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ABSTRACT Ambient backscatter communication (ABC) is considered as a promising paradigm for
meeting the 6G massive Internet of Things (IoT) requirements which is expected to revolutionize our
world. In this paper, a new multimode matching game and machine learning-based IoT ambient backscatter
communication scheme is proposed to maximize the ABC system rate and capacity over the LTE and Wi-Fi
multi-RAT heterogeneous network, thereby supporting the 6G green massive IoT communication. The
proposed algorithm is designed to support different rate and capacity requirements for different massive
Machine Type Communication (mMTC) use cases such as sensor networks, smart grid, agriculture and low
data rate Ultra Reliable Low Latency Communication (URLLC) use cases such as tactile interaction. The
proposed optimization algorithm runs into two phases, the first one is a matching game-based algorithm that
selects the optimum association between the IoT tags and the primary users (PU) downlink signals from
a specific base station which maximizes the IoT tags rate while minimizing the resulting interference to
the PU. Each IoT tag can ride the PU downlink signal using one of three different riding modes according
to the required IoT ABC system rate and capacity, whereas mode 1 allows multiple IoT tags to ride the
whole PU downlink signal resource blocks, in mode 2 each IoT tag can ride only one subcarrier from the PU
downlink signal resource blocks, while in mode 3 multiple IoT tags can ride the same subcarrier from the PU
downlink signal resource blocks. In addition, unmanned aerial vehicles (UAVs) flying HetNodes equipped
with LTE and Wi-Fi receivers are used as backscatter receivers to receive the IoT tags uplink backscattered
signals, so the second optimization phase is formulated to maximize the total sum rate of the ABC system by
dividing its service area into clusters using the enhanced unsupervised k-means algorithm, also the enhanced
k-means algorithm finds the optimum location of each cluster’s serving UAVflying HetNode that maximizes
the channels gain between the IoT tags and the serving UAV flying HetNode in order to maximize the total
system rate. The systemmodel was implementedwithin theMATLAB environment where simulations across
the various scenarios are conducted to assess the effectiveness of the proposed algorithm. Simulation results
and the performance analysis demonstrated that the proposed algorithm can support the required rate for the
most mMTC and low data rate URLLC IoT applications with average IoT tag rates in the range of 15 Kbps
to 115 Kbps, and outperforms the algorithm-free riding technique in the case of massive IoT applications.
The proposed mode 2 (first enhanced mode) achieves the best performance in terms of the average
IoT tags rate and the total system rate with the lowest interference to the primary system users, on the other
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hand, mode 3 (second enhanced mode) improves the system capacity with maximum IoT tags satisfaction ratio.
The capacity and satisfaction ratio of the proposed mode 3 outperforms mode 1 by 300% and 138% respectively
and outperforms mode 2 by 2,000% and 420% respectively. The proposed algorithm reduces the interference power
to the PUs on the average by 1 : (15.69 × 10−12) relative to the algorithm-free riding technique. From the result,
we can conclude that the proposed algorithm supports different IoT applications and achieves the required data rates
with minimal effect on the primary system keeping the PU’s data rate within the required range compared to the
algorithm-free riding technique with the cost of higher time complexity.

INDEX TERMS IoT, ambient backscatter communication, 6G, LTE, Wi-Fi, multi-RAT, HetNets, HetNods,
matching game, unsupervised machine learning, k-means, UAV.

I. INTRODUCTION
Internet of Things (IoT) is recognized as a dominant appli-
cation for 6G networks, facilitating communication among
devices. The proliferation of IoT devices has been substantial,
demanding significant spectrum resources and energy which
has become more challenging for the massive IoT network.
Also, the 6G green communication is pivotal for energy
efficiency, environmental sustainability, and cost reduction,
it extends battery life for IoT devices, conserves resources,
and upholds global responsibility for eco-friendly wireless
networks. Ambient backscatter communication (ABC) is
considered as a cutting-edge that receives the researcher’s
attention [1], [2], [3], [4], [5], [6], [7], [8], considered as
one type of the passive backscatter communication (BC)
which is an exceptionally promising solution for supplying
power to a massive of IoT devices, solving the problem of
longer communication range and supporting the green com-
munication, improving system data rate, energy efficiency
particularly those do not necessitate high data rates. Ambient
backscatter technology represents a significant step towards
sustainable wireless communication. By harvesting energy
from the surroundings and transmitting data using minimal
power, it aligns perfectly with the principles of green commu-
nication. This approach reduces the need for frequent battery
replacements, lowering the environmental impact associated
with battery disposal and production. Furthermore, it extends
the operational life of battery-powered devices, reducing
electronic waste and conserving resources. ABC benefits
both URLLC and mMTC by providing low-power, instan-
taneous data transfer while conserving energy. In mMTC,
it accommodates large numbers of IoT devices with its pas-
sive operation and minimal energy requirements, addressing
scalability and device connectivity efficiently [9]. For most
mMTC applications, the typical uplink data rate falls within
the range of 1-100 kb/s (kb/s), serving the needs of Massive
IoT implementations such as smart grids and agricultural
monitoring [10], [11], [12], [13], [14]. On the other hand,
low data rate URLLC applications such as tactile interaction
can leverage ABC’s capabilities to achieve their data rate
requirements. The specific data rate for low data rate URLLC
applications varies depending on the unique demands of
each use case but typically ranges around 100 kb/s over the
network [11].

Traditional ABC system consists of a Radio Frequency
(RF) source as an ambient source, primary users (PUs), and
secondary users (SUs), where the RF source is the existing
Cellular or Wi-Fi signals, ABC doesn’t require a dedicated
carrier emitter. where the PU are the conventional active radio
transmitters found in everyday wireless communication net-
works like cell phones. These devices continuously emit RF
signals for data transmission and reception. on the other hand,
SUs are battery-free devices, like tags or sensors which do
not actively transmit RF signals like PUs but transmit binary
bits (0 or 1) by altering the impedance state of their antennas,
switching between reflecting and non-reflecting states [1].

A. LITERATURE REVIEW
In this section, we discuss the studies that attempted to
improve IoT-ABC network performance by maximizing the
total system data rate, capacity, and the IoT tags average rate
in different networks. However, LTE base stations and Wi-Fi
access points RF signals are utilized in many researches as
ambient sources exploited to send the backscatter data [15],
[16], [17], [18], [19], [20], [21], the heterogeneity of the
network insufficiently exploited in the IoT based ABC which
expected to strongly support the system requirements due
to the extended continuous coverage. A backscatter system
consists of UAVs serving a number of ground users and
pairs of backscatter tags are considered in [22] where each
backscatter pair has a transmitter and dedicated receiver, the
backscatter transmitter sends its data by reflecting the UAV
signal to its transmitter, to maximize the average rate of the
backscatter pairs the authors proposed a joint optimization
problem of user scheduling, the UAV’s trajectory, and the
transmit power. Authors in [23] considered a number of IoT
tags and primary users in symbiotic radio communication
HetNet. The authors proposed two optimization problems to
maximize the sum rate of the IoT tags, in the first phase,
a many-to-one matching game is employed for selecting the
network (LTE or Wi-Fi) for information transmission. In this
scenario, smartphones function as relays, delivering decoded
IoT tag information to the Macro Base Station (MBS) or
Wireless Access Point (WAP), thereby maximizing the over-
all system rate. The second phase of the solution involves the
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utilization of the symbiotic radio technique. This facilitates
IoT tags in reflecting their information to smartphones by
backscattering the downlink signal between the MBS and
smartphones. Subsequently, this information is decoded at the
smartphones.

