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ABSTRACT Machine learning is a powerful technology for extracting information from data of diverse
nature and origin. As its deployment increasingly depends on data from multiple entities, ensuring privacy
for these contributors becomes paramount for the integrity and fairness of machine learning endeavors.
This review looks into the recent advancements in secure multi-party computation (SMPC) for machine
learning, a pivotal technology championing data privacy. We evaluate these applications from various
aspects, including security models, requirements, system types, and service models, aligning with the IEEE’s
recommended practices for SMPC. Broadly, SMPC systems are divided into two categories: homomorphic-
based systems, which facilitate computations on encrypted data, ensuring data remains confidential, and
secret sharing-based systems, which disseminate data across parties in fragmented shares. Our literature
analysis highlights certain gaps, such as security requisites, streamlined information exchange, incentive
structures, data authenticity, and operational efficiency. Recognizing these challenges lead to envisioning a
holistic SMPC protocol tailored for machine learning applications.

INDEX TERMS Multi-party computation, machine learning, federated learning, data privacy, cryptography,
protocols.

I. INTRODUCTION
In an ever-advancing world increasingly saturated with data,
recent technological developments such as the Internet of
Things (IoT) [1], wireless sensor networks, cloud computing,
and machine learning provide different means and meth-
ods to extract and process these data. Moreover, sensitive
information can be derived from the analysis of data. Data
and data analysis applications, collectively referred to as
machine learning, have significantly impacted many different
fields and industries [2], [3], [4]. The processing of data
could involve multiple parties from different backgrounds for
collaborative purposes. Organizations and individuals might
want their data, method or model to remain private during
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collaborative operations. A recent 2022 report [5] from IBM
has revealed limited data security in many organisations. 83%
of these organisations had more than one data breach at an
average cost of USD 4.35 million - increasing by 12.7% since
2020. The increasing cost reflects the importance of data
security [6].

SecureMulti-Party Computation (SMPC) has gathered sig-
nificant interest as a technological solution to data privacy
and security concerns. SMPC represents a privacy-preserving
approach that allows multiple parties to jointly compute
the function of (y1, y2, . . . , yi) ← f (x1, x2, . . . , xi), where
each party Pi provides input xi and computes yi. Lever-
aging the power of cryptography, SMPC enables these
parties to collectively determine a result from their indi-
vidual input data without disclosing any of this data to the
other participants. Thus, each party’s data remains secure and
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private, yet ameaningful, collective computation can still take
place.

While several survey papers on Secure Multi-Party Com-
putation (SMPC) have been published [7], [8], [9], [10],
[11], only a subset offers a comprehensive overview of
the field. Furthermore, certain papers, such as [7] and [8],
fall short of providing a detailed analysis on each topic
encompassed within the domain of SMPC. The discussion
on future works is also limited. In [8], the authors focused
on a problem-oriented approach of analysis. The authors
reviewed and organized the research according to the dif-
ferent problems that can be solved by SMPC. Specifically,
the problemsmentioned are preserving privacy in cooperative
scientific computations, database query, intrusion detection,
data mining, geometric computation, statistical analysis, and
other common computing operations. Additionally, two-party
examples are provided for all of the problems. However, the
authors did not elaborate on the technical details of their
solutions. In [8], the authors describe their work as: ‘‘. . . a
guideline for the researchers in other computation areas to
think about their computation problem from this security
perspective...’’ Moreover, the discussion on future works is
also general and there are no specific recommendations for
the SMPC problems defined.

In a more recent work, [7], the authors provide a com-
prehensive overview on theoretical and practical aspects of
SMPC. They offer an overview of the fundamentals of SMPC
by defining threats and security requirements and models
such as semi-honest adversary model, malicious adversary
model, and cover adversary model. This work also outlines
the building blocks of SMPC, including garbled circuits,
oblivious transfer, and homomorphic encryption. It should be
noted, however, that while Secret Sharing, Zero-Knowledge
Proof, and Commitment Scheme are recognized as essential
components of SMPC, a thorough exploration of these topics
is absent. Additionally, the paper investigates machine learn-
ing applications within the framework of application-oriented
SMPC. Yet, the scope of the review is relatively limited,
with only four works undergoing detailed examination, and
technical discussions remain somewhat restricted. The sur-
vey concludes with a general discussion on potential future
developments [7].
The research contributions of Wang et al. [9] and Feng

and Yang [10] are noteworthy for their comprehensive review
on secure multi-party computation protocols and techniques.
Wang et al. [9] thoroughly discuss the classification of
adversaries within the context of SMPC, suggesting that
contemporary adversaries may be overestimated in their
capabilities. To this end, they introduce a more restrained
adversary model, one that is constrained by the prospective
benefits of the executed attacks. Considering the context of
rational parties, the paper introduces the concept of rational
SMPC. Additionally, with the lens of game theory, the paper
presents the works in rational secret sharing schemes, rational
multiple function calculation, and rational Byzantine proto-
col. This perspective offers an alternative interpretation of

SMPC where security measures need to account for strategic,
rational behavior as well as outright malicious acts.

In [10], a comprehensive review of the building block
technologies for SMPC is presented. The paper also includes
a section on privacy-preserving machine learning methods
and various protocols with different numbers of parties are
compared. However, homomorphic encryption is only viewed
as a helper method to secret sharing and garbled circuit-based
SMPC systems. Systems utilizing homomorphic encryption
as a major method to preserve security are not reviewed.
Moreover, systems related to federated learning are not con-
sidered in [10].

This survey paper aims to provide a study of SMPC
applications in the field of machine learning under IEEE rec-
ommended practice for secure multi-party computation [12].
The major contributions of this paper are:

1) Outline of machine learning service settings under the
IEEE recommended practice for secure multi-party
computation.

2) Analysis of recent homomorphic encryption-based
SMPC application for machine learning.

3) Overview of recent usage of secret sharing for machine
learning.

4) Identifying research gaps and future directions of
SMPC for machine learning.

The rest of this paper is organized into: Section II pro-
vides background information about SMPC. This includes
security models, security requirements, types of SMPC sys-
tems and building block technologies for machine learning
SMPC applications. Section IV is preliminary information
on machine learning, which includes the definition of user
models and knowledge of federated learning. Sections V
and VI analyze SMPC applications based on homomorphic
encryption and secret sharing, respectively. Challenges and
barriers of SMPC adoption and implementation guidelines
are discussed in sections VIII and IX. Section VII outlines the
potential security vulnerabilities of SMPC systems. SectionX
presents the limitations on the reviewed works followed by
Section XII, the conclusion.

II. SECURE MULTI-PARTY COMPUTATION (SMPC)
FUNDAMENTALS
This section delineates the fundamentals of SMPC systems,
emphasizing security models, pertinent requirements, and
core technologies which underpin these systems. The types
of SMPC systems that adhere to the specifications detailed
by the IEEE standard are highlighted. Each subsection pro-
vides a comprehensive exposition on the core components of
SMPC systems.

A. SECURITY MODELS AND REQUIREMENTS
Secure Multi-Party Computation (SMPC) protocols serve
to ensure the privacy and integrity of computations, which
involve multiple participants. These protocols are designed
to be robust against the intrusion of adversaries who aim
to breach the privacy of the participants or disrupt the
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TABLE 1. Adversary models [7], [9], [10], [12].

computation process. Consequently, security models play a
pivotal role in defining the capabilities and intentions of
potential adversaries.

Security models are often presented as adversary mod-
els, that define the behavior and potential threats posed by
different kinds of attackers [13]. These models act as the
primary foundation for developing security requirements that
are intended to protect the SMPC system against such attacks,
thereby preserving the privacy and ensuring the participation
of honest users.

As presented in Table 1, adversaries can largely be catego-
rized into three primary models [7], [9], [10], [12].

Semi-honest adversaries: These adversaries operate within
the confines of the established protocol, ensuring a consistent
execution of their roles. However, they will seize any oppor-
tunity to glean private information from other participants,
given the chance. This model also allows for the possibility
of collusion between corrupted parties to extract sensitive
information.

Malicious adversaries: This model represents a more
potent threat, as these adversaries are not constrained by the
protocol’s rules. They possess the capability to launching
arbitrary attacks aimed at disrupting or breaching the proto-
col, consequently creating a significant risk to the integrity
and privacy of the SMPC system.

