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ABSTRACT While recommender systems have become an integral component of the Web experience,
their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic
data can address these concerns, but accurately replicating these real-world datasets has been a notoriously
challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities
of diffusion models in generating realistic data across various domains. In this work we introduce a
Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of
real-world datasets required for training highly accurate recommender systems. SDRM allows for the
generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing
datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative
adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing
various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@k
and 4.65% in NDCG@k .

INDEX TERMS Data privacy, diffusion models, machine learning, recommender systems, synthetic data.

I. INTRODUCTION
Recommender systems have become a ubiquitous part of
the Web experience, with applications in multiple domains.
Such systems are trained on user data that come in the
form of explicit ratings or implicitly inferred preferences
for items as well as various other sources of information
including demographics, item metadata, context data, social
network connections, etc. [1]. Inevitably, this heavy reliance
on user data makes privacy one of the major challenges
for recommender systems [2], [3]. Breaches of user privacy
and even violations of rights may occur in various stages
of a recommender system’s life cycle, including inferences
that can be made from the output of the recommendation
process [2], [3], [4]. Research into privacy-preserving algo-
rithms and anonymization of user data has made significant
progress, but a balance between accurately capturing complex
user preferences and data privacy remains challenging [5].
Even when data privacy is not the primary concern, there are
other needs which can be addressed by synthetic datasets for
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recommender systems, such as data sparsity [6]. A dataset
is considered sparse when a very small percentage of total
user-item preferences are available. In cases where a high
number of missing values exists, a synthetic dataset can
be used to augment the original dataset by increasing the
total number of data points, ideally improving the prediction
accuracy of the recommender system.

Generative AI has become increasingly popular due
to its ability to generate realistic content across various
modalities [7], [8]. Generative models such as Generative
Adversarial Networks (GANs) [9], Variational Autoencoders
(VAEs) [10], and Diffusion models (DMs) [11] have been
shown to model complex data distributions extremely well,
and have thus been employed in various domains, including
recommender systems. Most prior work employs GANs
or VAEs as part of the collaborative filtering process (i.e.
to model user-item interactions) [12], [13], [14], [15], [16],
[17], [18], with the objective of improving predictions
rather than generating synthetic data. DMs, a recent addition
to the generative modeling family, have emerged as a
prominent framework for data synthesis and have been
shown to produce high-quality samples, outperforming GAN
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architectures [19]. Recently, DMs have been applied to
recommendation systems for collaborative filtering [20], [21]
and sequential predictions [22], [23] with very promising
results.

In this work, we propose a Score-based Diffusion Rec-
ommendation Module (SDRM) that allows the generation of
synthetic data in the form of user-item interactions. SDRM
utilizes a VAE encoding scheme tomap user-item preferences
to a latent Gaussian distribution, where a diffusion model
transforms the Gaussian input and reconstructs it using
the VAE decoder. The training of our encoder, decoder,
and diffusion model are conducted separately, which allows
us to leverage the VAE’s variational inference capabilities.
Through this architecture, we can generate arbitrarily many
synthetic samples that accurately capture the users’ prefer-
ence distribution allowing for a partial or total replacement
of the user data.

This approach results in a module that can produce diverse
data while preserving the complex distributions of user-
item interactions. Through thorough experimental evaluation,
our approach has been proven to be more effective than
other methods that utilize GANs [24], VAEs [13], [24],
and DMs [20], [21] in creating recommendation datasets of
varying sizes and densities. We demonstrate SDRM’s ability
to generate accurate synthetic recommendation data across
four datasets and three collaborative filtering recommender
algorithms, showcasing the performance increase when
using SDRM compared to the original data and other data
generation techniques.

Our contributions are summarized as follows:1

• A score-based diffusion module (SDRM) for generating
high quality synthetic data from user-item preference
datasets.

• A novel method to boost the accuracy of a collaborative
filtering algorithm through variational inference with
a score-based diffusion model and variational autoen-
coder.

• The introduction of multi-resolution sampling in the
diffusion process to further increase the accuracy of
synthetic data-based recommendations.

