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ABSTRACT Additive manufacturing is capable of forming part solids from a digital model of the workpiece,
which often needs to be sliced due to the nature of the process of stacking materials layer by layer. Previous
algorithms require more time to order the intersection points during slicing and only consider a fixed axis
vector as the slicing direction. With the increasing complexity of the workpiece model, it is necessary
to improve the efficiency of the slicing algorithm, and the given slicing direction should be flexible and
convenient. Therefore, this paper proposes an efficient algorithm for slicing in any direction using the
shared edges of adjacent triangles. Firstly, the model can be efficiently sliced in any direction by custom
vectors, which is convenient for process validation; secondly, the shared edges of neighboring triangular
facets intersecting the plane need to be calculated only once to reduce redundant calculations; finally, the
ordered intersections of the constructed inner and outer contours are directly outputted without any additional
sorting to reduce the running time. The experimental results show that compared with other algorithms,
the proposed algorithm can improve the execution efficiency and eliminate the constraint that the slicing
direction is fixed on the Z-axis, which is of application value and reference significance for additive.

INDEX TERMS Additive manufacturing, slicing algorithm, adjacency topology, calculation optimization.

I. INTRODUCTION
Additive manufacturing uses bottom-up stacking of materials
to print workpieces, which is more capable of manufacturing
geometrically complex parts than subtractive or equal mate-
rial manufacturing [1]. Additive manufacturing converts a
workpiece from a 3D model to a solid one, requiring process
planning that includes positioning and orienting the work-
piece model in the device space, meshing the workpiece’s
geometric model, and planning the machining path for each
and between layers. Due to the characteristics of layered pro-
cessing in additive manufacturing, slicing is a more critical
step [2]. In additive manufacturing, there are many formats
of 3D model files for parts, such as CAD, 3MF, OFF, OBJ,
and STL formats. Among them [3], the STL file format
is more widely used. After the slicing algorithm reads the
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coordinates of vertices and normal vectors of all the triangular
facets from the STL file, in the first step, the intersections
of the slicing planes and the triangular facets (triangle-plane
intersections) are calculated through this crucial information
and the set layer thickness. In the second step, the boundary of
each layer’s print area is constructed according to the desired
intersections. These two steps are the standard processes for
the previous algorithm to achieve slicing [4].

As the number of triangular facets required to fit the
workpiece model increases, the amount of computation
and execution time increases and even more memory is
required [5]. Slicing algorithms usually need to go through
two steps of intersection calculation and contour construction
to get results [6]. Most algorithms will be optimized for these
two steps respectively, but there are three problems in this
way. First, they sort the triangles by the smallest vertex in the
intersection calculation step, which would lose the topology
of the triangle mesh, so it would take more time to sort the
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intersections in the contour construction phase. Second, even
if they use a less time complex data structure to store the
intersection points in the contour building step, it still makes
the running time longer. Third, these optimization processes
limit the slice direction to the Z-axis, which brings inconve-
nience to the verification of the process. Therefore, in order to
improve the execution efficiency of the algorithm and provide
more choices for the process, this paper proposes an arbi-
trary direction slicing algorithm based on adjacent triangular
facets. The rest of the paper is organized as follows: Section II
reviews other slicing algorithms, Section III describes our
proposed algorithm in detail, Section IV compares and ana-
lyzes the proposed algorithm with other algorithms to reflect
the improvement effect, and Section V draws conclusions and
summarizes.