Covert adversaries: Positioned as an intermediate model
between the semi-honest and malicious adversaries, covert
adversaries weigh the benefits and potential ramifications of
their actions before launching an attack. This typically results
in covert adversaries restricting themselves to less overt forms
of attacks. They are commonly found in commercial and
political settings, where the potential gain from a successful
attack is high, but so too are the consequences of being
caught.

The security requirements for an SMPC system are primar-
ily derived from these adversary models. They form the basis
of countermeasures designed to detect, prevent, and mitigate
potential attacks while ensuring the smooth and secure oper-
ation of the SMPC system.

Other than the adversary models, security can also be
described by the number of corrupted parties in a scenario.
The honest majority setting assumes that over half of the
participants are honest. On the other hand, the dishonest

majority setting assumes a scenario with greater or equal to
half of the total participants being corrupted [10], [12]. The
IEEE recommended practice for secure multi-party compu-
tation [12] further divides the honest majority setting into the
Q2 condition with less than half of the participants corrupted
and the Q3 condition with less than one-third of the partici-
pants corrupted.

B. SECURITY REQUIREMENTS BASED ON ADVERSARY
MODELS
In the context of the various adversary models, security
requirements for SMPC systems are designed to ensure the
integrity, confidentiality, and availability of data and compu-
tation processes. These requirements, tailored to combat the
threats posed by semi-honest, malicious, and covert adver-
saries, aim to foster a secure computation environment. Here,
we discuss these requirements with reference to each adver-
sary model.

Semi-honest: Security requirements for combating
semi-honest adversaries are mainly centered around pri-
vacy and correctness. The privacy requirement ensures that
each participant learns nothing more than their designated
output, limiting the amount of information semi-honest
adversaries can extract from the computation process. Cor-
rectness requires the protocol to produce a correct output as
long as honest participants are following the protocol, despite
any eavesdropping attempts by semi-honest adversaries.

Malicious: To protect against malicious adversaries, who
can deviate arbitrarily from the protocol, a more robust
set of security requirements is necessary. Beyond privacy
and correctness, security against malicious adversaries often
necessitates a security property called robustness. This prop-
erty ensures that the computation process can resist any
attempts by malicious adversaries to alter the outcome or
disrupt the computation. In addition, the requirement of veri-
fiability is often imposed, enabling the system to detect if an
adversary is deviating from the protocol and take appropriate
actions, such as terminating the computation or excluding the
adversary.

Covert: Security requirements against covert adversaries
need to strike a balance between deterring unauthorized
behavior and maintaining computational efficiency. One crit-
ical requirement is accountability, which ensures that any
deviation from the protocol by a covert adversary can be
detected with a high probability. If caught, proof of their
misbehavior can be used to penalize them, creating a deter-
rent for such actions. Also, a fairness requirement may be
included, ensuring that no participant can obtain their output
before others, discouraging covert adversaries from gaining
an unfair advantage.

These security requirements, when properly implemented,
can provide a strong defense against adversaries in SMPC
systems. They ensure the system can operate as expected,
while preserving the privacy, integrity, and availability of
the computation process and the associated data. How-
ever, achieving these security requirements often involves
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trade-offs in terms of computational and communication effi-
ciency, which are critical considerations in the design of
SMPC systems.

C. TYPES OF SMPC SYSTEMS AS PER THE IEEE STANDARD
Secure Multi-Party Computation (SMPC) systems are
defined by the IEEE standard [12] based on the level of
security provided, the number of participants, and the nature
of the computations involved. While there is a diverse range
of SMPC systems, we’ll focus on three common types in
this section: threshold SMPC, general SMPC, and special-
purpose SMPC.

Threshold SMPC: These systems allow a certain number
(threshold) of participants to jointly compute a function with-
out revealing their private inputs to each other. They provide
privacy, correctness, and a guarantee of output but may not
always meet fairness or independence of input requirements.
Threshold SMPC systems are often used in cryptographic
scenarios like key generation andmanagement where a subset
of participants is enough to perform the operation.

General SMPC: In contrast to threshold SMPC, general
SMPC systems allow any number of participants to jointly
compute a function, ensuring that no participant gains addi-
tional knowledge beyond their own input and the computed
output. The security requirements include privacy, correct-
ness, and potentially fairness and a guarantee of output. These
systems are versatile and widely applicable, including sce-
narios like private set intersection and distributed machine
learning.

Special-purpose SMPC: These systems are designed for
specific applications or computations. They offer privacy
and correctness but might vary in terms of other security
requirements based on the application they are designed for.
Examples include privacy-preserving data mining, secure
auctions, and voting systems.

As for the common security requirements, a framework
that ensures the correct functioning and security of SMPC
systems is provided:

Privacy: Ensures that each participant’s input is kept secret
from the other participants. Correctness: Guarantees that the
output of the computation is correct provided that the honest
participants follow the protocol.

Fairness: Assures that no participant can get their output
before others do. Guarantee of Output: Certifies that if the
protocol starts, an output will be generated despite the behav-
ior of adversarial participants.

Independence of Inputs: Emphasizes the importance of
each participant’s ability to independently select their inputs
without interference from other participants. Probability to
Catch Deviation: An optional requirement that encourages
honest participants to identify those that violate the protocol.

Each of these security requirements plays a vital role in
defining the behavior of an SMPC system. They ensure the
system operates accurately and securely, providing robust
defenses against potential adversaries while preserving the
privacy and integrity of the computation process and the

TABLE 2. Security requirements [7], [12].

associated data. However, the trade-offs between these
requirements, such as computational efficiency, communi-
cation overhead, and the level of provided security, are
critical considerations when designing and implementing
SMPC systems.

The common security requirements of SMPC systems are
privacy, correctness, fairness, and guarantee of output [7],
[12]. In [7], independence of input is included to emphasize
the importance of private input information. In the IEEE
recommended practice [12], the probability to catch devi-
ation is a requirement that asks honest parties to identify
corrupted parties that violate the protocol. This requirement
is an optional requirement along with fairness and guarantee
of output in IEEE recommended practice [7]. Privacy and
correctness are instead fundamental requirements. Table 2
presents the definitions of the security requirements.

D. DEPLOYMENT MODES OF SMPC SYSTEMS
There are many ways to classify SMPC systems. This paper
follows the IEEE standards [12], which classifies SMPC sys-
tems into three recommended deployment modes (Table 3).
SMPC systems are classified according to the distribution
or location of computation tasks. The first type of SMPC
system is server-side systems. Server-side systems include
data providers with limited computational resources. Each of
the data providers shares its data with multiple non-colluding
servers for further computation. Server-side systems are
assumed to operate by the secret sharing scheme (described
in the next subsection) to preserve data privacy when sharing
data with computation servers. Peer-to-peer SMPC is the sec-
ond type of SMPC system. Every data provider has enough
computation resources for peer-to-peer systems to follow the
SMPC protocols. Computation is organized by each of the
data providers. Thus, the roles of each data provider could be
homogeneous. Finally, in server-aided SMPC systems, data
providers perform most of the computations. However, part
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TABLE 3. Types of SMPC systems [12].

of the computations (e.g., generation of Beaver triples,1 and
weight aggregation in federated learning) is offloaded to a
third-party server.

E. BUILDING BLOCKS
In [7], oblivious transfer, garbled circuit, commitment
scheme, zero-knowledge proof, homomorphic encryption
and secret sharing are considered as the building block tech-
nologies of SMPC. The works reviewed in this paper are
mainly based on homomorphic encryption and secret sharing.
Therefore, only information on homomorphic encryption and
secret sharing is provided in this section.

1) HOMOMORPHIC ENCRYPTION
Homomorphic encryption is a transformative cryptographic
method that facilitates computations on encrypted data
without requiring decryption [14]. This concept forms the
backbone of many Secure Multi-Party Computation (SMPC)
systems as it allows data to be manipulated in its encrypted
state, hence preserving privacy throughout the computational
process.

In this encryption paradigm, computations performed on
ciphertexts yield a result that, once decrypted, matches the
result of the same operations conducted on the plaintext.
In other words, the encrypted output of a computation is
essentially the encryption of the plaintext output. As such,
both the input and output remain shielded by encryption
throughout the process.