• An extensive experimental evaluation across four
datasets and three recommendation algorithms demon-
strates increased accuracy by an average improvement
of 6.81% in Recall and 7.73% in NDCG for augmented
datasets, and 1.42% in Recall and 1.98% in NDCG
for synthetic datasets—over competing methods. This
is achieved while preserving privacy by attaining 99%
dissimilarity to the original data and maintaining similar
user and item distributions.

To the best of our knowledge, this is the first work that
employs diffusion models with the primary objective to
generate synthetic datasets for recommender systems.

1We have made our code available at https://github.com/Multi-resolution-
diffusion-recommender/SDRM.

The rest of this paper is organized as follows: Section II
provides an overview of related work in privacy methods
for recommender systems, synthetic data generation using
generative models, and generative modeling for recom-
mender systems. Section III provides a background on
the core materials used in our approach, namely VAEs
and DMs. In Section IV, we present SDRM, detailing
our architectural choices, including the proposed objective
function and the sampling and training methodologies.
Section V presents the setup and results of our experimental
evaluation across a range of datasets and evaluation metrics.
Finally, in Section VI, we summarize our results, discuss our
module’s limitations, and outline our plans for future work.

II. RELATED WORK
In this section, we review related work and how it relates
to ours from three different angles: privacy in recommender
systems, synthetic data generation, and generative models for
recommender systems.

A. PRIVACY IN RECOMMENDATIONS
Traditional methods of privatizing data involved removing
personally identified information from the datasets, therefore
anonymizing the data. However, such methods have been
shown to be ineffective as large-scale datasets could easily
be de-anonymized [25]. This led to the formulation of
differential privacy, whichmathematically guarantees that the
data or a model trained with differentially private data is
private [26].

There exist several works that focus on differentially
private recommender systems employing matrix factoriza-
tion [27] or federated learning approaches to decentralize a
users’ data from a single location [28]. While differential
privacy methods provide a mathematical guarantee the
data is private, it incurs a decrease in accuracy when
compared to training the model with the original dataset [29].
To counteract this loss in performance, prior works have
been proposed that focus on synthesizing data using ‘privacy-
preserving’ techniques such as Liu et al.’s UPC-SDG [5]
and Slokom et al.’s CART-based methods [30]. While such
techniques do not mathematically guarantee private data,
they aim to enhance user privacy without compromising
accuracy. UPC-SDG does so through an attention-based
module substituting user preferences, while Slokom et al. use
partially generated data for privacy.While our objective is the
same, in our approach we focus on augmenting or replacing
original datasets with synthetic data using a score-based
diffusion method for recommender algorithm training.

B. SYNTHETIC DATA GENERATION
Many prior works using diffusion have focused on improving
image classification through augmentation. These methods
have focused on generating more training examples to
improve the performance of downstream tasks, like building

58276 VOLUME 12, 2024



D. Lilienthal et al.: Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems

FIGURE 1. SDRM Training and Sampling.

more robust classifiers [31], [32] or improving image
segmenting for healthcare applications [33].
The need for fully synthetic copies of datasets has been

driven by the need of companies to stay compliant with
data protection regulations [34], such as the GDPR (General
Data Protection Regulation) [35]. Many works have been
proposed to create data generators whose objective consists of
synthesizing tabular datasets which hold the same statistical
properties as the original, but are not identical copies [24],
[36], [37]. Both CTGAN [24] and CTAB-GAN+ [37] use
Generative Adversarial Networks, while for TabDDPM [11]
the authors use a Denoising Diffusion Probabilistic Model
(DDPM) [11] to model tabular datasets. However, none
of these prior works have benchmarked their models on
recommender system datasets, leaving a gap in the current
research for examining the generalizability of tabular data
generators to model recommendation datasets.

