
Received 1 March 2024, accepted 9 April 2024, date of publication 12 April 2024, date of current version 22 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3388292

Bayesian Inference of Elevation to Reduce Large
Interpolation Errors in 2-d Road Features
Draped Over Digital Elevation Models
CRISPIN H. V. COOPER
Department of Computer Science and Informatics, Cardiff University, CF24 4AG Cardiff, U.K.

e-mail: cooperch@cardiff.ac.uk

ABSTRACT The usual approach for adding elevation data to two dimensional (2-d) vector features in a
Geographic Information System (GIS) is to infer heights from a Digital Elevation Model (DEM), either
through traditional (naïve) interpolation, Kriging, or deep learning. Where the terrain contains steep slopes,
however, any of these approaches can generate large errors due to the limited resolution of the DEM, and
model error in the DEM concept itself. In the case of road networks, these errors have a severe and nonlinear
effect on cycling route planners and transport models, especially those based on open elevation data. This
paper introduces a Bayesian maximum likelihood approach to correcting interpolated heights, by combining
a DEM with prior expectations of feature gradient. The topological network defined by feature shapes is
used as auxiliary information. Correcting the output of naïve interpolation shows reduction of mean errors,
and reduced overprediction of elevation change outliers, compared to both naïve interpolation and Kriging.

INDEX TERMS Bayesian, digital elevation model, drape, geographic information system, interpolation,
Kriging, network, road.

I. INTRODUCTION
Geographic Information System (GIS) practitioners often
need to add elevation (height) data to a 2-dimensional
vector dataset. Typically this is conducted with a naïve
interpolation [1], also known in software implementations
as a ‘‘drape’’ operation, e.g. Grass v.drape [2] or ESRI
Interpolate Shape [3]. These tools perform bilinear or
bicubic interpolation between adjacent sample points in an
underlying digital elevation model (DEM) to assign suitable
elevations to vertices on the 2-d dataset, which in most cases
will lie in between points of different heights on the DEM.

A bilinear interpolation, for example, can be obtained from
the one-dimensional linear interpolation

zx = f (x, x0, x1, z0, z1) = z0 +
x − x0
x1 − x0

(z1 − z0) (1)

where f (x, x0, x1, z0, z1) is the linear interpolation function
giving zx the height at coordinate x, from x0, x1, z0, z1 the

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

coordinates and heights for the nearest known values to
either side of x. Given any terrain tile in a 2-d recti-
linear DEM, in which any row of measurements is one-
dimensional, the interpolated height zx,y can be obtained
by first performing one-dimensional interpolations at points
(x, y0) and (x, y1), for the nearest rows of samples at
y0, y1: zx,y0 = f (x, x0, x1, zx0,y0, zx1,y0) and zx,y1 =

f (x, x0, x1, zx0,y1, zx1,y1) respectively. These outputs are then
interpolated again to give zx,y = f (y, y0, y1, zx,y0, zx,y1).
Given more adjacent points, a cubic or higher-order interpo-
lation can be used; alternatively, Kriging [4] or DEM super-
resolution [5].

Any of these approaches, however, are prone to large errors
in the case where large changes in elevation occur between
adjacent sample points in the DEM, as with the DEM alone,
we lack information on exactly where the elevation change
occurs relative to the draped feature. A stark example is found
in the case of a road near to the top of a cliff (Fig. 1, top).
Terrain data is inevitably of limited resolution, ranging from
30-50m sampling intervals for open data [6], [7], [8] to 5m for
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FIGURE 1. Illustration of errors in the naïve drape operation. [TOP] Sampling error causes a
road (orange dotted line) to be interpolated partway down the cliff height, even though the
road’s ground truth is level. In principle this can be resolved with sufficient sample density.
[BOTTOM] Model error causes another road (green dotted line) to be interpreted as climbing
the full height of the cliff, even though the road’s ground truth is level. No DEM can resolve
this model error, regardless of resolution.

commonly used commercial data [9]. Even the higher of these
resolutions has a horizontal inter-sample distance exceeding
the width of some roads. We are unlikely to estimate the
correct centreline height of a road adjoining the top, or base of
a cliff, based on low resolutionDEMdata alone - regardless of
the technique used - as the elevation change across the DEM
tile reflects the presence of a cliff which the road does not
cross. This can be classed as a sampling error, because the
DEM sample points are not representative of the underlying
terrain. Fig. 3(a) shows an example of this error in draped
imagery, for a road following the top of an 80 metre cliff.

Furthermore, the DEM abstraction itself assumes only a
single height for each (x, y) coordinate, and is thus subject
to model mis-specification error in the case of overhangs
(Fig. 1, bottom). In these cases, the true terrain has multiple
elevations for the same (x, y) coordinates, so no DEM can be
interpreted correctly regardless of the sampling interval. The
maximum error is limited only by the height of the cliff itself.

This paper presents and tests a method for correcting such
errors, in the absence of more accurate survey data or further
sources of information. The outputs of the naïve drape process
are corrected by incorporating priors on vector feature
elevation, into a Bayesian likelihood model (Fig. 2). The
priors are quantified by our pre-existing expectations for the
distributions of its gradients, and the random and sampling
errors in the drape process. As each gradient is affected
by two vertex elevations, and most vertex elevations affect
multiple gradients, likelihood information must propagate
through the topological network of the vector features. The

vector topology itself can thus be considered as auxiliary data.
Tests are conducted to determine the resulting error reduction
in the naïve drape output, and outputs are also compared to
Kriging.

