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ABSTRACT How to achieve fast and accurate small object detection holds crucial theoretical and practical
significance. However, this task encounters substantial challenges due to scale differences among instances in
the scene, along with the scarcity of inherent features and weak representation of small instances. To alleviate
the above problems, we propose a novel attention-based cascaded adaptive feature pyramid fusion network,
CA2Det, to effectively improve the small object detection performance. First, to prevent the information
degradation of small-instance features during training, we introduce the efficient and lightweight Shuffle
Attention mechanism to highlight the features of small instances. Second, to mitigate the information
conflicts arising from the scale inconsistency among instances, we design a double-layer cascaded adaptive
fusion pyramid module, CAFP, which can effectively suppress the information conflicts while enabling
full information exchange across layers. Finally, we combine sparse convolution to achieve efficient high-
resolution input, providing richer geometric information of the instances. Compared to the baseline network,
on the COCO benchmark dataset and the popular UAV dataset VisDrone, both of which contain a large
number of small instances, the proposed method improves the detection accuracy mAP values by 1.1% and
2.2%, respectively, while having a good real-time detection speed.

INDEX TERMS Small object detection, feature fusion, attention mechanism, multi-scale detection, deep
learning.

I. INTRODUCTION
Object detection aims to accurately classify and regres-
sively locate objects of interest in the scene. As a crucial
foundation for tasks like object segmentation and tracking
and localization, object detection has been widely used in
computer vision. In recent years, thanks to the power of deep
Convolutional Neural Networks (CNNs) in image feature
extraction and the support of expansive datasets, remarkable
achievements [1], [2], [3] have been made in general
object detection. However, research on small object detection
has progressed at a comparatively slower pace. The main
reasons that hinder small object detection include instance
information conflicts due to the inconsistency of object scales
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in the scene, fuzzy appearance of small objects, and feature
scarcity. In practical applications such as intelligent traffic
management, industrial inspection, and aviation detection,
the identification and tracking of numerous small instances
are frequently required. Therefore, implementing fast and
accurate small object detection is both important and
challenging.

Recently, in order to enhance small object detection
performance, many works have appeared. These mainly
include data augmentation [4], [5], increasing the input
resolution [6], [7], [8], multi-scale perception [9], [10], [11],
and enhancement of contextual information [12], [13], [14].
Among them, the most typical approaches include increasing
the input resolution and improving multi-scale perception
methods to construct a feature pyramid for multi-scale
detection. In order to solve the problem of small instances
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being easily confused with the background due to their
blurred geometric appearance in the scene, the most direct
and effective approach is to increase the input resolution
to provide rich geometric information. However, simply
adding high-resolution input results in huge computational
overhead, limiting practical applications. To address this
issue, many works utilized sparse convolution networks [15],
[16] and knowledge distillation [17] models to obtain a
balance between model detection speed and accuracy.

For general object detection, pyramidmulti-scale detection
leverages CNNs to extract features at various scale layers,
and features at each layer are responsible for detecting
objects at the corresponding scales. Specifically, shallow
layers, capturing finer geometric details, typically predict
smaller objects, while deep layers, containing abundant
semantic information, generally predict larger objects. This
approach markedly alleviates the issue of missed detections
in object detection and is now widely adopted in object
detection models. It is worth noting that object detection
is a task that combines both classification and regression
localization. The accuracy of both object classification and
localization is indispensable, so it is difficult to accurately
predict targets with single-layer information. Traditional FPN
[18] adopts a horizontal and top-down structure to fuse the
information of each layer. However, the semantic information
of deep-layer features inevitably degrades after being passed
from level to level, and the shallow geometric information is
not sufficiently communicated. Consequently, various FPN
structures have been improved for specific tasks and have
achieved excellent results.

Small object detection tasks demand attention to two
primary issues. First, how to solve the information conflicts
among instances, arising from the heuristic-guided allocation
strategy of the FPN architecture. In other words, when
instances of different sizes appear at the same spatial location
simultaneously, if a deeper layer selects this location as
a large instance prediction, other layers tend to prioritize
that there are no instances of other scales at this location.
This situation leads to feature conflicts among instances
of different sizes, causing small instance features to be
ignored and submerged. Second, despite the shallow layers
containing rich geometric detail information, which is very
helpful for small object prediction, the semantic information
of the shallow layers is relatively lacking, which is still
insufficient for accurate prediction. Previous works, such as
FPN [18], BIFPN [19], and NAS-FPN [20], have demon-
strated that effective feature fusion can enhance the accuracy
of object detection. However, there remains considerable
room for improvement in the balance between speed and
accuracy.