Our method, SDRM, utilizes a diffusion process similar
to TabDDPM for modeling recommendation data, which
could be broadly categorized as tabular. However, SDRM
distinguishes itself by compressing categorical features (user-
items preferences) into lower-dimensional representations
via a Variational Autoencoder to address the high dimension-
ality of recommendation data and employs multi-resolution
sampling for new data generation. In contrast, TabDDPM’s
approach of concatenating each categorical feature as the
input into the denoising MLP (Multilayer Perceptron)
network significantly increases the computational complexity
due to the thousands of unique categories (items) in rec-
ommendation datasets. TabDDPM’s complexity made direct
comparisons between SDRM infeasible in our evaluation in
section V.

C. GENERATIVE MODELS IN RECOMMENDATIONS
Recently, generative models have been used in recommender
systems, with most of the prior work involving GANs
and VAEs. GAN-based techniques leverage adversarial
training to optimize the generator’s ability to augment user
interactions [12], [38]. The application of GANs to enhance
user-item data for training recommender models has gained
significant attention, with methods emerging to augment

user preferences for collaborative filtering [12], [15], [16],
and sequential predictions [39], [40]. Various works on
incorporating GANs and reinforcement learning to simulate
user behavior have also been explored [41], [42].

Many works have been proposed to leverage VAEs in
recommendation systems to predict user ratings [13], [14],
[17], [18] by using their ability to compress data into a
Gaussian distribution using the re-parameterization trick [10]
and applying variational inference to reconstruct the original
data. To take advantage of VAE’s abilities to reconstruct data
from a Gaussian distribution, we propose pretraining a VAE
to map data to a low-dimensional Gaussian representation
for which we apply diffusion on their latent space. Similar
work has been proposed using this method [21], [43], but
trained the VAE and diffusion model together, whereas we
train them individually to take advantage of the variational
inference ability of VAEs.

There have been very few works incorporating diffusion
into recommendation systems. Existing research primarily
focuses on predicting complete user preferences [20], [21]
or making sequential predictions [22], [23]. Walker et al.
proposed CODIGEM [20], a DDPM-inspired architecture
that stacks autoencoders to denoise the corrupted user-
item preferences. Very recently, Wang et al. proposed
DiffRec [21], a model that trains a denoising diffusion model
by incorporating an array of MultiVAE encoders to map user
data to a low-dimensional space and reconstructs the input
back to its original high-dimensional form. While DiffRec
and CODIGEM show promise as methods to predict user
ratings, they are not suitable as data generators and do not
take full advantage of diffusion’s ability to generate realistic
data. We make this claim for a few reasons: first, both
DiffRec’s and CODIGEM’s training approach implements
early stopping, which prevents the denoising model from
fully learning the entire resolution of the latent data during
the denoising process [11]; and second, CODIGEM and
DiffRec train for 3 and 10 timesteps T respectively, while
training for larger T (such as 1000 steps or more), has been
shown to capture more detailed information, due to increased
reconstruction time to learn imperceptible details of the data,
as demonstrated in [11] and [44].
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In contrast to DiffRec and CODIGEM, our model, SDRM,
benefits from a simpler architecture and trains over a larger
amount of T steps without early stopping and utilizes
an ablated training objective which focuses on generating
user-item interaction data for enhancing, or completely
replacing the original datasets. Additionally, we specifi-
cally designed SDRM to create synthetic user preferences
that closely follow the intricate distribution of user-item
preference data. This design enhances the performance of
out-of-the-box recommender models while preserving user
privacy, rather than serving as a direct predictor model.

III. BACKGROUND
A. VARIATIONAL AUTOENCODERS
Variational Autoencoders (VAEs) are a probabilistic gener-
ative model that aims to learn a joint distribution between
the data and a compressed latent distribution, pψ (x, z). VAEs
use a stochastic encoder network qφ(z|x), to encode data
to a lower-dimensional latent space z, then reconstruct it
using a stochastic decoder network pψ (x|z) using variational
inference to approximate the probabilistic latent variables.
The latent distributions are typically a normal Gaussian,
characterized through its mean µ and variance σ .
VAEs learn the stochastic mappings between the observed

data and the latent variables through the evidence lower
bound (ELBO) optimization objective. This objective aims to
approximate the log-likelihood of the observed data, which
is intractable due to the integral of the marginal likelihood,
pψ =

