0.8, and the second 5s is the road
with an adhesion coefficient of 0.5, and the speed of 72km/h

FIGURE 11. Joint estimate result.

on the road is 72km/h, so F1 travels to the other road at 5.5s,
and F2 travels to the other road at 6s. The steering angle is
sinusoidal input with an amplitude of 0.1 rad and frequency
of 1 rad/s. As shown in Fig. 5, the steering wheel angle input,
lateral acceleration, and yaw rate of the platoon members are:

The initial value of the platoon state is x (0) =

[0.8 0.8 0.8 0.8]T . The results of the road adhesion coeffi-
cient independently estimated by the platoon members are
shown in Fig. 6.When the road surface changes, the estimated
value of each platoon member fluctuates around 0.8. LV, F1,
and F2 enter the road surface with an adhesion coefficient
of 0.5 after 5s, 5.5s, and 6s, respectively. It took 1s for the
estimates of each member to converge from about 0.8 to
about 0.5. Estimates then fluctuate around 0.5.

When the platoon members jointly estimated, the parame-
ters of EKF did not change compared with that of the platoon
members separately, and the estimated data of the leading
vehicle remained unchanged, as shown in Fig. 6(a). As shown
in Fig. 7, when the adhesion coefficient of the road surface
touched by each wheel of the F1 changes, the estimated value
of each wheel corresponding to the leading car is received.
F2 receives the estimate of F1 in the same way. F1 receives
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FIGURE 12. Compare the estimated results of the F1.

an estimate of LV at 5.5s and F2 receives an estimate of F1
at 6s. F1 and F2 converge to approximately 0.5 at 6.5s and
7s, respectively. The convergence rate of the joint estimates
of the platoon members is increased by 0.5s compared to the
single estimates of the platoon members.

As shown in Figs. 8 and 9, the individual estimates of
the platoon members and the joint estimates are compared
and there is almost no difference in the estimation accu-
racy for the four wheels of F1 and F2. Thus, when this
method is applied to butt road surfaces, the platoon can
speed up the convergence and keep the estimation accuracy
constant.

B. SPLIT ROAD VERIFICATION
Also taking the leading car as the standard, the road surface
with adhesion coefficient 0.5 in the first 5 seconds, the road
surface with adhesion coefficient 0.2 on the left side of the
direction of the vehicle after 5 seconds, and the road surface

with 0.8 on the right side, the driving speed is 72km/h, so F1
and F2 drive to the road surface with adhesion coefficient
0.2 on the left side and 0.8 on the right side at 5.5s and 6s
respectively. The 5s gives a 1.2rad angular step input to the
steering wheel of the leading car, with F1 and F2 at 5.5s
and 6s, respectively.

The initial values of the platoon states are all x (0) =

[0.5 0.5 0.5 0.5]T . The results of the road adhesion coef-
ficients estimated independently by the platoon members
are shown in Figure 10. When estimated separately, the
left front wheel and the left rear wheel eventually converge
to around 0.24 and 0.17, respectively, and the right front
wheel and the right rear wheel eventually converge to around
0.79. Convergence to within 5% error, that is, between
0.15-0.25 and 0.75-0.85, respectively, requires 8.7s, 5.1s, 5.7s
and 3.4s for 4 wheels.

As shown in Fig. 11, the convergence rate of platoon-
averaged EKF estimation is accelerated. The times required
for the four wheels of the F1 to converge to within 5% of the
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FIGURE 13. Compare the estimated results of the F2.

error were 6.5s, 2.5s, 2.7s, and 0.4s. The four rounds of F2
take 4.2s, 1.6s, 2.9s, and 0.6s to converge to within 5% error.
The time required by F1 and F2 is reduced compared to a
single estimation, and the time required by F2 is also reduced
compared to F1.

It can be seen from Figs. 12 and 13 that the estimated
accuracy of the four wheels of F1 and F2 is higher than
the accuracy of the single wheel. Therefore, when applying
this method on split road surfaces, the platoon was able
to speed up the convergence and improve the estimation
accuracy.

V. CONCLUSION
Leveraging the characteristics of V2V communication among
members of autonomous vehicle platoons, this study estab-
lished a platoon joint EKF estimator structure designed to
expedite the estimation speed of the road friction coefficient
during changes. Within the EKF estimator of the following
vehicles, we designed a decision logic module to determine
the data reception points from the preceding vehicle. Through

simulation validation, a comparison between results from
the individual vehicle EKF estimator for the road friction
coefficient and those from the platoon joint EKF estimator
demonstrated that in various scenarios, the convergence time
consumed by the platoon joint EKF estimator was signif-
icantly reduced for following vehicles in an autonomous
vehicle platoon. Moreover, the estimation accuracy for each
wheel was also marginally enhanced. These findings attest
to the efficacy of the proposed approach and underscore its
potential to bolster the safety of autonomous vehicle platoons
when confronted with varying road conditions. In future
work, a more optimized joint estimation structure will be
designed to include more estimation of road environmental
information, such as road slope estimation. At the same
time, the problem of information loss in the process of V2V
communication and the problem of information exchange
between different communication topologies are considered
to improve the fault tolerance of receiving points when receiv-
ing information, and further improve the driving safety of
autonomous vehicles in the condition of changing lanes.
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APPENDIX
See Table 3.

TABLE 3. Symbol table.
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