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ABSTRACT In dynamic environments, the traditional relative positioning methods based on the Kalman
filter model suffer from low accuracy and stability due to the influence of noise and outliers. This paper
proposes a variational Bayesian filtering algorithm based on the combination of four-frequency observations
fromBDS (BeiDouNavigation Satellite System) andmodels the observation noise using the T-distribution to
enhance the stability of filtering. Firstly, a geometrically correlated ambiguity resolutionmodel is constructed
based on the characteristics of the combined observations, effectively improving the precision of float
ambiguity resolution and fixing rate. Moreover, considering the characteristics of outliers that are likely
to occur in dynamic conditions, a T-distribution-based variational Bayesian filtering approach is employed
to estimate the time-varying observation noise and system states. Experimental results demonstrate that the
proposed method exhibits robustness and stability in dynamic short baseline scenarios, leading to further
improvements in positioning accuracy, float ambiguity resolution precision, and fixing rate.

INDEX TERMS BeiDou navigation satellite system, ambiguity, variational Bayesian, T-distribution, short
baseline.

I. INTRODUCTION
The primary approach to obtaining accurate positions of
dynamic users is through dynamic relative positioning using
carrier phase observations. The key challenge in achiev-
ing high-precision relative positioning results lies in rapidly
resolving the correct integer ambiguities.

Currently, the BeiDou Navigation Satellite System
(BDS-3) has been fully established, capable of broadcast-
ing navigation signals on five frequencies, providing more
accurate navigation and positioning services [1]. The most
significant advantage ofmulti-frequency signals is to improve
the success rate of integer ambiguity resolution. The linear
combination of multiple frequencies can obtain high quality
combined observations, which have the characteristics of
long wavelength, small noise factor and ionospheric factor,
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and can basically realize the integer ambiguity fixed in a sin-
gle epoch. Zhang used the real BDS-3 four-frequency data of
short baseline and medium and long baseline for linear com-
bination, and used two different methods of geometry-free
model and geometric correlation to verify that compared
with the traditional three-frequency, the number of combined
observations is more and the quality is better, and the integer
ambiguity can be fixed instants [2]. Currently, TCARmethod
based on BDS-2 for B1I, B2I and B3I signals is still the
most common method for integer ambiguity resolution using
BDS multi-frequency, where the wide-lane and narrow-lane
ambiguities of BDS are successively fixed. However, as the
baseline length increases, the influence of ionospheric and
atmospheric delay errors increases, leading to lower fixing
rates for narrow-lane ambiguities, Zhang used the B1I, B2I
and B3I three-frequency signals of BDS-2, and used the
TCAR method based on non-geometric model to solve the
ambiguity in the order of ultra-wide lane ambiguity, wide lane
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ambiguity and narrow lane ambiguity. The effect of TCAR
is verified by the data of CUTA and CUT2 stations with a
baseline length of 8m in Cottdington, Australia, and JFEG
and WHDH stations with a baseline length of 8.3km in
Wuhan, respectively. The ultra-short baseline with a baseline
length of 8m has a narrow-lane ambiguity fixed rate of 100%.
For the short baseline length of 8.3km, the fixed rate of
narrow lane ambiguity is only 53.5% [3]. Gao et al. [4]
from the Information Engineering University proposed an
improved TCAR algorithm that considers the effects of
ionospheric delay and observation noise, achieving correct
ambiguity fixing in medium-to-long baselines with good
adaptive robustness, with a narrow-lane ambiguity fixing
rate of around 80%. Subsequently, Li et al. [5] conducted
in-depth research on Multi-frequency Carrier Ambiguity
Resolution (MCAR) using the five-frequency signals broad-
casted by BDS-3. It was found that linear combinations of
observations from four frequency points can construct com-
bined observations with weak ionospheric delay and minimal
observation noise, effectively improving the ambiguity fixing
rate. Researchers at home and abroad have conducted stud-
ies on relative positioning using four-frequency combined
observations. Liu et al. [6] made full use of the four BDS
frequencies, linearly combined them, selected the optimal
combined observations, and used the non-geometric phase
pseudo-range and geometric correlation model to resolve the
ambiguities in a single epoch. In short-baseline scenarios,
this method can achieve single-epoch fixing of wide-lane
and narrow-lane ambiguities, with a narrow-lane ambigu-
ity fixing rate exceeding 99% and positioning accuracy
reaching centimeter-level. Cao et al. [7] used weak iono-
spheric combinations composed of BDS-3 four frequencies
in medium-to-long baselines. By considering the influence of
tropospheric delay errors and establishing a medium-to-long
baseline solution model, the ambiguity fixing rate increased
bymore than 10% compared to the traditional dual-frequency
non-ionospheric combination, and the three-dimensional
coordinate positioning accuracy improved by about 8%.
In summary, four-frequency combined observations can
improve the ambiguity fixing rate and solution efficiency for
baselines of various lengths.