The focus is on networks of road centrelines, however,
the approach should be similarly applicable to GPS traces
of people and vehicles following terrain, whether or not on
a road (e.g. those recorded from fitness tracker apps). Other
datasets will also exist inwhich it is possible to quantify priors
on the shape of interpolated features and hence use a similar
method.

The remainder of this paper is structured as follows.
Section I-A elaborates on the current motivation for this
study. Section II describes related work. Section III describes
the methods used, both for the model itself and for a
test against validation data. Section IV shows test results,
including the sensitivity to choice of prior. Section V
concludes with recommendations on suitable choice of priors
for future users of the model.

A. MOTIVATION
The issue of interpolation errors applies both to Triangular
Irregular Networks (TINs) derived through survey, and to
interpolated rectilinear DEMs derived from TINs, which
are more typically available to the end user of the data.
Although such problems can be resolved through more
detailed surveying techniques, in practice many users are
constrained to use off-the-shelf DEM data.
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FIGURE 2. Illustration of the usual naïve drape and proposed Bayesian improvement. Terrain is illustrated as an
interpolated surface, though in reality the ground truth would be approximated by a lower resolution DEM.

In the case of road networks, such errors are a problem
of current practical importance in the drive to expand
traditional transport models to better simulate ‘active travel’,
i.e. walking [10], [11], [12], [13], [14], [15], [16], [17]
and cycling [18], [19], [20], [21]. Both in transport models,
and also public route planners such as Google Maps and
CycleStreets, routes of active travel users are assumed to
minimize some definition of generalized cost. In the case
of transport models, some randomization / distribution over
similar routes may be applied, but the resulting routes
will all be approximations to the minimum cost route
nonetheless [22]. As steep roads substantially deter people
from walking and cycling otherwise short journeys, the
definition of generalized cost typically includes gradient
either directly, or in the computation of trip time [20],
[21]. However, this approach suffers from multiple sources
of nonlinearity. Firstly there is nonlinearity in computing
minimum cost routes: if a link which in reality forms part
of the minimum cost route is modelled with a cost which
substantially exceeds the ground truth, then it will no longer
be the minimum cost route in the model. The modelled route
will then be wrong, and modelled flows will be assigned
elsewhere. Secondly, cyclist speed is nonlinear with respect
to gradient; the equilibrium speed of a cyclist uphill shows
better (negative) fit to the gradient squared [18]. A similar
effect is likely to exist for the generalized cost perceived

by the cyclist. These factors combine to make cycling route
planners and transport models extremely sensitive to gradient
outliers. The link in Fig. 3(c) is a case in point. This is a
traffic-free section of a major route in the UK National Cycle
Network [23] which caused problems in cycle modelling [24]
due to errors in elevation from a naïve drape. The model
predicted that cyclists would instead use a busy and steep
trunk road. The height inaccuracies remain regardless of
whether a 5m resolution or 50m resolution model is used,
and the routing inaccuracies persist in spite of motor vehicle
traffic also serving as a deterrent to cyclists on the alternative
route. If such errors continue to escape detection, inaccurate
transport models could lead to real world consequences such
as (1) deterring people from travel by bicycle in cases where
route planners recommend bad routes; (2) underinvestment
in sustainable transport in areas where it is erroneously
deemed too inconvenient; (3) overinvestment in infrastructure
at inappropriate locations, or (4) errors in quantifying the
safety of some junctions if cyclist flows are different to what
is expected.

The importance of correctly modelling height change can
be seen in Fig. 3(b), the Cefn Coed viaduct near Merthyr
Tydfil. The town comprises several steep-sided valleys which
deter cycling. This local authority had the lowest levels of
cycling towork in the 2011 census of England andWales [25].
The Wales Active Travel Act mandates identification of
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FIGURE 3. (a) Incorrect draping in 3-d visualisation of a satellite photograph over a DEM in Google
Earth - a level road along a clifftop is displayed with major height changes. Although the current paper
deals with vectorized roads, not raster images, this image illustrates the cause of error (
 Google, 2021).
(b) Example of terrain in which accurate modelling of height in sustainable transport is crucial (
 Robin
Drayton, licensed under CC-BY-SA-2.0). (c) Level link traversing steep slope, with high potential for
incorrect elevation estimates. This is part of the National Cycle Network and causes problems in existing
transport models.

suitable cycling routes on an ongoing basis [26], a process
which is informed in part bymodelling. Routes thus identified
are prioritized for future investment.

II. RELATED WORK
A. ALTERNATIVE METHODS FOR SMOOTHING
LINEAR DATA
The slopes R package [27] aims to resolve elevation errors
in transport modelling by use of weighted mean of segment
gradients. It only interpolates polyline vertices and does not
consider what happens in between them. This in turn is based
on a similar method applied to rivers [28]. Although the
choice to ignore elevation between vertices may serve to
smooth interpolated elevations somewhat, the approach risks
over-smoothing, and also assumes that the interpolated height
at each vertex is accurate in the same way as the drape tools
already discussed [2], [3].
The usual approach to removing spurious variance in input

data to any model (geospatial or otherwise) is to apply some
form of outlier correction or smoothing. If we encode a prior
for the likely gradient between successive vertices of a linear
feature, then the sequence of true elevations along the feature
could be considered a Markov chain: each elevation depends
both on the true elevation of the previous vertex, and the
likelihood of the gradient implied by any change in elevation

between successive vertices (a physical model). For a single
polyline feature such as the GPS trace of a cyclist, elevation
data can therefore be smoothed using a Bayesian filter [29].
This considers elevations interpolated from the terrain model
as incoming measurements subject to error, and computes the
maximum a posteriori likelihood for the elevation of each
successive vertex. It thus corrects incoming measurements
based on our prior beliefs on what is likely based on previous
estimates and our physical model.

