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ABSTRACT Optical image matching has been a recent trend in the field of remote sensing image processing.
It is considered as a challenging problem due to the existence of significant geometric variations as well
as intensity differences between the images. Scale invariant feature transform (SIFT) is one of the most
effective schemes to handle these factors. However, it produces many false matches in the matching of the
remote sensing images which effect its performance. In order to address this issue, a novel Differential
Evolution-based Sample Consensus Algorithm (DESCA) is proposed to eliminate these false matches and
retain the correct matches. The proposed DESCA scheme is very effective for the images having significant
affine geometric differences. It has the ability to provide more correct matches. Several sets of remote sensing
optical image pairs are used to test the performance of the proposed method. It obtains the Root Mean Square
Error (RMSE) value in the range of 0.67 to 0.95 pixels which indicates that the sub-pixel accuracy is achieved.
The experimental results show that the proposed method provides more correct matching pairs and better
mutual information (MI) values than the state-of-the-art methods.

INDEX TERMS Scale-invariant feature transform (SIFT), differential evolution (DE), sample consensus
algorithm (SCA).

I. INTRODUCTION critical issue for the optical images having significant affine

Image matching is defined as the technique of obtaining
correct correspondences between the images of the same
scene [1]. It has been utilized as one of the main important
steps in many remote sensing applications such as change
detection, border monitoring, urban monitoring and image
fusion. Over the last few years, a variety of algorithms
have been developed for the matching of remote sensing
optical images. However, most of the algorithms produce
many outliers in the matching process which effects their
performance. The elimination of these outliers is still a
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geometric differences.

Over the last few decades, the availability and volume
of the remote sensing optical images have been improved
tremendously [2]. In [3], a freely available benchmark data
set was provided for different remote sensing applications
such as cross-city semantic segmentation. The hyperspectral
and mutispectral images obtained by different remote sensing
sensors have been utilized in many fields [4]. The image
matching is considered as one of the primary steps in various
remote sensing applications. Optical image matching can be
performed in two different ways: intensity-based methods
and feature-based methods. The intensity-based methods
perform the matching between the input images by using
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a similarity metric such as cross-correlation and mutual
information. These methods generally use an optimization
technique to find the registration peak in less computational
time [5]. The feature-based methods follow feature extraction
and matching operations in image matching. These are
more effective to handle significant geometric and intensity
differences between the optical images than the intensity-
based methods.

Scale-invariant feature transform (SIFT) [6] is a widely
used feature-based method for the matching of the remote
sensing optical images. However, it suffers from uneven
distribution of extracted features and a lack of controllability
over them. In order to resolve these issues, its improved
versions uniform robust SIFT (UR-SIFT) [1] and Modified
UR-SIFT (M-UR-SIFT) [7] are developed. Over the years
various enhanced versions of the SIFT algorithm have been
developed to further improve its performance. In [8], a mul-
tilevel SIFT-based scheme is developed to match the remote
sensing images by representing them at different resolution
levels. This method can increase the number of matching
pairs. In [9], a SIFT-based adaptive block processing method
is implemented to improve its matching performance. This
method significantly improves the distribution quality of the
extracted features. In [10], an adaptive Redundant keypoint
elimination method (A-RKEM) is developed based on SIFT
to eliminate the redundant SIFT features. In [11], distinctive
order based self-similarity descriptor is developed along with
the UR-SIFT algorithm to match the optical images. This
method is very much effective the handle the nonlinear
intensity differences. Ye et al. [12] developed an optical
image matching algorithm using an enhanced version of SIFT
along with local self-similarity descriptor [13]. This methods
provides better position accuracy in matching. In [14], the
corner and blob features are extracted from the input images
and SIFT descriptor is constructed for each of the features.
Jiang et al. [15] developed a matching algorithm based on
SIFT, shape context, and local structure constraint. Moreover,
in [16], SIFT features are used along with the corner
features to provide evenly distributed matching pairs in image
matching. In this method, two types of features are matched
separately and correct matches are identified. Other than the
SIFT algorithm, some other image matching algorithms can
be found in the literature. Speeded-up robust feature (SURF)
[17] and Oriented FAST and rotated BRIEF (ORB) [18]
are another two widely used schemes to match the remote
sensing images. In [19], a multichannel autocorrelation of
the log-Gabor-based feature detector is presented to match
remote sensing images. Zhou et al. [20] utilized the multiscale
convolutional gradient features to match optical and synthetic
aperture radar (SAR) images. In [21], an image matching
algorithm is developed using steerable filters and fast cross-
correlation-based similarity measure. These methods provide
better position accuracy in remote sensing image matching.