II. RELATED WORKS
Previous slicing algorithms improve the algorithm by opti-
mizing calculation, improving part quality, and reducing
build time. This paper only focuses on reviewing related
work that optimizes the calculation to improve the execution
efficiency of the algorithm. Kirschman and Jara-Almonte [7]
proposed themost straightforward slicing algorithm, inwhich
all triangular facets and each layer of slicing planes intersect.
Because the relative positions of most of the triangles and
the current layer plane determine that they cannot cross,
Tata et al. [8] adopted group sorting to reduce unnecessary
traversal of the triangular facets in the subsequent process,
thus reducing time and avoiding waste. Tian et al. [9] adopted
a binary searchmethodwhen arranging and grouping triangu-
lar facets in advance, thus reducing the number of judgments
on the position relationship between triangular facets and the
slicing planes. Although the slicing speed of the algorithm
is improved, the redundant operation of the triangular facets
still needs to be eliminated. Most algorithms are based on
the slicing plane, which is used to search intersecting tri-
angular facets. Huang et al. [10] took each triangular facet
as the dominant factor. They used a hash table to store
the relationship between triangular facets and intersecting
planes. They searched the hash table to quickly search all
slicing planes across the currently given triangular facet to
achieve the effect of traversing each triangular facet only
once. Zhang and Joshi [11] also proposed an efficient contour
construction (ECC) algorithm by searching the intersecting
slicing planes of triangular facets. Using the clockwise fea-
ture of the vertices of the triangle, the forward edge of the
triangle is marked. Search the slicing plane intersected by
each forward edge so that the intersecting edge and each slic-
ing plane are calculated only once to reduce the calculation
cost. King et al. [12] implemented a new algorithm based on
ECC using edge matching, making the algorithm applicable
to the topology of all models. Edge matching is an advanced
sorting method that reduces the number of times each edge is
sorted from n intersecting totals to two.

The triangular facets stored in the STL model are disor-
dered, representing that it is not able to provide the algorithm

with topological relationships between geometries when used
as input. Therefore, Pan et al. [13] proposed an adaptive
slicing algorithm to construct associations between triangles
and their vertices in the triangle mesh. Zhang et al. [14] use
a hash table to build the overall topology of the STL model
in advance and reduce the slice search range by establishing
a slice relation matrix. Tracing forward based on topological
relation also reconstructs the information lost in the STL file
when saving triangle mesh [15], [16]. Adaptive slicing is
an algorithm that considers both machining efficiency and
machining accuracy. It reduces the slice thickness in the area
with more details and increases the layer thickness with fewer
geometric features. There are many other adaptive slicing
algorithms, such as [17], [18], and [19].

However, increasing or decreasing the thickness of the
workpiece’s slicing layer will hurt the deposition process
above the current layer [20]. Therefore, adaptive slicing
algorithms are generally suitable for fused deposition mod-
eling (FDM) and are not commonly used in additive man-
ufacturing techniques such as laser sintering (SLS), stereo
photolithography (SL), or selective laser melting (SLM).
Minetto et al. [21] showed that assembling discrete inter-
secting segments to construct the intersecting contour was
time-consuming. Therefore, to improve the execution effi-
ciency of the algorithm, in addition to pre-grouping sorting,
the contour-construction step can also be improved. First,
they judge and group the triangular facets according to the
height of the slicing plane. Then, they store triangle-plane
intersections through the hash table to realize the rapid read-
ing of the intersections and efficient construction of the
intersecting plane contour. But in fact, the hash function used
in the hash table is expensive to compute, so Bhandari [22]
chooses to use the graph structure instead of the hash table to
store the desired intersections and uses depth-first search to
traverse and read the intersections.

Most of the input of these slicing algorithms only consider
the fixed Z-axis as the slicing direction, which has specific
requirements for the placement position of the workpiece
model, which inconveniences the process testing. In the past
algorithms, the two steps of intersection calculation and con-
tour construction were optimized without breaking the fixed
two-step pattern. To calculate the triangle-plane intersections,
each triangle will have two edges cross the slicing planes,
one of which will be repeated as a shared edge, increasing
the calculation amount of the algorithm. Because these algo-
rithms get disordered discrete line segments after intersection
calculation, line segment splicing is also needed to realize
contour construction. However, there may be floating point
errors when line segments are concatenated, resulting in the
two line segments not matching and thus creating the wrong
contour. In addition, according to the results of previous
algorithms, it can be seen that the contour construction stage
is time-consuming. Therefore, the algorithm proposed in this
paper aims to solve the problems of limited slicing direction,
high computation cost, and long computation time. Through
the custom vector, the slicing direction can be more flexible,
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the redundant calculation can be reduced according to
the topological relationship between the adjacent triangular
facets and the shared edge, and the ordered intersections can
be output directly to improve the execution efficiency of the
algorithm.