In the general case of a geographical feature, however,
we are not dealing with an ordered sequence of vertices
but a topological model in which each vertex can have
multiple neighbours, each of which influence our beliefs
about the true elevation of the vertex. This requires a different
estimation procedure. A further complication is that the
expected elevation error in a naïve drape of a road centreline
over terrain, will vary depending on the steepness of the
terrain. If we are to distinguish between genuine versus
spurious elevation changes, the smoothing process must
therefore be informed directly by the terrainmodel rather than
postprocessing a naïve drape. Fig. 4 illustrates how different
ground truths can lead to identical draped features - one
of which exhibits spurious height change due to the drape
process, while the other genuinely reflects the ground truth.
These identical draped features must be treated differently to
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FIGURE 4. Why smoothing the draped feature is insufficient: two
different ground truths give rise to two identical 3-d drapes of 2-d road
polylines, so a smoothing algorithm applied to the draped feature would
not be able to distinguish these situations. [LEFT] A level road follows a
contour of a steep slope. The limited resolution DEM does not capture the
precise slope contours, so the varying y coordinate of the 2-d feature
means that a naïvely interpolated elevation profile will appear to climb
and descend the low resolution DEM tile. [RIGHT] A road climbs and
descends a ridge. In this case the naïve interpolation of the 2-d vertices
on the DEM gives rise to an elevation profile which accurately reflects the
ground truth. All axis measurements in metres.

correct the errors, so we cannot simply smooth the draped
features.

B. ALTERNATIVE METHODS FOR INTERPOLATING
DIGITAL ELEVATION MODELS
Naïve interpolation is not the only option for inferring a
height from a DEM: Kriging, and DEM super-resolution
using deep learning, may also be used.

Kriging [4] estimates the value of a variable at an
unmeasured location, based on Maximum A Posteriori
(MAP) interpolation of nearby measurements. Many variants
exist with similar underlying principles. A variogram is
first estimated which describes spatial dependency in the
data as a function of expected difference in the output

variable Z at two different points p1, p2: E(|Z (p1)−Z (p2)|2).
Several alternative variogram models are available, typically
a function of the distance between p1 and p2. Estimators are
then derived for the unmeasured value of Z (p) at any point
p. Although not usually described as such, these estimators
can be understood in Bayesian terms as finding the maximum
posterior likelihood value of Z (p) from a number of known
neighbouring values Z (p1), . . . ,Z (pn) by combining priors
Pi(Z (p)|Z (pi), d(p, pi)) based on the variogram, and the
distance to each neighbouring point d(p, pi).
The proposed technique can in fact be viewed as related

to Kriging, albeit applied in the topological space of the
road network, not in the Euclidean space of the DEM.
Kriging has even been applied on networks before [30].
The difference is that in the current case, estimates of each
unmeasured value are informed by a physical model of prior
expectations on road gradient, and crucially, output estimates
are not independent: each is affected by estimation of its
neighbours (as determined by network topology) and priors
on the gradient between them (as determined by network
shape).

The other option for DEM interpolation is DEM
super-resolution through deep learning [31], [32], [33], [34].
A recent review of deep learning in DEM processing [5]
summarizes advantages of deep learning as improved
classification accuracy, autonomy and efficiency, and ability
to handle heterogeneous data; and the disadvantages as data
and resource requirements, dependence on representative
training data and interpretability. The proposed approach
differs in a number of ways. It aims only to determine
elevation of the vector features, rather than reconstruct
a complete DEM (this is essential in order to avoid the
model error illustrated in Figure 1). It makes use of the
road centreline network as auxiliary information: while
some super-resolution approaches [33] make use of gridded
auxiliary information, none make use of the information
contained in a topological network, so this is a unique
contribution of the current study. Finally, the parameters of
the likelihood model used in the current study are derived
analytically and hence interpretable [35] without need for
ongoing research in explainable AI [36].
Although the proposed technique is demonstrated as an

enhancement of naïve interpolation, it could also be applied
to the output of either Kriging, or deep learning approaches.
Such combinations are outside the scope of this study.
It should be noted that the Kriging results presented in this
study are not applying the proposed Bayesian correction to
the output of Kriging, but compare the proposed Bayesian
correction of naïve drape, to the results achieved using both
naïve drape, and ordinary Kriging, to interpolate the DEM.

III. METHODS
Themethod used is based onmaximum a posteriori likelihood
estimation. It is Bayesian in the sense that priors are used to
quantify our pre-existing belief in the expected distribution of
feature gradients and error terms, and then these beliefs are
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updated by the terrain and network data we see, to produce
an estimate of the true heights. Section III-A formalizes
the error model informally introduced in the introduction.
Section III-B focuses on the structure of the likelihood
definition used, while Section III-C explores choice of form
for the prior. Section III-D discusses implementation details,
and Section III-E the choice of parameters and methods for
validating the model.

