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ABSTRACT Automatic feature semantic segmentation of remote sensing images is an extremely critical
research direction in the field of geographic information science. Especially in the vast and complex desert
area, the wide spatial distribution of surface features, complex feature texture characteristics and uneven
sample classification bring great challenges to the recognition and segmentation of features. In response
to the question, we propose an innovative semantic segmentation network scheme, which is a network that
combines dynamic convolutional decomposition feature extraction andmulti-scale deformable convolutional
techniques (referred to as DYDCNet). This network first introduces dynamic convolutional decomposition
based on the attention mechanism and uses a convolutional weight matrix with dynamics to optimize the
feature extraction process, which significantly reduces the network parameters and improves the feature
extraction efficiency. Subsequently, a deformable convolution technique is used to fuse the null convolution
with multiple expansion rates to extend the sensory field and realize feature extraction at different scales.
Further, the final segmentation results are refined and optimized by an encoder-decoder architecture. The
combination of this series of innovations enables DYDCNet to significantly improve the prediction speed and
segmentation accuracy when processing desert region images. Experimental results show that the network
has excellent performance on datasets specifically designed for desert features, with an average intersection
and merger ratio of 87.75% and an overall accuracy of 91.35%, which outperforms existing mainstream
semantic segmentation networks.

INDEX TERMS Desert area, multiscale, dynamic convolution decomposition, deformable convolution, deep
learning, ground object classification.

I. INTRODUCTION
The relationship between deserts and oases is interdependent
and symbiotic, with oases referring to heterogeneous ecolog-
ical landscapes that can be maintained in a relatively stable
manner, with significant microclimatic effects, based on a
large-scale desert background substrate with a small-scale,
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but sizeable, biological community. Deserts are barren areas
where the ground is completely covered by sand, plants are
very sparse, rainfall is scarce, and the air is dry. A comprehen-
sive and macroscopic grasp of the spatial distribution pattern
of deserts and oases is crucial to the protection of regional
ecology, and can achieve a win-win situation for economic
development and ecological protection. The oasis is the best
part of the arid zone, and because of the complexity of the
feature types in the desert area, mapping through manual

55800

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-8987-7930
https://orcid.org/0009-0009-7433-4058
https://orcid.org/0000-0002-6485-393X


J. Fan et al.: Typical Ground Object Recognition in Desert Areas Based on DYDCNet: A Case Study

visual interpretation or field surveys requires the consump-
tion of a large amount of resources [1]. With the continuous
progress and enrichment of satellite manufacturing technol-
ogy and payload types, the resolution of the available data
resources in the spectral and temporal dimensions has been
increasing [2], making it easier to obtain low-cost, fast and
high-precision image data in desert areas [1]. However, due
to the vast area of the desert region and the complex image
characteristics, no current image recognition algorithms are
suitable for its geographical characteristics [3], and factors
such as atmospheric interference and feature characteris-
tics also impact the recognition of features in desert region
images, so feature recognition in the desert region is still
extremely challenging [4].
Traditional image recognition methods mainly consist

of pixel-based threshold segmentation [5], [6], [7], cluster
segmentation [8], decision tree classification [9], region-
based segmentation [10], and semantic learning using random
forest and conditional random field [11] to construct clas-
sifiers. These methods are limited to images with uniform
gray-scale distribution andmore obvious differences between
the gray-scale of the recognition target and the background,
and although they are relatively simple to operate, they are
not able to segment a large amount of semantic informa-
tion, which greatly challenges the increasing proliferation
of remote sensing data [12]. With the introduction of deep
learning technology, research in the computer vision field
has greatly progressed, and convolutional neural networks
have been gradually applied in the image processing field
[13] to achieve the semantic segmentation of images at the
pixel level [14]. Semantic segmentation is the process of
partitioning a provided image into visually meaningful mul-
tiple regions before conducting image analysis and visual
understanding [15]. It has a wide range of application areas
[16], such as scene analysis [17], automated driving [18],
biomedical image research [19], and land cover type analy-
sis based on satellite images [20]. To address the increased
complexity of image segmentation scenarios, a series of deep
learning-based semantic image segmentation methods [21]
have emerged.