III. METHODS
A. THE MAIN ALGORITHM
The main flow of the algorithm in this paper is shown below
in Figure 1, which after reading the STL file groups all the
triangular facets using the property that each layer of the
cutting plane has the same height. Each layer of the cutting
plane has its own set of triangular facets to eliminate redun-
dant computations with other layers of triangular facets. The
grouping is followed by a loop to iterate through the set of
triangular facets for each layer. When processing the current
layer triangular facet collection, a relational dictionary is
constructed based on the rule that neighboring triangles have
shared edges to compensate for the missing triangle mesh
topology information from the STL file. As a result, the
current layer cutting plane is used to intersect each shared
edge only once to minimize the double counting of edges
when following the triangle faces as the intersection unit. The
loop is jumped out of at the end of the full layer traversal, and
the choice is made to keep or reverse the orientation of the
ordered intersections.

Algorithm 1 preprocessed the triangle mesh by binding the
index number of each vertice through a dictionary so that
the triangular facets list only stores the vertice index but not
the specific coordinates. The algorithm’s input is the vector
dir for custom-given slicing direction, the layer thickness
gap, an unordered list Triangles, and the list Nodes of the
triangular facets, and the output is the list Contour. Discrete
triangular facets are stored as items in listTriangles; each item
contains three vertice indexes. The listNodes stores all vertice
coordinates of the triangle mesh, and we can find the triangle
facest corresponding vertice coordinates by the serial number
of Nodes. The list Contour stores each layer contour-group,
and each layer contour group contains one or more polygons
comprising triangle-plane intersections. Step 3 processes the
input data according to the given slicing direction. Along the
direction of vector dir, the vertices are sorted according to
Min, Med, and Max, and the highest point and lowest point
of the workpiece triangle mesh are obtained respectively as
mMax and mMin, as detailed in section III-B. The STL file
does not preserve the adjacency of the triangular facets in
the triangle mesh; in fact, there is a shared edge between the
adjacent triangular facets. Therefore, in step 4, the adjacent
triangular facets are associated with their shared edges and
stored in the dictionary sTDic. Each dictionary entry uses
each edge in the triangle mesh as a key, and the two triangular
facets that share this edge are stored as the corresponding
value. However, the slicing plane of different layers usually
intersects only some triangular facets in the triangle mesh,
so the list xT and the variable layers are printed in this step.

FIGURE 1. Algorithm flow chart.

The list xT stores several sets of index of triangular facets
that intersect only with the current slicing plane, while the
variable layers represents the number of layers. This step is
explained in detail in section III-C. In steps 5 through 16, the
list xT is processed layer by layer, calculating their triangle-
plane intersections. Step 7, according to the dictionary sTDic,
finds the shared edges that intersect the current slicing plane
layer by layer. These intersections are stored in the list sGroup
in order, and these edges do not appear repeatedly, as detailed
in section III-D. Therefore, the intersections obtained after
the intersection calculation in step 10 are ordered and not
repeated. Still, the orientation of the ordered intersections
must be determined according to the variable rev returned in
step 7. If the variable rev is true, the sequential numbers of
the intersections must be reversed. Finally, the contour can be
obtained directly in step 12; the inner contour is clockwise,
and the outer contour is counterclockwise.

For step 9, when calculating the triangle-plane intersec-
tions, it is essentially to calculate the edge-plane intersection.
And because a given custom slicing direction may be any
vector, the slicing plane may no longer be perpendicular to
the Z-axis. As shown in Figure 2, the edge-plane intersec-
tion is calculated when the slicing direction is not Z-axis.
To facilitate the narration, the Angle of view of Figure 2.a
is changed to observe the negative direction of the Y-axis
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Algorithm 1
1: function optimal-slicing(dir, gap, Triangles, Nodes)
2: p← [ ][ ]; contour← [ ];
3: T,mMin, mMax← Ref-Value-Init (dir, Triangles, Nodes);
4: layers, sTDic, xT← AdjTri-Corr-ShrdEdge(T, mMin, mMax);
5: for i ∈[0,. . . . . . , layers+1] do
6: p← RefLimit.Min + i∗gap;
7: sGroup, rev← Find-Intersct-Edge(sTDic, p, xT[i]);
8: for each segs in sGroup do
9: for each seg in segs do
10: points← Comput-Insection(seg, plane);
11: if rev then reverse(points);
12: end for
13: end for
14: p[i]← points;
15: contour← p[i];
16: end for
17: return contour;
18: end function