The extent of computation allowed on encrypted data
gives rise to three distinct types of homomorphic encryption
schemes [14]:

Partially Homomorphic Encryption (PHE): Supports
unlimited repetitions of a single operation (either addition or
multiplication) on ciphertexts.

Somewhat Homomorphic Encryption (SHE): Allows a
limited number of both addition andmultiplication operations
on ciphertexts.

1A Beaver triple is a set of three random values (a, b, c) such that the
relationship a * b = c holds. These values are generated by a trusted third
party and then distributed to the parties involved in the computation.

Fully Homomorphic Encryption (FHE): Enables an unlim-
ited number of both addition and multiplication operations on
ciphertexts.

Among various homomorphic encryption schemes, this
paper discusses the ElGamal and Paillier schemes.

ELGAMAL ENCRYPTION SCHEME
ElGamal encryption scheme, introduced by Taher Elgamal in
1984, is a partially homomorphic encryption scheme that sup-
ports unlimited multiplicative operations on ciphertexts [14],
[15]. ElGamal encryption consists of three fundamental
steps: key generation, encryption, and decryption. A unique
aspect of the ElGamal scheme is the concept of proxy
re-encryption [16], which enables the transformation of
ciphertext encrypted under one key to ciphertext encrypted
under a different key, using a proxy key. Key generation starts
with a cyclic group G of order n created with a generator g.
A random integer x is chosen to compute h = gx . In the
end, the public key is (G, n, g, h) and the private key is x.
During encryption, a message m is encrypted starting by
choosing a random number y from 1, 2, . . . , n − 1. Then a
pair of ciphertext is produced as (c1, c2) = (gy,mhy). The
ciphertext pair can be decrypted by the private key x and the
original message can be obtained bym = c2c

−x
1 . ElGamal is a

partially homomorphic encryption scheme that only supports
multiplicative operations on encrypted pairs. A variant of
the ElGamal scheme is proxy re-encryption [16]. It allows the
conversion of an encrypted message to the ciphertext of the
same message encrypted by another key. This conversion
requires a proxy function and a proxy key generated from
the secret keys before and after the conversion. Therefore,
this algorithm assumes no collusion between the users and
the proxy converter to preserve privacy. As a variant of the
ElGamal scheme, proxy re-encryption also allows homomor-
phic multiplicative operations [16].

PAILLIER CRYPTOSYSTEM
The Paillier cryptosystem, proposed by Pascal Paillier
in 1999, is another notable homomorphic encryption
scheme [17]. Unlike ElGamal, the Paillier scheme is homo-
morphic over addition, meaning it allows for unlimited addi-
tions of ciphertexts. Similar to ElGamal, Paillier encryption
also consists of key generation, encryption, and decryption
steps. Large primes p and q are selected to fulfill the con-
dition that pq and (p − 1)(q − 1) are coprime. Calculate
n = pq and the least common multiple of (p − 1) and
(q − 1) as λ. Then, select a random integer g from multi-
plicative subgroup of integers modulo n2 and ensure n and
L(gλ (mod n2)) are coprime where the function L(u) =
(u − 1)/n. (n, g) are the resulting public key and (p, q) are
the private key. The message m is encrypted to obtain the
ciphertext c = gmrn (mod n2). Decryption is performed by
m = L(cλ (mod n2))/L(gλ (mod n2)) (mod n). The Pail-
lier scheme is homomorphic over additive and multiplicative
operations [14].
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In both schemes, the combination of these steps ensures
that the data remains encrypted at all times, preserving
privacy and preventing unauthorized access to sensitive infor-
mation. Despite their distinct computational capabilities,
both ElGamal and Paillier cryptosystems contribute signif-
icantly to maintaining privacy in multi-party computation
environments.

2) HOMOMORPHIC PROXY RE-ENCRYPTION (HPRE)
With the advancement of cloud technologies and machine
learning, data privacy has become an increasingly significant
concern. Homomorphic Proxy Re-Encryption that combines
the features of a homomorphic encryption scheme and proxy
re-encryption scheme, offer a solution for this challenge [18],
[19].

3) SECRET SHARING
Secret sharing is a crucial cryptographic technique employed
in SMPC systems, enabling a secret to be divided amongst
a group of parties in such a way that only specific subsets
or a sufficient number of parties can reconstruct the orig-
inal secret [20]. The most commonly used secret sharing
methodologies in machine learning applications of SMPC are
additive, Shamir’s, and replicated secret sharing.

Additive secret sharing is a relatively straightforward tech-
nique [10]. In this approach, a secret x is shared among n
parties by randomly assigning the first n − 1 shares from a
finite field F , having a field size of p [21]. The final share
is then calculated as sn = (x −

∑n−1
i=1 si) (mod p). The

original secret can be reconstructed if all shares are available:
x = (

∑n
i=1 si) (mod p).

Shamir’s secret sharing, proposed by Adi Shamir, adds
a threshold concept to secret sharing [20]. Here, only a
threshold number t of n shares is needed to reconstruct the
secret. The process involves creating a polynomial f of degree
k = t − 1 where f (0) = x. The remaining coefficients of f
are randomly selected from a finite field F , and each secret
share si is computed as f (ai), with ai ∈ F . To reconstruct the
original secret, Lagrange basis polynomials are computed and
polynomial interpolation is used to reconstruct f and extract
the original secret x from its constant portion.

Replicated secret sharing follows a slightly different
approach, where a secret x is additively split such that∑

Q∈T sQ = x [22]. Here, T comprises all possible combina-
tions of t − 1 parties, assuming a t or more than t parties can
reconstruct the secret. Each party receives secret shares sQ,
where the party is not a member of Q. Every party has

(n−1
t−1

)
shares from

( n
t−1

)
shares. The secret reconstruction process

is similar to additive sharing [22]. Parties of a minimum
number t need to collude to complete the full set of shares
and calculate the sum.

As previously discussed, additive, Shamir’s, and replicated
secret sharing each have their particular methods of distribut-
ing and reconstructing secrets. While additive operations
on shared secrets can be computed locally with the shares

stored at each party, multiplicative operations often require
additional computation [10]. Mathematical illustrations are
provided in Appendix A.
A commonly used method to handle multiplication of

shared secrets is through the use of Beaver triples. Beaver
triples are precomputed sets of shared secrets (a, b, c), where
a and b are random numbers, and c is the product of a
and b. These triples allow for the multiplication of two shared
secrets without any interaction between the parties, which
significantly improves efficiency and privacy. However, the
generation and distribution of Beaver triples can be costly in
terms of computation and communication [23].

For Shamir’s secret sharing, the Damgård and Nielsen
protocol can be used for multiplicative operations [24]. More
complex operations, such as oblivious selection, division,
logarithm, inverse square root, and uniformly random factor
number, are detailed in [25].
The methodologies discussed here are fundamental for

enabling secure computation in SMPC systems, ensuring the
privacy of data while enabling collaborative computation.

III. COMPARISON OF DIFFERENT SMPC APPROACHES
AND OTHER PRIVACY-PRESERVING METHODS
This section provides a comparative analysis of different
SMPC techniques as well as alternate privacy preserva-
tion strategies such as differential privacy, emphasizing their
strengths, limitations, and use-cases.

A. SMPC VIA HOMOMORPHIC ENCRYPTION
Homomorphic encryption-based SMPC offers a unique capa-
bility of enabling computations directly on encrypted data,
thereby providing high-level protection against data breaches,
as sensitive data remains encrypted throughout the com-
putational process. However, fully implementing homomor-
phic encryption comes at a significant computational cost,
often requiring substantial time and computational resources.
Hence, it may not be the most viable option for scenar-
ios demanding real-time or near-real-time computational
requirements [14].

B. SMPC THROUGH SECRET SHARING
Secret sharing-based SMPC presents an alternative to homo-
morphic encryption. It involves dividing data into multiple
shares that are distributed among different parties. Compu-
tation is executed on these shares, ensuring the initial data
remains concealed. This method offers superior computa-
tional speeds in contrast to homomorphic encryption but
demands increased communication bandwidth due to the
necessity of share exchanges between parties [26]. It also
calls for enhanced coordination and mutual trust among par-
ticipating parties.