A. ERROR MODEL
Equation (2) defines the normal GIS drape operation,
computing height zi for a vertex i with coordinates xi, yi
on a digital elevation model DEM. In the current study
INTERPOLATE is a bilinear interpolation function as used
in naïve drape [1], however without loss of generality we
can consider other forms of interpolation such as bicubic,
Kriging, or DEM super-resolution.

zdrapedi = INTERPOLATE(DEM, xi, yi) (2)

The true heights can be related to zdrapedi as follows:

ztruei = zdrapedi + ϵi (3)

where ϵi is composed of the following sources of error:
(1) errors arising from the measurement of the DEM;
(2) errors arising from measurement of horizontal positions
of the draped features; (3) sampling error, attributable to the
loss of information that occurs because the DEM does not
record the elevation of all points but only a sampled grid;
(4) model misspecification error inherent in the assumption
that elevation of a feature can always be correctly recovered
by draping a DEM (that assumption being violated in the case
of vertical or overhanging cliffs where the true terrain has
multiple elevations for the same x, y).
The current model attempts a better estimate of ztruei by

applying a vertical offset 1zi to z
draped
i :

zestimated
i = zdrapedi + 1zi (4)

Hutchinson [37] presents a simple model for the standard
deviation of sampling error when interpolating a DEM tile of
uniform gradient, related to themaximum change in elevation
across the tile 1ztile by assuming a point sampled at random
from the tile:

σz = 1ztile/
√
12 (5)

More recent research points at the possibility of developing
more sophisticatedmodels of sampling error σz by dispensing
with the assumption of a uniform DEM tile [38]. However,
noting that in the current model 1zi is intended to correct
for all four sources of error in any case, for simplicity
1zi is taken to be drawn from a normal distribution with
heteroscedastic variance from the Hutchinson sampling error
model. A homoscedastic measurement error σmeasurement

z is
also added:

1zi ∼ N (0, (
1

√
12

1ztilei σz′)2 + σmeasurement
z

2) (6)

where σz′ is an empirically determined scaling factor that
allows the model to be adapted to the task at hand, in this case
draping roads over terrain. In the current study it is assumed
that sampling errors will dominate, hence σmeasurement

z is set
to zero.

B. LIKELIHOOD MODEL
The unknown parameters 1zi in (4) are computed by
maximum a posteriori likelihood estimation based on the
input data x, y,ADJ,DEM. As the estimated maximum like-
lihood elevation of any vertex is dependent on the estimated
elevations of neighbouring vertices on any polylines it is part
of, with this dependency propagating through the network, all
1zi must be estimated simultaneously as 1z′:

1z′ = argmax1zL(1z|x, y,ADJ,DEM) (7)

In addition to the DEM, the posterior likelihood
L(1z|x, y,ADJ,DEM) is based on data consisting of a set
of 2-d polylines for which we wish to estimate elevation.
In practice these are represented as

• arrays of vertex coordinates x, y. The x, y pairs are
unique: even though an individual vertex may appear
on multiple different polylines, it appears only once in
these arrays which contain all point coordinates without
reference to their containing polylines.

• a vertex adjacencymatrixADJ indicating which vertices
are neighbours on at least one polyline. Note that
where polylines share vertices they are considered to be
connected in the network. This is reflected by the shared
vertices having additional neighbours in the adjacency
matrix.

The posterior likelihood function L of a particular value
of all vertex offset parameters 1z given the input data, is the
product of the likelihood of the resulting gradients (based on
our prior beliefs about gradients), and the prior likelihood of
the sampling and random errors that 1z would correct:

L(1z|x, y,ADJ,DEM)

= Lgradients(x, y, zdraped + 1z,ADJ)

× Loffset (1z|x, y,DEM) (8)

where Lgradients(x, y, zdraped + 1z,ADJ) is the likelihood of
the gradients g resulting from elevations z (specifically in this
case z = zdraped + 1z) between all adjacent points on the
road network data, given our prior beliefs about the gradients
a road network should have, encoded in the probability
density function of the grade distribution PDFG(g|σG, α) (the
distribution G is discussed in the following section III-C):

Lgradients(x, y, z,ADJ)

=

∏
adjacent

PDFG(abs(g(n1, n2))|σG, α)dn1,n2 (9)

where
∏

adjacent denotes the product over all adjacent
vertices n1, n2.ADJ(n1, n2) = 1, and g is the grade arising
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from z = zdraped + 1z,

g(n1, n2) = (zn2 − zn1 )/dn1,n2 (10)

with dn1,n2 being the horizontal distance between vertices
n1 and n2:

dn1,n2 =

√
(xn1 − xn2 )2 + (yn1 − yn2 )2 (11)

Note that gradient probability densities are weighted per
unit length of network as we require likelihood to be
unaffected by the modifiable unit problem. That is, we should
be indifferent to how many vertices, and with what spacing,
are used to digitize any given road feature. Length weighting
as applied in equation (9) achieves this by ensuring that for
any two line segments a, b of equal gradient g and lengths
la, lb, the combined likelihood of both line segments is the
same as that of a single segment ab of gradient g and length
a+ b:

∀a, b :

Lgradients(xa, ya, za,ADJa)Lgradients(xb, yb, zb,ADJb)

= Lgradients(xab, yab, zab,ADJab) (12)

Likewise, Loffset (1z|x, y,DEM) is the prior likelihood of
all offsets 1z together given the combined sampling, model
and interpolation error models:

Loffset (1z|x, y,DEM) =

∏
n

Loffset(zn|xn, yn,DEM) (13)

where Loffset(zn|xn, yn,DEM) is the likelihood of the offset
for a single vertex

Loffset(zn|xn, yn,DEM) = PDF1z(1zn|σz′, 1ztilen )dn (14)

based on the probability density PDF1z(1zn|σz′, 1ztilen ) of
the distribution of the error term 1z defined above in (6), and
weighted by dn, the total length of road segments closest on
the network to vertex n (equivalent to half of the total length of
road segments attached to vertex n, as each segment is shared
between two vertices):

dn =
1
2

∑
i.ADJ(n,i)=1

dn,i (15)