For fast and accurate detection of small objects, in this
paper, we propose CA2Det, an improved double-layer cas-
caded adaptive fusion pyramid network based on QueryDet
[21]. The aim is to alleviate the feature degradation problem
resulting from the susceptibility of small instances to noise in
training and information conflicts problem among instances

of different sizes in multi-scale detection, thereby improving
the performance of small object detection in a targeted way.
Firstly, we introduce efficient Shuffle Attention (SA) [22] to
enhance the features of each layer in the ResNet50 backbone,
focusing increased attention on small instances and prevent-
ing them from being contaminated by background and noise
during training. Additionally, considering the information
degradation caused by the down-sampling process of FPN
layers at the neck, we also apply ShuffleAttention for specific
P6 and P7 layers to enhance the instances’ information.
Secondly, to alleviate the problem of small instances being
submerged due to instance scale inconsistency, we improve
the Adaptively Spatial Feature Fusion (ASFF) [23] and
design a novel double-layer cascaded adaptive fusion pyra-
mid, CAFP, for multi-scale perception. This design dynam-
ically learns the fusion weights of each layer of features
during training, effectively filtering conflicts in instance
information and facilitating efficient information exchange
concurrently. Finally, we leverage the cascaded sparse query
(CSQ) [21] algorithm to introduce a high-resolution feature
input layer, acquiring richer geometric features for small
instances while ensuring the real-time detection speed of the
model.

In summary, ourwork achieves the following contributions:
• To achieve rapid and accurate detection of small objects,
we proposed a novel attention-based cascaded adaptive
feature pyramid fusion network, CA2Det.

• We designed a double-layer cascaded adaptive fusion
pyramid module CAFP, capable of dynamically learning
the fusion weights of each layer by each feature position,
thereby enriching the instances features.

• We introduced SA attention to emphasize the focus on
small instances to mitigate their feature degradation and
utilized the CSQ algorithm to obtain richer instance
features while ensuring efficient detection speed.

II. RELATED WORK
A. GENERAL OBJECT DETECTION
Object detection methods in deep learning can be mainly
classified into two categories: two-stage and one-stage detec-
tors, which are distinguished by whether candidate regions
are generated first. Two-stage detectors typically use separate
networks for foreground and background classification to
generate regions of interest (ROI) that may contain objects.
Subsequently, feature extraction and final detection are
performed on these regions. Common algorithms include
Faster R-CNN [2], Mask R-CNN [24], Cascade R-CNN [25],
and DetectoRS [26]. On the contrary, one-stage detectors
perform feature extraction and generate anchor boxes directly
on the image for direct classification and localization. Its
representative algorithms include theYOLO-series [27], [28],
[3], [29], SSD [1],RetinaNet [30].
Compared with the two-stage detectors, single-stage

detectors have a simpler model structure, so they consume
less computing resources and have faster detection speed,
but the accuracy tends to be slightly lower. With the
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advantage of detection speed, single-stage detectors have
received extensive attention and research. For example,
the focal loss proposed by RetinaNet [30] has greatly
alleviated the problem of imbalanced distribution of positive
and negative samples in training. Yolov4 [28] introduced
the data augmentation strategy, Yolov5 [31] devised an
automatic anchor box strategy, Yolov7 [3] devised an
efficient aggregation network and introduced a dynamic
label assignment strategy, and Yolov8 [32] designed a novel
anchor-free detection head and optimized the backbone
network, all of which effectively to the enhancement of
model performance. Consequently, the accuracy gap between
one-stage detectors and two-stage detectors has now been
markedly diminished. Recently, to reduce the resource
consumption caused by the prediction of anchor boxes,
some anchor-free detectors such as CenterNet [33], FCOS
[34], and FSAF [35] have been proposed. The approach of
these detectors is to regress the centroid and width-height
of each object, but they exhibit lower recall and precision.
Thus, there is large room for improvement in their structural
design.