C. DIFFERENTIAL PRIVACY: AN ALTERNATE
PRIVACY-PRESERVING METHOD
Although not an SMPC method, differential privacy repre-
sents another strategy for privacy-preserving computations.
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It introduces statistical noise to data, thereby safeguarding
individual privacy. This technique permits aggregate statis-
tical analyses without violating the privacy of individual data
points. While differential privacy offers solid mathematical
assurances of privacy and is often more efficient than SMPC
methods, it inherently introduces a level of uncertainty into
the results due to the added noise. Additionally, it does not
provide the same level of security for individual data points
as SMPC methods [27], [28], [29].

IV. MACHINE LEARNING BACKGROUND
Machine learning is a technology that extracts patterns from
data, providing the basis for predictions and decision mak-
ing [30]. There are primarily three types of machine learning
methods: supervised learning, unsupervised learning, and
reinforcement learning. While reinforcement learning is a
vital part of the machine learning ecosystem, it hasn’t been
extensively incorporated into SMPC. Therefore, this paper
will focus on supervised and unsupervised learning as they
pertain to SMPC systems.

Supervised learning involves models that learn from
labeled training data. Each input instance in the dataset comes
with the corresponding output label, allowing the model
to learn to predict outputs for given inputs [31]. Popular
algorithms in supervised learning, such as linear regression,
decision trees, and support vector machines, find various
applications in the context of SMPC, including predicting
customer behavior, credit scoring, and medical diagnosis.

Unsupervised learning uses unlabeled data, and the model
learns the inherent structure of the data through techniques
like clustering or dimensionality reduction. The derived clus-
ters or features often need further interpretation to provide
meaningful insights [32]. Common algorithms in unsuper-
vised learning, such as k-means clustering and principal
component analysis, are used in applications like market seg-
mentation, anomaly detection, and recommendation systems.

Reinforcement learning is a method where an agent learns
to make decisions by interacting with an environment and
receiving rewards or punishments [33]. Due to the complexity
and large amounts of computation required, as well as privacy
concerns related to the iterative and interactive nature of the
learning process, it is not yet widely used in SMPC.

A. USER MODEL
Machine Learning as a Service (MLaaS) refers to a range
of services that offer machine learning tools as part of cloud
computing services. These include data preprocessing, model
training, visualization, and prediction [10].

In an MLaaS framework, according to [34], there are three
major roles: the data gatherer, the learner, and the predictor.
The data gatherer is responsible for collecting, preprocessing,
and sending data for further processing. The learner uses this
data to train the model, and the predictor uses the trained
model to provide predictions or inferences based on new data
queries. The MLaaS framework can be utilized in an SMPC

TABLE 4. IEEE defined roles in an SMPC system [12].

setting, where these roles are performed in a distributed man-
ner across multiple parties, ensuring privacy and reducing
computational load on individual parties.

Applications of MLaaS in SMPC include collaborative
learning, where multiple entities combine their data to train
a common model while preserving the privacy of individ-
ual data, and inference services where a provider uses a
pre-trained model to provide predictions based on input data
from customers.

The roles and service styles of traditional machine learning
services are transformed when considering SMPC services,
enhancing data and model security. IEEE-defined roles in an
SMPC system (Table 4) are distributed according to relevant
services (Table 5). There are three primary service models.

1) Online Training: A customer sends a training dataset
to cloud computing providers to offload computation.
The trained model is returned to the customer. In an
SMPC setting, both the training dataset and the model’s
weights are considered private data of the customer or
data provider.

2) Online Inference: This service model involves a cus-
tomer sending a query to a model provider, who
then returns the inference result using their model.
It’s a common model for health monitoring applica-
tions [35]. The privacy of the customer’s query data,
which might contain sensitive health information, must
be ensured. Equally, the model used by the provider
should be kept private.

3) Multi-party Training: In this model, multiple parties
each possess a private dataset. The result of this collab-
orative effort is a shared machine learning model that
has been trained on all parties’ combined data. Here, the
privacy of each party’s local datasetsmust be preserved.

A variant of the multi-party training model is federated
learning. In this scenario, each party trains a local model on
their dataset. The local model, along with the dataset, must
be kept private to prevent unauthorized extraction of the local
training dataset through model inversion attacks [36]. The
distinction between online training and multi-party training
lies in the different goals of the data providers. In online
training, the data provider aims to offload computation to
external servers, while in multi-party training, data providers
also strive for higher model accuracy by utilizing private
datasets from other data providers.
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TABLE 5. Machine learning service models in SMPC roles.

B. FEDERATED LEARNING
Federated Learning (FL) is a machine learning paradigm that
was introduced to address privacy and data locality issues
that arise during the training of machine learning models. The
concept was proposed by Google in 2016 [37] as a solution
to train machine learning models across multiple decentral-
ized devices or servers holding local data samples, without
exchanging their data [38], [39], [40]. In FL, the goal is to
train a globally accurate model by aggregating locally trained
models from participants, ensuring all data remains local.
Nevertheless, vulnerabilities in the cloud server or between
participants may jeopardize the security of this process. There
are three types of federated learning: horizontal federated
learning, vertical federated learning, and federated transfer
learning [38], [41], [42]. SMPC can significantly enhance
the privacy and security aspects of these types of federated
learning.

Horizontal Federated Learning: This federated learning
approach applies when datasets from different parties have
the same features but different samples [43]. Parties collab-
oratively decide on a unified model structure. A collective
model is then built by merging locally trained models
from each participant. This approach facilitates data par-
allelism, where multiple instances of the identical model
are trained on distinct portions of the training dataset [39].
In this setting, SMPC provides secure aggregation meth-
ods that protect the privacy of each party’s local model.
These techniques ensure that model aggregation is performed
securely, thus preserving the privacy of each participant’s
contributions.

Vertical Federated Learning: In vertical federated learn-
ing, participants may have data entries from similar sample
spaces, but the features of these samples differ [44]. This
scenario allows for an aggregated description of a data entry
with different features collected frommultiple parties. A sup-
porting operation for vertical federated learning, designed
to identify intersections in the sample space, is private set
intersection [7]. Through this operation, parties can disclose
the intersection of their sets with other parties’ sets without
revealing additional data. SMPC can support this operation

by providing the necessary cryptographic techniques to carry
out the private set intersection [45].
Federated Transfer Learning: In a federated transfer learn-

ing setting, both feature and sample spaces have minimal
overlaps among the parties. Therefore, transfer learning tech-
niques are employed in this context to leverage the limited
commonality between datasets [38]. This approach allows
parties to improve their local models by learning from
datasets that are not identical but are relevant or share some
similarities. SMPC can mitigate the risk of model inversion
or membership inference attacks in this setting, which is
possible when parties exchange their local models for transfer
learning. Furthermore, SMPC can maintain the privacy of
local models and data during the learning process.

SMPC provides a set of cryptographic techniques that
can enhance the security and privacy aspects of federated
learning. These techniques ensure that local models and data
remain private, mitigating potential threats and risks while
enabling parties to collaboratively train a machine learning
model [46], [47], [48].

V. HOMOMORPHIC ENCRYPTION-BASED SMPC IN
MACHINE LEARNING
Secure Multi-Party Computation (SMPC) applications in
machine learning can be primarily categorized into two
secure data sharing methods: homomorphic encryption and
secret sharing. This section examines SMPC applications
based on homomorphic encryption.

Homomorphic encryption is a form of encryption tech-
nique allowing computations to be carried out on encrypted
data, or ciphertexts. when the computed result is decrypted,
it aligns perfectly with the outcome of the same operations
executed on the original, unencrypted data (plaintext) [49].
In such scenarios, sensitive data often needs to be dissemi-
nated among various stakeholders. Homomorphic encryption
ensures that while computations can be performed on this
data, its actual content remains concealed, thereby safeguard-
ing user privacy and data confidentiality [14].

Recent research has leveraged homomorphic encryption
for secure model aggregation in federated learning. Federated
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learning involves training machine learning models on
numerous decentralized devices, keeping the training data
localized [50], [51], [52], [53]. This collaborative approach
allows multiple parties to jointly train models without expos-
ing their training data, proving beneficial for industries
handling sensitive data such as healthcare or finance. How-
ever, challenges remain, primarily related to computation
offloading and security against collusion.