In 2015, Long and other scholars proposed the full con-
volutional neural network (FCN) [22]. Based on FCN,
scholars later proposed U-Net [23], which uses the same
encoder-decoder structure and achieves the fusion of
low-level and high-level image features [24] through multi-
level jump connections [25]. The SegNet network proposed
by Badrinarayanan et al. utilizes the pooling indices that
record the maximal response feature positions of the max-
pool layer for upsampling [26], which effectively avoids the
consumption caused by upsampling in FCN, and then uses
the trainable convolutional layer to make the sparse feature
map dense and avoids the additional consumption caused by
saving feature maps. In desert image records, features usually
exhibit multiscale features. Therefore, effective extraction
and integration of this multiscale feature information can
significantly enhance the learning ability of these features

and yield better image segmentation [28], [29]. PSPNet [29]
uses a pyramid pooling module to collect hierarchical infor-
mation and successfully performs multiscale segmentation
analysis of image semantics [30]. Wang et al. [31] com-
bined DeepLabV3+ with CRF to make the remote sensing
image boundary clearer. Taoyang et al. [32] embedded the
convolutional attention mechanism into DeepLabV3+ net-
work structure to reduce the influence of irrelevant features
on recognition accuracy. Zhou et al. and his team proposed
a multiscale deep contextual convolutional network called
MDCCNet, which is capable of integrating featuremaps from
different hierarchical networks to achieve semantic segmen-
tation [33]. Wang et al. designed a multiscale deep contextual
convolutional network called MDCCNet, which is based on
the multiscale feature extraction technique. However, the
limited number of samples for certain feature types and
the overexposure of certain areas have adversely affected the
accuracy of desert segmentation. To segment image features
in desert regions quickly and accurately, we must further
enhance the fusion capability of multiscale information in
images [34]. However, current multiscale feature fusion mod-
els often require many computations [35], which leads to low
training efficiency.

With the wide application of convolutional neural networks
in computer vision [36], large amounts of accurately labeled
data have become increasingly necessary [37]. Although
semantic segmentation networks based on high-resolution
remote sensing image data have been in development for a
long time, most of the current research is based on exist-
ing open datasets. For example, PASCAL-VOC 2012 [38]
is a mainstream dataset in computer vision for recogniz-
ing objects from multiple visual object classes in realistic
scenes. The Cityscapes dataset mainly focuses on urban street
scenes [39]. The ADE20K dataset [40] contains more than
20,000 large-scale scene parsing data with 150 target objects.
In addition, scholars have also produced a desert road dataset
to monitor the impact of sandstorms on traffic arteries in
desert areas [41] and a mangrove forest dataset to reduce
environmental damage on the Brazilian coast [42]. Deep
learning-based image processing methods are widely used in
various aspects such as medicine, bridges, traffic, etc., but
there are still fewer applications in segmentation of typical
ground objects in desert areas, and few datasets that cover
the object classes and typical features of scenes in desert
areas. A large amount of observational evidence has shown
that desertification has been occurring in most parts of the
world over the past few decades [43], and desert areas have
shown an expansion trend [45], so the semantic recognition
of typical ground objects in desert areas can be achieved by
using high-resolution remote sensing images [11] and deep
learning techniques [45]. This is of great importance and
significance for ecological environmental protection and the
promotion of economic development in desert areas.

To respond to the above issues, taking into account the
need to identify multiple types of features in the context
of large deserts, and the complexity of feature types and
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FIGURE 1. The overall structure of DYDCNet.

the irregularity of their location in desert areas, we pro-
pose a semantic segmentation model DYDCNet based on
the decoding-encoding structure, taking the Xinjiang Ring
TarimBasin region as the study area. The experimental results
show that themodel exhibits better performance in the seman-
tic segmentation of desert regions datasets than mainstream
semantic segmentation networks. Our main contributions are
as follows: (1) Using MobileNetV2_DY with a dynamic
convolutional decomposition network with dynamic convo-
lutional decomposition as the backbone network can reduce
the number of parameters of the model while ensuring feature
segmentation accuracy. (2) Aiming to address the character-
istics of remote sensing images in desert areas, deformable
convolution DC, which integrates multiple expansion rate
cavity convolution, is utilized for multiscale contextual infor-
mation extraction to improve feature extraction in desert
areas. (3) A semantic segmentation dataset for the desert
area of the Tarim Basin in Xinjiang, China, is produced
to provide a database for the recognition and segmentation
of typical ground objects in desert areas. The experimental
results show that the model exhibits better performance in
the semantic segmentation of desert regions datasets than
mainstream semantic segmentation networks.