Authors in [24] considered routing and link scheduling
for two network tiers, one tier consists of passive IoT tags
and proposes a heuristic technique called the algorithm trans-
mission set generator (ALGO-TSG) that constructs sets of
transmissions for active RF links and backscattering links.
It aims to maximize the number of links and activates addi-
tional power links for backscattering. The transmission sets
generated by ALGO-TSG are used by a mixed-integer linear
program (MILP) to derive a final schedule to optimize the
active time of the backscattering links that maximizes the
network throughput.

Authors in [25] propose an ABC system using OFDM-
based structure, investigating phase shift keying (PSK) and
delay shift keying (DSK) modulation schemes to realize
higher data rates relative to the conventional ABC. The author
in [26] investigated a multi-channel RF-powered cognitive
backscatter network with one SU which can actively transmit
its data packets if the selected channel is idle, if the channel
is busy, it can harvest energy or backscatter data. Markov
decision process is proposed to describe the action determina-
tion process, problem-based Markov decision process MDP
is formulated to obtain the optimal channel-mode pair for the
SU that maximizes the achieved average throughput.

The authors in [27] investigated two access control
strategies in multi-RF backscatter networks for throughput
maximization, the offline distributed access control strategy
(DCA-S) is proposed when the channel information is avail-
able and the online combinatorial multi-armed bandit access
control strategy (CMAB-S) is proposed in the case when
the channel information is assumed to be unknown due the
dynamics of the primary and the backscatter systems. The
device association, the average throughput, and the number
of admissible devices are investigated, showing better perfor-
mance in typical scenarios.

In [28] the authors introduced an LTE backscatter system
(Lscatter) exploiting that the LTE signal is a continuous
RF source which makes it a perfect source for ABC, the
design is evaluated using a testbed of backscatter hardware
and USRPs in multiple real-world scenarios, 13.63 Mbps is
achievedwhich is 368 times higher than theWi-Fi backscatter
communication frameworks.

In many studies [2], [2], [29] the number of backscat-
ter devices is relatively small and the interference resulting
from the backscattered signals has minimal impact on the
system’s primary users (PUs). However, when the net-
work accommodates a substantial quantity of backscatter
devices, the interference levels can exert substantial effects
on the PUs, presenting new challenges and issues. Few
research papers have studied and attempted to address
the issue of interference caused by backscatter devices to
the PUs.

Authors in [30] proposed a cognitive backscatter system
with multi backscatter devices with only one backscatter
receiver and one PU, a non-convex optimization problem
is formulated to find the optimum transmitted power and
reflection coefficient (RC) that maximize the sum rate of the
backscatter devices considering the interference caused by
the backscatter devices to the PU and keeping the PU signal to
noise ratio greater than a threshold value. Furthermore, these
backscatter devices can interfere with each other.

In [31] the authors considered one PU and multiple
backscatter devices each with a backscatter receiver in cov-
erage of one RF source. An optimization problem to find
the optimum RC value with minimum base station transmit-
ted power that maximizes the backscatter devices sum rate
is formulated while considering the interference from the
backscatter system to the PU, the proper control of reflection
coefficient RC caused reduction in the outage by 40 points in
the case o 150 SUs.

B. CONTRIBUTION
This work proposes a novel matching game and machine
learning-based multimode optimizing algorithm that opti-
mizes the IoT-ABC system rate, capacity, and IoT tags
satisfaction ratio taking into consideration the interference
effect on the heterogenous 6G primary network which con-
sists of LTE andWi-Fi coverage. Implementing this approach
exploits the OFDM structure efficiently by considering the
transmission on subcarrier level, whereas the aforemen-
tioned works send the tags data over OFDM symbol level.
Additionally, the proposed algorithm strongly supports dif-
ferent rate requirements for most mMTC and low data rate
URLLC applicationswithminimum interference effect on the
PUs. However, by adding the new dimension of deploying
backscatter communication in HetNet, it will be more chal-
lenging to solve some problems such as finding the optimum
association between IoT backscatter tags and the deployedRF
sources, especially when considering the interference caused
by the IoT tags to the PUs. Moreover, we considered the
UAV as a flying HetNode carrying both Wi-Fi and LTE
backscatter receivers to serve the IoT tags in a sub-area called
cluster with a selected location to improve the overall system
rate. Therefore, we formulated an optimization problem to
find the optimum association between IoT tags and the RF
sources and proposed an approach to provide the optimum
UAV location that maximizes the IoT tag’s sum-rate.

The contribution of this paper can be summarized as
follows:
1) To the best of our knowledge, the proposed multimode

optimization algorithm is the first one optimizing the
performance of multiple ambient backscatter IoT tags as
a backscatter transmitter, and flying UAV contains LTE
andWi-Fi backscatter receivers over a 6G Heterogenous
Network consists of LTE macro and small cells and
Wi-Fi access point coverage.

2) The proposed algorithm introduces three different riding
modes, the first mode is the default where a number
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of IoT tags can share the riding of the PU downlink
RF OFDM signal resource blocks. The second mode
or the first enhanced mode where each IoT tag rides
one subcarrier from the PU downlink RF signal resource
blocks. The third mode is a combination of the first and
second ones (the second enhanced mode) where each
group of IoT tags share the riding of one subcarrier of
the PU downlink RF signal.

3) The proposed optimization problem is formulated to
maximize the IoT tag’s total system rate, system capac-
ity, and IoT tags satisfaction ratio whereas the rate
requirements for the PUs are satisfied. The problem is
solved sequentially in two phases as two independent
sub-problems.

4) In the first phase, an optimization problem is formed
to find the optimum association between IoT tags and
the PU downlink signals from a selected base station.
The formulated problem is solved using a matching
game algorithm considering a multi-RAT HetNet envi-
ronment while minimizing the interference caused by
the backscattered signals to the PUs.

5) An optimization problem is formulated in the second
phase to find the optimum tags clustering and the UAV
flying HetNode optimum location for each cluster which
maximizes the overall system data rate.

6) An enhanced unsupervised machine learning k-means
algorithm is used to cluster the IoT tags and find the
optimum UAV flying HetNode location for each cluster.

7) The proposedmodes can support different ABC IoT sys-
tem requirements, where one can support most massive
IoT applications (mMTC), another one can achieve the
required tags rate for low data rate URLLC applications,
and the last reduces the interference effect on the pri-
mary system users.

8) Simulation results showed the effectiveness of the pro-
posed algorithm, which yields a significant performance
enhancement compared to the algorithm-free riding
technique that can be used on the same framework.
Also, the results showed improvement in the IoT tags
rate, total system rate, capacity, and satisfaction ratio
with minimum interference on the primary system
users.