To tackle these challenges, solutions have been proposed
involving server-aided protocols, proxy re-encryption, and
the integration of blockchain with federated learning. For
instance, in [50], a server-aided protocol based on the ElGa-
mal encryption scheme is developed to facilitate model
weight sharing in horizontal federated learning. An extension
of this work deploys proxy re-encryption to enable training
on Convolutional Neural Networks (CNNs) - a class of deep
learning models most commonly applied to analyzing visual
imagery [52]. However, these solutions also bring their own
challenges, such as potentially high computational cost and
susceptibility to collusion.

Moreover, some studies attempt to offload the compu-
tational burden from data providers through server-based
training on encrypted data [54], [55]. This involves training
Artificial Neural Networks (ANNs) and autoencoders using
data encrypted by the Paillier scheme - a partially homo-
morphic encryption system. The challenge lies in executing
complex operations such as division and exponentiation on
encrypted data, integral to compute certain machine learning
activation functions. To simplify the computation require-
ment on encrypted data, functional encryption is introduced -
an advanced cryptographic technique where decryption keys
enable the decryption of specific functions of the data rather
than the data itself [55].

Despite the progress in leveraging homomorphic encryp-
tion for SMPC in machine learning, the field still faces chal-
lenges, as fundamental security requirements often conflict
with computation offloading. Looking forward, exploring
new cryptographic techniques, machine learning models, and
computing paradigms that can balance these competing needs
will be pivotal. Furthermore, benchmarking homomorphic
encryption against other secure data sharing techniques such
as secret sharing will help understand its relative merits and
demerits in different application scenarios.

VI. SECRET SHARING-BASED SMPC IN MACHINE
LEARNING
Table 7 highlights recent advancements in machine learning
where Secure Multi-Party Computation (SMPC) is utilized
through secret sharing. Secret sharing is amethod of distribut-
ing parts of confidential data to multiple parties to preserve
privacy.

The pioneering works employing secret sharing primarily
focused on delivering online inference services. For instance,
the authors of [56] demonstrated a Sharemind-based addi-
tive sharing approach in a case study concerning maritime
cargo consolidation. Amachine learning model was designed

utilizing an open distance table among all feasible ports,
effectively reducing the search time. Confidentiality was
maintained by secretly sharing the source and destination
ports.

In another work [57], basic functionalities such as com-
parison, equality, bit decomposition, and truncation were
implemented in the ring Z2k , enabling online inference. The
study proposed a two-party scenario consisting of a client,
with a data entry, and a server, equipped with a decision
tree or Support Vector Machine (SVM) model. Furthermore,
they incorporated active checks to guard against potential
malicious server activities.

An application in the domain of edge computingwas show-
cased in [64], where coded computation was utilized to lower
the computational requirements for running SMPC on edge
servers. The system ensured the protection of data collected
from end devices during specific computation tasks dictated
by a head node. Computation with shared data was performed
on multiple edge servers, with the final results reconstructed
at the head node.

A multitude of secret sharing-based federated learning
applications have been demonstrated in recent research [46],
[58], [60]. In studies [46] and [60], an innovative approach
was undertaken to alleviate communication and computation
burdens for shared model weights in peer-to-peer configura-
tions. Rather than disseminating multiple shares to all peers,
a select group of peers is nominated to aggregate the model
using data shares [60], a method that leads to a reduction
in the number and size of messages, as well as the overall
execution time.

Researchers in [46] went a step further by curbing the com-
munication cost of secret sharing to a level akin to non-SMPC
systems. The technique they proposed involves sharing only
the initial layer weights of the neural network in two phases.
During the first phase, every participant disperses a share of
the weights to all other peers, followed by each participant
calculating a sum of the received shares. In the second phase,
the sums calculated in the initial stage are transferred to a
server for computation of the sum and averaged weights. The
weights following the first model layer are aggregated in plain
text on the server.

Apart from the notable applications in model aggregation,
secret sharing also offers a unique application in private
set intersection computations, essential for vertical feder-
ated learning. The authors in [58] implemented Shamir’s
secret sharing scheme to compute the private set intersection,
effectively simplifying complex private set interactions to
manageable AND operations on bit-vectors.

These applications underline the potential of federated
learning in scenarios where multiple parties contribute data
for training. An interesting use case can be found in [59]
where secret sharing is used for natural language process-
ing tasks involving multiple input data sources from various
parties. Utilizing a seq2seq model built on Long Short-Term
Memory (LSTM), which is known to all parties, the system
safeguards the raw input data from each individual source,
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TABLE 6. Homomorphic encryption-based SMPC.

TABLE 7. Secret sharing-based SMPC for machine learning.

highlighting the wide array of applications secret sharing can
have in preserving data privacy.

Recent advancements have centered on server-side SMPC
that are capable of online training, online inference, and
multi-party training [25], [61], [62], [65], [66]. For instance,
CrypTen strives to facilitate multi-party training using
PyTorch’s Application Programming Interface (API) [61],
offering parallel computation support for communication
protocol computations via graphic processing units. While
Beaver triples’ generation depends on a trusted third party,
this party can be substituted with solutions incorporating
homomorphic encryption or oblivious transfer. CrypTen has
implemented a variety of secret shared operations including
addition, multiplication, dot product, outer product, matrix

product, and convolution based on additive secret sharing.
Binary secret sharing safeguards comparators. Moreover,
CrypTen approximates exponential, logarithm, and reciprocal
functions via limit approximation, Householder iterations,
and Newton-Raphson iterations respectively. These approx-
imations serve as the foundation for the private computation
of machine learning activation functions.

Building on CrypTen, a three-party system, CryptGPU, has
been proposed [62]. It employs a two-out-of-three replicated
sharing scheme. With a focus on the private computation of
Convolutional Neural Networks (CNNs), the authors of [65]
approximate division and square root operations in the batch
normalization layer through multiple rounds of addition
and multiplication. They employ regression, Taylor series,
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Chebyshev polynomial approximation, Lagrange polynomial
approximation, and parametric polynomials tomodel the acti-
vation functions.

In another approach to compute activation functions,
an SMPC system consisting of three computation nodes is
employed in [66]. One node generates Beaver triples for
secure multiplication and computes non-linear element-wise
functions, such as sigmoid and hyperbolic tangent activation
functions. A common sequence between the two computing
nodes is used to randomly permute elements within shared
inputs and the results of these activation functions are com-
puted on the third node following reconstruction.

The last work reviewed that satisfies all service models on
server-side systems is [25]. The study underscores quantizing
neural networks to boost computational speed and mini-
mize communication. The authors propose an exponential
algorithm aimed at adding support to negative values while
separately computing the integer and fraction parts. This
work is grounded in MP-SPDZ, which implements various
protocols for operations under a malicious adversary model.

In addition to machine learning’s training and inference
operations, an SMPC system dedicated to multi-party feature
selection has been proposed [63]. This proposition outlines a
scenario where multiple data providers share their data with
either three or four computing nodes for the purpose of fea-
ture selection. To provide a refined dataset for model training
at the computing providers, the Gini scores of the features
are computed. To safeguard against malicious adversaries,
information-theoretic message authentication codes are used
to validate the correctness of secret values.

VII. SECURITY VULNERABILITIES OF SMPC SYSTEMS
Since one major application of SMPC in machine learning is
to enhance the security of federated learning, some security
vulnerabilities of federated learning are common in SMPC
systems. On the other hand, as SMPC systems are distributed
systems operating on heterogeneous devices [7], it shares
some of the vulnerabilities of IoT systems [6]. Table 8
presents security vulnerabilities or attacks on SMPC systems.