Outlier elimination is considered as a challenging problem
in optical image matching, especially for the images having
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affine geometric differences. It is a well-known fact that
the effectiveness of a matching algorithm is highly affected
by the existence of outliers in the set of matching pairs.
A variety of SIFT-based schemes have been developed in
recent time to eliminate the outliers from the matching
pairs. Dual matching (DM) [22] is one of them where
the outliers are eliminated by finding the nearest neighbor
distance ratio (NNDR) for both the input image features.
Random sample consensus (RANSAC) [23] is one of the
well-known schemes to remove the outliers in matching pairs.
However, it takes significant computational time when too
many outliers exit in the matching pairs. Wu et al. proposed
a fast sample consensus (FSC) [24] algorithm to eliminate
the false matches. This algorithm is based on the idea of
RANSAC and it is developed to increase the number of
correct matches in less computational time. In [25], the
outliers are removed by using the dominant orientation
consistency (DOC) property of the SIFT features. In this
method, an orientation histogram is constructed by using
the dominant orientation deflection of the corresponding
features. Kupfer et al. [26] utilized the orientation and
scale information of the standard SIFT features to eliminate
the mismatches. This method can increase the number of
correct matches in image matching. In [27], a miss-match
elimination method is proposed based on maximum gradient
and edge orientation (MGEO). This method can give better
position accuracy in image matching. In [28], Paul et al.
presented an outlier removal scheme by estimating the scale
and orientation differences between the input images using
the matching candidates. This method is very effective to
provide more correct matching pairs. Ma et al. [29] utilized
the scale, orientation, and translation differences between the
matching pairs to eliminate the outliers. However, most of
these algorithms are developed for the images with similarity
transformation differences. Many of them can not be applied
for the optical images having affine geometric differences.
In [30], a particle swarm optimization sample consensus
algorithm (PSOSAC) is proposed to remove the outliers for
the images with affine geometric differences. This method
combines the idea of RANSAC with the PSO. However, the
performance of the differential evolution (DE) algorithm is
largely better than the PSO [31]. In addition, initialization of
the PSO parameters for the identification of correct matches
is a critical task.

DE Optimization is one of the highly effective stochastic
real-parameter optimization schemes. The main objective
of this optimization is to update a D dimensional vector
X = [x1, x2, x3, .., xp] until the objective function f(X)
provides the best result (minimum or maximum value). The
main advantage of the DE optimization is that it uses less
number of control parameters (C, and F) in the optimization
process. It contains four steps: initialization, difference vector
mutation, crossover, and selection. The parameter F is a
scalar factor which is used to update a donor vector in
the mutation step whereas, C, plays an important role in
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generating a trail vector in the crossover step. In [31],
a detailed review of the different DE optimization techniques
was presented. The DE optimization has been widely
applied in several domains such as classification problems,
industrial control, wireless sensor network, computational
systems, and image segmentation [32]. In [33], a binary
DE algorithm was developed to improve the classification
performance by selecting appropriate features. In [34], the
electric, mechanical, and magnetic subsystem parameters of
a line-start interior permanent magnet synchronous motor
are simultaneously identified using a differential-evolution
(DE)-based technique. In [35], a multi-objective differential
evolution algorithm was implemented to simultaneously
optimize the sensor distribution over different area shapes,
expand the coverage area and lower the network energy.
In [36], the calibration of the computational neuroscience
model was performed by using DE. In [37], the DE algorithm
was utilized to perform image segmentation. Although the
DE optimization has been used in different fields, still there
are no reports of its adoption in image matching.

In order to address these issues, we have proposed

a differential evolution-based sample consensus algorithm
(DESCA) to eliminate the outliers in the set of the correct
matching candidates. The proposed method is very effective
for the remote sensing optical images having affine geometric
differences. The reasons of selecting the DE are as follows:
DE gives better performance than the other optimization
methods such as PSO and cooperative PSO variants and the
number of control parameters in DE is very less [31]. The
following contributions are incorporated in this paper:

1) DE optimization is introduced in image matching
to eliminate the outliers and to identify the correct
matches. Although the DE optimization has been uti-
lized in different fields such as classification problems,
computational system and image segmentation, still
its adoption in image matching is not reported in the
literature. In our proposed method, DE is combined
with RANSAC to maximize the number of correct
matching pairs.