The remainder of this paper is organized as follows.
In section II, we proposed the system model and the data
rate calculations. In section III, we proposed the two for-
mulated optimization problems. In section IV we present the
detailed matching game algorithm. In section V the proposed
k-means++ algorithm is explained in detail. The perfor-
mance of the proposed framework is evaluated in VI. Finally,
we conclude the paper in section VII.

II. SYSTEM MODEL AND THE DATA RATE CALCULATIONS
A. SYSTEM MODEL
In this section, ambient backscatter communication system
over downlink data transmission in 6G heterogenous commu-
nication network is considered. The proposed system consists

FIGURE 1. System model.

of two subsystems as shown in Fig. 1 and can be demonstrated
as follows:
Primary System: A 6G multi-RAT heterogeneous network

comprised of a Small Base Station (SBS), and Wi-Fi access
point (WAP) under the coverage of a Macro Base Station
(MBS), these three base stations are referred as RF sources
in the rest of this paper and is assumed to serve N number
of PUs represented by the set NNN ={1, 2, . . . , n, . . . , N} with
cardinality N , getting into consideration that each PU had a
specific rate requirement must be satisfied. On the other hand,
the set of RF sources is denoted by BBB = {1, 2, 3}, where
b = 1 refers to the WAP, b = 2 refers to the SBS, and
b = 3 represents the MBS.
Secondary System: The secondary system consists of K

number of backscatter IoT tags as secondary users dis-
tributed in a service area and represented by set KKK =

{1, 2, . . . , k, . . . ,K } with cardinality K . The backscatter IoT
tags in the service area are clustered using k-means algorithm
to M number of clusters, each cluster is served by a UAV
flying HetNode equipped with LTE and Wi-Fi ambient
backscatter receivers. The number of M serving UAV flying
HetNodes are represented by set MMM = {1, 2, . . . ,m, . . . ,M}
with cardinalityM .
In the proposed system model, the IoT tags first

associate one base station to exploit the existence of
the primary RF sources, then select a PU’s downlink
signal to ride using one of the riding modes, and
send their data to the serving UAV flying HetNode.
Each IoT tag sends its data by reflecting a fraction
α of the PU’s downlink RF signal, where αj ∈ [0, 1] called the
backscatter reflection coefficient of the source signal power.

The proposed multimode algorithm has three riding modes
used to demonstrate how the IoT tags ride the base station
downlink RF signal to efficiently use the OFDM signal struc-
ture, support rate, and capacity requirement for most mMTC
and low data rate URLLC IoT applications, these three modes
can be outlined as follows:
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1. The first mode (default mode): In this mode, each IoT
tag rides the resource blocks of the OFDM downlink
signal dedicated for the selected primary user (PU). Addi-
tionally, multiple IoT tags can share the riding of the same
resource blocks, provided that the resulting interference
does not impact this PU’s data rate requirements.

2. The second mode (1st enhanced mode): in this mode,
the IoT tag can reserve and utilize only one subcarrier
from the allocated downlink OFDM resource blocks for
the selected primary user (PU) [32], where each OFDM
subcarrier is solely allocated for only one IoT tag. So, each
PU downlink OFDM resource blocks can be utilized by a
number of IoT tags equivalent to the number of subcarriers
and there is no interference between all IoT tags share that
PU downlink OFDM resource blocks.

3. The third mode (2nd enhanced mode): in mode 3 each
IoT tag can ride one subcarrier of the selected PU’s down-
link OFDM resource blocks. Also, multiple IoT tags can
share the riding of the same subcarrier as long as the
resulting average interference doesn’t affect this PU’s data
rate requirements.

B. IoT TAGS DATA RATE CALCULATIONS
As the service area is divided into M clusters (sub-areas),
so there are M number of flying UAV HetNodes, each UAV
flying HetNode m ∈ M provides a wireless coverage of
radius Rm at a fixed altitude Hm, and its location in the free
space can be represented as (xm, ym, zm), where xm, ym, zm are
the UAV’s x, y, and z 3-D location in the free space, zm = Hm.
Also, each IoT tag k ∈ K location can be represented as
(xk , yk , zk ). The path loss between UAV flying HetNodes and
the IoT tag can be represented by considering the Line of
Sight (LoS) and Non-Line of Sight (NLoS) probabilities as
follows [33] and [34].

PLk,m = pLOSk,m L
LOS
k,m + p

NLOS
k,m LNLOSk,m (1)

where pLOSk,m and pNLOSk,m are the probabilities of LoS and NLoS
between IoT tag k and its UAV receiver m respectively, such
that pLOSk,m + p

NLOS
k,m = 1, LLOSk,m and LNLOSk,m are the average LoS

and NLoS path loss respectively which can be calculated as
follows.

pLOSk,m =
1

1+ a exp(−σ
[
θk,m − a

]
)

(2)

where a, σ are constant in the urban and rural environment
called S-curve parameters, and θk,m is the elevation angle
which equals

θk,m =
180
π
× sin−1

(
Hm
Dk,m

)
(3)

LLOSk,m = µ1

(
4π fcDk,m

c

)δ

(4)

LNLOSk,m = µ2

(
4π fcDk,m

c

)δ

(5)

where Dk,m is the distance between the IoT tag k and its
serving UAV flying HetNode m.

Dk,m =
√
(xk − xm)2 + (yk − ym)2 + (zk − zm)2 (6)

µ1 and µ2 are the extreme path loss coefficients in LoS
and NLoS, δ is the path loss exponent, fc denotes the carrier
frequency and c is the speed of light. Finally, the gain of the
air-ground channel is calculated using (1) as hk,m = 1

PLk,m
[33], [35].

Since each IoT tag rides the downlink signal of a PU to
backscatter its data, the UAV flying HetNode receiver recov-
ers the IoT tag signal using Successive Interference Canceler
(SIC) by firstly decodes the signal for the PU, treating the
backscattered signals as interference signals. It then subtracts
the decoded PU signal from the received signal and proceeds
to decode the signal from its corresponding transmitter.

The signal-to-interference noise ratio (SINR) for the IoT
tag k receiver when rides the base station b downlink RF
signal is:

γ bk,m =
αkPbt gb,khk,m
Ik + σ 2 (7)

where αk is the backscatter reflection coefficient of the tag k ,
hk,m is the channel gain coefficient between IoT tag k and the
UAV flying HetNodem, Pbt denotes the downlink transmitted
power from base station b ∈ BBB where b = 1 refers to the
WAP, b = 2 refers to the SBS, and b = 3 represents the
MBS, and gb,k is the channel gain between base station b and
the IoT tag k . So, the term αkPbt gb,k represents the amount
of reflected signal power (IoT tag information signal power
PIoTk,b ) from the IoT tag and transmitted to the serving UAV
flying HetNode. Also, σ 2 denotes the additive noise power
over each channel, and Ik expresses the interference between
this IoT tag and the other tags ride the same PU signal in the
same cluster m, where Ik =

∑
j,j̸=k αjPbt gb,jhj,m.

Finally, based on SINR in (7) the IoT tag k achieved data
rate Rbk,m can be calculated using Shannon formula [23] as
follows.

Rbk,m = Wk,mlog2
(
1+ γ bk,m

)
(8)

whereWk,m is the channel bandwidth between the IoT tag and
its serving UAV flying HetNode.