The common attacks from the field of federated learn-
ing are data poisoning, malicious server, man-in-the-middle
attacks, collusion attacks, and dropout of clients [67]. Data
poisoning in federated learning refers to the corruption of
training data by the clients or data providers. In the context
of SMPC, this corruption can be extended to any shared
data or computation results from the data providers by the
computing providers. In [25], [57], and [63], this vulnerability
is mitigated using information-theoretic message authenti-
cation codes [68]. A special case of data poisoning is a
malicious server. This attack aims at server-aided SMPCs.
The compromised centralized aiding server could corrupt the
computation results. The authors of [50] and [52] adopted
the bilinear aggregate signature to ensure the server does not
modify computation results. However, their clients operate
with a shared set of public and private keys, and the server
could obtain the keys throughman-in-the-middle attacks. The

server could intercept the shared keys and modify the data
in later stages. For other types of SMPCs, any party could
launch a man-in-the-middle attack to intercept communica-
tions between participants and modify the shared data or
computation results. Collusion attacks are another method for
the server to obtain the clients’ shared keys. A compromised
client, in the interest of the server, can directly share the keys
with the server. For other types of SMPCs, collusion between
multiple computing providers up to a threshold allows the
reconstruction of shared data in secret sharing-based SMPC
systems. Therefore, the choice of nodes is important, espe-
cially in dishonest majority settings. The final attack inspired
by federated learning vulnerabilities is the dropout of clients.
Participating parties could drop out for justifiable reasons,
such as power outages or network issues. However, this
unstable behavior should be recorded and reflected during
the node selection process of future SMPC operations. The
incorporation of blockchain could be a solution [53].
The attack identified by the IEEE standards is side-

channel attack [12]. Side-channel attacks involve gathering
or modifying information from a participating device through
physical access. One mitigation method is to adopt other
secure computation methods such as trusted execution envi-
ronments [69]. Other countermeasures [70] were discussed
at code, operation system, and architectural levels. Common
network-related attacks are denial of service attacks, eaves-
dropping, and endpoint security [6]. A denial of service attack
could be initiated by any internal or external parties to disrupt
the service of an SMPC participating node. Eavesdropping is
similar to man-in-the-middle attacks, but eavesdropping only
listens to the communication without the attempt of modifica-
tion. Finally, endpoint security concerns malicious behaviors
from physically compromised devices. The authors of [71]
have studied the detection of such compromised devices.

The IEEE standards did not directly identify many vulner-
abilities of SMPC systems. However, the IEEE standards pro-
vided a list of recommended security requirements targeting
network-related attacks [12]. For example, adopting secure
transmission protocols such as Transport Layer Security
(TLS) protects the system against man-in-the-middle attacks
and eavesdropping. Network attacks and counter-attacks are
a widely discussed topic. It has already been studied in other
literature [6].

VIII. CHALLENGES AND BARRIERS IN SMPC ADOPTION
While SMPC holds significant potential for privacy-
preserving computations, several challenges remain in its
widespread adoption for real-world applications.

A. COMPUTATIONAL OVERHEAD
SMPC introduces significant computational overhead com-
pared to traditional machine learning due to the complex
cryptographic operations, like homomorphic encryption and
secret sharing, needed for data privacy. This results in
extended training and inference duration, especially for
real-time applications such as autonomous driving or medical
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TABLE 8. Common Attacks on SMPC systems [6], [12], [67].

diagnostics [72], [73]. Additionally, the increased compu-
tational demands can lead to higher costs, particularly in
cloud-based settings, due to prolonged resource usage [74].

B. LEGAL AND REGULATORY CONCERNS
One of the primary challenges pertains to legal and regulatory
issues. Different jurisdictions have different laws and regu-
lations regarding data privacy, and navigating these can be
complex. For instance, while SMPC allows for computation
on encrypted data, it’s possible that some jurisdictions might
still consider this to be data processing under their laws,
potentially requiring consent or other legal bases. Addition-
ally, international data transfer regulations could also come
into play in multi-party computations involving parties from
different countries [75]. Therefore, organizations wishing to
utilize SMPC must ensure that they are compliant with all
relevant laws and regulations.

C. USABILITY CHALLENGES
Another challenge is the usability of SMPC solutions.
Implementing SMPC requires significant technical exper-
tise and understanding of cryptographic principles, which
can be a barrier for many organizations. Moreover, it can
be challenging to integrate SMPC solutions with existing
IT infrastructure and workflows, further complicating its
adoption. There is a need for more user-friendly and easily
integrable SMPC solutions to lower the entry barrier for non-
expert users [75].

D. MODEL AND DATA CONSTRAINTS
SMPC offers a promising avenue for privacy-preserving
computations, but its application in machine learning is not
universal. Certain machine learning models and datasets pose
challenges when integrated with SMPC. For instance, deep
learning models with multiple layers and a large number
of parameters can be computationally intensive for SMPC

due to the cryptographic operations involved [72]. Similarly,
algorithms that rely heavily on floating-point arithmetic or
iterative processes might not be optimal for SMPC, as these
operations can be inefficient and slow when encrypted. Addi-
tionally, datasets with high dimensions or those requiring
frequent updates can further complicate the integration with
SMPC, leading to increased computational overhead and
potential inaccuracies [73].

These challenges represent significant hurdles to the
widespread adoption of SMPC. However, with ongoing
research and development efforts, as well as increasing
awareness and understanding of privacy issues, it is antici-
pated that these challenges will be progressively addressed,
paving the way for broader usage of SMPC in real-world
applications.

IX. IMPLEMENTATION GUIDELINES FOR SMPC IN
MACHINE LEARNING SYSTEMS
When implementing SMPC in machine learning systems,
there are a few guidelines and best practices that can be
helpful in achieving a successful deployment.

A. CHOOSE THE RIGHT SMPC METHOD
One of the first considerations when implementing SMPC
is to choose the right method. Homomorphic encryption and
secret sharing-based SMPC each have their own strengths and
weaknesses, as discussed previously. Therefore, the choice
of method should depend on the specific requirements of the
use case, such as the level of privacy required, the amount
of computational resources available, and the nature of the
machine learning tasks to be performed.

B. CONSIDER EFFICIENCY
Efficiency is a crucial consideration when implementing
SMPC. As mentioned earlier, homomorphic encryption can
be computationally intensive, while secret sharing-based
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methods often require significant communication bandwidth.
Therefore, steps should be taken to optimize the efficiency
of the SMPC process, such as using efficient cryptographic
protocols, minimizing the amount of data to be processed,
and leveraging hardware accelerators or parallel computing
techniques when possible.

C. INCORPORATE SECURITY MEASURES
It is essential to incorporate appropriate security measures
when implementing SMPC. This includes measures such as
user authentication, authorization, and auditing, as recom-
mended by the IEEE. Ensuring secure storage and transmis-
sion of data, using multiple protocol encryption schemes, and
verifying the SMPC version are also important for maintain-
ing system security.

D. IMPLEMENT VERIFICATION MECHANISMS
To ensure the integrity of data and the correctness of com-
putation results, it’s important to have a verification plan in
place. This can involve techniques like bilinear signatures
for federated learning, morphism-based methods for compu-
tation verification, and even blockchain technology for data
integrity verification.

E. ADDRESS USABILITY ISSUES
Usability is another crucial considerationwhen implementing
SMPC. Efforts should be made to make SMPC solutions as
user-friendly and easily integrable as possible to reduce the
barriers to adoption. Providing clear documentation, offering
user support, and building user-friendly interfaces can all
contribute to improving the usability of SMPC solutions.

F. STAY INFORMED ABOUT LEGAL AND REGULATORY
ISSUES
It is crucial to stay informed about relevant legal and regula-
tory issues. Given the potential complexity of navigating data
privacy laws and regulations, it may be beneficial to seek legal
advice when implementing SMPC, particularly in scenarios
involving international data transfers or sensitive data types.

X. LIMITATIONS AND FUTURE WORK
This section presents a forward-looking view of SMPC appli-
cations in machine learning, highlighting current limitations
and potential future work related to IEEE recommended secu-
rity requirements, large-scale machine learning, information
exchange, incentive schemes, data verification, and opera-
tional efficiency of SMPC.

A. ADDITIONAL IEEE RECOMMENDED SECURITY
REQUIREMENTS
Existing literature on SMPC applications often overlooks cer-
tain security requirements recommended by the IEEE [12].
These include authentication, which guarantees user identity
management; authorization, controlling user access privi-
leges; and auditing, a systematic process that logs significant
system activities. Future work could look into integrating

these security measures within the SMPC system to further
protect against malicious access.