B. SMALL OBJECT DETECTION
In real-world scenarios, due to small instances with lim-
ited geometric details and blurred contours, make their
features susceptible to noise interference during training.
This susceptibility results in the degradation of instance
feature information, posing huge challenges in the field of
small object detection. To address these issues, numerous
targeted methods have emerged, which can be summarized as
follows:

1) Using data augmentation [4], [5] and formulating
corresponding sample allocation strategies [36] to enrich the
instance samples and enhance the robustness of the detection
model.

2) Increasing the input resolution [6], [7] to provide rich
geometric information. In particular, some models further
propose to incorporate knowledge distillation [37], [38] and
sparse convolution [21], [39] to save computational resources
and ensure a reasonable detection speed.

3) Leveraging contextual information [13], [14], [40] to
acquire more information related to small instances in the
scene to provide more valuable clues for model predictions.

4) Utilizing multi-scale feature-aware fusion [9], [10],
[41] to enable effective communication and integration of
semantic and geometric information of instances at each
layer, thereby obtaining richer representations of instances.

5) Introducing the attention mechanism [42], [43] to
enhance the features of small instances and prevent instance
feature decay during training.

C. MULTI-SCALE FEATURE AWARE
The multi-scale detection network has become a fundamental
framework in recent years in the field of object detection
to address the inconsistency of instance scales in scenes.

SSD [1], a pioneer in this research, utilized feature maps
from different levels of the CNN network to predict instances
of different scales, significantly enhancing the recall of the
model. However, the insufficient information of instances at
each level resulted in low detection accuracy. To address this
problem, the Feature Pyramid Network (FPN) [18] proposed
a top-down fusion path connected horizontally and vertically
to enhance the feature information at each layer, achieving
commendable outcomes. Inspired by this, BIFPN [19]
adopted a composite scaling method to achieve bi-directional
feature fusion of the model. NAS-FPN [20] extended FPN
by integrating the neural architectural search network and
reinforcement learning to achieve cross-scope fusion. ASFF
[23] proposed an adaptive cross-layer fusion method, effec-
tively filtering information contradictions among different
instances and reinforcing valuable features. SSPNet [11]
designed CAM and SEM strategies to enhance instance
features at specific scales and fully leverage the close
relationship of adjacent layers for efficient feature fusion
across layers. QueryDet [21] designed an efficient sparse
query head and incorporated high-resolution input layers to
capture richer geometric details. CEASC [40] formulated
an adaptive masking strategy for automatically learning the
mask ratio of each layer to obtain more positive training
samples. Therefore, the effective construction of the feature
pyramid network and the improvement of the feature-aware
model is an important research direction for the object
detection task.

D. ATTENTION MECHANISM
Similar to the neural system of the human brain, the attention
mechanism in deep neural networks highlights the features
of the instances by focusing more on the regions of interest.
This approach can effectivelymitigate the feature degradation
resulting from instances being interfered by noise during
training. In recent years, a large amount of lightweight and
highly effective attention mechanisms, such as SE [44], CA
[45], SA [22], ECA [46], EMA [47], and EA [48], have been
proposed in the field of object detection and segmentation.
Numerous works have shown that designing an appropriate
attention mechanism at the corresponding position in the
network can effectively improve the performance of the
model. For example, Zhang et al. [42] devised a global-
to-local fusion module through self-attention, enhancing
the model’s ability to distinguish between foreground and
background. The Dynamic head [43] adopted an independent
self-attention mechanism, sequentially applying scale-aware,
spatially-aware, and task-aware on the feature maps, syner-
gizing with the detection head to enhance the overall model
performance. Zhang et al. [49] utilized an attention pyramid
network to enhance instance edge features from local to
global. MANet [50] designed a multidimensional attention
network to efficiently aggregate instance information. The
attention mechanism, valued for its flexibility and effec-
tiveness, has found widespread application in the field of
computer vision.
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FIGURE 1. The overall pipeline of the proposed CA2Det. The image is first passed through the backbone and cascaded fusion networks for
feature extraction to generate a feature pyramid. The width and height of the resolution of each layer of P l is adjusted to 2−l of the input
features, and the number of channels is 256. The feature layers are then fed in parallel to the triple detection head (classification, regression,
and query) for prediction.