FIGURE 2. Calculate the intersection between the slicing plane of an
arbitrary normal vector and an edge on a triangular facet.

to get Figure 2.b, and it can be seen that the cutting plane
becomes a line. In Figure 2.b, the intersection p both on the
plane and on the line, the distance from the plane to the origin
o is known to be D, the normal vector pT of the plane and
the direction vector lT of the line, need to find the point p.
Essentially, the position of p is the distance t moved from
the reference point o′ along the direction of a line. First,
project the point o onto the line as the reference point o′,
then the point o′ onto the normal vector pT of the plane to
obtain the projection length oo′′. Then subtract oo′′ by D to
get d , and the dot product of the normalized vectors pT and
lT gives cosα. Finally, t is obtained according to the triangle
similarity principle and the pythagorean theorem, and then it
is substituted into the line to get the intersection p.

B. REFERENCE VALUE INITIALIZATION
Because the given slicing direction may not be along the
Z-axis, if the original vertice coordinate value is compared
and judged, it will only get the wrong results and affect the
accuracy of the contour. Therefore, before the core work
of the slicing algorithm, the Ref-Value-Init(algorithm 2)
process needs to be executed to initialize some reference
values, and the reference values enable the algorithm to
correctly judge the comparison relationship, which appears
in step 3 of algorithm 1. The input to this procedure is the
slicing direction dir, the unprocessed list Triangles, and the

Algorithm 2
1: function Ref-Value-Init (dir, Triangles, Nodes)
2: N← [] ; T← [];
3: for each n ∈ Nodes do
4: N← n dot dir;
5: end for
6: for each t ∈ Triangles do
7: T← (t.item1, t.item2, t.item3);
8: end for
9: for i ∈ [0,. . . ,T.length] do
10: tri← T[i];
11: v←N[tri.index[0]];v←N[tri.index [1]]; v2←N[tri.index [2]];
12: if v0 > v1 then
13: max← v0; min← v1;
14: T[i].Max← tri.Index[0];
15: T[i].Min← tri.Index[1];
16: T[i].Mid← tri.Index[2];
17: else
18: max← v1; min← v0;
19: T[i].Max← tri.Index[1];
20: T[i].Min← tri.Index[0];
21: T[i].Mid← tri.Index[2];
22: end if
23: if max < v2 then
24: max← v2;
25: T[i].Mid← tri.Max; T[i].Max← tri.Index[2];
26: end if
27: if min > v2 then
28: min← v2;
29: T[i].Mid← tri.Min; T[i].Min← tri.Index[2];
30: end if
31: T[i].Refmin← min; T[i].Refmax← max;
32: if mMin > min then mMin← min;
33: if mMax < max then mMax← max;
34: end for
35: return T, mMin, mMax;
36: end function

list Nodes. The output of this process is the list T , where
each vertice of all the triangles is marked, and the highest
and lowest vertices of the triangle mesh are obtained.

From Step 3 to Step 5, the process traversed the list Nodes
to read all vertices coordinates. They are dotted with the
vector dir to give a list N containing the reference values
of all vertices of the triangle mesh, that is, the vertices of
the triangular facet. From Step 6 to Step 8, traverse the list
Triangles to retrieve the triangular facet data to list T , where
each item comprises the index of three vertices from which
a specific coordinate value can be extracted from the list
Nodes. From Step 9 to Step 33, sort the three vertices of each
triangular facet, find the maximum, minimum, and middle
values of the vertices along the vector dir, and label them
Max,Min, andMed, as shown in the triangle e in Figure 3. For
example, T[i].max stores the index of the highest vertice of
the ith triangle. In addition, the smallest and largest vertices in
all vertices are taken as the lowest pointmMin and the highest
point mMax of the whole triangle mesh, respectively.