C. PRIMARY USER DATA RATE CALCULATIONS
For LTE PUs, radio channels for each base station are
assumed to be allocated equally among the associated devices
and the transmitted power of each base station is allocated
equally among the available radio channels. thus, when PU n
where n∈N is associated with the base station b ∈ BBB, the PU
SINR can be calculated as follows:

γb,n =
Pbt gb,n
In + σ 2 (9)

where Pbt denotes the downlink transmit power from base
station b ∈ BBB, gb,n is the channel gain between the base

53916 VOLUME 12, 2024



A. A. Khalifa et al.: ABC System Empowered by Matching Game and ML

station b and the PU n, the term In represents the interference
from the IoT tags ride the PU n downlink signal, where
In =

∑
i αkgb,kP

b
t f k,n, gb,k is the channel gain between

the interfering IoT tag k and the associated base station b,
fk,n is the channel gain between the interfering IoT tag k
and the PUn, αk is the backscatter coefficient of IoT tag k
[36], [37].

Based on the previous SINR calculation in (9), the rate Rb,n
of each PU n∈N can be determined simply by Shannonmodel
as follows:

Rb,n = Wb,nlog2
(
1+ γb,n

)
(10)

where Wb,n is the bandwidth of the PU channel.

III. PROBLEM FORMULATION
In this paper, we focus on finding the optimum IoT tag
association with RF sources (LTE and Wi-Fi base stations),
grouping the IoT tags within the service area into clusters,
each cluster served by oneUAVflyingHetNode as an ambient
backscatter receiver, then finding the optimum UAV flying
HetNode location on each cluster in order to maximize the
total sum rate of the ambient backscatter system taking into
account the PU’s rate requirement, this optimization problem
is considered as an NP-complete problem and can be formu-
lated as follows:

max
9,xu,yu

∑
k∈K

∑
b∈B

∑
n∈N

∑
m∈M

9k,b,n,mRbk,m

Subject to, C1 : 9k,b,n,m = {0, 1}

C2 :
∑
b∈B

∑
j∈N

∑
m∈M

9k,b,n,m = 1 ∀k ∈ K

C3 : 0 ≤ αk ≤ 1∀k ∈ K

C4 : Rb,n ≥ Rthn ∀n ∈ N , b ∈ B

C5 : zm = Hm (11)

where constraint C1 indicates that the association matrix
9k,b,n,m is a binary variable, denotes that the IoT tag k
associated with the base station b, rides the downlink signal of
primary user n and forwards its data to the UAVflying HetNet
m, such that 0 denotes that IoT tag k is not associated, while
1 denotes that IoT tag is associated. Constraint C2 implies that
an IoT tag k can only and must be associated with one base
station at a time riding one PU signal and belonging to one
cluster. In addition, constraint C3 ensures that the IoT tag’s
backscatter reflection coefficient will be between 0 and 1.
Constraint C4 is used to limit the effect of the backscatter
system on the primary system by ensuring that the PU’s data
rate will be within acceptable levels above a given threshold
Rthn . To solve This NP optimization problem tractably, it will
be divided into two independent sub-problems and solved
through two phases as follows.

The first sub-problem (12), solved using a stable matching
game algorithm to maximize the IoT tag k received sig-
nal strength Prk,b,n when associated with the base station b,
in order to maximize the overall system rate by finding the

optimum association between IoT tags and the RF sources
(LTE or Wi-Fi) and selecting a PU’s RF downlink signal to
ride while keeping the resulting interference level caused by
these IoT tags to that PUwithin the acceptable limits to ensure
that the rate requirements are assured, the expected service is
delivered and the PU data rate is greater than a predefined
threshold Rthn for all n∈N at all times. This can be formulated
as follows.

OPT1: IoT tags association

max
9

∑
k∈K

∑
b∈B

∑
n∈N

9k,b,nPrk,b,n

Subject to, C1 : 9k,b,n = {0, 1}

C2 :
∑

b∈B

∑
j∈N

9k,b,n = 1∀k ∈ K

C3 :0 ≤ αk ≤ 1 ∀k ∈ K

C4 :Rb,n ≥ Rthn ∀n ∈ N , b ∈ B (12)

where each IoT tag sends an association request to the base
station that has the best received signal strength to provide
the most amount of received power to that IoT tag, this will
achieve higher tags data rates.
The second sub-problem (13) aims to cluster the service

area to M clusters and find the optimum location of the UAV
flying HetNode for each cluster that maximizes the IoT tags
signal-to-interference and noise ratio in order tomaximize the
overall backscatter system rate. The enhanced unsupervised
machine learning K-means algorithm is proposed to solve
this problem by dividing the IoT tags in the service area into
a number of clusters each cluster served by a UAV flying
HetNode, with serving location point ensuring maximum
channel gain between IoT tags and their serving UAV flying
HetNode backscatter receiver.
K-means++ algorithm aims to group the IoT tags into

M clusters and computes the centroid of each cluster while
effectively minimizing the distance from the IoT tags and
their cluster centroid and maximizing the separation between
clusters’ centroids. The centroid for each cluster is considered
to be the optimum UAV flying HetNode location for this
cluster. This strategic deployment reduces the distances Dk,m
between the IoT tags and their corresponding serving UAVs,
thus minimizing the UAV channel path losses LLOSk,m and
LNLOSk,m in (4) and (5) respectively. Additionally, interference
among IoT tags in different clusters is minimized due to
the maximal separation between cluster centroids and can be
neglected. Consequently, the SINR γ bk,m in (7) and the rate
in (8) are maximized for the IoT tags. Based on this, the
second optimization problem can be formulated as follows.

OPT2: UAV flying HetNodes locations.

max
xu,yu

∑
k∈K

∑
b∈B

∑
n∈N

∑
m∈M

9k,b,n,mRbk,m

Subject to, C1 : 9k,b,n,m = {0, 1}

C2 :
∑
b∈B

∑
j∈N

∑
m∈M

9k,b,n,m = 1 ∀k ∈ K

(13)
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IV. MULTIMODE MATCHING GAME-BASED
BACKSCATTER IoT TAGS ASSOCIATION
Thematching game is a mathematical algorithm used to solve
optimization problems with improved performance and low
complexity. In this paper, a two-sided many-to-one matching
game algorithm is used to solve the first formulated opti-
mization problem by finding the optimal backscatter IoT tags
association while ensuring delivering the required rate of PUs
under the effect of associated IoT tags interferences.

In the proposed technique the LTE and Wi-Fi base stations
and their primary users are one side of the game and the
backscatter IoT tags are the other side, where each IoT tag
sends an association request to the primary system to ride the
downlink PU signal depending on the IoT tags’ preference
list which determined using their utility functions considering
the interfering power to the PU and the received power from
the base stations which serving this PU, each PU accepts or
rejects this request according to its preference determined
using the utility function and its quota.