III. METHOD
To achieve accurate and rapid small object detection,
we propose the CA2Det algorithm based on QueryDet [21]
(a detector with superior detection performance). The overall
pipeline of CA2Det is shown in Fig. 1. The backbone part
incorporates ResNet50 and SA attention, utilizing enhanced
CNN features at each layer to construct the foundation of the
multi-scale feature map. The neck part comprises the FPN
structure, double-layer cascaded adaptive fusion pyramid
module, and SA attention together, forming a novel pyramidal
multi-scale feature fusion network to efficiently process the
associated information across layers. The detection head
consists of three parallel subnets: classification subnet,
regression subnet, and query subnet, to make the final predic-
tion of the objects. Next, we elaborate on the implementation
details of our CA2Det algorithm from the three main parts:
backbone, neck, and detection head.

A. ENHANCING MULTI-LEVEL FEATURES OF BACKBONE
In this work, we utilize the four feature layers (Res2, Res3,
Res4, Res5) of ResNet50 [51], an outstanding convolu-
tional neural network, as the backbone of the multi-scale
detection model. Typically, small instances exhibit smaller
sizes and ambiguous geometric appearances, making them
susceptible to confusion with the background during training,
consequently resulting in missed detections or misjudg-
ments. In order to make the network focus more on
small instances and prevent feature degradation of instances
caused by background noise interference during training,
we introduce efficient SA attention into the Res2-Res5
layers to enhance the features of small instances. The SA
attention is characterized by its high efficiency and few

parameters, which does not impose too much burden to the
network.

Drawing inspiration fromShuffleNet [52], the SA attention
[22] processes spatial and channel attention in parallel. The
characteristic of SA attention lies in its implementation of
the ‘‘Channel Shuffle’’ algorithm, facilitating the exchange of
information across feature groups. The pipeline of the Shuffle
Attention (SA) is shown in Fig. 2.

For each input feature map F ∈ RC×H×W , where
C denotes the number of channels, and H and W denote
the height and width of the feature map, respectively. Firstly,
the SA module partitions F into N groups along the channel
direction, which obtains F = [F1, · · · ,FN ], where Fi ∈

RC/N×H×W , and subsequently learns each group of features
concurrently. Specifically, each unit F1 is further divided into
two branches, channel and spatial, Fi1 ,Fi2 ∈ RC/2N×H×W .
At this stage, Fi1 and Fi2 respectively use channel and spatial
attention strategies to enhance the semantic and geometric
information of each layer instance.

In the channel attention branch, global information is first
extracted through global average pooling (GAP) according to
Eq. (1).

s = fgap(Fi1 ) =
1

H ×W

H∑
i=1

W∑
j=1

Fi1 (i, j) (1)

Following this, the corresponding semantic information
of the original features is augmented according to Eq.(2),
to obtain the channel attention output.

F ′
i1 = σ (fc(s)) · Fi1 = σ (W1 · s+ b1) · Fi1 (2)

where σ represents the sigmoid activation function.
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FIGURE 2. The pipeline of the Shuffle Attention module, enhancing instances features from both spatial and semantic
branches.

In the spatial attention branch, the spatial information
is first acquired through group normalization (GN). Sub-
sequently, the corresponding geometric information of the
original features is enhanced according to Eq. (3), to obtain
the spatial attention output.

F ′
i2 = σ (W2 · GN (Fi2 ) + b2) · Fi2 (3)

Subsequently, each subunit utilizes the ‘‘shuffle unit’’ oper-
ation to effectively integrate spatial and channel information,
enabling the model to focus more on the spatial location
(‘‘where’’) and semantic content (‘‘what’’) of each instance.

Finally, the ‘‘channel shuffle’’ algorithm is employed
to share the information of each unit and then efficiently
integrated as the output features. The introduction of the SA
module significantly enhances the features of small instances,
which is adequately prepared for the cascaded adaptive
pyramidal fusion network at the neck.