II. MATERIALS AND METHODS
A. DYDCNet ARCHITECTURE
DYDCNet is a deep convolutional neural network [46] with
encoding-decoding structure, which optimizes the segmen-
tation result edge accuracy by incorporating an upsampling
decoder module, thus greatly improving the accuracy and
efficiency of the segmentation results. To accelerate the con-
vergence of the model, we replace the backbone Xception
with the lightweight but efficient MobileNetv2 network [47],
and to reduce the number of parameters more significantly
and obtain higher accuracy, we introduce dynamic convo-
lutional decomposition [48] for the MobileNetv2 network.
Concurrently, the DC module can obtain contextual infor-
mation at different scales to better understand the semantic

information of images, the first four parts of the module are
deformable convolutions for adaptive learning of receptive
fields [49].
Our DYDCNet architecture is shown in Fig. 1. In the

encoding stage, theMobileNetV2_DY network with dynamic
convolutional decomposition is first used as the backbone
network. This network can dynamically adjust the number of
layers and channels of the network according to the charac-
teristics of the input image, allowing the network to adapt to
different tasks and data distributions with greater flexibility.
To achieve adaptive learning of receptive fields for better fea-
ture extraction, deformable convolutions are introduced, the
DCmodule, which consists of an averaged pooling layer with
globally informative features, a 1× 1 deformable convolution
for raw scale features, and 3 × 3 deformable convolutions
with expansions of 6, 12, and 18, respectively. By utiliz-
ing three dilated convolutions of different sizes, the module
obtains convolution kernels with multiple receptive fields for
extracting features at different scales with fewer parameters.
Finally, the feature maps extracted by the DC module are
concatenated, and the number of channels is compressed by
a 1 × 1 convolution. In the decoder stage, the feature map
is restored to the original size of the input image through
successive upsampling.

B. MobileNetV2_DY MODULE
Dynamic convolution [48] is beneficial for forming
lightweight networks and significantly improves perfor-
mance through its almost negligible computational cost,
which motivates its frequent application to vision-related
tasks [50]. The core idea of the method is to dynamically
integratemultiple convolutional kernels into a single convolu-
tional weight matrix based on the input attention mechanism:

W (x) =

K∑
k=1

πk (x)Wk s.t. 0 ≤ πk (x) ≤ 1,
K∑
k=1

πk (x) = 1

(1)
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FIGURE 2. Dynamic convolution decomposition layer.

whereK is the convolution kernel, {Wk} is the attention score,
and {πk (x)} is the linear aggregation.

However, conventional dynamic convolution faces two
main challenges: a lack of compactness due to the use of K
kernels and the joint optimization of {πk (x)} and the static
kernel {Wk}. These two challenges can be revisited through
dynamic convolutional decomposition, while using dynamic
channel fusion methods reduces the dimensionality of the
latent space and simplifies joint optimization. This makes the
network easier to train without sacrificing accuracy.

Fig. 2 shows the dynamic convolutional decomposition
layer, where the input x is first dynamically branched to gen-
erate 3 (x) and 8 (x), and the convolutional weight matrix
W (x) is then generated using (2).

W (x) = 3 (x)W0 + P8 (x)QT (2)

where 3 (x) is a C×C diagonal matrix. Using this approach,
3 (x) implements the channel attention mechanism after the
static kernel W0. The limitations of dynamic convolution
are addressed using the dynamic channel fusion mechanism,
which is implemented using the full matrix8 (x), where each
element φi,j (x) is a function of x. This approach is employed
to drastically reduce the dimensionality of the potential space
to construct a more compact model. The dynamic decompo-
sition convolution is achieved with dynamic channel fusion.

As shown in Fig. 3, the MobileNetV2_DY we use consists
of two main parts: encoding (left) and decoding (right). The
encoding part is taken as a 3 × 3 convolution along with
a tandem combination of BatchNorm regularization and the
ReLU activation function, block module, 1 × 1 convolution,
adaptive convolution, and dropout layer. The block module
has two cases. If the dynamic convolutional decomposition
layer is not used, ordinary convolution is used for feature
extraction, and the feature vector is obtained through a series

FIGURE 3. The network structure of MobileNetV2_DY.

of operations of 3 × 3 convolution with a step size of 1,
1 × 1 convolution operation, BatchNorm regularization, and
ReLU6 activation function. If the dynamic convolutional
decomposition layer is used, the module begins by using the
1 × 1 convolution operation to adjust the feature dimen-
sions, and the feature vector is obtained after undergoing
adaptive pooling, linear linearization, adaptive convolution,
BatchNorm regularization, Hsigmoid activation function and
SEModule channel fusion module, where the Hsigmoid acti-
vation function is a nonlinear function that increases the
expressive power of the network. Feature multiplication is
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FIGURE 4. The network structure of DC.