2) In standard DE, the parameter vector X is initialized
randomly. However, a random initialization of X fails
to identify the correct matches in image matching as
DE diverges because of the random selection of the
values. Therefore, the initialization process of the X is
developed in this work so that better convergence can
be achieved in image matching.

il. PROPOSED METHOD

Fig. 1 shows the steps of the proposed method. At first,
M-UR-SIFT [7] features are extracted from the input
optical images. The main objective of this feature extraction
algorithm is to provide uniformly distributed feature points.
Then, feature matching is performed between the images
and two sets of matching pairs are obtained. The first set
of matching pairs is obtained by considering dyuip = 1
(defined in section II-C) and the second set is obtained by
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FIGURE 1. Flow chart of the proposed method.

selecting d,qi, = 0.7. As the second set of matching pairs
is obtained by using lower value of d,,, it provides better
correct matching rate (CMR) [CMR=number of correct
matches/total matches]. So, this set of matching pair is
utilized to initialize the DESCA algorithm. Finally, the
DESCA algorithm identifies the correct matches between the
input images using the first set of matching pairs.

A. FEATURE EXTRACTION BY M-UR-SIFT ALGORITHM

In a previous research, we have developed a M-UR-SIFT
algorithm [7] which is very effective to provide uniformly
distributed features. Motivated by its feature extraction
performance, it has been utilized to extract features in this
proposed method. The feature extraction process of the
M-UR-SIFT algorithm contains two steps: initial feature
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extraction and final feature selection. In the initial feature
extraction step, features are extracted from the Gaussian
filtered images by considering a threshold value of 10% of
the contrast range of the images. The entropy and contrast
values are computed for these initial features. In the final
selection step, a predefined number of features are selected
from the initial features based on their entropy as well as
contrast values and maintaining a specific distance between
them. More detailed description of the M-UR-SIFT algorithm
is available in [7].

B. DE OPTIMIZATION
This section provides a brief idea of the DE Optimization.
As the DE is a population based optimization, the population
matrix can be given as

G_ .G .G .G G
Xi" =[x Xy X340, Xp ] ey

where X; is known as genome/chromosome and G denotes
generation which represents individual updation.

1) INITIALIZATION

In the standard DE optimization, the values of X; at the first
generation (i.e. G=0) is chosen randomly within the search
space.

2) DIFFERENCE VECTOR MUTATION
In this step, a mutant vector MiG is generated by using three

randomly selected vectors (XrG1 , Xg s Xg ) from XiG.
ME =X°+FXS-X9) )

where F is the scale factor. The mutant vector MI.G is called
as donor vector.

3) CROSSOVER

In this step, the donor vector Ml.G exchanges its components
with the vector Xl.G through binomial crossover to generate a
trial vector U iG. This is performed in the following way:

MEC
G __ J,0
Ui = [

G
it

if rand; ; [0,1] < C; or j = jrana- 3)

otherwise.

where C, is the crossover rate.

4) SELECTION

This step determines whether to select trail vector UiG or
XC for the next generation (G=G+1) based on following
conditions:

XGH _ [ Ul PP = FX0). @
P x¢ herwi
i » otherwise.
C. INITIALIZATION OF THE DESAC
The M-UR-SIFT features extracted from the input images are
matched considering d,qip=1 where d,4i, 1s defined as the
ratio between the distance of the nearest neighbor and that of
the second nearest neighbor. The set of these matching pairs
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is represented as {(R1,51),(R2,52), ....., (R;,Sn)}. Another
set of matching pairs is obtained by considering d,ysip = ¢
where + < 1. This set of matching pairs is represented
as {(r1,51),(r2,52), - - - .., (ry,sp) }. As this set is obtained by
considering + < 1, it contains less number of outliers
compared to the other set of matching pairs. This set is
utilized to initialize the parameters of DESCA. An affine
transformation model is selected as a transformation model
in DESCA because this model can handle the geometric
transformation differences of most of the optical images.