Currently, in the dynamic environment, the primary solu-
tion is to shorten the initialization time of ambiguity and
improve the reliability of ambiguity resolution. The gen-
eral method is to reduce the search space of ambiguity by
adding redundant observations or improving the accuracy
of redundant observations, so as to speed up the ambiguity
fixation and improve the reliability of ambiguity resolution,
Lv et al. [8] used the four-frequency signal of BDS-3 to con-
struct the positioning equation by combining the ionospheric
elimination combination and the combined observation val-
ues of three ultra-wide lanes with fixed ambiguity. In the
positioning solution of the 500km long baseline, the ambi-
guity fixation rate of the narrow lane increased by about
1%, and the positioning accuracy of the horizontal direc-
tion and vertical direction increased by 35% and 40%.

Geng et al. [9] used 31 days of three-frequency multi-GNSS
data from 76 stations in Asia and Oceania, replaced the
pseudo-range observation values of ultra-wide lane and wide
lane with fixed ambiguity, improved the convergence of nar-
row lane ambiguity, and shortened the average initialization
time of narrow lane by 3 minutes. Liu et al. [10] respec-
tively used two four-frequency high-quality ultra-wide lane
combined observations of BDS-3 and Galileo with fixed
ambiguity to constrain the solution of wide lane ambigu-
ity, and increased the precision of floating point solution
of wide lane ambiguity. At present, the relative position-
ing under dynamic conditions mostly uses the combination
of three frequency signals, and four frequency signals can
form more high-quality combined observations than three
frequency signals. However, there are few researches on
dynamic relative positioning using the combination of four
frequency signals. In order to adapt to the more complex
dynamic environment, the redundant observations with high
precision are added, so as to improve the efficiency, accuracy
and reliability of ambiguity resolution, this paper adopts a
four-frequency signal geometric-based (GB) solution model
of ‘‘wide-lane + narrow-lane + narrow-lane’’. The con-
ventional geometric correlation model aims to resolve each
type of ambiguity through least squares, as demonstrated
in [8]. In contrast, the solution model proposed in this
paper addresses the ultra-wide lane ambiguity first using
a combination of Kalman filter and LAMBDA algorithm,
followed by wide lane ambiguity and narrow lane ambiguity.
Specifically, at each epoch, the ultra-wide lane ambiguity is
initially estimated via filtering. Subsequently, it is directly
incorporated into the observation equation for wide lane to
resolve the wide lane ambiguity. Finally, the obtained wide
lane ambiguity are transferred to the observation equation for
narrow lane to solve the narrow lane ambiguity. In practical
environments, moving carrier positioning will be affected by
various noise, signal occlusion and multipath effect, electro-
magnetic interference, dynamic stress and vibration, satellite
signal problems and other factors, leading to the occur-
rence of outliers in observation noise, and the distribution
of observation noise no longer exhibits Gaussian characteris-
tics but exhibits heavy-tailed characteristics. The traditional
relative positioning model is solved by Kalman filter model
based on Gaussian distribution, such as open source software
Rtklib, whose noise model is set to Gaussian white noise,
and can not deal with the problem of time-varying noise
variance of the model. However, directly applying Kalman
filtering in the presence of outliers in observation noise will
result in reduced filtering performance and decreased accu-
racy. Since the T-distribution has heavy-tailed characteristics
compared to the Gaussian distribution, approximating the
observation noise with a T-distribution can improve filtering
performance [11]. To adapt to the interference of dynamic
environments, the traditional Gaussian white noise model
in this paper is replaced with the T distribution, and the
Kalman filter algorithm is modified to incorporate the Varia-
tional Bayesian algorithm. This adaptation enables real-time
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estimation of statistical characteristics of measured noise
and adaptive approximation of the true posterior distribution.
Finally, the ambiguity fixing rate and baseline solution accu-
racy of the dynamic positioning method are analyzed through
experiments.

II. LINEAR COMBINATION OF BDS MULTI-FREQUENCY
SIGNALS
Using the pseudorange and phase signals from the B1I,
B1C, B3I, and B2a frequencies of BDS-3, linear combina-
tions can be formed to create combined observations with
different wavelengths, ionospheric delay amplification fac-
tors, observation noise amplification factors, and overall
noise levels. Typically, combination coefficients with longer
wavelengths, weaker ionospheric delay effects, and smaller
observation noise are selected to obtain high-quality com-
bined observations. However, there are few combinations that
simultaneously satisfy these conditions among the available
coefficient options. Therefore, the concept of overall noise
level is introduced to determine the optimal combination
coefficients. This approach considers not only ionospheric
delay errors and observation noise but also orbital errors and
tropospheric delay errors. The expressions for the overall
noise levels of pseudorange and phase are as follows:

δϕ =
1

λ(k,l,m,n)

√
δ2orb + δ2trop + µ2

(k,l,m,n)
δ2I + η2

(k,l,m,n)
ε2ϕ (1)

δp =

√
δ2orb + δ2trop + µ2

(a,b,c,d)
δ2I + η2

(a,b,c,d)
ε2p (2)

In the expressions, the overall noise level of phase and pseu-
dorange observations is δϕ , δp given in units of cycles and
meters, respectively. The orbital error is δorb, tropospheric
delay error is δtrop, first-order ionospheric delay error is δI ,
observation noise of carrier phase and pseudorange are εϕ ,
εp, combined wavelength is λ(k,l,m,n), combination coeffi-
cients for phase and pseudorange are k, l,m, n, a, b, c, d ,
ionospheric delay amplification factor isµ(k,l,m,n), and obser-
vation noise amplification factor is η(k,l,m,n). The expressions
ofµ(k,l,m,n), λ(k,l,m,n)are as follows [6]:

µ(k,l,m,n) =
f 21

kf1 + lf2 + mf3 + nf4
(
k
f1

+
l
f2

+
m
f3

+
n
f4
) (3)

f(k,l,m,n) = k · f1 + l · f2 + m · f3 + n · f4 (4)

λ(k,l,m,n) = c/f(k,l,m,n) (5)

In the expressions, f1 ∼ f4 represents the four frequencies,
f(k,l,m,n) represents the combined frequency, c represents the
speed of light in vacuum. The expression for the ionospheric
delay amplification factor of pseudorange is similar, except
for the different combination coefficients. Let δ2εϕ

and δ2εp
represent the observation noise precision for phase and pseu-
dorange, respectively. According to literature [7], the noise
of carrier phase observations at each frequency is the same,
and the noise of pseudo-distance observations is the same,
δεϕ1 = δεϕ2 = δεϕ3 = δεϕ4 = δεϕ, δεP1 = δεP2 = δεP3 =

δεP4 = δεP, the expressions of δ2εϕ
, δ2εp are as follows [6]:

δ2εϕ
= η2(k,l,m,n) · ε2ϕ (6)

δ2εp = η2(a,b,c,d) · ε2p (7)

the expression of η(k,l,m,n) is as follows [6]:

η(k,l,m,n) =

√
(kf1)2 + (lf2)2 + (mf3)2 + (nf4)2

f 2(k,l,m,n)

(8)

When δϕ , δp is minimized, the coefficients in equation (6)
and (7) are satisfied (kf1)2 + (lf2)2 + (mf3)2 + (nf4)2 =

min k + l +m+ n = 0, a+ b+ c+ d = 1, the combination
coefficients are optimal [12]. For medium-length baselines
(length ≤ 100 km), according to references [6], the values of
the error terms in the overall noise level are: 0.005 m, 0.01 m,
0.1 m, and 0.005 m. According to references [13], [14], the
optimal combination coefficients for different wavelengths
are categorized as wide-lane, medium-lane, and narrow-lane
combinations, as shown in Table 1.

TABLE 1. BDS-3 four frequency optimal combination coefficient.

The table presented in Table 1 provides the combination
coefficients (k, l, m, and n) for the carrier phase of four
frequencies. Although some coefficients are zero, all of their
combinations cover all four frequencies. It is important to
note that a single satellite transmission must include all
four frequencies simultaneously. Hence, this table is referred
to as the optimal four-frequency combination coefficient.
Furthermore, λ represents the wavelength of the combined
observation value which can be categorized into three cate-
gories according to wavelength:When λ ≥ 2.93m, ultra-wide
lane combination correspondence to (0, 0, 1,−1) in the table.
When 0.75m ≤ λ < 2.93m, wide lane combination cor-
respondence (0, 1,-2,1), (1,0,-2,1), (0,1,−1,0) in the table
respectively. When 0.1m ≤ λ < 0.75m, narrow lane
combination correspondence (2,0,2,−3) in the table. The
table provide valuable information about ionospheric fac-
tors affecting combined observations; smaller values indicate
lower ionospheric delay errors. Additionally, the table also
account for noise factors influencing observed data quality.
Smaller noise factors result in reduced observed noise levels.
Lastly, total noise level considers both wavelength and iono-
spheric factor alongside noise factor. Lower total noise levels
signify higher quality observed values with easier ambiguity
resolution.

III. ULTRA WIDE-LANE/WIDE-LANE/NARROW-LANE
AMBIGUITY RESOLUTION BASED ON THE GB MODEL
A. ULTRA WIDE-LANE AMBIGUITY FIXING
The Ultra wide-lane ambiguity resolution method based on
the GB model involves combining a set of Ultra wide-lane
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combination observations with the optimal combination of
pseudorange observations. The three-dimensional coordi-
nates and wide-lane ambiguities are the parameters to be
estimated. The solution is obtained using Kalman filtering
and the LAMBDA algorithm. The mathematical model for
the solution is expressed as follows:[

E λ(k1,l1,m1,n1)
E 0

] [
X r

N (k1,l1,m1,n1)

]
=

[
∇1φ(k1,l1,m1,n1) − ∇1ρ + ∇1I − ∇1T
∇1P(a,b,c,d) − ∇1ρ − ∇1I − ∇1T

]
(9)

Here,
[
E λ(k1,l1,m1,n1)
E 0

]
represents the linearized observation

matrix in Kalman filterE =
[
e1 − e2 e1 − e3 · · · e1 − em

]T
represents the direction cosine, where e1 represents
the reference star unit line of sight vector, e2 · · · em

represents the non-reference star unit line of sight

vector;
[

X r
N (k1,l1,m1,n1)