FIGURE 5. Schematic representation of the sampling positions: (a) standard convolution using a regular grid;
(b) deformable convolution: deformed sampling positions (dark blue dots) with enhanced offsets (light blue arrows);
(c)(d) denote the special case of (b).

used in SEModule to directly transfer the features from the
front layer to the back layer. This feature addresses gradient
vanishing in the deep network and makes the model easier to
train and optimize. Finally, in the decoding part, the features
obtained after processing in the encoding part are further
optimized and processed.

C. DC MODULE
The DC module has five branches, as shown in Fig. 4. The
first branch is composed of a series of 1× 1 convolution and
deformable convolution, and the original feature information
and the features after the 1 × 1 convolution operation are
used as inputs to the deformable convolution. The second,
third and fourth branches are composed of a series of hollow
convolution and deformable convolution. At this time, the
dilation rates of hollow convolution in the second, third, and
fourth branches are 6, 12 and 18, respectively. The hollow
convolution can expand the sensory field while guarantee-
ing the resolution, allowing the feature characteristics of the

desert area to be grasped comprehensively and macroscop-
ically. In addition, setting different dilation rates provides
the network with different sensory field sizes, i.e., multiscale
contextual information is obtained, which benefits the feature
recognition of remote sensing images in desert areas with
large sizes and irregular distributions of feature locations. The
fifth branch adopts adaptive convolution, which consists of a
series of 1 × 1 convolution, BatchNorm regularization and
the ReLU activation function. Finally, the five branches are
concat-enated and spliced in the feature dimension by the
concatenation operation. The number of channels is adjusted
using 1 × 1 convolution, after which the BatchNorm regu-
larization and ReLU activation function are incorporated to
obtain the feature map with high semantic features.

Since the convolution kernel in a standard convolutional
neural network has a fixed geometric form, its ability to
model geometric transformations is limited. As shown in
Fig. 5, the standard convolutional convolution kernel is a
fixed rectangular shape, while the deformable convolutional
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FIGURE 6. Illustration of 3 × 3 deformable convolution.

kernel learns an offset at each sampling point to adapt to the
geometry of the object. In Fig. 5a, the standard convolutional
sampling shape is a fixed rectangle; in Fig. 5b, the sampling
position varies according to the offset; in Fig. 5c, scale trans-
formation is achieved; and Fig. 5d depicts a special case for
achieving rotation.

While the standard convolution samples pass through a
fixed grid R, with each sample point passing through the
convolution kernel for weighting, the deformable convolution
adds an offset to the sampling:

R = {(−1,−1), (−1, 0), · · ·, (0, 1), (1, 1)} (3)

where R is the regular grid of convolution kernels, where
each element represents the offset of all positions of the
convolution kernel with respect to the center position, while:

y (p0) =

∑
pn∈R

w (pn) · x (p0 + pn) (4)

where p0 is the pixel position of the feature map, x is the input
feature map, w denotes the weight of the sampled position,
and pn denotes the position inR. x (pn) denotes the pixel value
of x at point pn.

After the input feature map x is sampled, the regular grid
R is augmented with offsets {1pn|n= 1, 2, . . . ,N }, where N
denotes the number of sampling points.

y (p0) =

∑
pn∈R

w (pn) · x (p0 + pn + 1pn) (5)

where 1pn is usually a fraction and represents the offset of
the pn position, so the pixel value of the input feature map x
cannot be obtained directly. This value is often obtained using
the bilinear difference algorithm with the expression:

x(p) =

∑
q

G(q, p) · x(q) (6)

where p = p0 + pn + 1pn, denotes an arbitrary position,
q denotes a spatial position in the input feature map x, and
G (·, ·) denotes a bilinear interpolation kernel and is parti-
tioned into two one-dimensional kernels:

G(q, p) = g (qx, px) · g
(
qy, py

)
(7)

FIGURE 7. Two representations of two receptive fields in a homebrew
dataset: (a) fixed receptive fields in standard convolution, (b) adaptive
receptive fields in deformable convolution.