In our proposed method, the transformation parameters of
the affine transformation model are considered as vector X.
The objective function f is considered as the number of
matches satisfies the transformation model with a distance
threshold value of 1 pixel. The standard DE optimization ini-
tializes the values of the vector X randomly. However, as our
proposed method utilizes the DE optimization to remove the
outliers, the values of the vector X can not be initialized
randomly. The second set of matching pairs is used to find the
initial values of X. As the set {(r1,51),(r2,52), . . . .., (rn,8n)}
contains less number of outliers, these are eliminated one by
one using RMSEj oo (root mean square error by leaving one
out) parameter [38]. RMSE]| oo is the calculated RMSE value
of M — 1 points from a set of M points by excluding 1 point.
The exclusion of the matching pair which gives the minimum
RMSE is eliminated in every iteration until the RMSE; oo
value becomes less than or equal to 1. Three number of pairs
are selected randomly from the remaining matching pairs to
determine the parameter values of the affine transformation
and this is performed five times to get the population of the
vector X. In this way, the vector X initialized in our proposed
method.

D. DESCA FOR THE REMOVAL OF OUTLIERS
The main objective of the proposed DESCA is to update
the values of X such a way so that maximum number of
correct matching pairs can be obtained while removing the
outliers. In order to do that, the initialized vector X is utilized
to compute the donor vector M using equation (2). Then,
crossover is performed between M and X following the
equation (3). After that, the vector X is updated for the
next iteration using the equation (4). The conditions of the
equation (4) are checked by using the first set of matching
pairs i.e. {(R1,51),(R2,52), ....., (Ry,Sy)}. The number of
matching pairs satisfies the transformation model of the
vector X and the vector U are separately identified from
the set {(R1,51),(R2,52), .. ..., (Ry,Sn)}. Out of X and U, the
one which provides comparatively more matching pairs is
selected as the transformation model for the next iteration.
The steps followed in DESCA are provided in Algorithm 1.
The main advantages of the proposed method are as
follows:

1) As the proposed DESCA algorithm finds the matching
pairs by optimizing the parameters of the transforma-
tion model, it can provide more correct matching pairs.
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TABLE 1. Details of experimental data sets.

Set Image Sensor Band Size(pixels) Resolution(m) Date Location

RI  Landsat ETM+ 7 (2.09-2.35 pum) 500 %500 30 01/05/2000 .

1 California
SI Landsat TM 5(1.55-1.75 pum) 550600 30 06/07/1992
RI  Landsat ETM+ 2 (0.52-0.60 pm) 600X 600 30 05/10/2001 .

2 Baltimore
SI Landsat TM 7 (2.09-2.35 pum) 550600 30 16/05/1987
RI IRS LISS-3 4(0.77-0.86 pum) 900900 24 07/08/2017

3 Toronto
SI  Landsat ETM+ 4 (0.77-0.90 pum) 700 700 30 03/09/1999
RI  Landsat ETM+ 8 (0.52-0.90 pm) 900900 15 01/05/2000 .

4 California
SI IRS LISS-3 4(0.77-0.86 pm) 600600 24 11/06/2018
RI OrbView-3 Pan (0.45-0.90 m) 1000 1000 1 13/06/2004

5 Barcelona
SI OrbView-3 Pan (0.45-0.90 m) 1000 1000 1 02/10/2005
RI EO-ALI 4(0.84-0.89 pm) 800 %< 800 30 16/04/2010

6 Chesapeake
SI Landsat TM 7 (2.09-2.35 pum) 800 % 800 30 30/07/1988
RI IRS LISS-3 3(0.62-0.68 p4m) 700700 24 30/10/2017

7 Cape Canaveral
SI EO-ALI 5(0.63-0.69 p4m) 500 500 30 09/06/2002
RI IRS LISS-3 3(0.62-0.68 p4m) 700700 24 30/10/2017

8 Cape Canaveral
S1 Landsat TM 7 (2.09-2.35 p4m) 550550 30 24/04/1989
RI  Landsat ETM+  8(0.52-0.90 xm) 1000 x 1000 15 26/06/2000 i

9 Campbell river
SI Landsat TM 5(1.55-1.75 pum) 500 %500 30 08/07/1989

2) It can obtain better position accuracy (lesser RMSE)
and higher mutual information (MI) values in optical
image matching.

lIl. EXPERIMENTAL RESULTS

A. SELECTED DATA SETS

Nine sets of optical image pairs are (Available: http://earthexp
lorer.usgs.gov) selected to verify the performance of the
proposed method. Fig. 2 shows the images of the eight data
sets and the detailed information of these sets is provided in
Table 1. In this table, RI and SI represent reference image and
sensed image respectively.