B. CASCADED ADAPTIVE FUSION PYRAMID
In the model’s neck, the enhanced Res2-Res5 feature layers
are first horizontally and top-down fused, following the FPN
structure, then generating the P2-P7multi-scale feature maps.
After the FPN stage, to facilitate comprehensive and efficient
information exchange and sharing among the FPN layers,
we improve Adaptive Spatial Feature Fusion (ASFF) [23]
to design a double-layer cascaded adaptive fusion pyramid
module CAFP. This module can dynamically integrate the
contextual information of each layer while filtering the
information conflicts among different instances at the same
spatial location, thereby enhancing the representation of
instances.

As illustrated in Fig. 3, in order to avoid the semantic
and geometric gaps between large cross-layers, we adopt
a progressive adaptive fusion approach. First, the feature
layers, P2 and P3, are sent to the CAFP1 module for adaptive
fusion, followed by utilizing the fused P3 (CAFP1-P3) to
further fuse with P4 and P5. This cascaded fusion structure

greatly aids in the effective integration of semantic and
geometric features of instances across each layer.

FIGURE 3. The pipeline of the double-layer cascaded adaptive fusion
pyramid.

Prior to fusion, dimensional scaling is initially applied to
each Level l, (in CAFP1, l ∈ {1, 2}; in CAFP2, l ∈ {1, 2, 3}).
Specifically, the resolution is increased using up-sampling
and bilinear interpolation operations, while the resolution is
decreased using down-sampling andmax-pooling operations,
ensuring dimensional consistency before the fusion process
at each level. As shown in Fig. 3, we take the second-level
adaptive fusion module CAFP2 to describe the fusion details.

For each level of features, according to Eq. (4), the features
of level1 (P5), level2 (P4), and level3 (CAFP1-P3) are
multiplied and then summed with the learned corresponding
weights αlij, β lij, and γ lij, respectively. Thus, the three fused
output layers are obtained.

ylij = αlij · x
1→l
ij + β lij · x

2→l
ij + γ lij · x

3→l
ij (4)

where αlij, β lij, γ lij respectively represent the weights of each
of the other layers relative to the fusion of this layer, which
are calculated according to Eqs. (5)∼(7). And αlij + β lij +

γ lij = 1. In training, αlij, β lij, γ lij are optimized by gradient
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back-propagation for automatic learning.

αlij =
e
λlαij

e
λlαij + e

λlβij + e
λlγij

(5)

β lij =
e
λlβij

e
λlαij + e

λlβij + e
λlγij

(6)

γ lij =
e
λlγij

e
λlαij + e

λlβij + e
λlγij

(7)

As previously discussed, the P2-P5 feature layers acquire
more accurate and comprehensive instance information
through the double-layer cascaded adaptive perception fusion
module. For P6 and P7, they are two feature layers obtained
by down-sampling the P5 layer. To prevent the loss of
instance information during the down-sampling process,
we utilize efficient SA attention once again to enhance
the instance features. At this point, after the feature layers
are fused and processed by the cascaded adaptive pyramid
network, they are transmitted in parallel to the head for
prediction.

C. TRIPLE DETECTION HEAD
In the model’s head, we adopt a structure consistent with
QueryDet [21], as shown in Fig. 4. The prediction head at
each layer consists of three parallel subnets: classification
subnet, regression localization subnet, and query subnet,
respectively. For pyramidal networks, small instances are
often predicted at shallow layers because shallow layers con-
tain richer geometric information. However, the distribution
of small instances in real-world scenarios is typically sparse.
In order to avoid computational redundancy, we expedite
the inference by using the sparse convolution algorithm.
Specifically, the classification subnet, regression localization
subnet, and query subnet utilize four 3 × 3 convolutional
networks, each coupled with a prediction network for object
classification and localization regression, respectively. For
efficient model training, all feature layers share classification
and regression subnets parameters.

FIGURE 4. Structure of the triple detection head: classification subnet,
regression subnet, query subnet.

In the query subnet, we adopt a cascaded approach to
query information about small objects layer by layer. The

query value of each layer corresponds to the query key of the
previous layer, denoted as the query featuremap. Specifically,
during the training process, the distance between the centroid
of each prediction box b′

= (x ′, y′) and all the centroids of
the instances’ ground truth bi = {(xi, yi)} in each layer is
calculated according to Eq. (8). The minimum anchor box
scale on each feature layer Pl is sl , and the query feature map
of each layer is defined as Eq. (9).