]
represents state vector;[

∇1φ(k1,l1,m1,n1)−∇1ρ+∇1I − ∇1T
∇1P(a,b,c,d)−∇1ρ−∇1I−∇1T

]
represents mea-

sure vector; X r represents the three-dimensional coordi-
nates of the moving station; N (k1,l1,m1,n1) represents the
Ultra wide-lane ambiguities; ∇1ρ represents the geometric
double-difference between the satellite and the receiver;
∇1I represents the ionospheric delay double-difference
corrected using the Klobuchar model and ∇1T represents
the tropospheric delay double-difference corrected using
the Saastamoinen model. φ(k1,l1,m1,n1) and P(a,b,c,d) repre-
sent the ombination observations of phase and pseudorange,
respectively, and the expressions are as follows [6]:

φ(k1,l1,m1,n1) =
k1f1 · φ1 + l1f2 · φ2 + m1f3 · φ3 + n1f4 · φ4

k1f1 + l1f2 + m1f3 + n1f4
(10)

P(a,b,c,d) =
af1 · P1 + bf2 · P2 + cf3 · P3 + df4 · P4

af1 + bf2 + cf3 + df4
(11)

Here, φ1, φ2, φ3, φ4 and P1, P2, P3, P4 represent the phase
and pseudorange observations at the four frequency points,
respectively. The wide-lane combination coefficients used in
this study are (0,0,1,−1). Under the condition of pseudorange
observation noise of 0.5 m, the standard selection of the
optimal pseudorange combination coefficients is (1, 1, 1, 1).

At each epoch, the floating-point solution for the coordi-
nate parameters and ambiguities is obtained using Kalman
filtering. Then, the floating point solution and its corre-
sponding variance-covariance matrix are substituted into
the LAMBDA algorithm, and the integer solution of the
ultra-wide lane is searched and fixed by the LAMBDA
algorithm.

B. WIDE-LANE AMBIGUITY FIXING
The Ultra wide-lane ambiguities solved in the previous step
are substituted back into the wide-lane observation equations

to obtain the Ultra wide-lane observations φ̂(0,0,1,−1) with
fixed ambiguities. The modified Ultra wide-lane observation
equations, along with the wide-lane observation equations,
are then combined. The three-dimensional coordinates and
wide-lane ambiguities are the parameters to be estimated.
The solution is obtained using Kalman filtering, followed by
fixing the ambiguities using the LAMBDA algorithm. The
mathematical model for the solution is expressed as follows:[

E λ(k2,l2,m2,n2)
E 0

] [
X r

N (k2,l2,m2,n2)

]
=

[
∇1φ(k2,l2,m2,n2) − ∇1ρ + ∇1I − ∇1T
∇1φ̂(0,0,1,−1) − ∇1ρ + ∇1I − ∇1T

]
(12)

Here, λ(k2,l2,m2,n2) represent the three wavelengths of com-
bined wide-lane observations, respectively. N (k2,l2,m2,n2)
represent three kinds of floating-point solutions of wide-
lane ambiguity, respectively. ∇1φ(k2,l2,m2,n2) represent three
kinds of wide-lane double-difference combination observa-
tion values, respectively. The observation value φ̂(0,0,1,−1) of
ultra-wide lane with fixed ambiguity is simultaneously com-
bined with the observation equation of wide lane combination
(0,1, −3,2), (1,0, −2,1) and (0,1, −1,0) respectively, and the
Kalman filter algorithm is used to obtain (0,1, −3,2), (1,0,
−2,1) and (0,1,−1,0) three combinations of wide lane ambi-
guity floating-point solutions, and then the fixed solution of
wide lane ambiguity is obtained by LAMBDA algorithm.
Three combined wide-lane ambiguities(0,1, −3,2), (1,0,
−2,1), (0,1, −1,0)can be found by adopting the mode. the
modified wide-lane combination observation ∇1φ̂(0,1,−3,2),
∇1φ̂(1,0,−2,1) and ∇1φ̂(0,1,−1,0) can be derived.

C. NARROW-LANE AMBIGUITY FIXING
The narrow-lane ambiguity fixing method involves com-
bining the modified wide-lane combination observation
equations with the narrow-lane combination observation
equations. The three-dimensional coordinates and narrow-
lane ambiguities are the parameters to be estimated. The
solution is obtained usingKalman filtering and the LAMBDA
algorithm. The mathematical model for the solution is
expressed as follows:

E λ(k3,l3,m3,n3)
E 0
E 0
E 0

 [
Xr

N(k3,l3,m3,n3)

]

=


∇1φ(k3,l3,m3,n3) − ∇1ρ + ∇1I − ∇1T
∇1φ̂(0,1,−3,2) − ∇1ρ + ∇1I − ∇1T
∇1φ̂(1,0,−2,1) − ∇1ρ + ∇1I − ∇1T
∇1φ̂(0,1,−1,0) − ∇1ρ + ∇1I − ∇1T

 (13)

Here, λ(k3,l3,m3,n3) represents the wavelength of the combined
observations of the narrow lane, respectively. N (k3,l3,m3,n3)
represents the floating-point solution of the narrow lane ambi-
guity. ∇1φ(k3,l3,m3,n3) represent represents the combined
observation of double difference in the narrow lane. The
wide lane observation values ∇1φ̂(0,1,−3,2), ∇1φ̂(1,0,−2,1)
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TABLE 2. Solution strategy.

and ∇1φ̂(0,1,−1,0) with fixed ambiguity are combined with
the narrow lane observation equation, The Kalman filter
algorithm is used to obtain the floating point solution of the
narrow lane ambiguity, and then the fixed solution of the nar-
row lane ambiguity is obtained by the LAMBDA algorithm.