A. MATCHING GAME ALGORITHM DEFINITION
The association problem can be formulated as many-to-one
matching game with a tuple (NNN,KKK,>n, >k ). In which≻N =

{≻n}n∈N and ≻K= {≻k }k∈K denotes the preference relations
of the PUs and the IoT Tags respectively. The matching game
is defined by µTA:KKK→NNN, where µTA is the tags association
outcome of the matching game. Let Uk (n) and Un(k) denote
IoT tag k and PU n utility functions respectively in which
they are used to construct preference relations for choosing
the best match. The PU quota is calculated based on the riding
mode as the maximum number of IoT tags that can ride the
PU downlink signal with an acceptable effect on the PU’s data
rate Rn≥Rthn for mode 1 andmode 3. In mode 2 the PU’s quota
equals the number of allocated subcarriers, where each IoT
tag will be matched to at most only one PU subcarrier i.e.
each PU can accept a maximum number of IoT tags equal to
its resource blocks (RB) times the number of subcarriers per
resource block.

B. IoT TAGS UTILITY FUNCTION
In the context of the first formulated optimization problem,
the IoT tag’s utility function considers two important param-
eters, the interfering power to the PU and the tag received
power from the RF base station with which the PU is already
associated. This utility function can be expressed as follows:

Uk (n) = Prk,b + I
−1
k,n (14)

where Uk (n) represents the IoT tag k utility function when it
rides the PU n signal, I−1k,n is the normalized interfering power
caused by the IoT tag k to the PU n and Prk,b is the IoT tag k
normalized received power from the RF base station b which
the PU n associated with, it can be calculated as follows.

Prk,b =
Pbt

PLk,b
/Prmax (15)

where Pbt is the transmitted power from the RF base station
b (LTE or Wi-Fi), PLk,b is the free space path loss between
IoT tag k and the RF source b and Prmax is the maximum
received power of IoT tags. The interfering power to the PU n
associated with the base station bI−1k,n caused by the IoT tag
k when rides the signal of this PU can be calculated by the
following formulas.

Ik,n = αkgb,kP
b
t f k,n (16)

C. PRIMARY USER UTILITY FUNCTION
The primary user’s utility function must be efficiently
designed in such IoT tags association problem. Each PU
accepts the IoT tags riding request as the interference caused
by the IoT tags has a minimum effect on the PU’s data rate.

based on the PUs rate requirements, its utility can be
represented by:

Un (k) = Rb,n(k) (17)

where Rb,n( k) is the PU n achieved data rate if IoT tag k rides
its downlink RF signal from base station b.

D. MULTIMODE MATCHING GAME ALGORITHM FOR IoT
TAGS ASSOCIATION
The details of the proposed multimode matching game-based
IoT tags association algorithm are described in Algorithm 1.
After initialization, each IoT tag constructs its preference
list ≻k using (14) and sends a biding request bk→n = 1 to
PU n with the highest utility (lines 4-5). In order to find a
stable matching µTA(k) for the IoT tags, each PU inserts all
requesting tags into the set I reqn and construct its preference
relations for I reqn based on (17) (lines 7-8).

Based on the selected mode from the multimodes, PUs
accept biding IoT tags and update their matched list In under
the matching µTA(k) until reaching its maximum allowable
number of devices according to its quota, and rejects the rest
of the biding IoT tags such that I rejn = {I reqn \In}(lines 10-13).
Each IoT tag in the rejected list I rejn removes PU n from its
preference relation≻k (line 14). The process is repeated with
a maximum of N times until there are no biding IoT tags.
Considering the change in network conditions the

algorithm should be executed every T time period to avoid
frequent association switching that may cause Ping-Pong
effects. To obtain stable matching in the proposed matching
game algorithm, let us denote the subset of all possiblematch-
ings between NNN and KKK by µTA(k, n). A pair (k, n) ̸=µTA,
where n ∈NNN, k ∈KKK is said to be a blocking pair for thematch-
ing µTA if it is not blocked by an individual tag k and PU n,
and there exists another matching µTA

′
∈µTA(k, n) such that

IoT tag k and PU n can achieve a higher utility. Hence, given
fixed preference relations of IoT tags and PUs, Algorithm 1 is
known as the deferred acceptance algorithm in the two-sided
matching which converges to a stable matching [38], [39].

Themultimode-based association between IoT tags and the
N number of PUs served by the LTE and Wi-Fi RF sources is
assumed to be in one of three modes as follows:
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Algorithm 1Matching Game for IoT Tags Association
• Input: Initialize, N, K, B.
• Discovery and utility functions calculations:
1: Every IoT tag k construct ≻k using Uk (n)
• Finding a stable Matching:
2: While

∑
∀k,n

bk→n ̸= 0 do:
3: For each unassociated tag:

4: Find n = arg
max

n ∈ ≻k
Uk (n).

5: Send a request bk→n = 1 to PU n.
6: For all PU n:
7: Update Ireqn ← {k:bk→n = 1,k ∈ K}.
8: Construct ≻n based on Un(k).
9: repeat

10: Accept k = arg
max
k ∈≻n

Un(k).

11: Update In← In ∪ k
12: until ( Rb,n ≥ Rnth for mode1 and 3, In ≤ 12∗RB for

mode 2).
13: Update I rejn ←

{
I rejn /In

}
.

14: Remove PU n∈≻k , ∀k ∈ I
rej
n

15: end while
16: Outputs: A stable matching µ∗TA

• Mode 1 (default association mode): in this mode, the
IoT tags associate a base station and ride the resource
block allocated to a specific PU served by this base
station. In this case, the IoT tag association request is
accepted as long as the total resulting interference to that
PU is kept within a predefined threshold where the PU
data rate is greater than Rthn , each tag exclusively utilizes
the entire 180 kHz signal of the PU.
• Mode 2 (1st enhanced mode): in this mode, each IoT
tag can associate a base station and ride one subcarrier
of the resource block allocated to a specific PU served
by that base station so each PU can accept 12 IoT tags
per resource block and there are no interfering signals
between the associated IoT tags.
• Mode 3 (2nd enhanced mode): this mode is a combi-
nation of the previous two modes where a group of IoT
tags can associate a base station serving a PU and ride
one subcarrier of this PU signal, each tag can utilize the
one subcarrier 15 kHz bandwidth signal as long as the
resulting average interference caused by the tags is kept
within a predefined threshold where the PU data rate is
greater than the Rthn .

V. ENHANCED K-MEANS ALGORITHM-BASED
BACKSCATTER IoT TAGS CLUSTERING
To solve the second formulated optimization problem of
clustering the IoT tags within the service area into a number
of clusters and finding the optimum UAV flying HetNodes
locations that maximize the system rate, an unsupervised
machine learning (ML) k-means algorithm is proposed to
group the K number of tags into M number of clusters then

consider the centroid of each cluster as the optimum location
of the cluster UAV HetNode backscatter receiver.

The k-means algorithm for user clustering is studied in [40]
and can be defined as an iterative data-partitioning algorithm
and one of the most commonly used unsupervised machine
learning algorithms to partition users in the communication
area into separate clusters. One disadvantage of the k-means
algorithm is that it is very sensitive to the centroid initializa-
tions [41]. Also, if the initial centroid is a far point it might
not be associated with any other points. Equivalently, more
than one initial centroidmight be created into the same cluster
which leads to poor grouping. In this section, k-means++
algorithm is developed to solve this issue. It aims to provide a
clever initialization of the centroids that improves the quality
of the grouping process and the running time of the k-means
algorithm [42]. The details of the proposed algorithm are
described in algorithm 2, in line 2 an initial centroid c1 is
selected randomly and the euclidean distances from each
tag k to this centroid are calculated as follows d(xk , cj) =∥∥xk − cj∥∥ where xk is the tag location then selects the next
centroid (lines 3-4), the remaining centroids are selected with
probability pk as in line 5 based on the maximum squared
distance to make the centroid as far from the other centroids
as possible and the process is repeated until all K centroid
seeds are chosen.