C. ADJACENT TRIANGLES AND A SHARED EDGE
These facets in a triangle mesh are adjacent, and two adjoin-
ing triangular facets share one edge. In addition, each triangle
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FIGURE 3. Triangular facets are grouped according to the slicing planes.

has only two edges intersecting the slicing plane; if the
usual algorithm treats the triangular facet as an independent
individual, many edges will be calculated twice. Therefore,
treating these triangular facets as a related whole and the
slicing process as an intersecting calculation between these
shared edges and the slicing planes rather than between dis-
ordered triangular facets and the planes is necessary. The
method AdjTri-Corr-ShrdEdge (Algorithm3) is used to find
the relationship between adjacent triangles and their shared
edges and store it so that the contour can be output directly
in the intersection calculation phase. It appears in Step 4 of
Algorithm 1. The input to this process is the list T , the
variables mMin and mMax. The list T stores triangles with
ordered vertices, mMin and mMax representing the lowest
and highest points of the model, respectively. The output of
this process is list xT, dictionary sTDic, and variable layers.
List xT stores the triangular facets intersecting the current
plane layer by layer, dictionary sTDic stores these shared
edges and their corresponding triangular facet, and variable
layers represents the number of slicing planes. There are
many facets in the triangle mesh, but when the plane’s height
increases along the slicing direction, not all triangular facets
intersect with the current plane. Therefore, from step 4 to
step 10, the triangular facets are grouped into the list xT
according to the height of the intersecting plane, and each
triangular facet is labeled in ascending order according to
traversing the list T . For example, xT[i] stores the index of all
triangular facets intersecting the plane in which the index is i.
A triangular facet may cross multiple planes, and in step 5,
divide the difference between the triangle’s lowest vertice and
the model’s lowest vertice by the layer thickness; the index
of the lowest and highest layers in the intersecting slicing
planes can be obtained. As shown in Figure 3, the Min-Max
edge of the triangular facet e crosses three planes along the
slice direction dir, so when traversing it, it is inserted into the
groups P1, P2, and P3.
Then, from step 12 to step 25, traverse the list xT, creating

a relational dictionary of the shared edge and adjacent trian-
gular facets. The shared edge is stored as a key, and the two
adjacent triangles are stored in value. First, from step 13 to
step 16, find the current triangular facet from list T according
to the index number tIndex, and then label its three edges

Algorithm 3
1: function AdjTri-Corr-ShrdEdge(T, mMin, mMax)
2: layers← ( mMax – mMin )/gap;
3: xT[layers+1][ ]← [ ][ ]; xTLth[layers+1]← [0]; tIndex← 0;
4: for each t ∈ T do
5: btm←(t.Refmin- mMin)/gap; top←(t.Refmax- mMin)/gap;
6: for i ∈ [btm,. . . . . . ,top] do
7: xT[i][xTLth[i]]← tIndex; xTLth[i] ++;
8: end for
9: tIndex ++;
10: end for
11: value← [ ]; sTDic← (, value); triIndex← 0;
12: for i ∈ [0,. . . . . . , layers+1] do
13: tIndex← xT[i][ xTLth [i]]; tri← T[tIndex];
14: k1← getKey(tri.Index[0], tri.Index[1]);
15: k2← getKey(tri.Index[1], tri.Index[2]);
16: k3← getKey(tri.Index[2], tri.Index[0]);
17: // insert triangle into the dictionary entry with key k1
18: if sTDic -contain-Key (k1) then sTDic[k1] [1]← tIndex;
19: else
20: value[0]← tIndex; sTDic.Add(sKey1, value);
21: end if
22: // end insert
23: repeatinsert operation for k2 and k3
24: triIndex ++;
25: end for
26: return layers, xT, sTDic;
27: end function

as k1, k2, and k3. Then, the dictionary sTDic is operated.
If edge k1 is not in the dictionary, a new entry is created,
k1 is inserted into it as a key, and the index of the current
triangular facet is stored as value[0]. If k1 is in the dictionary,
add triangular facets directly into the entry with key k1 as
value [1]. Continue to process the k2 and k3 edges according
to this principle until the processing of the current triangular
facet is completed, as shown in Figure 4. Similarly, loop to
the next triangular facet and do the same until all triangles and
their edges in the list xT are stored in the dictionary sTDic as
‘‘two adjacent triangles and one edge’’ correspondence.