∫
pψ (x, z)dz, lacking an analytical solution [45]. The

ELBO objective is defined as follows:

L(x;ψ, φ) ≡ Eqφ (z|x)
[
log pψ (x|z)

]
− KL

(
qφ(z|x) ∥ p(z)

)
(1)

We can obtain an unbiased estimation of the ELBO by
sampling the latent z space z ∼ qφ and optimizing it
through gradient ascent. However, to take gradients with
respect to φ in this sampling process, we must employ
the reparameterization trick: z = µφ(x) + ϵ ⊙ σφ(x)
[10], where ϵ ∼ N (0, IK ) and K represents the size of
the latent space. This trick introduces stochasticity into the
sampling procedure, allowing gradients with respect to φ to
be back-propagated through the latent z space.
Using the reparameterization trick, we can optimize

the encoder network parameters, φ, and decoder network
parameters, ψ , using backpropagation while maintaining the
stochasticity needed to model an unbiased latent distribution
(such as Gaussian) during the training process. To create new
data samples, we need to sample some random noise from
a normal Gaussian distribution ϵ ∼ N (0, IK ) and pass it to
the decoder network pψ (x|ϵ) to obtain a new data sample x̂
which follows the approximate distribution of an original data
sample x.

SDRM leverages the abilities of the decoder network
of a VAE to transform Gaussian noise into data samples
that approximate the original data distribution. We then

model these VAE latent z distributions using a score-based
diffusion model. Parameterizing this latent distribution using
score-based diffusion allows us to take advantage of diffusion
models ability to generate high-quality data samples, which
in this case is Gaussian noise at different resolutions, and the
variational inference capabilities of VAEs to generate new
samples from a lower-dimensional representation.

B. DIFFUSION MODELS
Diffusion Models (DMs) have emerged as a versatile class
of generative models. DMs are probability density functions
which consist of two processes, a forward and a reverse [46].
In the forward process, noise perturbations are incrementally
added to the initial input x0, often in the form of a standard
normal Gaussian xT ∼ N (0, I), using a noise scheduler
βt for T time steps. This forward process is a conditional
distribution xt given xt−1 and can be defined as follows:

q(xt |xt−1) := N (xt ;
√
1− βtxt−1, βt I ) (2)

In the reverse process, a neural network θ learns to predict
the next state from the prior state by gradually denoising an
input from xT to x0. Here, µθ (xt , t) and 6θ (xt , t) defines the
mean location and information densities respectively.

pθ (xt−1|xt ) := N (xt−1;µθ (xt , t), 6θ (xt , t)) (3)

The reverse process parameters, θ , are maximized through
an evidence lower bound (ELBO) objective on the original
data distribution [11]. The ELBO in DMs can be represented
by the mean square error between the original data,
corrupted by the forward process, and the reconstruction data,
generated by the reverse process. This enables the efficient
training of DMs and high-quality data synthesis [11], [47],
[48], [49].

Generative models, such as diffusion, can be trained
utilizing various training objectives [50], [51], including
a score-based approach [47], [52], [53], [54], [55], [56],
[57], [58], [59], [60]. Compared to the ELBO, the unbiased
nature of score-based objectives naturally lends itself to
recommender systems. Score-based objective functions, like
score matching, are defined by taking the gradient of the log
likelihood of x and minimizing the expected squared error of
the score based predictions.

Ep(x)

[
∥sθ (x)−∇ log p(x)∥2

]
(4)

Score matching objectives can suffer from various dif-
ficulties including error estimation. When data is sparse,
they may not be able to accurately estimate the score
function. Simultaneously, access to ground truth data is ideal
to accurately capture the score. Our approach avoids these
problems by utilizing a VAE to increase the data density and
modifies the score-based objective function by introducing
noise through x̃ = x + ϵ and transforming the function into a
denoising problem. We leverage this score-based objective in
our work to capture the intricacies of user-item interactions.
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IV. SCORE-BASED DIFFUSION RECOMMENDER MODULE
We propose SDRM (Score-based Diffusion Recommender
Module), a module designed to generate artificial user-item
preferences to augment or replace the dataset it is trained on.