Dl[xi][yi] = min
i

{

√
(x ′ − xi)2 + (y′ − yi)2} (8)

Q∗
l [xi][yi] =

{
1 if Dl[xi][yi] < sl
0 if Dl[xi][yi] ≥ sl

(9)

Throughout the model, we use Focal Loss [30] for training
the classification and query subnets, and use L1 Smooth Loss
[53] for training the regression subnet. Consequently, the loss
function of each layer Pl is:

Ll(Cl,Rl,Ql) = LFL(Cl,C∗
l ) + L1(Rl,R∗

l ) + LFL(Ql,Q∗
l )

(10)

where Cl , Rl , and Ql refer to the outputs of classification,
regression, and query, respectively, while C∗

l , R∗
l , and

Q∗
l correspond to the ground truth of the classification,

regression, and query maps. LFL represents Focal Loss, and
L1 represents L1 Smooth Loss. For the whole network, the
total loss function is as follows:

Lall =

∑
l

µl ∗ Ll, (11)

where µl is a hyperparameter representing the weights
assigned to each feature layer by the model. In this paper,
layers of P2-P7 contain parallel classification and regression
subnets. In particular, we start to use the sparse query
subnet in layers of P4-P2 to gradually query the locations of
shallow small instances from coarse to fine. This approach
makes efficient use of high-resolution feature maps, thereby
balancing the accuracy and speed of small object detection.

IV. EXPERIMENTS
A. DATASET
In this paper, we evaluated our model using the benchmark
dataset MS COCO [54] and the UAV dataset VisDrone [55],
both of which contain a large number of small instances.

COCO [54] categorizes the instances into small, medium,
and large classes based on varying scale sizes. The dataset
comprises 117k images in the training set and 5k images in
the validation set, covering 80 categories of general scene
instances. The majority of COCO images have a resolution
ranging from 500 to 800 pixels. Generally, instances smaller
than 32× 32 pixels are defined as small targets in the COCO
dataset, constituting 30% of instances statistically. COCO has
become one of the most widely used datasets in the field of
object detection.

VisDrone [55] is a high-resolution dataset with multi-angle
UAV aerial photography, containing a substantial number
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of small dense instances. The dataset contains common
instances: pedestrians, people, bicycles, cars, vans, trucks,
tricycles, sunshade tricycles, buses, and motorbikes, totaling
10 categories. There are 6471 images in the training set and
548 images in the validation set, with resolutions ranging
from 960 to 1360 pixels. Therefore, VisDrone is more
challenging and is now widely used in remote sensing image
detection and small object detection tasks.

B. EVALUATION METRICS
In this paper, we use Average Precision (AP), Mean Average
Precision (mAP), Average Recall (AR), and Frames Per
Second (FPS) as model evaluation metrics.

For a certain instance, all ground truth instances are cate-
gorized as either positive or negative cases before prediction.
After prediction, there are two prediction situations: true or
false, as shown in Table 1 of the confusion matrix.

TABLE 1. Confusion matrix.

Then precision and recall can be expressed as:

Precision =
TP

TP+ FN
, (12)

Recall =
TP

TP+ FP
. (13)

The Average Precision (AP) is the area formed by the
Precision-Recall (P-R) curve and the coordinate axis, defined
by Eq. (14). A larger AP value indicates higher detection
accuracy.

AP =

∫ 1

0
P(R)dR (14)

The mAP represents the mean of the Average Precision
(AP) across all categories. It is a measure of the overall
performance and robustness of the model. It is calculated as
Eq. (15).

mAP =
1
C

C∑
i=1

APi (15)

where C refers to the number of categories.
FPS is the number of picture frames processed per second.

A higher FPS corresponds to a faster detection speed.

C. IMPLEMENTATION DETAILS
In this paper, all experiments were performed on an NVIDIA
RTX 3060 12G GPU with Ubuntu 22.04 as its operating
system. We conducted experiments based on the PyTorch
framework andDetectron2(a popular object detection toolkit)
[56]. For the whole model, we trained it using the stochastic

gradient descent (SGD) optimizer with a batch size of 2 and
an initial learning rate of 0.001. The COCO dataset was
trained for 7200k iterations and the VisDrone dataset was
trained for 200k iterations.