After repeating line 5 M times as considered in line 6, the
initial centroids of the M clusters are chosen based on maxi-
mizing the distances between centroids which minimizes the
possibility of interference between clusters. The Euclidean
distance for each tag and the cluster centroid are calculated
and each tag is assigned to the closest centroid, so each tag
belongs to the group served by the closest M th UAV flying
HetNode for improving the grouping of completed forms
according to the channel conditions between the serving UAV
flying HetNode and the IoT tags groups. Repeat the group
formation for all tags until convergence (lines 7-9).

The result of this algorithm is the optimal IoT tags clusters
with minimum distance between IoT tags and their serving
UAV flying HetNode, which maximizes the channel gains
between them and positively affects the total system rate.
The clever initialization of the centroids using k-means++
maximizes the distances between the UAV flying HetNodes,
which minimizes the interference between the UAV flying
backscatter receivers and enhances the system rate.

VI. PERFORMANCE EVALUATION
In order to show the effectiveness of the proposed frame-
work the performance of the system is evaluated using the
MATLAB software by randomly deploying backscatter IoT
tags within a service area covered by 6G multi-RAT HetNet
consisting of SBS and WAP under the coverage of MBS and
comparing our proposed algorithmwith algorithm-free riding
technique where the association of the IoT tags with the PUs
and the ambient RF sources done in random manner, after
that the associated IoT tags clustered into M clusters using
k-means++ algorithm.
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Algorithm 2 proposed IoT Tags Clustering Scheme
1. Input:K , M , locations of IoT tags
2. Select an IoT tag uniformly at random from the dis-

tributed IoT tags in the service area. The chosen IoT
tag location is the first centroid and is denoted c1.

3. Compute the distances from each tag to c1. Denote the
distance between cj and the observation h as d (xh, cj).

4. Select the next centroid, c2 at random with probability
d2(xk ,c1)∑k
j=1 d

2(xj,c1)
5. To choose center j:

Compute the distances from each tag to each centroid,
and assign each tag to its closest centroid.
For k = 1, . . . , K and p = 1, . . . ,j − 1, select
centroid j at random from X with probability pk =

d2(xk ,cp)∑
{a:xaϵCp}

d2(xa,cp)
whereCp is the set of all tags closest

to the centroid cp and xh belongs to cp.
6. Repeat step 5 until M initial centroids seeds are cho-

sen.
7. Compute tag to cluster centroid Euclidean distances

from all tags to each centroid
8. Compute the average of the tags in each cluster to

obtain M new centroid locations.
9. Repeat steps 7 and 8 until cluster assignments do not

change.
10. Output:Optimal IoT tags clusters with minimum dis-

tance between IoT tags and their centroids.

A. SIMULATION SETUP
Consider a service area of size 300 m×100 m with a uniform
distributed K backscatter IoT tags deployment, the service
area served byM number of UAV flying HetNodes, and there
are N number of PUs under the coverage of the MBS.
The path loss model for the MBS users can be calculated

as

PLm = 128.1+ 37.6×log10 (Dm) (18)

whereDm is the distance in km between MBS and the system
users.

On the other hand, the path loss model for the SBS can be
approximated by the following equation.

PLs = 140.7+ 36.7log10 (Ds) (19)

where Ds is the distance in km between the SBS and the
system users [38], [43].

For the Wi-Fi coverage area, the indoor Wi-Fi path loss
model is considered and represented as follows

PLW = 20log10fw + ηwlog10Dw + Pf (nwalls)−28 (20)

Such that Dw is the distance in meters between system users
andWAP, fw is the Wi-Fi transmission frequency in MHZ, ηw
is the distance power loss coefficient and is assumed to be
30, nwalls is the number of walls which is assumed to be 3 and
Pf (nwalls) = 13 + nwalls is the penetration loss factor [38].

TABLE 1. Simulation parameters.

To model the channel gains between the PUs and the IoT
tags, the path loss can be calculated as follows.

PLk,n = 30.6+ 36.7log10
(
Dk,n

)
(21)

whereDk,n is the distance in meters between the PUn and the
IoT tag k [45].
Considering the air interface between the IoT tags and the

UAV flying HetNode, the S-curve parameters for the urban
and rural environments are set as a = 11.95,σ = 0.14,
also the coefficients of path loss are considered to be µ1 =

3 dB,µ2 = 23 dB for LOS and NLOS respectively [33].
The path loss exponent is assumed as δ = 2. Other simulation
parameters are stated in Table 1.

In simulation, the three riding modes are configured as
follows:
• In mode 1 multiple IoT tags can ride the signal of the
Primary User (PU) and utilize the whole resource blocks
allocated for that PU, in the simulation setup this mode
is configured with IoT tags’ ridden signal bandwidth
equals to 180 kHz. Besides, all IoT tags shared the
riding of the same PU downlink signal configured as
interfering entities.

• In the simulation setup, mode 2 is configured where
each IoT tag can ride only one subcarrier and utilize a
bandwidth of 15 kHz. Besides, 12 IoT tags can utilize the
whole resource block and configured as noninterfering
entities.

• In the simulation setup, mode 3 is configuredwheremul-
tiple IoT tags can ride the same subcarrier’s signal. So,
all IoT tags shared the riding of the same subcarrier are
configured as interfering entities. A round-robin method
is configured to be used for the pairing between the IoT
tags and the subcarriers. In this mechanism, each IoT tag
cyclically rides the subcarrier signal of a PU to ensure
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fair distribution of riding opportunities among the IoT
tags which provides efficient utilization of the available
resources and fair sharing of resources among multiple
IoT tags.

B. SIMULATION RESULTS
In the proposed work Wi-Fi first association is considered as
the default PUs association technique. In order to evaluate
the performance of the different proposed riding modes the
results were compared to the algorithm-free backscattering.

In Fig. 2 the result presents the average IoT tags data
rates at different numbers of IoT tags considering the three
proposed modes at 20 PUs. As shown in the figure the
average achieved data rate decreases as the number of IoT
tags increased in mode 1 and mode 3 as a result of the
increasing interference between the IoT tags but because in
mode 2 each tag rides one PU subcarrier and there is no
interference between the tags, the average data rate remains
constant. In the shown figure we can see that at a small num-
ber of IoT tags, the algorithm-free riding technique achieves
a better average IoT tags rate but as the number of IoT tags
increases the average rate decays exponentially and has the
worst performance.

By comparing the three proposed riding modes, we can
conclude that at a small number of IoT tags mode 1 achieved
a better average IoT tags rate because the tag rides the whole
resource block whereas in each of the other two modes,
IoT tag rides the bandwidth of only one subcarrier, but as
the increasing of the IoT tags number, mode 2 achieved the
highest average IoT tags data rate due to the absence of
interference between the tags. For dense backscatter networks
(massive number of IoT tags ‘‘300 IoT tags in the service
zone’’), mode 1 achieves an average IoT tags data rate of
about 15 Kbps (which is suitable for some types of mMTC
applications), mode 2 achieves on the average 115 Kbps IoT
tags data rate (which is suitable for most types of mMTC and
low data rate URLLC applications) and mode 3 achieves on
the average 25 Kbps IoT tags data rate (which is suitable for
some mMTC applications).