B. QUANTITATIVE ASSESSMENT PARAMETERS
1) Number of correct matching pairs (NCMP): It is
defined as the number of correctly matching pairs
identified in an image pair by a matching algorithm.
In order to identify the correct matching pairs, 30 uni-
formly distributed tie points are selected from the input
images. Then, these tie points are applied in an affine
transformation model to calculate the transformation
between the input images. A matching pair satisfies
this estimated transformation with a distance threshold
value of 1 pixel is considered as a correct matching pair.
2) Root mean square error (RMSE): In order to find
RMSE value, the residual errors of the correct matching
pairs are calculated first. The root means square of
these residual errors is considered as RMSE.
3) Mutual information (MI): MI represents the statistical
dependance between the input images [5].

C. SELECTION OF PARAMETERS
In the initialization process of the DESCA, the set
{(r1,81),(r2,82), ... .., (rn,Sn)} is obtained by considering the
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Algorithm 1 Differential Evolution-based Sample Consen-
sus Algorithm (DESCA)

Input:

o X : Initialized transformation model parameter vector.
o {(R1,51),(R2,52),......,(R;,Sn)}: Set of initial matching
pairs.
Output:

o Xy : Final transformation model parameter vector.
Py : Final matching pairs

(1) forG=0:N

(2) Update a donor vector MY by using three randomly
selected vectors from X based on equation 2.

(3) Update a trial vector U using equation 3.

(4) Identify the matching pairs (Rx,Sx) from
{(R1,51),(R2,582), .....,(R,,Sy)} which satisfies
the transformation model parameter of the vector X.

(5) N1 =size{(Rx, Sx)}

(6) Identify the matching pairs (Ry,Sy) from
{(R1,51),(R2,52), .....,(R;,Sy)} which satisfies
the transformation model parameter of the vector U¢.

(7) N2 =size{(Ru, Su)}

(8) if Ny > N> do

9) Xt = x6.

(10) Py = (Rx, Sx).
(11) else

(12) X6+ = yo,
(13) Pr = (Ry. Su)
(14) end if

(15) end for

(16) Xy = xV

value of t=0.7 (i.e. dr4rip=0.7). According to [24], this value
of ¢t provides better CMR with sufficient correct matching

VOLUME 12, 2024



S. Paul et al.: Differential Evolution-Based Sample Consensus Algorithm I E E EACC@SS

FIGURE 2. Selected data sets. (a) and (b) are set 1. (c) and (d) are set 2. (e) and (f) are set 3. (g) and (h) are set 4. (i) and (j) are set 5.
(k) and (I) are set 6. (m) and (f) are set 7. (0) and (p) are set 8. (q) and (r) are set 9.
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FIGURE 3. (a) Effect of F on the NCMP and (b) effect of C; on NCMP for
the different data sets.

pairs. A large value of ¢ reduces the CMR value which makes
the initialization erroneous whereas a very small value of ¢
provides insufficient correct matching pairs. Initialisation of
the DESCA is not recommended with insufficient matching
pairs. The values of F, C, are set by analysing the experiment
results of the selected data sets. Fig. 3(a) and 3(b) show the
effect of F', C, parameter’s values on the NCMP. From these
figures, it can be observed that initially, the NCMP values
increase with the increase of the values of the parameters and
maximum value of NCMP is obtained at 0.9. However, after
0.9, the values again decrease. Considering these effects, the
values of F' and C, are set to 0.9. According to the standard
DE optimization [31], the value G is decided as 200.

D. ANALYSIS OF MATCHING RESULTS
In order to show the effectiveness of the proposed method,
it is compared with the other seven state-of-the-art methods:
ORB [18], SURF [17], DM [22], DOC [25], FSC [24],
MGEO [27], and A-RKEM [10]. In each of the methods,
the M-UR-SIFT algorithm is utilized for feature extraction
except A-RKEM.

The correct matching pairs obtained by the ORB, SURF,
DM, DOC, FSC, A-RKEM, and the proposed DESCA
algorithms for the data set 1, data set 2, data set 3 and
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TABLE 2. Quantitative Results of ORB [18], SURF [17], DM [22], DOC [25],
FSC [24], MGEO [27], A-RKEM [10] and DESCA.