For vertices on bridges and tunnels (henceforth brunels)
the height is not estimated by an offset from the DEM, but
rather is estimated directly, allowing them to ‘decouple’ from
the terrain. In the case of a brunel consisting of a single link,
heights could be computed by linear interpolation between its
endpoints (the endpoints being estimated in turn according
to the likelihood defined in (8)). However this does not
address the general case in which junctions between roads
may occur on/in a brunel, nor does it capture the likelihood
of the brunel’s gradient. The unknown brunel vertex heights
are therefore estimated directly, by adding special cases to
the above definitions: in (8), zdraped = 0, and in (14),
Loffset(zn|xn, yn,DEM) = 1 for decoupled vertices only. This
allows decoupled vertices to be estimated simultaneously
with normal vertices, but for these vertices we interpret 1z

to represent the absolute elevation and maximise only the
likelihood of gradients. The offset from the DEM is not
directly considered but the DEM will influence these points
indirectly via the estimates of1zwhere brunels join ordinary
links at their endpoints.

Finally the model allows for fixed features for which the
height is set directly by input data. In these cases nothing
is estimated for the fixed vertex itself, but gradients and
angles of segments joining to fixed vertices are included in
likelihood computations for their neighbours.

C. FORM OF PRIORS
Real world distribution of road gradients is close to
exponential, however, the exponential prior on gradients has
undesirable properties if the aim is to smooth elevation data.
Here we consider these properties. An exact exponential
grade prior defined per unit length of road network,
is indifferent to the shape of a slope profile, provided the
slope is conservative - that is, for a road that eventually rises
by a given height h then all slope profiles that eventually
rise to h are equally likely, so long as they never lose height
(Fig. 5). Conversely, for a prior with downward curving log
likelihood (in contrast to the ‘straight line’ log likelihood
of the exponential distribution), uniform slopes are preferred
(Fig. 6).
As discontinuity in interpolated slopes is potentially

undesirable (particularly so in the case of cyclingmodels), the
prior distribution for gradesG is thus designed to give control
over both steepness of slopes, and uniformity of slopes,
by parameterizing the space between an exponential and
half-normal distribution (with scale parameter σG defining
the mean steepness of roads):

G ∼

{
Exp(σG), if α = 0
N1/2(σG), if α = 1

(16)

where α specifies the mixture of distributions, with α =

0 giving exponential, and α = 1 giving half normal.
Interpolation for any 0 ≤ α ≤ 1 is achieved efficiently in
computing log probability density for slope grade x as

log(PDFG(x)) = k −
1 − α

σG
x −

α

πσ 2
G

x2 (17)

(with normalizing constant k set to zero in practice). Note
that this prior is defined per unit length of road network
to eliminate dependency on the number of vertices used to
encode any given feature.

D. IMPLEMENTATION
The proposed approach uses local likelihood maximization,
conducted by minimization of the negative log likelihood
function using the L-BFGS-B algorithm [39]. The implemen-
tation used is part of Scipy [40]. L-BFGS-B runs much faster
if provided with the gradient of the function to be minimized
as well as the function itself, as it need not then use p samples
of the function to compute the gradient at each step, where

VOLUME 12, 2024 54377



C. H. V. Cooper: Bayesian Inference of Elevation to Reduce Large Interpolation Errors

FIGURE 5. If applying an exponential prior, the length weighted grade likelihood of any conservative slope is

(λe−λh/d )d (λe−λ H−h
D−d )D−d = λDe−λH , i.e. depends only on the total height gained and total distance (λ is inverse

scale of the exponential distribution, all other terms defined in figure).

FIGURE 6. Without loss of generality, consider two slopes covering unit horizontal distance, each divided
into two segments as shown. The total likelihood for the non-uniform (red) slope is the geometric mean of
the priors of its component parts, hence the arithmetic mean of log likelihoods. If the log prior has negative
curvature (unlike the exponential log prior which is linear), a uniform slope (green) is always deemed more
likely.

p is the number of parameters. To this end, differentiable
programming is used to define a negative log likelihood
gradient function. This tracks the operations performed
during computation of the function itself, then backtraces
them to compute the gradient using the chain rule. The
implementation used is from the PyTorch framework [41]
which, although initially developed for neural networks,
is capable of automatic differentiation tasks in general.

The steps of the implementation can therefore be summa-
rized as follows:

1) Insert extra vertices on polylines where they intersect
DEM cell boundaries

2) Break down polylines to individual vertices (each
classified as estimated or decoupled) and build network
adjacency matrix of vertices

3) Define parameter vector 1z for likelihood model,
which is interpreted as

a) offsets from draped elevation for ordinary ver-
tices, all initialized to 0

b) direct estimates of z for decoupled vertices, ini-
tialised to an inverse network distance weighted

mean of their respective naïvely draped brunel
endpoint elevations (see end of section III-D)

4) Perform naïve interpolation of DEM to obtain zdraped
for all ordinary vertices

5) Define function to be minimized f (params) as negative
posterior log likelihood as defined in Section III-B

6) Define gradient function f ′(params) using automatic
differentiation of f (enable gradient tracking on
params, call f (params) and backtrace)

7) Call L-BFGS-B minimizer to find optimal 1z which
minimizes f given f , f ′

8) Assign elevations of zdraped + 1z to all ordinary
vertices

9) Assign elevations of 1z to all decoupled vertices
10) Rebuild polylines from vertices and adjacency matrix