D. EXPERIMENTAL RESULTS AND ANALYSIS
On the COCO dataset, the experimental results are shown in
Table 2, the proposed method exhibits significant improve-
ments compared with the original network RetinaNet [30]
and the baseline network QueryDet [21]. Specifically, the
proposed method improves the mAP values by 2.0% and
1.1%, respectively, and the APs values show corresponding
increments of 3.4% and 1.3%, respectively. Moreover, there
are parallel improvements in APm and APl . When compared
to RetinaNet, our FPS improves, but remains slightly lower
than QueryDet. This is because we improve the model
structure based on QueryDet to obtain higher accuracy, which
introduces some computational overhead. Nevertheless, the
proposed method achieves an optimal balance of model
accuracy and detection speed with a mAP value of 39.5%,
APs of 26.1%, and FPS of 6.93.

TABLE 2. Experimental results on COCO dataset.

TABLE 3. Experimental results on VisDrone dataset.

On the VisDrone dataset, the proposed method performs
comparably to COCO. As shown in Table 3, the proposed
method achieves the best detection accuracy mAP of 30.6%
and the highest recall AR100 of 39.0% with the FPS of
1.68, which not only significantly enhances the model’s
detection accuracy, but also greatly improves the recall,
thus mitigating the issue of small target miss-detection.
This further illustrates the effectiveness of the proposed
method. Relative to RetinaNet [30] and QueryDet [21], the
proposed method improves the mAP by 4.3% and 2.2%,
respectively, with corresponding increases in AR100 values of
4.3% and 2.4%. Moreover, in Table 4, compared with various
mainstream detectors, including the anchor-free(FSAF [35]),
FCOS [34]), the two-stage(Faster RCNN [2], Cascade R-
CNN [25], DetectoRS [26]), and the one-stage(GFL V1 [57],
CEASC [40]). It can be clearly observed that the proposed
method CA2Det achieves significant improvements in both
detection precision(mAP) and recall(AR). Notably, CA2Det
shows a greater improvement compared to the anchor-free
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TABLE 4. Comparison of experimental results with different detectors on VisDrone dataset.

TABLE 5. Ablation studies on VisDrone.

method and a smaller improvement compared to the two-
stage method. This is because the anchor-free approach
sacrifices model precision to reduce model complexity,
while the two-stage method sacrifices model complexity
for higher precision. The above results fully demonstrate
that the proposed method CA2Det significantly improves
the performance of small object detection while ensuring
the real-time detection speed, and highlights the strong
robustness.

E. ABLATION STUDIES
To validate the efficacy of the proposed model, we conducted
ablation experiments on the VisDrone dataset, and Table 5
shows the results of the experiments that sequentially add
each module to the baseline QueryDet detector. Next,
we specifically analyze the effect of each module.

1) DETAILED ANALYSIS OF SA
To mitigate the feature degradation due to the interference
of small instances by noise during training, we introduced
SA attention in the backbone network ResNet50 and
FPN-specific layers P6 and P7. In Table 5, in comparison
to the baseline QueryDet, when SA is introduced to the
network, the mAP improves by 1.1%, and the AR100
improves by 1.3%. This effectively proves that the addition
of SA targetedly enhances the small-instance features.

In addition, Table 6 compares the model performance of
adding several other attention algorithms to the baseline
QueryDet network respectively, and it can be observed
that the introduction of SA attention is the most effective.
Consequently, SA attention brings fewer parameters while
exhibiting superior performance compared to other attention
mechanisms.

TABLE 6. Comparison of different attention mechanisms under baseline.

2) DETAILED ANALYSIS OF CAFP
To mitigate the issue of small instances being submerged due
to inconsistency in instance scale, we design a double-layer
cascade adaptive perceptual fusion module. This module
aims to filter information conflicts among feature layers
and facilitate effective information exchange across feature
layers. In Table 5, the network’s performance exhibits a
noticeable improvement with the incorporation of the CAFP
module compared to the baseline QueryDet. Specifically, the
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FIGURE 5. Visualization of detection results. The first column shows the original image, the second column shows the QueryDet detection,
and the third column shows the proposed method detection.
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accuracy mAP value and recall AR100 of the network are
significantly improved by 1.4% and 1.5%, respectively, while
the FPS value is slightly decreased, which strongly validates
that CAFP is a lightweight and efficient feature-aware
fusion module. The module effectively integrates instance
information from each layer by dynamically learning the
fusion weights of each feature layer, thereby obtaining a more
comprehensive instance representation to support model
predictions.