To verify the superiority of this model over the non-
combination multi-frequency ambiguity fixing model in
terms of ambiguity fixing rate and positioning accuracy,
experiments were conducted using a set of medium-length
baselines data within Henan Province. The baseline length
was 62 km, the sampling interval was 1 second, and the
data collection duration was 1 hour. The filtering method
used was forward filtering, with a ratio set to 3 and a cutoff
elevation angle set to 15◦. Ratio represents the ratio of the
optimal integer solution and the suboptimal integer solution
of the LAMBDA search and represents the threshold of the
ambiguity fixed solution. The empirical value is set to 3,
and a ratio greater than or equal to 3 indicates that the
optimal integer solution is a fixed solution. Due to the resid-
ual ionospheric delay error in the long baseline, which was
not completely eliminated after double-difference correction,
a weak ionosphere combination (2, 0, 2, −3) was used for
the narrow-lane combination because table 1 shows that this
combined observation has the smallest ionospheric factor
and is affected by the least ionospheric delay. This model is
based on modifications to the Rtklib software, and its data
preprocessing and random model are the same as those of the
Rtklib software. The results obtained using the two different
methods were compared with the ground truth, as shown in
Figures 1-3. The variation of the ratio which shows the degree
of accuracy and reliability of the ambiguity fixed solution is
shown in Figure 4. The number of effective common-view
satellites obtained using the combination observation method
is shown in Figure 5. The specific solution strategies are
summarized in Table 2.
Based on Figure 1 to Figure 4, it can be observed that

the positioning accuracy and ambiguity fixing rate are higher
when using the GB four-frequency combination solving
model. By comparing Figure 4 and Figure 5, it can be seen
that at epoch 1335, the addition of new satellites in the

FIGURE 1. Based on GB four-frequency combined observations /Rtklib
four-frequency uncombined algorithm and the difference between the
true value in the E direction.

FIGURE 2. Based on GB four-frequency combined observations /Rtklib
four-frequency uncombined algorithm and the difference between the
true value in the N direction.

FIGURE 3. Based on GB four-frequency combined observations /Rtklib
four-frequency uncombined algorithm and the difference between the
true value in the U direction.

FIGURE 4. Ratio change based on GB four-frequency combination
observation algorithm.

calculation significantly reduces the Ratio, this is because
when a new satellite joins, the receiver needs to re-search and
determine the integer ambiguity of the new satellite because
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FIGURE 5. The number of effective co-visible satellite based on GB
four-frequency combined observation algorithm.

TABLE 3. The results of the two algorithms are compared.

the position and signal characteristics of the new satellite
are different from those of the original satellite. Specific
statistical data can be found in Table 3.

In Table 3, the position error represents the results obtained
by comparing the float solution and the fixed solution with
the true values. The ambiguity fixing rate is obtained by
comparing the number of epochs with fixed ambiguities
to the total number of epochs involved in the calculation.
According to Table 3, the GB four-frequency combination
model, which utilizes three sets of wide-lane combination
observations with higher accuracy compared to pseudorange
observations, as redundant measurements to constrain the
narrow-lane ambiguity resolution, achieves higher ambiguity
fixing rate, less initialization time, and positioning accuracy
than the non-combination solving model. After comparison,
the positioning accuracy (Root mean square error) in the
East (E), North (N), and Up (U) directions improves by
80.5%, 86.9%, and 77.7% respectively. The ambiguity fix-
ing rate increases by 1.1%, and the initialization time of
ambiguity is reduced by 55.9%. Generally, a higher Ratio
indicates greater reliability of the ambiguity resolution, when
the Ratio value is large, it means that the optimal solution has
amore obvious advantage over the suboptimal solution, so the
integer ambiguity resolution result is more reliable. On the
contrary, if the Ratio value is small, it indicates that there is
little difference between the optimal solution and the subop-
timal solution, and there may be large error or uncertainty in

the solution result of integer ambiguity. The change in Ratio
shown in Figure 4 indicates that about 99%of the Ratio values
of the two methods are greater than 3, indicating that the
ambiguity fixation rate is high. Through the trend of the Ratio
value, two new stars are added at epoch 1355, which leads to
the ambiguity need to be fixed again and the Ratio value is
reduced. At the same time, it can be seen that the Ratio value
of the GB four-frequency combination model is larger than
that of the non-combination solution model, which means the
GB four-frequency combination model has higher reliability
in ambiguity resolution compared to the non-combination
solving model, so the positioning accuracy is higher.

IV. NARROW-LANE AMBIGUITY RESOLUTION UNDER
DYNAMIC CONDITIONS
Based on the experimental analysis in Section II, it is known
that using the GB four-frequency combination model allows
for fast and reliable resolution of narrow-lane ambiguities.
This model can be applied to dynamic ambiguity resolution.