The overall system rate at different numbers of IoT tags
is shown in Fig. 3 For 20 PUs, the figure illustrates that
the second mode achieved better performance in terms of
total system rate because each tag rides a different subcarrier,
typically when the number of associated IoT tags reach the
total number of the subcarrier for all PUs the sum rate remains
constant in a specific value because no more tags can ride any
PU downlink signal. Whereas in mode 1, the IoT total system
rate increases as the number of IoT tags increases.

For the third mode sum rate starts typically as mode
2 but with increasing the number of tags it slightly increases
because more than one tag can associate with one subcarrier
causing increased interference and consequently lower data
rate. Also, we can see that the algorithm-free riding tech-
nique achieves a better total system rate at a small number
of IoT tags, but as the number of IoT tags increases the
algorithm-free riding technique becomes the worst one.

FIGURE 2. Average IoT tags data rate versus the number of IoT tags.

The degree of rate satisfaction for IoT tags (secondary
system) can be measured using a sigmoid function to deter-
mine the percentage of the IoT tags that satisfy the data rate
thresholdRthIoT . In fact, this approach has been widely adopted
in radio resource management and can be calculated for each
IoT tag as follows.

λk

(
Rbk,m

)
=

1

1+ e
−βk

(
Rbk,m−R

th
IoT

)

where RthIoT is the application threshold data rate, both Rbk,m
and RthIoT has the units of (b/s). βk is a constant deciding the
steepness of the satisfactory curve. It is clear from the above
equation that λk

(
Rbk,m

)
is a monotonic increasing function

with respect to Rbk,m, i.e., individual IoT tags will feel more
satisfied when they have a higher rate .λk of each IoT tag
i is scaled between 0 and 1, i.e., λk

(
Rbk,m

)
∈ (0, 1) and

βk = 10 [46].
Fig. 4 demonstrates the IoT tag data satisfaction rate versus

the different number of tags for 20 PUs, and the rate threshold
RthIoT = 10 Kbps. It can be clearly observed from Fig. 4 that
the tag data satisfaction rate decreases monotonically with
an increased number of tags in mode 1 and mode 3 because
when the number of IoT tags increases the IoT tags achieved
data rate is decreased according to the amount of interference,
in mode 3 the satisfaction ratio decreased slower than mode
1 as a result to the lower interference, while mode 2 remains
constant equals to the value 1 whatever the number of IoT
tags, this is because there is no interference between the tags
and all tags rate requirement are satisfied. Also, we can find
that the algorithm-free riding technique has the worst satis-
faction rate due to that the riding is done in a random fashion
without taking into considerationminimizing the interference
or maximizing the IoT tags received power.
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TABLE 2. IoT tags backscatter system capacity versus the number of satisfied IoT tags.

TABLE 3. Interference effect on the primary system.

FIGURE 3. Total System rate versus the number of IoT tags.

In Fig. 5 we illustrate the capacity of the IoT backscatter
system at different numbers of PUs, where there are 6000 IoT
tags distributed uniformly within the service zone. As shown
in the figure the system capacity increased as the number of
PUs increased, and the algorithm-free riding technique shows
the largest system capacity, this was expected because there
are no stopping criteria for accepting the IoT tags association.
Mode 2 shows the lowest capacity because its capacity is
limited to 12 times the number of PUs, and mode 3 shows
better performance than mode 1 because in mode 3 IoT tags
can share riding one subcarrier of the PU signal. Fig. 5 shows
that mode 3 outperforms mode 1 by 300% and outperforms

FIGURE 4. IoT tags satisfaction rate versus number of IoT tags.

mode 2 by 2,000%, which strongly supports the 6G massive
IoT applications.

To compare the proposed ridingmodes in terms of the num-
ber of system’s satisfied users that achieved the required rates
to support different IoT applications (mMTC and URLLC
applications), 6000 IoT tags are distributed in the service area
with different numbers of PUs. Table 2 shows that in general,
the number of satisfied IoT tags increased when the number
of PUs increased, in the algorithm-free riding technique all
IoT tags will be accepted with the lowest Percentage of
satisfied IoT tags. The table shows that as the number of
PUs increased from 18 to 30 the number of satisfied accepted
IoT tags (system capacity) increased, for mode 1 the capacity
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increased by about 200%,mode 2 capacity increased by about
167%, and mode 3 capacity increased by about 127%.

FIGURE 5. System capacity versus the number of PUs.

Also, when the number of PUs increased from 18 to
30 the number of satisfied IoT tags increased by 274% for
mode 1, by 167% for mode 2, and by 113% for mode 3.
On the other hand, mode 3 has the greatest capacity with
the highest number of satisfied IoT tags, generally as the
number of PUs increased the percentage of satisfied IoT
tags increased due to the decrease of interference except for
mode 2 where all accepted IoT tags have a satisfied rate. The
algorithm-free riding technique accepts all IoT tags at the
expense of the number of satisfied IoT, and as the number of
PUs increased the percentage of accepted IoT tags increased
due to decreasing the interference between IoT tags. Finally,
we can conclude that mode 3 did the best performance in
terms of the system capacity and the number of tags that
achieved their rate requirements.

To explain the effectiveness of our proposed modes in
reducing the effect of secondary system interference to the
primary system which is very important to handle to keep the
PUs data rate within the required range, Table 3 shows that
mode 2 is the mode with the lowest interference to the PUs
with the cost of achieved system capacity.

Also, Table 3 explains how the interference to the PU
increased when the number of IoT tags increased and the
effectiveness of our modes in reducing this interference com-
pared to the algorithm-free riding. As seen from Table 3 when
the number of IoT tags increased from 5 to 325, the PUs
average interference increased by 77% in the first mode, and
by 64.58% in the second mode, by 103.9% in the third mode,
and by 222 × 106% in the algorithm-free riding technique.
It can be seen clearly that the proposed algorithm supports
the massive IoT applications over the backscatter secondary
system with minimal effect on the primary system users’
achieved rate and keeps the PUs data rate within the required
range.

Fig. 6 shows the effect of increasing the number of PUs
on the IoT total system data rate of the different proposed
modes. From Fig. 6 (a) it can be noticed that for mode 1
by increasing the number of PUs from 9 to 30 the IoT total
system rate increases by 24.4% at 25 IoT tags and by 39.7%
at 85 IoT tags, this can be subjected to the interference
decreasing between IoT tags because a smaller number of
tags will associate the downlink signal dedicated to a PU.
Fig. 6 (b) shows that as the number of PUs increased the
IoT total system rate of mode 2 increased, this is because
more IoT tags can be accepted to successfully send their data,
in this mode the number of associated IoT tags is 12 times the
number of PUs, from this relation the number of associated
tags is increased by increasing the number of PUs.