B. LIMITATIONS OF SMPC FOR LARGE-SCALE MACHINE
LEARNING
The adoption of SMPC for large-scale machine learning is
limited by the general overheads of SMPC, and the nature
of the encryption methods. Large-scale machine learning
operations are bounded by large data volumes and complex
model structures [76]. In the SMPC environment, large num-
ber of participants should also be a feature of large-scale
machine learning operations. The increases in data volume,
model complexity, and participants significantly increase the
computational and communication overheads of SMPC sys-
tems [77] and thus limit system scalability.

This article explored the application of homomorphic
encryption and secret sharing to share data between different
parties. Floating-point computation under these encryption
methods could affect the precision of the computation results.
Most secret sharing methods operate in a finite field, which
limits the machine learning data and model representation to
integers. One of the method is to perform model quantization
to convert the values to integers [25]. Other methods [78]
explore floating-point representation by multiple variables.
Inevitably, both types of methods involve rounding up the
values, which sacrifices precision. Homomorphic encryption
deal with floating-points by fixed-point arithmetic, approx-
imate arithmetic, and custom encodings [79]. Fixed-point
arithmetic has rounding errors, approximate arithmetic suf-
fers from approximation errors, and custom encodings from
encoding and further operations.

C. PREPROCESSING AND INFORMATION EXCHANGE FOR
SMPC
While a significant amount of work focuses on the com-
putational aspects of machine learning operations within
SMPC, less attention has been paid to necessary preprocess-
ing steps such as data cleaning, normalization, and feature
selection [80]. The development of secure implementations
of these preprocessing operations is a promising area for
future research [72]. Additionally, the exchange of dataset
and computation requirements prior to SMPC computation
is crucial. Blockchain technology offers a potential solution
for facilitating this information exchange [81], yet compre-
hensive blockchain systems that coordinate a wide range of
SMPC operations are currently underexplored.

D. INCENTIVE MECHANISMS IN SMPC SYSTEMS
The establishment of a cohesive group of computation con-
tributors for SMPC, especially in frameworks leveraging
secret sharing, involve a meticulous evaluation of the incen-
tives driving participant engagement [72]. While existing
literature provides some insights, it often lacks comprehen-
sive strategies tailored for this context [73]. A well-structured
incentive mechanism should not only recognize and reward
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the computational contributions but also acknowledge the
value brought in by data providers. Such a holistic approach
can potentially amplify participation rates in SMPC endeav-
ors. Furthermore, ensuring the authenticity and accuracy
of the data and computational outputs is paramount, war-
ranting robust verification protocols within these incentive
structures [80].

E. VERIFICATION METHODS FOR DATA INTEGRITY AND
COMPUTATION RESULTS
As the input and output data in SMPC are encrypted, veri-
fying data integrity and computation results requires further
operations. There are some methods to ensure the integrity of
the shared data. In [50] and [52], the authors used bilinear sig-
natures to ensure the aggregated weights in federated learning
are unchanged. There is also a low-overhead morphism-
based method to verify computation results [82]. There is
also the use of information-theoretic message authentication
codes [68]. However, these methods do not ensure the data
is computed through the desired process. On the other hand,
in the application of machine learning, it is more important
to verify the data quality of the original data from the data
providers. Methods such as differential privacy only verify
the possession of a dataset with certain quality [83]. However,
it does not ensure this data quality during operation as all data
are encrypted. Data quality verification during operation on
private datasets should be developed for SMPC applications
in machine learning.

F. OPTIMIZING OPERATIONAL EFFICIENCY IN SMPC
SYSTEMS
The current landscape of SMPC implementations often
grapples with substantial computational and communica-
tive overheads, rendering them suboptimal for environments
with limited resources or applications demanding real-time
responses [72]. A pivotal direction for upcoming research
would be the refinement of SMPC’s operational efficiency.
This could be achieved by minimizing the communication
rounds or curtailing the data volume exchanged during SMPC
processes [73].
Incorporating differential privacymethodologies can strike

a balance between ensuring rigorous privacy safeguards and
facilitating more streamlined computations. Moreover, the
advent of quantum computing, with its potential to revo-
lutionize computational paradigms, presents a captivating
prospect for augmenting SMPC’s capabilities. However, it’s
imperative to note that quantum-enhanced SMPC is still in its
formative phase and warrants extensive exploration.

G. EVALUATING COMPUTATION AND COMMUNICATION
EFFICIENCY OF SMPC
Homomorphic encryption and secret sharing, the two primary
SMPC techniques used in machine learning, each have inher-
ent computational and communication challenges. Future
work should aim to benchmark the computation and commu-
nication costs of these and other SMPC techniques, with a

focus on specific application scenarios. Such benchmarking
could illuminate the trade-offs between security, privacy, and
efficiency, and help in identifying the most suitable SMPC
method for a given machine learning application [9].

In a broader perspective, the continued evolution of
SMPC applications in machine learning will require focused
research efforts in several areas, including security measures,
preprocessing and information exchange protocols, incentive
schemes, operational efficiency, and the evaluation of com-
putational and communication costs. These efforts will be
crucial for bridging the gap between the theoretical poten-
tial of SMPC and its practical utility in real-world machine
learning applications.

XI. FUTURE TRENDS IN SMPC FOR MACHINE LEARNING
Secure Multi-party Computation (SMPC) holds significant
potential for driving the future of privacy-preserving machine
learning.While current efforts focus on overcoming technical
challenges and expanding applications, the field is expected
to evolve towards more complex, efficient, and holistic solu-
tions in the long term. Here, we speculate on some of the
potential trends that might shape the future of SMPC in
machine learning.

A. INTEGRATION WITH OTHER PRIVACY-PRESERVING
TECHNIQUES
As the field matures, we might see more integration of SMPC
with other privacy-preserving techniques like Differential
Privacy (DP) and Federated Learning (FL). Combining these
techniques could lead to more robust solutions that offer a
better trade-off between privacy, utility, and performance. For
instance, SMPC can be used to securely aggregate model
updates in FL while DP can be applied to provide statistical
guarantees of privacy.

B. STANDARDIZATION AND INTEROPERABILITY
There will likely be a push towards standardization and
interoperability in SMPC protocols and implementations.
Standardization can streamline the design and deployment
of SMPC solutions, foster collaboration, and promote the
adoption of best practices. Meanwhile, interoperability can
facilitate the integration of different SMPC systems and allow
for more flexible and scalable privacy-preserving computa-
tions.

C. HARDWARE-SPECIFIC OPTIMIZATIONS
Future research might explore hardware-specific optimiza-
tions for SMPC. By leveraging specialized hardware such
as Graphical Processing Units (GPUs), Tensor Processing
Units (TPUs), or even quantum processors, we might achieve
significant improvements in the computation and communi-
cation efficiency of SMPC operations.

D. AUTOMATED AND ADAPTIVE SMPC SYSTEMS
The development of automated and adaptive SMPC sys-
tems could be another major trend. These systems could
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automatically select the most appropriate SMPC method
based on the specific requirements and constraints of a given
task. They might also adapt to changes in the computational
environment, data characteristics, or privacy requirements to
maintain optimal performance and security.

E. LEGAL AND ETHICAL CONSIDERATIONS
As SMPC becomes more widely adopted, there will likely be
increased scrutiny of the legal and ethical implications of its
use. This could lead to the development of new regulations,
guidelines, and ethical frameworks for SMPC in machine
learning, with a particular emphasis on ensuring fairness,
transparency, and accountability.

The future of SMPC in machine learning is likely to
be exciting and dynamic, marked by continual innovation,
collaboration, and evolution. As we continue to push the
boundaries of what is possible, SMPC has the potential to
become an indispensable tool for enabling privacy-preserving
machine learning in a wide range of applications.

XII. CONCLUSION
Secure Multi-party Computation (SMPC) continues to gain
traction inmachine learning, offering novel ways to safeguard
data privacy during computations. Through a review of var-
ious studies, this paper affirms the efficacy and versatility
of both homomorphic encryption-based and secret sharing-
based SMPC methods across different machine learning
tasks–ranging from model training and inference to feature
selection and private set intersection.