where g (a, b) = max (0, 1 − |a− b|).
As shown in Fig. 6, a convolutional layer can be used to

determine the offsets. The convolutional kernel is consistent
with the existing convolutional layer in terms of spatial res-
olution and expansion, and each image is assigned different
depth information, with numerous channels of dimension 2 N
corresponding to N 2D offsets. During training, the convo-
lutional kernel used to generate the output features and the
offsets are learned simultaneously. Their gradients are back-
propagated to learn the offsets through the bilinear operations
in (6) and (7). As shown in Fig. 7a, deformable convolution
can adaptively learn the sensory field [51]. In standard convo-
lution, the receptive fields and sampling locations are fixed on
the upper featuremap, whereas deformable convolution adap-
tively adjusts to the scale and shape of the target (Fig. 7b).
Therefore, for complex targets, deformable convolution has a
strong adaptive extraction ability.

D. LOSS FUNCTION
The loss function [52] is a crucial component in the training
and validation process of deep learning semantic segmen-
tation models [53], and is the core of backpropagation
algorithms [54]. It can be used to quantify the differences
between predicted and annotated images, thereby updating
parameters [55] to achieve model optimization. In response
to the problem of imbalanced samples and high similarity
in texture features between buildings and ground in desert
datasets, a combination of Focal Loss and Dice Loss was
selected to calculate the loss. The definition is as follows:

Loss = λFocal loss+
(
1 − λ

)
Dice Loss (8)
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FIGURE 8. Overview map of the study area.

1) DICE LOSS
Dice Loss [56] is more sensitive to datasets with imbalanced
categories, focusing on the proportion of overlapping parts
and the similarity near the boundaries, making it more robust
to fuzzy or unclear boundaries. The calculation of Dice Loss
is based on the Dice coefficient [57], which is an indicator
used tomeasure the similarity between themodel’s prediction
results and the actual annotated image. The definition is as
follows:

Dice =
2 × |A ∩ B|

|A| + |B|
(9)

where A and B represent the predicted results and the truth
labels. The Dice coefficient ranges from 0 to 1, where 1 rep-
resents complete overlap and 0 represents no overlap.

Dice Loss is the conversion of the Dice coefficient into a
loss function, the calculation formula is as follows:

DiceLoss = 1 −
2 × |A ∩ B|

|A| + |B|
(10)

2) FOCAL LOSS
The Focal Loss can effectively address the issue of category
imbalance to a certain extent [58] and prioritize samples that
pose challenges in classification, thereby enhancing model
performance. The introduction of the balance factor α_t
can significantly alleviate this imbalance and enable training
to focus more on challenging categories. The calculation
formula is as follows:

FL (pt) = −αt · (1 − pt )γ · log (pt) (11)

where pt represents the predictive probability of themodel for
a pixel belonging to the correct class, αt denotes the balancing
factor, and γ serves as a regulatory factor used to adjust the
weight of challenging-to-classify samples.

III. RESULTS
A. EXPERIMENT DATA
Our main study area is the Tarim Basin region in Xinjiang,
China, as shown in Fig. 8, which is far from the ocean and
deep inland and is not easily reached by ocean currents,
resulting in a distinct temperate continental climate [59]. The
Tarim Basin is located in the southern part of Xinjiang and
is ring-shaped, with vast deserts in the interior and oases at
the edges, so the land type samples in this region are rich.
The main sample classes include deserts, the Gobi, oasis
farmland, water bodies, and many urban areas; this region is
thus more diverse than the regions in other remote sensing
land-cover utilization datasets.

The remote sensing image data downloaded from Mapbox
in Bigemap. The data we use is a true-color RGB image
with three bands acquired in June 2022 from DigitalGlobe’s
QuickBird, the sensor is a push-scan imaging scanner. True-
color images are good for land-cover classification because
the colors of the features in such images are very close to
or consistent with the colors of the actual features, which
makes it easier to manually annotate them and discriminate
the category of the features. We used the 0.59 m optical
remote sensing image to outline the typical feature area by
manual identification, as shown in Fig. 9. The area contains
a total of seven ground object types, including desert, Gobi,
farmland, buildings, water bodies, bare area and vegetation,
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FIGURE 9. Desert dataset in the area around Tarim Basin, Xinjiang.

and the sample area is output as a 256 × 256 image and
its corresponding labels, with a total of 20596 image pairs.
To enhance the model robustness, the data are enhanced by
random flipping and rotation [60]. In addition, the data are
divided into a training set, a validation set and a test set in an
8:1:1 ratio for the following experiments, in which the test set
is used only for testing and does not contribute to the model
training.