The question arises of how frequently, on the feature poly-
lines, we should sample an elevation from the interpolation
model. Within a single terrain tile, in most cases, smaller
sampling distances on the polyline will tend to produce
vertex elevations which are close to the linear interpolation
of elevations derived from larger sampling distances (moreso
under the influence of priors which encourage smooth
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FIGURE 7. Maps showing the four road networks of test study areas. Boundaries shown in top figure are UK local authorities (Office
for National Statistics licensed under the Open Government Licence v.3.0). Contains OS data 
 Crown copyright and database right
2021-2024.
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changes in elevation). As the polyline data model itself
implies straight line segments between vertices, the sampling
distance therefore makes little difference, provided the
following are sampled: (i) existing vertices in the polyline as
it may change direction; (ii) points where a polyline crosses
a DEM cell boundary, where it is possible that the DEM
gradient will exhibit a large change. The only exception to
this could be where DEM tiles deviate substantially from
being planar, in which case finer sampling distances could
better reflect the change in gradient within the tile. However
for the cases we are trying to correct, we cannot expect the
interior of a DEM tile to be well represented interpolation
anyway. The approach taken for sampling roads, therefore,
is only to add extra vertices to input features where they cross
cell boundaries in the DEM (unless a vertex already exists
within 1/100th the DEM resolution of the cell boundary).
DEM gradient computation is smoothed for vertices close to
cell boundaries, to ensure an average gradient of both cells is
used. Draped elevations are not smoothed.

The optimizer’s starting guess used for ordinary vertices
(1z = 0) corresponds to a naïve drape operation, so we can
guarantee that results will be at least as good as naïve drape.
To derive a starting guess for brunels, note that for any σG >

0 and 0 < α ≤ 1, the maximum likelihood elevation profile
of a brunel with two fixed endpoints corresponds to a linear
interpolation (straight line) between the endpoint elevations.
To accommodate decoupled junctions this is generalized to
> 2 endpoints using an inverse network distance weighted
mean of endpoint elevations (interpolated from terrain as
above with 1z = 0). In the general case this does not equate
to maximum likelihood but serves as a suitable initial guess.

E. CHOICE OF PARAMETERS AND VALIDATION
The prior scales and shapes σG, σZ ′, α of the Bayesian model
can be calibrated by comparing its output against known
good height data in e.g. a Bayesian Monte Carlo framework.
However, this approach is of little use for end users of the
model who don’t have access to sufficiently good height data.
Instead, this section reports tests of a range of the unitless
metaparameters σZ ′, α on four study areas with the aim of
finding values likely to be suited to general use. It is assumed
that mean slope used to determine the scale parameter σG
can be measured based on a simple drape of road network
data over terrain: although this draped data will by definition
include the elevation errors we aim to correct, these errors
are outliers which have little effect on the mean, so we can
estimate σG using uncorrected data.

To assess the accuracy of the model’s output it is
compared to elevation changes recorded on the Ordnance
Survey (OS) Mastermap Highways Network. The OS derive
such estimates by combining a drape of the road network
(ranging from 0.4 to 4.1m planimetric accuracy) over their
own detailed height content, for which the resolution is
unspecified, though assumed at least equal to their best
publicly released model which has 5m DEM resolution. The
OS also supplement this with additional height data where

TABLE 1. Performance characteristics for key optimizer runs.

deemed necessary e.g. for features which traverse hillsides.
Features also receive extra annotation where height data is
‘‘expected to be low quality’’ [42].

Test areas are shown in Figure 7. The primary area
is a small region of the Lower Wye Valley between
Monmouth and Chepstow, which due to its topography
contains numerous roads traversing steep hillsides likely
to generate problematic draped elevations. OS MasterMap
metadata shows that supplemental height data has been used
to compute elevations and none of these are designated
low quality, with all tested roads having 1.1m planimetric
accuracy or better. It is assumed that MasterMap elevation
changes for the test data are accurate for the purpose of testing
the Bayesian model, which uses as input the much lower
resolution OS Terrain 50 DEM [7]: the model is working with
terrain data of at least 10x lower resolution than the validation
data. The test network is extracted from OS MasterMap
Highways [42], and includes two bridges exceeding 50m
length which are marked for decoupling.

Three further study areas are included for validation; in
each case using data from the same sources. Cwmbran is
chosen as an urban hillside setting, in contrast to the primary
test area which is rural. The Taff valley is another steep
sided valley albeit with a dual carriageway running along its
length (in addition to local and residential streets); the dual
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FIGURE 8. Convergence of elevations on simulated test cases, showing a single road in each column (α = 0.5, σZ ′ = 0.25, σG = 2.66).
Iteration 0 (top row) is equivalent to a naïve drape of the terrain in each case. Iter = iteration; LL = log likelihood. Arrows show log
likelihood partial derivative with respect to each elevation point.
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FIGURE 9. Performance of the Bayesian model on each geographical region, as a function of z error prior scale 0 ≤ σZ ′ ≤ 1 and for three values of α

(0, 0.5, 1). Solid lines show direct application of the model; dotted lines show outputs with bias corrected by a further regression model. Leftmost
points on each plot (σZ ′ = 0) are equivalent to a naïve drape. Note that minimum and maximum error plots have different scale for each geographical
region.

carriageway crosses large viaducts. A much flatter region
near to Westbury-on-Severn, Gloucestershire, is included
for comparison. Finally to show performance of the model
where higher resolution terrain data is already available,
the analysis of the primary area (Lower Wye Valley) is
repeated using a 5m (OS Terrain 5) DEM in place of the
50m DEM.