Data Set Method NCMP RMSE MI
ORB [18] 8 0991  0.897
SURF [17] 48 0931  0.906

DM [22] 81 0.881 0918
DOC [25] 110 0.803  0.937
FSC [24] 131 0.785  0.945
MGEO [27] 121 0.792  0.942
A-RKEM [10] 116 0.796  0.941
DESCA 168 0.730  0.959
ORB [18] 9 0942  0.616
SURF [17] 59 0.764  0.628
DM [22] 78 0.725  0.632
DOC [25] 92 0.706  0.641
FSC [24] 112 0.688  0.650
MGEO [27] 101 0.692  0.648
A-RKEM [10] 96 0.700  0.645
DESCA 136 0.675  0.658
ORB [18] 17 0943  0.815
SURF [17] 39 0.906  0.826
DM [22] 66 0.887  0.830
DOC [25] 72 0.860  0.836
FSC [24] 88 0.848  0.843
MGEO [27] 82 0.852  0.841
A-RKEM [10] 77 0.857  0.838
DESCA 127 0.791  0.862
ORB [18] 6 0.990 0.402
SURF [17] 5 0992  0.401
DM [22] 12 0.982 0403

4 DOC [25] 16 0973 0412
FSC [24] 24 0965 0.424
MGEO 20 0970 0418
A-RKEM [10] 18 0972 0415
DESCA 38 0936 0437
ORB [18] 22 0.999  0.286
SURF [17] 19 1.000  0.285
DM [22] 46 0995  0.287
DOC [25] 52 0.986  0.288
FSC [24] 60 0978  0.293
MGEO [27] 57 0.982  0.290
A-RKEM [10] 55 0.984  0.289
DESCA 88 0.959  0.302

data set 4 are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7,
respectively. From these figures, it can be observed that the
FSC obtained comparatively more correct matching pairs
than the SURF, ORB, DM, DOC, and A-RKEM algorithms.
However, the best matching results are obtained by the
proposed DESCA algorithm as it provides more correct
matching pairs than other methods.

Table 2 and Table 3 provide the quantitative assessment
results of the SURF, ORB, DM, DOC, FSC, MGEO,

VOLUME 12, 2024
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(e) | ()

FIGURE 4. Correct matching pairs for Data Set 1. (a) ORB. (b) SURF. (c) DM. (d) DOC. (e) FSC. (f) MGEO. (g) A-RKEM.
(h) DESCA.

(f) (8) (h)
FIGURE 5. Correct matching pairs for Data Set 2. (a) ORB. (b) SURF. (c) DM. (d) DOC. (e) FSC. (f) MGEO. (g) A-RKEM.
(h) DESCA.

(e) o (M) ! (h)

FIGURE 6. Correct matching pairs for Data Set 3.(a) ORB. (b) SURF. (c) DM. (d) DOC. (e) FSC. (f) MGEO. (g) A-RKEM.
(h) DESCA.

A-RKEM and the proposed DESCA algorithms. This table algorithms. However, the highest NCMP values are obtained
shows that the FSC algorithm obtains more NCMP values by the proposed DESCA algorithm and these values are
than the SURF, ORB, DM, DOC, A-RKEM and MGEO significantly better in DESCA compared to the other
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FIGURE 7. Correct matching pairs for Data Set 4. (a) ORB. (b) SURF. (c) DM. (d) DOC. (e) FSC. (f) MGEO. (g) A-RKEM.

(h) DESCA.

TABLE 3. Quantitative Results of ORB [18], SURF [17], DM [22], DOC [25],
FSC [24], MGEO [27], A-RKEM [10] and DESCA.

Data Set Method NCMP RMSE MI
ORB [18] 18 0975  0.589
SURF [17] - -

DM [22] 76 0.875  0.504
DOC [25] 89 0.842  0.508
FSC [24] 122 0823 0512
MGEO [27] 109 0830 0510
A-RKEM [10] 102 0.834  0.509
DESCA 140 0800 0.519
ORB [18] 11 0997  0.245
SURF [17] 18 0.990  0.246
DM [22] 20 0988  0.247
DOC [25] 2 0.967  0.249
FSC [24] 34 0.924 0254
MGEO [27] 28 0943 0.252
A-RKEM [10] 26 0.950  0.250
DESCA 45 0901 0258
ORB [18] - -
SURF [17] . ) .
DM [22] 18 0.990  0.267
DOC [25] 22 0973 0.270
FSC [24] 28 0961 0275
MGEO [27] 25 0965 0273
A-RKEM[10] 23 0970 0271
DESCA 39 0947 0279
ORB [18] - - -
SURF [17] 5 0.996  0.474
DM [22] 20 0.966  0.482
DOC [25] 26 0952  0.484
FSC [24] 46 0.901 0495
MGEO [27] 34 0.946  0.487
A-RKEM[10] 30 0949  0.486
DESCA 61 0.856  0.502

methods. If parameter vector X is initialized randomly in
DESCA, then no correct matches are obtained between the
images as DE divergences due to the random initialization.
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However, the DESCA gives 168, 136, 127, 38, 88, 140, 45,
39, and 61 correct matches for data set 1, 2, 3,4, 5, 6,7, 8,
and 9 respectively when the proposed initialization method is
followed.