FIGURE 4. Creates a dictionary structure for triangle-edge.

D. FIND INTERSECTING SHARED EDGES
The process of Find-Intersec-Edge (Algorithm 4) is to find all
shared edges intersecting slicing planes in the whole triangle
mesh in order, which appears in step 7 of Algorithm 1. The
input to this procedure is the dictionary sTDic that stores
the correspondence between adjacent triangles and shared
edges, the current slicing plane parameter p, and the list xT[i]
represents all intersecting triangular facets of the ith layer.
The output of this process is the list sGroup,which means
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FIGURE 5. To adjust the orientation of the ordered intersection.

Algorithm 4
1: Function find-intersecting-edges(sTDic, p, xT[i])
2: sGroup← [ ]; tri← xT[i]; uDic← (, );
3: //Mark the triangles
4: mk← -1;
5: For each i ∈ tri do
6: if i = -1 then continue;
7: if uDic-notContain-key (i) then mk← i; break;
8: else i← -1;
9: end if
10: end for
11: //end Mark
12: while mk != -1 do
13: t← T[mk]; e0← (N[t.Min], N[t.Max]); s.Add(e0);
14: v0← t.Mid; v1← t.Mid.RefValue <= p ? t.Max : t.Min;
15: e← (N[t.Mid], N[t.Min]);
16: angle← e0 rotateTo e; rev← (angle < π );
17: //find adjacent triangle based on segment
18: e1← (v0, v1); s.Add(e1); uDic.Add(mk, false);
19: key← getKey(e1);
20: mkArr← sTDic[key]; mk← mkArr[0];
21: if uDic-Contain-Key(mk) then mk← mkArr [1];
22: //end find
23: while (uDic-notContain-Key(mk)) do
24: t← T[mk]; sKey← getKey(t.Min, t.Max);
25: if sKey = key then
26: v0← t.Mid;
27: v1← t.Mid.RefValue <= p ? t.Max : t.Min;
28: else
29: v0← t.Min; v1← t.Max;
30: end if
31: repeatfind adjacent triangle
32: end while
33: if s.cnt >2 then sGroup.Add(s);
34: repeat mark the triangle
35: end while
36: return sGroup, rev;
37: end function

edges intersecting the plane and will be the input of the next
step to calculate edge-plane intersections. From step 3 to

step 11, the triangular facet is marked whether it has traversed
through the dictionary uDic. If uDic does not contain the
currently judged triangular facet, the value of mk is the index
of the triangular facet; otherwise, the value is -1. If the current
layer has untraversed triangular facets, you can use a random
triangular facet as a seed facet for steps 12 to 32. Because
in the two edges of the triangular facet crossing the slicing
plane, the highest verticeMax and the lowest verticeMin are
the endpoints of the one side. So, step 13 adds the Min-Max
edge of the seed facet to the current contour list s as the
first intersecting edge e0 found. Then, look for the second
intersecting edge of the seed facet and determine whether
the slicing plane is above or below the middle vertice Med
in step 14 along the slicing direction. If the plane is above
Med, the endpoints of the second intersecting edge e1 are
verticesMax andMed of the triangular facet; otherwise, they
are verticesMin andMed. After being stored in list s, the seed
facet is processed, and the value of mk about the triangular
facet in list uDic is updated to false.