In static conditions, most ambiguity resolution methods
are based on the Kalman filtering algorithm, where the
noise parameters are set empirically and kept fixed for
superior performance [15], [16], [17]. However, in real-
world environments, the noise may not necessarily follow
the characteristics of Gaussian white noise. Modeling the
noise based solely on Gaussian white noise assumptions has
its limitations. When the target is in motion, the observa-
tion noise varies over time, and outliers may occur during
the observation process. The actual noise distribution often
exhibits heavy-tailed characteristics compared to a Gaussian
distribution. The T-Distribution function, which has heavy-
tailed properties, reduces sensitivity to outliers during the
filtering process. By modeling the observation noise using
T-Distribution function and combining it with variational
Bayesian filtering methods, the statistical characteristics
of the measurement noise can be adaptively estimated in
real-time.

The T-Distribution function is expressed as follows:

p(vk ) = St(vk ; 0,Rk , v) =

∫
N (vk ; 0,

Rk
λk

)G(λk ;
v
2
,
v
2
)dλk

(14)

In the equation, St(vk ; 0,Rk , v) represents the probability
density function of T-Distribution with mean 0, scale matrix
Rk and degrees of freedom v. When v → ∞, the dis-
tribution is equivalent to a Gaussian distribution, making
T-Distribution a mixture of Gaussians [19]. G(λk ; v/2, v/2)
represents a gamma distribution with shape parameter
ν/2 and scale parameter v/2.λk is an auxiliary random
variable, and the measurement covariance matrix under the
T-Distribution is denoted as Rk/λk . To adaptively estimate
the time-varying measurement noise, it is necessary to select
a prior distribution for the time-varying parameters and then
update the posterior information using variational Bayesian
estimation. According to Equation (14), the auxiliary random
variable and the degree of freedom parameter are treated as
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a continuous parameter in the Bayesian estimation. so the
prior distributions for the auxiliary random variable and
the degrees of freedom parameter are gamma distributions,
a common practice in Bayesian estimation is to choose the
distribution of the variance as an inverse gamma distribu-
tion [19] while the inverse gamma distribution is selected as
the prior distribution for the scale matrix. Based on the choice
of prior distributions, the following formulas can be derived:

p(v) = Gamma(v; ak , bk ) (15)

p(λk ) = Gamma(λk ; αk , βk ) (16)

p(Rk ) =

m∏
i=1

InvGamma(δ2k,i|ck,i, dk,i) (17)

In the equation, δ2k,i represents the diagonal elements of the
measurement noise covariance matrix, and m represents the
dimension of the measurement vector. Using the Kalman fil-
tering algorithm, it can be derived that the state vector follows
a normal distribution N (Xk |X̂k,k−1,P−

k ), and the measure-
ment vector follows a T-Distribution St(Zk |Hk X̂k,k−1,Rk ,v).
The meanings of the symbols in the above expressions are

as follows: Xk−1 represents the state vector at time step k-1,
Pk−1 represents the state covariance matrix, the predicted
expressions for the state vector and covariance at time step
k is expressed as follows:

X̂k,k−1 = 8k,k−1Xk−1 (18)

P−

k = 8k,k−1Pk−18
T
k,k−1 + Qk−1 (19)

In the equation, Qk−1 represents the system noise variance
matrix. The state estimation of Kalman filtering algorithm are
expressed as follows.

Kk = P−

k H
T
k
(HkP−

k H
T
k

+ Rk )−1 (20)

X̂k = X̂k,k−1 + Kk (Zk −Hk X̂k,k−1) (21)

Pk = P−

k − KkHkP−

k (22)

In the equation, Kk represents filter gain matrix.
According to equation (15)(16)(17) and joint probability

density function of the measurement vector Zk is expressed
as follows:

p(2,Z1:k )

≈ N (Xk |X̂k,k−1,P−

k )Gamma(λk |
v
2
,
v
2
)

×N (Zk |HkXk ,
Rk
uk

)
m∏
i=1

InvGamma(δ2k,i|ck,i, dk,i)

(23)

In the equation, 2 represents the set of parameters to be
estimated, including v, λk , Xk and Rk . The principle of vari-
ational Bayesian is to update the distribution parameter ak ,
bk , αk , βk , ck,i, dk,i iteratively according to the prior distri-
bution and measurement information. So the joint posterior

probability density function of each parameter expressed as
follows:

p(2|Z1:k ) ≈∼ q(Xk )q(Rk )q(λk )q(v) (24)

The variational Bayesian method aims to approximate the
true joint posterior distribution by minimizing the Kullback-
Leibler (KL) divergence between two distributions. KL diver-
gence is a commonly used metric to evaluate the difference
between probability distributions. In Bayesian estimation,
it is usually calculated by variational method. Variational
method is the core of approximate parameter posterior cal-
culation in variational Bayesian method. Then, the posterior
approximation of the parameters is used as the prior infor-
mation of the next filtering time, and the iterative update is
performed to realize the purpose of adaptive estimation of the
statistical characteristics of the parameters. By minimizing
the KL divergence between the true posterior distribution and
the approximate posterior distribution, the parameter estima-
tion expressions can be obtained when the KL divergence
reaches its minimum value of 0. The parameter estimation
expressions are as follows [20], [21], (25)–(29), as shown at
the bottom of the next page:

In the equation, α represents parameter shape parameter of
gamma distributions, β represents parameter scale parameter
of gamma distributions, m represents the dimension of the
measurement, λ represents degrees of freedom, C is constant,
the integral value for constraint q(λk ) is 1.
Because measurement noise modeled as T-Distribution,

its covariance matrix R̂k is quotient of scale matrix Rk and
auxiliary variable λk . the expression as follows:∑

R̂
i+1
k =

E i+1[Rk ]
E i+1[λk ]

(30)

After multiple iterations of the filter, the floating-point
solutions for the coordinate parameters and ambiguities of
each epoch are estimated. Then, the LAMBDA algorithm
[22] is used to search and fix the narrow-lane ambigui-
ties. The fixed narrow-lane ambiguities are then substituted
back into the narrow-lane combination observation equation,
resulting in the fixed solution for the position coordinates.
The entire algorithm process is illustrated in Figure 6.

V. EXPERIMENTAL ANALYSIS
To validate the feasibility of the proposed algorithm, dynamic
data was collected on June 2, 2023, at the playground of the
University of Information Engineering. The data collection
involved attaching a SIRIUS receiver to an electric vehi-
cle, which circled the playground. Network RTK mode was
enabled, and the post-processed results were used as ground
truth. The sampling interval was set to 1 second, and the
data collection lasted approximately 40 minutes. According
to the information in the observation file, the device can
receive data continuously during dynamic acquisition, the
integrity of data can be guaranteed in each epoch, the carrier
phase and pseudorange of each frequency are complete, and
the number of satellites can meet the positioning solution.
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FIGURE 6. Flow chart of variational Bayesian EKF algorithm based on T
distribution.

The reference station was located on the roof of a teaching
building, and its position was obtained using network RTK.
The distance between the reference station and the moving
station was around 300 meters. Due to the short baseline

FIGURE 7. Dynamic experimental trajectory.

in the experiment, the narrow-lane combination was set to
(1,0,0,0) to reduce the impact of observation noise. The
wide-lane combinations used were (0,1,−3,2), (1,0,-2,1), and
(0,1,−1,0). The motion trajectory is shown in Figure 7, and
the programs were implemented based on Rtklib. The only
modification made was the change of the positioning mode to
dynamic, while the filtering models were either Kalman filter
or variational Bayesian filter. The other positioning strategies
followed the ones listed in Table 2.

To validate the superiority of the four-frequency com-
bined ambiguity resolution model over the four-frequency
non-combined and three-frequency combined ambiguity res-
olution models, the results obtained from the four-frequency
combined Kalman filter algorithm were compared with those
from the four-frequency non-combined and three-frequency
combined algorithms. Additionally, to verify the improved
performance of the variational Bayesian filter based
on the T-distribution over the traditional Kalman filter
under dynamic conditions, the results obtained from the
four-frequency combined variational Bayesian filter based
on the T-distribution were compared with those from the
four-frequency combined Kalman filter.

The comparison between the results obtained from the
four-frequency combined observations using the Kalman
filter and the results obtained from the four-frequency non-
combined observations using the Kalman filter is shown
in Figures 8-10. The comparison between the results

ln q(λk ) = −
v+ tr(Rk (HkPkHT

k + (Zk −Hk X̂k )T × (Zk −Hk X̂k )))
2

λk

+ (
m+ v
2

− 1) ln λk + C (25)

q(λk ) = Gamma(λk |α, β)

α =
m+ v
2

(26)

β =
tr(Rk (HkPkHT

k + (Zk −Hk X̂k )T × (Zk −Hk X̂k ))) + v
2

(27)

q(Xk ) =
1
C
N (Zk |HkXk ,

Rk
E(λk )

)N (Xk |X̂k,k−1,P−

k ) (28)

Kk = P−

k H
T
k
(HkP−

k H
T
k

+
Rk

E(λk )
)−1 (29)
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FIGURE 8. Deviation from the true value in the E direction of the Kalman
filter solution results of the four-frequency combined observations and
the non-combined observations.

FIGURE 9. Deviation from the true value in the N direction of the Kalman
filter solution results of the four-frequency combined observations and
the non-combined observations.

FIGURE 10. Deviation from the true value in the U direction of the
Kalman filter solution results of the four-frequency combined
observations and the non-combined observations.

obtained from the four-frequency combined observations
using the Kalman filter and the results obtained from the
three-frequency combined observations using the Kalman
filter is shown in Figures 11-13. The comparison between the
results obtained from the four-frequency combined observa-
tions using the Kalman filter and the results obtained from

FIGURE 11. Deviation from the true value in the E direction of the Kalman
filter solution results of the four-frequency combined observations and
the three-frequency combined observations.

FIGURE 12. Deviation from the true value in the N direction of the
Kalman filter solution results of the four-frequency combined
observations and the three-frequency combined observations.

FIGURE 13. Deviation from the true value in the U direction of the
Kalman filter solution results of the four-frequency combined
observations and the three-frequency combined observations.

the variational Bayesian filter based on the T-distribution is
shown in Figures 14-16. The number of effective satellite
co-observations for the four-frequency combined observa-
tions is shown in Figure 17, and the Ratio values of the
ambiguity resolution obtained using the variational Bayesian
filter based on the T-distribution are shown in Figure 18.
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FIGURE 14. Deviation from the true value in the E direction of the
solution results of the four-frequency combined observation Kalman filter
and the T-distribution Bayesian filter.