In evaluating outputs from different sets of parameters,
the primary measures for comparison are RMS error per
unit length (to allow comparison between geographic regions
with different total road length), alongside maximum and
minimum errors (differences between the true elevation
change and raw outputs from Bayesian model). Bearing in
mind that it is possible to over-smooth the data, but that this
may be desirable in some circumstances (where reducing
minimum errors is more important and bias introduced by
over-smoothing can be corrected), a second set of outputs is
shown in which a regression model has been used to remove
systematic bias from over-smoothing:

1ETRUE = k + β1EBD + ϵ (18)

where 1ETRUE is the true cumulative absolute elevation
change (i.e., elevation gains and losses do not cancel one
another), and 1EBD is the elevation change derived from
the Bayesian model. The error term is heteroscedastic so the
model is fitted using the HC3 estimator [43]. Similar outputs
are reported from this regressionmodel (RMS per unit length,
minimum andmaximum errors) and also the fitted coefficient
value β to quantify the bias.
In addition, draped profiles for two manually selected

problematic links are displayed (both of which are outliers
in terms of spurious elevation change), to show the effect of
different prior combinations on the shape of output networks.
The links are:

1) A riverside track in the primary data set for which
OS elevation data is available. This is an extremely
difficult link to drape correctly as it traverses steep
terrain and for many of the tested models is the
outlier with the largest overpredicted elevation change
in the study area. The link is approximately 1km in
length, which allows us to visualise the qualitative
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FIGURE 10. Elevation profiles output by the Bayesian model for manually selected problematic links.

behaviour of different models, as well as ensuring the
central parts of the link are relatively unaffected by
estimated elevations of neighbouring links. Ground
truth inspection of this link showed it to consist of a
level central section with conservative slopes at either
end.

2) The National Cycle Network (NCN) link shown in
Fig. 2(c) which caused issues in modelling by Lovelace
and Cooper [24]. The OS does not provide elevation
data for this link, however, ground truth inspection
reveals it to have conservative gradient i.e. there are no
‘‘bumps’’ in the true elevation profile.

IV. RESULTS AND DISCUSSION
This section first presents some simulated test cases,
then discusses the fit and sensitivity of a variety of real
world models as a function of their prior metaparameters
σZ ′, α.

Convergence of the simulated test cases is shown in Fig. 8.
All cases converge with no further significant change to log
likelihood. Column A shows the case of a road climbing a

slope with flat terrain tiles above and below. The endpoints
of the road are thus fixed in elevation as their σZ = 0,
so limited smoothing of the slope occurs. Column B shows
half of the same road; as the rightmost endpoint is now on a
sloping terrain tile, its elevation is not fixed and is adjusted
downwards to reduce elevation change to the fixed leftmost
endpoint. Column C shows the case where both endpoints are
on sloping tiles; both are adjusted to remove any gradient.
Column D shows a similar situation to column A, albeit with
more vertices used to encode the leftmost half of the road.
An initial log likelihood equal to that in column A shows
the invariance of log likelihood on different encodings of the
same shape. However the extra vertices on flat ground fix
the elevation at those points, so the final estimated profile
is slightly different. Column E shows the same situation
as column C, albeit with more vertices along the entire
length of the road. It can be seen that elevation changes
must propagate inwards from the line’s endpoints (the only
places for which partial derivative of the log likelihood
is initially nonzero) until the elevation profile becomes
flat.
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FIGURE 11. Further views of the two manually selected problematic outlier links: 2-d surrounding
road/path network (blue), and 3-d views of the naïve drape (orange) and Bayesian correction (green, using
the recommended prior σZ ′ = 0.25, α = 0.5). Vertical exaggeration of 5 is used for the 3-d views. Greyscale
gradient represents height in plan view, height with added hillshade in 3-d view.

Results for all real terrain models together are plotted in
Fig. 9. Elevation profiles output by each model for the two
manually selected outlier links are shown in Fig. 10, and
further views of these links are shown in Fig. 11. Table 1
shows dataset characteristics and optimizer performance.

Looking at the difference in performance of the model
across all five study areas, we see that choosing an
appropriate value of σz′ reduces absolute error and minimum
errors (overpredicted elevation change), while increasing
maximum errors to a lesser extent (therefore giving an
improvement in errors overall). Substantial improvement in
minimum errors is seen even in the flat study area, and high
resolution terrain model.

The mean slope measured from naïve drape of road
network in the primary study area was 2.66◦ and this value
is used in all model runs.

Considering the choice of α, Fig. 10 (top plots in red)
shows as expected that setting α = 0 produces link profiles
consisting of level sections with rapid changes in elevation
between them. α = 1 produces the smoothest link profiles,
but at the cost of substantially worse mean error in two of the
five study areas (Fig. 9). α = 0.5 is therefore recommended
for general usage as it strikes a balance between these two
extremes.

Across all five datasets, without correcting Bayesianmodel
outputs for bias, setting σz′ = 0.25 (with α = 0.5) reduces

absolute errors in elevation, compared to a naïve drape, by an
average of 32%. Minimum errors reduce in magnitude by an
average of 51%. Maximum errors increase, but to a lesser
extent (on average only 41% of the corresponding absolute
reduction in minimum errors for the same dataset). σz′ =

0.25 is therefore recommended for use in cases where bias
must be avoided.

The alternative, if the user wishes to achieve greater
smoothing at the cost of increased bias, is to set a higher
σz′. Using σz′ = 0.4, then correcting Bayesian model
outputs for bias (18), reduces absolute error by an average
(across all 5 datasets) of 40%. Minimum errors reduce in
magnitude by an average of 63%. Again, maximum errors
increase, but to a lesser extent (on average 33% of the corre-
sponding absolute reduction in minimum errors for the same
dataset).