B. EVALUATION METRIC
We utilize the mean intersection over union (MIOU), overall
accuracy (OA), and G-mean as the evaluation metrics of
the model prediction results to quantitatively assess the seg-
mentation performances of the different models. The MIOU
represents the mean value after the ratios of intersections and
mergers between the prediction results and the true values
are summed for each category. The OA represents the sum
of correctly classified pixels divided by the total number
of pixels. For both of these metrics, a higher value denotes
a better model performance [61]. G-mean is an evaluation
criterion that combines the values of the two indexes, and
when the G-mean value is higher, it indicates a better modal
performance.

MIOU =
1
N

N∑
i=1

pii
N∑
j=1

pij +
N∑
j=1

pji − pii

(12)

TABLE 1. The specific experiment environment.

OA =

N∑
i=1

pii

N∑
i=1

N∑
j=1

pij

(13)

G− mean =
√
Pr ecision× Recall (14)

where N denotes the number of categories to be recognized,
pij denotes the number of class i pixels that are predicted as
class j, pii denotes the number of correctly predicted pixels,
and pji denotes the number of class j pixels that are predicted
as class i.
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FIGURE 10. Comparison of results of ablation experiments in desert dataset: (a) Original image,(b) Ground truth,
(c) Net1,(d) Net2,(e) Net3,(f) DYDCNet.

TABLE 2. Ablation study of DYDCNet.

C. EXPERIMENT ENVIRONMENT
Our created dataset of the desert region of the Ring Tarim
Basin is input into the semantic segmentation model for train-
ing and validation, with the specific configurations detailed
in TABLE 1. For all experiments, the framework is PyTorch,
the programming language is Python, and the program-
ming environment is PyCharm. For the hyperparameters, the
momentum size is set to 0.9, the batch size to 128, and the
decay mode to cosine decay. To facilitate a fair comparison
of the experimental results of different models, all the models
are trained using the stochastic gradient descent method.

D. EXPERIMENT RESULTS
1) ABLATION EXPERIMENTS
Ablation comparison experiments can be used to verify the
usability of each module. To examine the performances
of the MobileNetV2_DY module and the DC module,
we designed four variations of our network: a network with
the MobileNetV2_DY module and DC module removed
(Net1), the network with the MobileNetV2_DY module

(Net2), the network with the DC module (Net3), and the
network with the MobileNetV2_DY module and DC module
(DYDCNet). Ablation experiments verified the usability of
these modules.

From the segmentation results of the above ablation exper-
iments, we selected four images to analyze. These images
are depicted in Fig. 10. For the first and third images, the
semantic segmentation results of Net1 and Net3 have clearer
classification boundaries than those of Net2. These networks
can thus can successfully distinguish different categories in
the first and third images, such as farmland and vegetation or
desert and farmland. For the second image, only DYDCNet
can accurately recognize the nonwater body part inside the
water body. Net3 cannot accurately recognize the nonwater
body part, although it can separate the nonwater body part
from the water body. In this fourth image, Net2 has a large
degree of misclassification and omission, and the segmenta-
tion result of the boundary of the feature is not sufficiently
clear. Net1 and Net3 have better classification effects and
refine the boundary part, but they also exhibit misclassifica-
tion and omission to a certain extent, and DYDCNet achieves
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TABLE 3. Segmentation performance of different ModeLS.

TABLE 4. Land types segmentation IOU of different models.

a better segmentation performance in the multiclassification
task of this image. The experimental results show that Net3
clearly outperformsNet2, but the classification effect of using
only one of the modules is not satisfactory for some classified
images. DYDCNet, however, combines the advantages of the
MobileNetV2_DY and DC modules and achieves the best
classification results.

TABLE 2 presents a quantitative comparison of the dif-
ferent modules. FPS represents the number of images that
the model can process per second [1], which reflects the
prediction speed of the model. The DC module achieves
a significantly higher accuracy than the MobileNetV2_DY
module. Specifically, the MIOU and OA results of the for-
mer are 0.82% and 0.83%, respectively, higher than those
of the latter, which reflects the DC module’s effectiveness
in segmenting the features of the desert dataset. Finally, the
DYDCNet combining the Mo-bileNetV2_DY module and
DC module achieved the best experimental results, showing
that each module of DYDCNet is essential for obtaining the
best segmentation results.

2) COMPARISON OF EXPERIMENT RESULTS
We chose the following networks for our comparative
experiments.