The SURF algorithm fails to find correct matching pairs
for data set 6 and 8. On the other hand, ORB gives no
matching pairs for data set 8 and 9. As SURF algorithm is
less robust compared to SIFT, it gives comparatively less
correct matches than DM, DOC, FSC, MGEO, A-RKEM,
and DESCA which are based on SIFT. The ORB uses binary
features which are sensitive to significant intensity variations.
As results, ORB gives less matching pairs. The DM algorithm
eliminates the outliers by maintaining a nearest neighbor
distance ratio value of 0.8 for both the input image features.
This criterion removes many correct matching pairs and as
a result, it gives less NCMP values. The DOC algorithm
eliminates the incorrect matching pairs by checking their
dominant orientation. However, the dominant orientation of
the SIFT features is not consistent for all the features [39].
In case of MGEO also, the correct matches are selected by
using gradient orientation which does not remain consistent
in many cases. As a result, these methods loose many
correct matching pairs. As the A-RKEM algorithm uses
NNDR criterion to remove the outliers, it loosed many
correct matches. Although the FSC algorithm obtains more
NCMP values than DM and DOC, still it is less than the
proposed DESCA. The reason is that the DESCA finds the
matching pairs by optimizing the parameter of transformation
model whereas FSC uses a sample corresponding set. As the
proposed DESCA obtains better NCMP values, the position
accuracy is higher in this method. Therefore, it provides better
RMSE and MI values for all the data sets compared to other
methods.

E. DISCUSSION
Experiment on different sets of data sets shows that the
proposed DESCA gives more correct matching pairs and
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(c)

FIGURE 8. Limitation of the proposed method. (a) and (b) are input
optical images. (c) Matching pairs obtained by DESCA algorithm.

better MI values. In addition, it gives better position accuracy
as the obtained RMSE values are less. The proposed method
is applicable for the remote sensing optical images having
translation, rotation, scaling, and shearing differences. The
introduction of DE optimization in image matching and
the initialization process of the DE optimization are the
novelties of the proposed method. Although the proposed
DESCA algorithm works nicely for the remote sensing
optical images with affine geometric differences, it fails to
provide satisfactory results for the mountain images which
contain local geometric differences caused by terrain relief.
Fig. 8(a) and 8(b) show two images captured by OrbView-3
sensor (resolution 1 meter) covering the mountain area of
Kathmandu, Nepal. The size of the images is 800 x 800 pixels
and these are captured on October 11, 2005. Fig. 8(c) shows
the matching pairs obtained by DESCA algorithm for these
input images. From this figure, it can be observed that
the number of correct matching pairs is very less. As the
mountain images contain local distortions due to terrain
relief, the global affine model used in DESCA algorithm
can not properly handle these local geometric differences.
Therefore, the proposed method obtains less correct matches
for this data set.

IV. CONCLUSION

In this paper, a DESCA algorithm is proposed to match
the remote sensing optical images having affine geometric
differences. At first, a M-UR-SIFT algorithm is utilized for
feature extraction as well as feature matching between the
input images. Two sets of matching pairs are obtained in
the feature matching process. The first set is used for the
initialization of the proposed DESCA algorithm. The second

VOLUME 12, 2024

set is utilized to find the correct matching pairs using the
DESCA algorithm. Experiments on different sets of high
and medium resolution optical image pairs shows that the
developed scheme can provide better NCMP and MI values
than the existing well-known outlier removal algorithms.
In addition, it can achieve precise accuracy in optical image
matching. Although the proposed method performs nicely
for most of the remote sensing optical images, still provides
less number of correct matching pairs for mountain images
which contain local deformations. In order to match such
images, the polynomial model can be used as a transformation
model in the DESCA algorithm which is one of our future
works. In addition, DE optimization will be used along with
an appropriate transfer model for 3D point cloud registration
where the optimization process plays a critical role [40], [41].
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