Before traversing the next triangular facet, it is necessary
to judge by step 15 whether the edgeMin-Max of the seed tri-
angular facet is rotated counterclockwise around the normal
vector to the edge Min-med at an angle greater than 180

◦

.
If the angle is less than 180

◦

, rev is true; otherwise, rev is
false. As shown in Figure 5, the position of the selected
seed facet affects the value of the Angle α. The positions
of these triangular facets crossing the plane can be divided
into front and rear along the negative Z-axis. Because the first
intersecting edge of the seed facet is always set to the Min-
Max edge, the position of the triangular facet above or below
determines whether the search orientation of the intersecting
edge is clockwise or counterclockwise. In addition, when the
seed facet belongs to two different dependent cases of the
inner or outer contour, its normal vector is used as the rotation
axis of the edge Min-Max to the edge Min-Med, which will
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FIGURE 6. Find the shared edges associated with the slice contour and compute the intersections.

also lead to different results. Both Figure 5.a and Figure 5.b
show the outer contour, while Figure 5.c and Figure 5.d show
the inner contour. For example, in Figure 5.a, the triangular
facet c in the front of the outer contour is selected as the seed
facet, and its normal vector n faces the negative direction
of the Y-axis. The edge Min-Max rotates counterclockwise
around the rotation axis n to the edge Min-Med, and the
Angle α is less than 180

◦

, so the bool value of rev is updated
to true. However, when the triangular facet w in the rear
outer contour is selected as the seed facet, the Angle α is
greater than 180^◦, and the bool value of rev remains false.
Similarly, in the case of the other three diagrams, the rev
will also be updated to true, marked with a red box in the
diagram. The variable rev in this step is used to correct the
order of intersections in step 11 of Algorithm 1, ensuring
that the orientation of the contour formed by the ordered
intersections is stored according to the rule of the outer con-
tour is counterclockwise, and the inner contour is clockwise.
From step 16 to step 21, find the adjacent triangular facet
of the seed facet as the next triangular facet needs to be
traversed, and look for the value array in the dictionary sTDic
according to key e1. If the triangular facet in value[0] does not
exist in uDic, it means that the triangular facet has not been
traversed, then fetch it, otherwise, choose the triangular facet
in value [1].

From step 22 to step 29, find intersecting edges according
to the principle of edge-triangle-edge until you return to the
seed facet. From step 23 to step 28, the steps are to find the
next intersecting edge. At this point, the shared edge e1 has
been processed as the first intersecting edge of the second
triangular facet, and only its second intersecting edge needs to
be found. You can judge it based on the previous intersecting
edge. According to Step 14, to determine which of the two
intersecting edges acts as the second edge to traverse, the
Min-Max edge appears as the first or second intersecting
edge. Starting with the second triangular facet in the current

traversal, only one intersecting edge per triangle needs to be
processed to mark the value of mk as false in uDic, that is,
to repeat steps from step 16 to step 21 in step 29. Completing
the above loop represents the last traversal back to the seed
facet, which means that a closed contour can be obtained
based on these intersecting edges, so it is stored in the list
sGroup in step 31. Because there may be multiple contours
in a slicing plane, repeat steps from step 3 to step 11 at
step 32 until all intersecting triangular facets are traversed.
The above process is shown in Figure 6. There are two
contours, contour1 and contour2, on the slicing plane of
layer i, and the intersection edges related to the two contours
are found in turn according to the relation dictionary. For
example, in contour1, suppose that the triangular facet e is
the seed facet, its first intersecting edge is k1, and its second
intersecting edge is k2. Then, according to k2, the triangular
facets sharing it are e and m. Since e has already traversed,
we take out m. Then, find the second intersecting edge k3 of
the triangular facet m, and so on to find h, ending the search
when the loop returns to the triangular facet e, and all the
intersecting edges related to contour1 have been found.

IV. EXPERIMENT
To evaluate the execution efficiency of this algorithm, 13 STL
models are used as inputs for experiments, and the run-
ning time required for slicing different models is output.
These 13 models are the criteria mentioned in Minetto’s
classical algorithm, as shown in Table 1. With the increase
of sequence number, the complexity and size of the model
increase gradually.