UNet: The feature map obtained from the backbone feature
extraction network in the encoding stage is fused with the
enhanced feature extraction part in the decoding stage.

RefineNet: The feature map generated in the encoding
stage and the output of decoding in the previous stage are
simultaneously used as inputs to the RefineNet module,
making the fusion of multi-scale features more in-depth.

PSPNet: This is a more extensive network based on spatial
pyramid pooling, which is proposed to be able to aggregate

global context information of different image regions, and
provides a pyramid pooling module to fuse features at
different levels.

DenseASPP: This network combines the advantages of
parallel and cascaded use of null convolutional layers to
produce features of greater scale over a larger area, with
increasingly larger receptive field accessible through a series
of null convolutions.

DANet: TheDilated ResNet is used as the backbone to feed
the resulting feature maps into the two positional attention
modules and the channel attention module, and finally to
summarise the output features of the two attention modules.

The results are depicted in TABLE 3. The MIOU of
our network is 87.75%, which is 13.8%, 17.43%, 1.86%,
4.15% and 3.39% higher than those of the traditional UNet,
RefineNet, PSPNet, DenseASPP and DANet models, respec-
tively. The OA of our network is 91.35%, which is 5.66%,
7.95%, 0.15%, 1.66% and 1.4% higher than those of the tra-
ditional UNet, RefineNet, PSPNet, DenseASPP and DANet
models, G-mean also achieved better results. Furthermore,
the DYDCNet more efficiently processes images than the
traditional UNet, RefineNet, DenseASPP and DANet. The
experimental data show that introducing MobileNetV2_DY
with dynamic convolutional decomposition and deformable
convolution capable of multiscale feature extraction into
our network can enhance the expressive ability of the
network and yield better segmentation results. Moreover,
utilizing MobileNetV2_DY as the backbone feature extrac-
tion module reduces the amount of parameter compu-
tations in the model, thus improving the computational
speed.

TABLE 4 shows the results of land type segmentation
for each network. Relatively high IOU values were achieved
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FIGURE 11. Training loss in desert dataset.

FIGURE 12. Comparison of segmentation results of different models in desert dataset (a) Original image,(b) Ground
truth,(c)UNet,(d)RefineNet,(e)PSPNet,(f)Dense ASPP,(g)DANet,(h) DYDCNet.

for all categories except for the buildings category, which
suggests that this land type is easier to recognize when there
are sufficient samples. DYDCNet’s segmentation results for
water bodies and deserts exhibited IOU values greater than
90%, at 96.33% and 94.35%, respectively. Producing the
dataset revealed that most of the buildings were similar in
color to the ground, so the total number of samples for
buildings was low, which resulted in a generally lower IOU
indicator for this feature type. DYDCNet’s IOU for the build-
ing category was 7.96% higher than that of UNet, reaching

75.38%. The results show that DYDCNet can better learn
the semantic features of the building samples and achieve
more accurate results when the number of training samples
is small and feature confusion is mitigated. Fig. 11 illustrates
the loss during training. After Epoch 170, the loss of the
six network models stabilizes, and RefineNet has the high-
est loss value overall, while DYDCNet has the lowest loss
value.

To simply and intuitively analyze the segmentation effects
of UNet, RefineNet, PSPNet, DenseASPP, DANet, and our
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DYDCNet on the desert dataset from multiple perspectives,
we selected six graphs from the prediction results for compar-
ison. Fig. 12 depicts the image, the real labeled map, and the
segmentation results of each model for each image. The first
map contains a large area of surface water and a small amount
of agricultural land, and the fifth map contains a large Gobi
region and a small amount of surface water. The maps can
be used to validate the prediction results of the models under
the category imbalance condition. The second and third maps
contain water and Gobi and farmland and desert, respec-
tively. These maps exhibit more distinct feature boundaries
and can be used to validate the precision of the model’s
feature boundary identification. The fourth image contains
easily confused boundaries, such as bare area and farmland,
which can be used to verify the segmentation performance
of the model for images with easily confused features.
The sixth image contains multiple categories of buildings,
vegetation and farmland, which can be used to com-
pare the classification performances of models in complex
scenes.