On average, the total system rate is increased by 168.3 %
by increasing the number of PUs by 2.3%. In order to show
the effect of increasing the number of PUs in the third mode.
Fig. 6 (c) compares the IoT total system rate at different
numbers of PUs, it can be noticed that the total rate increased
by 25% when the number of PUs increased from 6 to
15 at 100 IoT tags, and by 88.9% at 305 IoT tags, and by
88.9%. we can note that at 305 IoT tags when the number of
PUs increased from 6 to 9 the system rate increased by 51.5%,
and on the average the system rate increased by 25.9%.

In Fig. 7 (a), (b), and (c), we investigate the effect of
backscatter reflection coefficient value on the IoT tags sum
rate in mode 1, mode 2, and mode 3 respectively. It can
be noticed that the total data rate achieved by IoT tags has
better performance at larger values of backscatter coefficient
α, this is because more power will be received by the UAV
flying HetNode backscatter receiver because α indicates how
effectively the tag reflects or scatters the incident RF signal.
A higher backscatter coefficient implies that a larger portion
of the incoming signal is reflected back toward the receiver,
allowing for better communication reliability. Conversely,
a lower RC may result in reduced communication range and
reliability. Also, we can notice that the enhancement rate of
the overall system rate is higher at the lower value of the
backscatter reflection coefficient.

It can be noticed that for mode 1 when α increased from
0.2 to 0.5 the overall system rate enhanced by 14.5%, and
when α increased from 0.8 to 1 the overall system rate
enhanced by 5.6%. For mode 2 when α increased from 0.2 to
0.5 the overall system rate enhanced by 50%, and when α

increased from 0.8 to 1 the overall system rate enhanced by
4.4%. Formode 3whenα increased from 0.2 to 0.5 the overall
system rate enhanced by 27.1%, and when α increased from
0.8 to 1 the overall system rate enhanced by 1.3%.

It is obtained clearly that at higher values of the reflection
coefficient the enhancement in the overall system rate can be
neglected compared to the increased interference effect on the
primary system Users.

Table 4 illustrates the effect of increasing the serving
UAV Flying HetNodes on the system data rate for 15 PUs
and 500 IoT tags in the service area, it can be noticed that
the system rate increased when the number of UAV Flying
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FIGURE 6. IoT total system rate at different numbers of PUs in the three proposed riding modes.

HetNodes increased because this improves the channels gain
between IoT tags within the cluster and it’s serving UAV
flying HetNode, and reduces the interference with the other
clusters.

This results in a stronger received signal strength at the
receiver node and with a lower interference level, therefore
the result is enhanced SINR for each tag. When the number
of UAV Flying HetNodes increased from 1 to 11, the total
system rate increased by 3.83% for mode 1 and increased
by 11.11% for mode 2 finally the total system rate increased
by 5.57% for mode 3. When the number of UAV Flying
HetNodes increased from 11 to 31, the total system rate
increased by 0.88% for mode 1 and increased by 2.1% for
mode 2 finally the total system rate increased by 1.98% for
mode 3. We can find that the IoT total system rate increased
slightly with a large increase in the number of UAV Flying
HetNodes, which implies that the proposed algorithm can
serve a dense massive IoT service area with a small number
of UAV Flying HetNodes and produce an acceptable rate
performance.

C. TIME COMPLEXITY CALCULATION
From the time complexity point of view, the proposed
algorithm runs in two phases, the matching game for the IoT

TABLE 4. IoT total system rate at different numbers of serving UAV flying
HetNodes.

tags association phase and the K-means++ algorithm for
the IoT tags clustering phase. The time complexity of the
matching game phase heavily depends on the convergence
time of the matching game and is typically denoted as O(N
k + N log K), where N represents the number of PUs and
K denotes the number of IoT tags. On the other hand, the
K-means++ clustering phase time complexity is commonly
expressed as O(I KM), where I represents the number of iter-
ations required for convergence, andM represents the number
of clusters. Finally, the time complexities of the two phases
are added, resulting in a comprehensive time complexity of
O(NK + N log K + I K M). Whereas, the time complexity
of the algorithm-free riding technique can be calculated as
O(I K M). Thus, while our algorithm exhibits higher time
complexity compared to the algorithm-free riding technique,
it provides superior performance in terms of the system rate
and the resulting interference to the primary system.
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FIGURE 7. Total IoT tags system rate at different values of backscatter reflection coefficient α in the three modes.

VII. CONCLUSION
In this paper, a framework is proposed to optimize the asso-
ciation of IoT tags with the base station’s primary users,
then the associated tags ride the downlink RF signal of the
selected PU, whichmaximizes the uplink data rate of the tags.
This selection is done by taking into consideration the min-
imization of the resulting interference to the PU and the
maximization of the IoT tags received RF signal strength
from the PU’s base station. The IoT tags association problem
was formulated as a many-to-one matching game whereas an
enhanced k-means algorithm is used for clustering IoT tags
toM clusters the centroid of each cluster is considered as the
optimum UAV Flying HetNode backscatter receiver location
for this cluster.

Three riding modes are proposed describing how the tags
ride the PU ambient signal, where the first mode is the default
riding mode where all IoT tags share the riding of a specific
PU downlink OFDM signal resource blocks as long as the
resulting interference to this PU doesn’t affect its data rate
requirements. The second mode is proposed as enhanced

mode, where each IoT tag rides only one subcarrier of the
PU downlink OFDM signal to increase the average tags rate,
also the third mode is the second enhanced mode, where
each group of IoT tags can share the riding of one subcarrier
of the downlink RF signal as long as the resulting average
interference doesn’t affect this PU’s data rate requirements.

The simulation results of the proposed algorithm showed
that mode 2 achieved the highest average IoT tags data rate
and total system rate with the lowest interference to the PUs,
over the other modes and the algorithm-free backscattering
technique, where the three modes achieve average IoT tags
rates in the range of 15 Kbps to 115 Kbps which can support
the required rate for most mMTC and low data rate URLLC
IoT applications.

On the other hand, the algorithm-free backscattering tech-
nique shows the largest system capacity with the lower
percentage of satisfaction ratio (7% on the average). The
capacity and satisfaction ratio of the proposed mode 3 out-
performs mode 1 by 300% and 138% respectively and
outperforms mode 2 by 2,000% and 420% respectively. The
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proposed algorithm reduces the interference power to the
PUs on the average by 1 : (15.69 × 10−12) relative to
the algorithm-free backscattering technique. Although our
algorithm demonstrates a higher time complexity compared
to the algorithm-free riding technique, it provides a higher
performance in terms of the system rate and the resulting
interference to the primary system.

Finally, we can conclude that mode 3 did the best perfor-
mance in terms of the system capacity and the number of tags
that achieved their rate requirements. Mode 2 achieves the
best performance in terms of the average IoT tags rate and the
total system rate with the highest satisfaction ratio but with
the lowest achieved system capacity. It can be seen clearly
that the proposed algorithm supports different IoT applica-
tions where, for massive ones mode 3 can be used, and for
applications that require a high data rate mode 2 can be used.
Also, the three proposed modes can support most mMTC
and low data rate URLLC IoT applications and achieve the
required data rates with minimal effect on the primary system
users’ achieved rate and keep the PUs data rate within the
required range.
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