Diffusion models are capable of modeling complex
distributions of arbitrarily many dimensions, but suffer from
intractability when datasets have sparse features. As a result,
reducing the overall dimensions before the diffusion process
can help with modeling accurate reconstructions over all
possible items of the dataset. For this reason, our proposed
method employs a VAE to map data into a lower-dimensional
Gaussian distribution and enables more efficient training for
SDRM.

Generating recommendation data poses a unique problem
due to the challenge of training a model on datasets
containing tens or hundreds of thousands of user preferences.
Recommendation data is highly sparse and skewed [1],
making it necessary to reduce the overall dimensions before
the diffusion process. Through this method, diffusion can
learn to reconstruct all possible items of the dataset. For
this reason, our proposed method takes advantage of VAE’s
ability to map data into a lower-dimensional Gaussian
distribution and enables more efficient training for SDRM.

As shown in Figure 1, SDRM uses a pre-trained encoder
to map user ratings into a smaller representation, followed
by a Multi-Layer Perceptron (MLP) denoising model, and
finally, a decoder to decompress the latent vectors into user
ratings. We train SDRM in two steps: first, we pretrain a
multinomial likelihood variational autoencoder (MultiVAE)
on user ratings, and then we train SDRM with the encoder
of the MultiVAE. To generate user ratings, we sample from a
normal Gaussian distribution, denoise it using SDRM, and
pass the denoised latent vectors into the VAE decoder to
reconstruct the data into the same dimensions as the original
dataset.

We propose two sampling variations for SDRM: full-
resolution sampling (F-SDRM), and multi-resolution sam-
pling (M-SDRM). F-SDRM denoises pure Gaussian noise
starting at timestep T → 0whileM-SDRM starts at a random
timestep t ∈ T and denoises to 0. Because the latent z vector
of the pretrained encoder maps to a Gaussian distribution,
SDRM learns to denoise from a Gaussian distribution z to
a Gaussian distribution ẑ. By starting at a random timestep
t instead of the full timestep T and denoising until we
reach timestep 0, we reconstruct Gaussian noise at different
resolutions into user data for M-SDRM.

A. SDRM OBJECTIVE
We propose the following score-based objective for training
diffusion in recommender systems.

ℓ(zt ) =
||
(
sθ (ẑt )− sθ (zt )

)
−1θ (zt )||22 + ||sθ (zt )−1θ (zt )||

2
2

||1θ (zt )||22
(5)

where t is the discrete time step, uniformly sampled from the
range [1, . . . ,T ]; zt is the corresponding latent representation
of the input data point (e.g., user-item interactions) encoded
by the VAE; ẑt = zt + ν with ν ∼ N (0, σνI) is its perturbed
version by the Gaussian noise, η; sθ (·) is the score function in
the diffusion model with the parameters θ ; and ϵθ (zt ) is the
prediction noise at the time t in the diffusion model. Finally,
1θ (zt )

.
= ϵθ (zt ) − zt quantifies the difference between the

prediction noise, ϵθ (zt ), and the latent representation, zt . The
denominator, ||1θ (zt )||22, serves as a normalizing factor to
stabilize the loss function.We show, through experimentation
on various datasets, that this score-based objective is more
effective than standard training objectives applied in other
diffusion models, such as CODIGEM [20] and DiffRec [21].

B. SDRM TRAINING AND SAMPLING
We train MultiVAE [13] on the original dataset, using the
evidence lower-bound objective defined by

Lu(ψ, φ) = Eqφ (zu|xu)[log pψ (xu|zu)]

− β · KL(qφ(zu|xu)∥p(zu)) (6)

where log pψ (xu|zu) is the Gaussian log-likelihood for user
u, qφ is the approximating variational distribution (inference
model), and β is a heuristic annealing parameter. Next,
we utilize the MultiVAE encoder to compress user-item
preferences into a smaller latent representation for training
SDRM with the loss in Equation (5). We prevent gradient
updates on the VAE model while training SDRM, ensuring
SDRM purely learns to transform the VAE latent variable z
to another latent variable ẑ.