Testing the model on hilly regions shows broadly compa-
rable results in both urban and rural settings. Initially it may
seem surprising that a substantial improvement in accuracy
is seen even in the flat region. Inspection of residuals reveals
that this is due to a single highway cutting alongside a minor
hill (Fig. 12). Features of similar height, such as railway
embankments, can occur even in regions typically thought of
as flat. The errors introduced by such embankments are not
limited by the height of the embankment, as a naïvely draped
polyline can appear to climb and descend the embankment
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FIGURE 12. The embankment corrected by the Bayesian model in the flat region
(
 Google, 2023).

TABLE 2. Comparing Bayesian correction of naïve drape, to naïve drape
and Kriging.

multiple times. It is therefore recommended to use the
Bayesian model even on relatively flat areas.

The high resolution terrain model shows (as expected)
reduced sampling error for the naïve drape, but the Bayesian
model still improves on this substantially. Notably, in both
the flat and high-resolution models it is possible to choose a
higher σz′ (up to σz′ = 1) without any increase in absolute
error due to over-smoothing.

For comparison, Table 2 shows results from Kriging (with
Gaussian semivariogram also used by [38]), and naïve drape,
alongside Bayesian correction of naïve drape. In three out of
four areas, Kriging shows improvement over naïve drape, but
is still substantially outperformed by the Bayesian correction
of naïve drape. This is especially true when considering
reduction ofminimum errors - the design goal of the Bayesian
model. This is understandable as Kriging cannot make use of
priors on the road network adjacency data to avoid spurious
elevation change.

There is one exception in the case of Cwmbran, in which
Kriging performs better overall. Inspection of the differences

between model outputs in this area, reveals that Kriging
is working better on a few long road segments with small
(hence, not a priori unlikely) road gradients. In these cases an
isolated DEMmeasurement causes spurious draped elevation
change in naïve interpolation and hence the Bayesian output,
while the Kriging output is smoother due to the influence
of neighbouring terrain measurements. Most of the network
length falls within an urban area, which contains fewer
sudden changes in gradient requiring Bayesian correction.
In this case therefore, the advantage of introducing gradient
priors is outweighed by themore spatially dispersed sampling
error model inherent in Kriging. Although the Bayesian
model outperforms Kriging in the other areas, this anomaly
suggests that use of naïve drape as an input for the Bayesian
model may impact robustness.

V. CONCLUSION
This paper has presented a Bayesian approach to correcting
heights on vector features interpolated over a terrain model.
Using the naïve drape as a basis for correction, the
Bayesian model has been shown to substantially improve
the accuracy of estimated heights on road networks, in a
variety of geographical areas of varying hilliness, and on
DEMs of both 5m and 50m resolution. The Bayesian Drape
code is open source and available both at https://github.
com/fiftysevendegreesofrad/BayesianDrape, and in a repro-
ducible capsule attached to this paper.

If using the model to improve height data to road networks
in the absence of ground truth data for calibration, one of the
following approaches to choosing priors is advised, based on
results of the current study:

1) Determine an estimate of mean slope. Either
a) use a simple drape of 2-d road network over

terrain (complete with the errors the model aims
to correct) to estimate this, or

b) use the figure measured in this study (2.66◦)
which is likely to be an overestimate for regions
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less hilly than the study area, however, the results
show improvements from using this value on a
flatter region in any case.

2) Determine the acceptable level of bias. Note there is
no guarantee that the bias figures shown in the results
of this study will be usable for correction of bias in
other study areas, as they may depend on the mean
hilliness of the terrain in the study area. In the absence
of ground truth data the bias also cannot be corrected
by linear regression as shown here. So if no data is
available for bias correction, then lower bias is likely
preferable. However, if a containing model is able to
correct bias based on other data, then a consistent bias
can be compensated: the containing model will adjust
its coefficient for elevation change in the generalized
cost equation. Therefore for applications such as a
transport model calibrated to cyclist counts, a higher
level of elevation bias may be allowed.

a) If reduced bias is preferred, use σz′ = 0.25,
α = 0.5.

b) If stronger outlier correction at the expense of
slightly higher bias is desired, use σz′ = 0.4,
α = 0.5.

Although the approach above is satisfactory for the stated
aim, as with any model, there is room for improvement.

Amore empirical approach to ensuring continuity of slopes
would be to introduce a prior for curvature, albeit with
substantially greater computation and data requirements.

Although the proposed model is shown to improve on
results from naïve drape, its robustness may be limited by
its use of heights derived from naïve drape as a basis for
Bayesian correction. Future implementations may therefore
benefit from using Kriging output, as the input for the
Bayesian model. This conclusion is supported by the fact that
Kriging performed better on one of the four test areas. Further
enhancements may be possible by combining the Kriging and
Hutchinson error models. Alternatively, given the potential
for improved DEM interpolation accuracy available from
deep learning approaches, a DEM super-resolution model
could provide the input for the Bayesian model.

Optimizer performance is likely to be adequate for most
applications, however if performance is an issue then the
option remains to use GPU acceleration. Initial exploration
using PyTorch shows that GPUs provide approximately an
8x speed increase for datasets of half a million vertices, i.e.
approximately 20x the size of the test data used in the current
study. It is likely that this advantage will increase with larger
datasets, and that performance could be further improved by
reducing CPU-GPU communication.

It is likely that the Bayesian approach will be useful
for interpolating other types of data over terrain models,
for example, GPS traces recorded by fitness tracking
devices. Broader applications such as improving existing
river gradient estimations in hydrology [28] may also be
possible using revised priors. There will be other data sets

where knowledge on desired feature shapes can also be
encoded as priors, for example, 3-d models of buildings in
which heights of all entrances and exits must match terrain
outside the building.
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