Nonetheless, present SMPC implementations confront
several constraints, primarily around the significant com-
putational resources and communication bandwidth require-
ments. Additionally, there is a distinct lack of standardized
security measures and practices, alongside an inadequacy of
robust methods for verifying data integrity and computation
results. Current incentive structureswithin SMPC systems are
far from comprehensive, often neglecting key elements such
as data quality and sustained participation.

Despite these obstacles, the promise and potential of
SMPC in machine learning remain intact. Future research
is poised to address these limitations by refining crypto-
graphic techniques and computation strategies for enhanced
efficiency, standardizing security measures, and introducing
more robust incentive and verification mechanisms. With
such advancements on the horizon, SMPC is slated to play
an even more critical role in propelling secure, privacy-
preserving machine learning applications.

APPENDIX A
MATHEMATICAL ILLUSTRATION OF SECRET SHARING
METHODS
A. ADDITIVE SECRET SHARING
In Additive Secret Sharing, a secret is divided into shares, and
each share is generated by adding a random value to a specific
portion of the secret. The shares are distributed among the

parties, and the secret can only be reconstructed by combining
a sufficient number of shares.

Here is a simplified example of Additive Secret Sharing for
three parties. Suppose we want to share a secret s:

1) Random values x, y, and z are generated by the dealer
(the one who shares the secret).

2) The dealer computes three shares as follows:
• The share for Party 1 is s1 = s+ x.
• The share for Party 2 is s2 = s+ y.
• The share for Party 3 is s3 = s+ z.

3) Each party now holds one share, which contains a
portion of the secret s plus a random value.

4) To reconstruct the secret, any subset of parties with
a sufficient number of shares can add their shares
together:
• If Party 1 and Party 2 collaborate, they can compute
s as s1 + s2 = (s+ x)+ (s+ y) = 2s+ x + y.

• Similarly, Party 2 and Party 3 can compute s as s2+
s3 = (s+y)+(s+z) = 2s+y+z. Party 1 and Party
3 can compute s as s1 + s3 = (s + x) + (s + z) =
2s+ x + z.

5) The result of any of these computations is 2s plus the
sum of the random values (x + y, y + z, or x + z).
By subtracting the sumof the randomvalues, the parties
can obtain the original secret s.

In practice, these computations are performed modulo a
prime number to ensure that the secret remains secure and
the operations are reversible. Additionally, techniques such
as Shamir’s Secret Sharing can be used to extend the scheme
to work with more than three parties and achieve the desired
threshold for secret reconstruction.

B. SHAMIR’S SECRET SHARING
Shamir’s Secret Sharing scheme is a type of polynomial
secret sharing. The basic concept of Shamir’s Secret Sharing
is that k points are sufficient to define a polynomial of degree
(k−1). In a (k, n) threshold scheme, a secret s is shared among
n participants such that any k of these shares can reconstruct
the secret, but k − 1 or fewer shares reveal no information
about the secret.

Let’s illustrate this with a concrete example: Suppose you
want to share a secret s among n participants such that at least
k participants are needed to reconstruct the secret.
1) Choose a (k−1) degree polynomial f (x) = a0+a1x+

a2x2 + . . .+ ak−1xk−1, where a0 = s (the secret), and
a1, . . . , ak−1 are randomly chosen coefficients.

2) Generate the shares of the secret by evaluating the
polynomial at n distinct points x1, . . . , xn. Each share
si is a pair (xi, f (xi)).

3) Any group of k or more participants can reconstruct
the polynomial (and thus the secret) using their shares
and the method of polynomial interpolation (such as
Lagrange interpolation).

4) If there are fewer than k shares, the secret s can’t be
reconstructed because there are infinitely many degree
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(k − 1) polynomials that pass through any given set of
(k − 1) or fewer points.

Remember to state clearly that the operations are usually
performed in a finite field to ensure the security of the scheme
and avoid real-number computation issues.

C. REPLICATED SECRET SHARING
In Replicated Secret Sharing, a secret is shared among n
parties in such a way that any subset of size less than half
of the parties learns nothing about the secret, but any subset
of size greater than or equal to half can recover the secret.

Here is a simplified example of Replicated Secret Sharing
for three parties. Suppose we want to share a secret s:
1) First, two random values x and y are generated by the

dealer (the one who shares the secret).
2) The dealer then computes three shares as follows:

• The share for Party 1 is (x, y).
• The share for Party 2 is (x, s− y).
• The share for Party 3 is (s− x, y).

3) Each party now has two values, one from the set
x, s− x and one from y, s− y. Note that any single
share reveals nothing about the secret, since it could
be created by any pair of random values x and y.

4) Any two parties can reconstruct the secret by adding
their shares together:
• Party 1 and Party 2 can compute s by adding
their shares component-wise: (x, y)+ (x, s− y) =
(2x, s) = (s, s).

• Similarly, Party 2 and Party 3 can compute s as
(x, s− y)+ (s− x, y) = (s, s).

• Party 1 and Party 3 can compute s as (x, y)+
(s− x, y) = (s, s).

5) The result is (s, s). The first component is discarded,
and the second component s is the reconstructed secret.

Again, in practice, these operations are performed in a finite
field to ensure the security of the scheme and avoid issues
with real number computations.

APPENDIX B
OPEN-SOURCE SOFTWARE AND TOOLS FOR SMPC
There’s a growing assortment of open-source software,
libraries, and tools available for the implementation of Secure
Multi-party Computation (SMPC). Developers now have a
variety of options tailored to their specific needs. Below,
we highlight several noteworthy options currently accessible.

1) PAILLIER CRYPTOSYSTEM [17]
This encryption scheme is widely recognized for its partial
homomorphic properties. It enables the encryption of integers
and performs addition operations on the encrypted integers,
gaining popularity due to its simplicity and efficiency.

2) CRYPTEN [84]
Originating from Facebook’s AI Research lab (FAIR),
CrypTen aspires to provide a secure platform for machine

learning using PyTorch. Specifically engineered for multi-
party computation, CrypTen has implemented a number of
useful machine learning functions.

3) TF ENCRYPTED [85]
TF Encrypted, an extension of TensorFlow, offers a set
of tools specifically designed for encrypted machine learn-
ing. It accommodates secure computation primitives such
as secret sharing and multi-party computation, along with
privacy-preserving training and inference.

4) MP-SPDZ [86]
MP-SPDZ is a comprehensive framework for multi-party
computation. It supports a variety of secret sharing types and
fully homomorphic encryption. Equipped with implementa-
tions of numerous cryptographic protocols, it can be utilized
for a vast array of applications.

5) HELIB [87]
HElib is a software library dedicated to implementing homo-
morphic encryption, allowing for arithmetic operations to
be performed on encrypted data. This feature makes it an
advantageous tool for privacy-preserving computations.

6) MICROSOFT SEAL [88]
The Simple Encrypted Arithmetic Library (SEAL) by
Microsoft is a user-friendly library designed for performing
homomorphic encryption. It offers a high-level API for exe-
cuting arithmetic operations on encrypted data.

7) OBLIV-C [89], [90]
Obliv-C enhances the C programming language, providing
benefits for developers well-versed in C. While it’s designed
for distributed systems, it may not be as feature-rich as some
other SMPC libraries.

8) SHAREMIND [91], [92]
Sharemind supports data processing between multiple parties
while ensuring privacy. Although it might lack flexibility for
non-standard computations, it makes up for it with a strong
focus on secure computation principles.

9) SCALE-MAMBA [93], [94]
SCALE-MAMBA stands out with its flexibility and user-
friendliness, supporting a wide array of computations. Addi-
tionally, it offers integration capabilities with other languages
such as C++ and Python, thus enhancing its versatility.

10) JIFF [95]
Uniquely focused on web-based SMPC, JIFF serves as an
excellent choice for developers creating secure web applica-
tions. It may, however, not be as suitable for non-web use
cases.
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11) ABY [96], [97]
ABY concentrates on efficient two-party computation, lever-
aging a mix of cryptographic protocols. While it’s an
excellent fit for two-party computations, it might not be the
optimal choice for multi-party scenarios.

12) FRESCO [98]
Fresco is a Java-based SMPC framework, an appealing choice
for developers with a background in Java. It provides a
high-level language for creating complex protocols from sim-
ple building blocks.
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