For sampling data with F-SDRM, we follow the same
sampling procedure as Ho et al. [11] and map z0 to the
decoder of the MultiVAE. We follow the same process for
M-SDRM, but start the denoising from a random t ∈ T for
each sample. Additional details of the training and sampling
procedure are included in Algorithms 1 and 2.

Algorithm 1 Training SDRM
1: Sample candidate hyperparameters x∗ from χ and

initialize SDRM
2: while Recall@10 improves do
3: for batch size ∈ x∗ do

// Train VAE

4:
Lu(ψ, φ) =Eqφ (zu|xu)[log pψ (xu|zu)]

− β · KL(qφ(zu|xu)∥p(zu))
5: end for
6: end while
7: for epochs ∈ x∗ do

// Map user-item preferences to z
8: zu← qφ(zu|xu)

// Train SDRM

9: ℓ(zt ) =
||

(
sθ (ẑt )−sθ (zt )

)
−1θ (zt )||22+||sθ (zt )−1θ (zt )||

2
2

||1θ (zt )||22
10: end for
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Algorithm 2 Sampling SDRM
1: Select t number of denoising timestep from [1,T ]
2: Initialize synthetic user-item preference vector with

sampled Gaussian noise zT ∼ N (0, I )
3: for T ,. . . ,1 do

// Sample Gaussian noise
4: z ∼ N (0, I ) if t > 1, else z = 0

// Transform Gaussian noise to Gaussian noise
5: ẑt−1 = 1

√
αt

(
ẑt −

1−αt√
1−ᾱ

ϵθ (ẑt , t)
)
+ σtz

6: end for
// Reconstruct ẑ using VAE decoder to x̂

7: x̂ ← pψ (x|ẑ)
// Apply piecewise conditional to x̂ with threshold λ

8: f (x̂) =

{
1 if x̂ ≥ λ
0 if x̂ < λ

V. EVALUATION
We evaluate SDRM by comparing how well the generated
user-item data can augment or replace the original data
when used as input for any recommendation algorithm.
For this purpose, we demonstrate the ability of SDRM
to synthesize recommendation datasets by employing three
recommendation algorithms, namely SVD [61], MLP [62],
and NeuMF [63], and evaluate the generated top-k recom-
mendations in terms of Recall@k and ranking order, using
NDCG@k . We compare our model’s two variations, namely
F-SDRM and M-SDRM, with six generative model baselines
on four diverse datasets.

A. EXPERIMENT SETTING
1) DATASETS
We employ four publicly available and commonly used
datasets to evaluate SDRM: Amazon Luxury Beauty (ALB)
[64], Amazon Digital Music (ADM) [64], MovieLens
100k (ML-100k) [65], and MovieLens 1M (ML-1M) [65].
We selected these datasets because they encompass a wide
range of items and vary in user/item/rating cardinality and
sparsity, as shown in Table 1. Moreover, their relatively small
size allowed us to conduct extensive, lengthy optimization
runs. Each dataset is pre-processed by converting ratings
greater than three to 1 and ratings three or less to 0. We also
filtered out low-frequency users and items, so only users who
rated at least five items and items with at least five ratings are
included in the datasets.

Each original dataset was split into a training, testing,
and validation set using a 70:20:10 split on all the users.
Additionally, a small portion of user ratings in the testing
set are needed as ground truth users in the training dataset
to evaluate the effectiveness of synthetic data. The ratings of
those users who are in the training and test set are masked
during the evaluation phase.

2) BASELINE GENERATIVE MODELS
We evaluate the ability of SDRM to generate synthetic
data against the original dataset (representing the baseline

TABLE 1. Dataset Statistics.

before augmenting or substituting data), and the following
generative models:
• CTGAN [24] (Conditional Tabular Generative Adver-
sarial Network) is a GAN designed for synthesizing
tabular data.

• TVAE [24] is a conditional Tabular Variational
Auto-Encoder designed for synthesizing tabular data,
similar to CTGAN.