In the first and fifth figures, water, farmland and the Gobi
are better identified. However, RefineNet detected only part
of the farmland and the Gobi, and it yielded was a large
area of missegmentation, which indicates that extracting fea-
tures using only dilated convolution is prone to important
information loss, which leads to pixel-level misclassification.
In the second and third figures, no missegmentation occurs
for any of the methods. The segmentation of vegetation by
UNet and RefineNet in the second figure and the segmenta-
tion of desert and farmland by RefineNet in the third figure
are not completely accurate and have unclear boundaries.
In contrast, DYDCNet can accurately recognize the feature
types and achieves clear feature boundaries. In the fourth
figure, bare area and farmland have similar color and texture
characteristics, making these categories easier to confuse.
The missegmentation yielded by UNet and RefineNet is more
obvious. DenseASPP and DANet exhibit slight missegmen-
tation phenomena, identifying a small portion of the edge
part of the farmland as bare area. However, PSPNet and
DYDCNet exhibit accurate segmentation, so the DYDCNet
network can more effectively learn the difference between
the two types of features. In the sixth figure the scene is
more complex due to the inclusion of multiple types of fea-
tures. DANet does not accurately recognize the vegetation;
RefineNet recognizes the vegetation but cannot completely
recognize the farmland; and UNet, PSPNet and Dense ASPP
can accurately recognize various types of ground objects.
DYDCNet has a better segmentation effect than the other
networks, and it can fully perceive the different feature types.
DYDCNet combines the MobileNetV2_DY and DC mod-
ule. MobileNetV2_DY can enhance the expression ability by
using the Hsigmoid nonlinear activation function for better
feature extraction, and the DC module has a stronger extrac-
tion ability. Therefore, DYDCNet is more suitable for the
specific environment and feature distribution characteristics
of desert areas.

IV. DISCUSSION
Desert remote sensing images are usually characterized by
large sizes and irregular feature distributions. The DYDCNet
incorporates the MobileNetV2_DY module and DC mod-
ule and combines the backbone feature extraction network
with adaptive feature changes and deformable convolution
with different expansion rates. This addresses the issues
that feature classes with similar texture and color features
are easily confused, exhibit unclear boundaries, and have
complex geomorphic features that are difficult to identify.
DYDCNet is able to successfully recognize different typical
ground object types in the desert dataset and achieves an
average intersection and merger ratio (MIOU) and overall
accuracy (OA) of 87.75% and 91.35%, respectively, as well
as good training efficiency. Fig. 10 and Fig. 12 illustrate
that DYDCNet achieved good segmentation results in the
desert dataset, especially for small complex images such as
buildings and bare area. Compared with previous studies,
our approach achieves significant improvements in dealing
with feature recognition in desert regions. Previous studies
are often limited by the similarity of feature characteristics
and complex geomorphological structures, resulting in poor
recognition accuracy or blurred boundaries. In summary, the
DYDCNet model provides an effective solution in addressing
the challenges in remote sensing image analysis in desert
areas.

However, there are some limitations to our work. In our
experiments, we found that although the proposed method
has yielded significant progress in remote sensing image
segmentation in desert areas, it can still be further improved
and optimized. Therefore, in future research, we can focus
on data diversity, including more remote sensing data under
geographic locations, seasons, and light conditions. This is
conducive to the better adaptation of the model to image
segmentation in desert areas under different contexts and
improves the generalizability of the model, which will help
to better reveal the spatial patterns and ecosystems of desert
areas and provide support for environmental protection and
sustainable development.

V. CONCLUSION
Highly accurate segmentation results of remote sensing
images of desert areas with clear boundaries can help
us understand the current situation and ecological envi-
ronment of desert areas in a timely manner. Based on
the encoding-decoding structure and multiscale feature
extraction, we propose DYDCNet, a network that fuses
MobileNetV2_DY and multiscale deformable convolutional
DC, to further improve the effect of semantic segmentation
in desert areas. First, we used the circum-Tarim Basin area
in Xinjiang, China, as the study area. We used manual recog-
nition to outline the feature regions, to produce a semantic
segmentation dataset for typical ground objects in the desert
region. Then, we conducted experiments and a comparative
analysis of the results based on this dataset. The experimental
results show that DYDCNet achieves clearer classification
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boundaries by refining the boundary part of the features using
the encoding-decoding structure while ensuring segmenta-
tion efficiency. Multiscale feature extraction by deformable
convolution results in better segmentation performance in
multi-classification tasks. When the number of building cat-
egory samples is small and its features are easily confused
with other features, DYDCNet can better learn the specific
features of building samples and obtain more accurate feature
segmentation results. In summary, our improved network
is an effective automatic segmentation method for typical
ground objects in desert region images.
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