3) DETAILED ANALYSIS OF CSQ
In Table 5, following the incorporation of the CSQ algorithm,
it can be observed that the model’s detection speed FPS
improves by 2.2×, from 0.75 to 1.68, while the mAP
decreases by 0.1%, but this decrease is negligible. The
reason is that the use of sparse convolution networks can
efficiently leverage feature maps to avoid computational
redundancy, which makes the model have good real-time
detection performance.

Smaller objects are typically predicted at shallower layers.
Table 7 compares the results of querying small instances,
starting from different layers. It is noteworthy that the optimal
balance of the overall model performance can be achieved
when starting queries from the P4 layer. The mAP value
decreases more when querying from the P5 layer. This is
because the P5 layer mainly contains information about
medium-scale instances instead of small-scale instances,
which does not match the information about small instances
contained in the shallow layer. Besides, querying from the
P5 layer adds unnecessary computational overhead, which
also leads to a decrease in FPS. Furthermore, the mAP
value when querying from layer P3 is slightly lower than
that from layer P4. The reason is that the P4 layer contains
semantic information of small instances, which can support
shallow layers’ further predictions. Querying information of
small instances layer by layer from P4 can fully utilize the
contextual information, providing more valuable predictive
cues for the model.

TABLE 7. Comparison of starting query Layer on VisDrone.

F. VISUALIZATION
We visualized the detection results on the VisDrone dataset.
In the following visualization, the first column shows the
original image, the second column shows the results detected
by the baseline QueryDet, and the third column shows the
results detected by the proposed method. Fig. 5(a) visualizes
the detection results in an outdoor scene, which includes
some small instances with blurred appearance. In Fig. 5(b),

CA2Det improves the detection of both near and far instances
in the realistic traffic scene. In Fig. 5(c) and Fig. 5(d), CA2Det
effectively identifies numerous dense small instances in
complex backgrounds, such as active crowds, bustling
streets, and closely spaced vehicles. In Fig. 5(e), CA2Det
exhibits better detection performance for objects of multiple
classes and different sizes in the same scene. In Fig. 5(f),
CA2Det accurately detects more objects in insufficient light
scenes. These images encompass various shooting angles and
diverse complex backgrounds. Figs. 5(a) to 5(c) compare
the detection performance under different instance densities,
while Figs. 5(c) to 5(e) compare the effectiveness for single-
multiple-class object detection. It can be seen that the
proposed method has good detection results for these small
instances. However, CA2Det’s performance for some mutual
occlusion, blurred outlines, long distances, and extremely
small objects in the scene still requires enhancement. It also
needs to further optimize the lightweight of the model to
broaden its applicable scenes. Overall, the proposed CA2Det
method excels in achieving both fast and accurate detection
of small objects.

V. CONCLUSION
In this paper, we propose CA2Det, a double-layer cascaded
adaptive fusion pyramid approach aimed at improving the
performance of small object detection. To address the feature
degradation during training, resulting from the scarcity of
inherent characteristics of small instances, we first introduce
efficient shuffle attention to enhance the features of small
instances. Secondly, we design a novel cascaded adaptive
perception fusion method to effectively facilitate information
exchange across layers, thereby alleviating the issue of
instance-scale inconsistency in the scene. Finally, we leverage
the cascade sparse query algorithm to efficiently utilize
high-resolution feature maps. Experimental results on the
COCO dataset and the VisDrone dataset show that our
method significantly improves the performance of small
object detection while ensuring an efficient model detection
speed.

In the future, we will investigate how to better utilize
contextual cues to improve the detection of occluded
and inconspicuous objects, enhance the robustness of the
models, and develop lightweight models to facilitate practical
applications. We also plan to extend the model for 3D object
detection and video target tracking localization tasks.
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