The algorithm is implemented in C# language, the run-
ning time is tested on Intel core i7 devices, and the running
environment system is Windows 11. The test parameters
include layer thickness and slicing direction. The algorithm
slices some models(Liver, Demon, Sphenoid, Tesla, Sphere,
Soldier) in Table 1 and visualizes the output results.
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FIGURE 7. Visual slicing results.

TABLE 1. Properties of the STL model.

To facilitate the observation of the division of internal and
external contours, the slicing direction is uniformly selected
as the Z-axis and the layer thickness is set to 1.2 mm. The
outer contour is shown in red, the inner contour is shown in
purple, each X-ray view of the STL models is shown on the
upper left, and the slice results are shown on the lower right,
as shown in Figure 7.

To compare with other algorithms, the layer thickness is set
to 0.032mm, and the slice direction is selected as the positive
direction of the Z-axis. TheMinetto algorithmwas chosen for
comparison algorithms because it is a representative slicing
algorithm. The algorithm in the CGAL library was selected
because of its high visibility and recognition. In the configu-
ration of the algorithm in this paper, the other two algorithms
are also used to slice 13 STL models. For comparison, the
algorithm in this paper is also fixed on the Z-axis as the slicing
direction, like the other algorithms. The comparison of the
running time required by the three algorithms is shown in
Table 2. It can be seen from the result data that although
the geometric features of the 13 STL models are different,
the proposed algorithm has improved the execution efficiency
compared with other algorithms, indicating that the optimiza-
tion calculation effect is remarkable. The required runtime
was reduced by 91% on the model liver for Minetto and 67%
on the model rider for CGAL.

Previous slicing algorithms would fix the Z-axis for calcu-
lation and optimization, but the algorithm in this paper can
customize any vector as the slicing direction. Taking the STL
model rabbit as an example, the visualization of slicing results
is shown in Figure 8. The same rabbit model is sliced along
three different vector directions, with the outline of the slice
attached to the model at the bottom left and the representation
of the vector direction at the top right. Regarding the setting
of the given parameters, the layer thickness is set to 1.0mm
and the running time is 122ms, 118ms, and 215ms from
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FIGURE 8. Slice the model in a customized arbitrary direction.

TABLE 2. Compare with other algorithms.

left to right. The results show that different slice directions
will change the number of triangle faces to be processed
in each layer, and will also affect the running time of the
algorithm, but will not affect the stability and effectiveness
of the proposed algorithm.

V. CONCLUSION
Compared to previous algorithms, the algorithm in this
paper improves the execution efficiency by optimizing the
computation. Whether it is a simple small-size model or a
complex model with more triangular facets, the slices use
less runtime, representing more efficient execution. Evalu-
ation from the STL model dataset reveals up to 91% time
reduction. In addition, when using arbitrary vectors as the
slicing direction, the accuracy of layering the model is still
maintained and the visualization results show that the con-
tours are tightly connected to the model. The design of the

algorithmic logic breaks the two-step approach while the
output results remain valid and stable, providing more possi-
bilities for the future development of slicing algorithms. In the
future, we will incorporate parallel computing mechanisms
into our algorithms, transforming sequential processing of
each layer into simultaneous processing to achieve faster
efficiency.

APPENDIX A
ALGORITHMIC VARIABLES SUMMARY
dir The given slicing direction
gap The layer thickness
Triangles The list of stored unordered triangular facets
Nodes The vertices of all triangular facets
n Normal vector of a triangular facet
contour The list stores unordered intersection points
Min The vertex of the triangle with the lowest posi-

tion on the given vector
Med The vertex of the triangle positioned in the

middle on a given vector
Max The vertex of the triangle with the highest

position on the given vector
mMax Highest position of the triangle mesh of the

fitted artifacts
mMin Lowest position of the triangle mesh of the

fitted artifacts
sTDic The dictionary that stores adjacent triangle

pairs and their shared edges
layers Number of layers to be sliced
xT List of triangular facets intersecting the cur-

rent cutting plane
sGroup the list stores ordered intersection points
rev Flags that determine whether the order of

intersections should be reversed or not
uDic Dictionary to record traversed triangular

facets
mk Flags for whether the triangular facets has

been traversed
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