FIGURE 15. Deviation from the true value in the N direction of the
solution results of the four-frequency combined observation Kalman filter
and the T-distribution Bayesian filter.

FIGURE 16. Deviation from the true value in the U direction of the
solution results of the four-frequency combined observation Kalman filter
and the T-distribution Bayesian filter.

From Figures 8-10, it can be observed that when employ-
ing the Kalman filter, the algorithm utilizing four-frequency
combined observations achieves superior positioning accu-
racy and ambiguity fixing rate compared to the algorithm
using non-combined observations. The three-dimensional

FIGURE 17. The number of co-looking satellites satisfying the
four-frequency combined observations solution model.

FIGURE 18. Ratio change of ambiguity resolution based on T-distribution
Bayesian filtering.

coordinate accuracy (Root mean square error) is improved
by 66.2%, 46%, and 52.2% respectively, while the ambigu-
ity fixing rate is increased by 24.4%. From Figures 11-13,
it is evident that as the number of frequencies increases,
the algorithm based on four-frequency combined observa-
tions outperforms the algorithm based on three-frequency
combined observations in terms of positioning accuracy. The
three-dimensional coordinate accuracy (Root mean square
error) is improved by 48.9%, 41.9%, and 52.2% respectively,
while the ambiguity fixing rate is increased by 5.2%. From
Figures 14-16, it can be observed that the variational Bayesian
filter based on the T-distribution achieves higher accuracy
than the Kalman filter algorithm. Figures 17-18 demonstrate
that during the ambiguity resolution process using the varia-
tional Bayesian filter based on the T-distribution, the Ratio
values fluctuate with changes in the number of satellites.
Except for the initial stage of the resolution process where the
Ratio value is below the threshold of 3, and during significant
fluctuations in the number of satellites (3-4 satellites), the
Ratio value is also below 3. However, overall, the majority
of Ratio values exceed 3, reaching 96.9%, it means that only
the Ratio value greater than 3 indicates that the ambiguity
can be fixed solution, indicating that the ambiguity fixed
rate reaches 96.9%. The high ambiguity fixing rate indicates
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TABLE 4. Comparison of the solution results of different algorithms.

FIGURE 19. The post-test residual of carrier phase obtained by two
different solutions.

superior positioning accuracy compared to the Kalman fil-
ter algorithm. The statistical results of positioning accuracy
and ambiguity fixing rate in the East (E), North (N), and
Up (U) components using different methods are summarized
in Table 4.

To further illustrate the suitability of the variational
Bayesian filter based on the T-distribution for positioning
estimation in dynamic environments, the algorithm pro-
posed in this paper verifies the posterior residuals of carrier
phase measurements. Specifically, the final estimation in this
algorithm is the carrier phase of the B1I signal from BDS-3
satellites. To compare the performance of the filtering mod-
els, the original Rtklib software based on the Kalman filter
model was used to compute the four-frequency signals of
BDS-3. The posterior residuals of the carrier phase measure-
ments for the B1I signal were then used as the reference for
comparison. The comparison results are shown in Figure 19.

From Figure 19, it can be observed that the posterior resid-
uals of the B1I carrier phase estimated using the variational
Bayesian filter based on the T-distribution are smaller. The

error is 0.009m, which is 84.6% smaller than the values
computed by the Rtklib software. Smaller residuals indicate
that the proposed estimation model better matches the current
motion state.

VI. CONCLUSION
In real-world scenarios, whether it is vehicle positioning
during driving or drone positioning during flight, the satellite
signals observed by the positioning receivers on the mov-
ing platforms frequently experience signal loss and outliers,
which can significantly degrade the efficiency and reliability
of ambiguity resolution in the positioning estimation pro-
cess. Moreover, under dynamic conditions, the distribution
of observation noise deviates from the Gaussian distribu-
tion. If the traditional Kalman filter algorithm based on the
non-combined observation double-difference model is used
in such situations, the efficiency and accuracy of ambiguity
resolution will be greatly reduced.

To address this issue, this study proposes a four-frequency
signal integration model, combining narrow-lane, ultra-wide-
lane, and wide-lane observations, with both geometric and
non-geometric approaches. Compared to the traditional non-
geometric model, this approach improves the efficiency and
reliability of ambiguity resolution. Furthermore, the proposed
method suppresses the influence of outliers and enhances the
robustness of the filtering process by utilizing the variational
Bayesian filter based on the T-distribution. Experimental
results demonstrate that, under the same filtering model, the
proposed four-frequency combined observation ambiguity
resolution model significantly improves the ambiguity fixing
rate and positioning accuracy compared to the non-combined
ambiguity resolution model. Moreover, the adoption of
the variational Bayesian filter based on the T-distribution
increases the ambiguity fixing rate by 3.7% and improves
the positioning accuracy of the three components by 41.7%,
55.3%, and 40.6%, respectively, compared to the traditional
Kalman filter algorithm. These findings validate the applica-
bility of the proposed algorithm for high-precision dynamic
relative positioning.
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