• CODIGEM [20] is a diffusion-inspired collaborative
filtering model that utilizes stacking denoising autoen-
coders during the reverse denoising process.

• MultiVAE [13] is a Variational Autoencoder that uses
a multinomial likelihood loss objective and variational
inference to model implicit user data.

• MultiVAE++ is the pre-trained multinomial variational
autoencoder used in SDRM, but its hyperparameters are
optimized as shown in Table 2. This model represents a
true baseline to compare the increased performance of
SDRM.

• DiffRec [21] is a denoising diffusion probabilistic model
used for predicting whole user-item interactions.

3) BASELINE RECOMMENDER ALGORITHMS
We evaluate the effectiveness of the synthetic data using three
state-of-the-art recommendation algorithms: SVD (Singular
Value Decomposition) [61], a matrix factorization technique
that approximates the original matrix with lower-dimensional
matrices representing latent factors; MLP (Multilayer Per-
ceptron) [62], a deep neural network architecture incorpo-
rating user and item embeddings which feed into multiple
feed-forward layers to model and predict whole user-item
preferences; and NeuMF [63], that fuses matrix factorization
and an MLP network to predict single user-item preferences.

4) EVALUATION METRICS
Similar to related work, we adopt two top-k metrics, namely
Recall@k and NDCG@k . Recall@k is defined as the
percentage of ground-truth positives (items) that the system
recommends as positive for a recommendation list of size k .
The formula for Recall@k is given as follows:

Recall@k =
Total Number of Relevant Items

Number of Relevant Items found in top-k
(7)

NDCG@k (Normalized Discounted Cumulative Gain) is
defined as the ratio of the cumulative gain to its ideal value,
which measures how close the recommended top-k ranking
is to the ground truth. The formula for calculating NDCG
at a specific rank position k involves first computing the
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DCG (Discounted Cumulative Gain) at k , then normalizing
that score by the IDCG (Ideal Discounted Cumulative Gain),
which represents the maximum possible DCG at k if the
results were perfectly ranked. The formula is given as
follows:

DCG@k =
k∑
i=1

2reli − 1
log2(i+ 1)

(8)

IDCG@k =
|RELk |∑
i=1

2reli − 1
log2(i+ 1)

(9)

NDCG@k =
DCG@k
IDCG@k

(10)

where reli is the relevance score of the result at position i and
| RELk | is the list of relevance scores sorted in descending
order up to position k.

5) GENERATING SYNTHETIC DATA
Generating data from CTGAN and TVAE was straightfor-
ward, as both approaches use a Gumbel-softmax [66] to
directly create categorical features. To generate data from
CODIGEM, MultiVAE, MultiVAE++, and DiffRec, we first
trained those models, then modified the code base to inject
Gaussian noise into the decoder of MultiVAE and denoised
Gaussian noise with CODIGEM and DiffRec. This process
allows each baseline model to generate synthetic samples
starting from Gaussian noise.

For each synthetic dataset, we generated an equal number
of samples to match the number of users in each training split
of the original dataset. We utilized a conditional piece-wise
function to transform the logit outputs from the generative
baseline models and SDRM. We used a threshold value λ on
the synthetic data, which matches the value at the sparsity
quantile of each dataset.

f (x) =

{
1 if x ≥ λ
0 if x < λ

(11)

6) HYPERPARAMETER SEARCH FOR SDRM
During the training procedure, we aim to find the set of
hyperparameters x∗ that yields the optimal f (x) where a
hyperparameter x can take any value in the search space of
χ [67]. We formalize the search as x∗ = argmaxxϵχ f (x),
where we optimize for Recall@10. We utilize a TPE
(Tree-structured Parzen Estimator) [68] and a successive
halving pruner [69] to search over the search space χ

efficiently. We perform 5-fold cross-validation for each set of
hyperparameters used to train SDRM and report the average
Recall and NDCG results. The hyperparameter search space
used during SDRM training is shown in Table 2.
To find the optimal set of hyperparameters for SDRM,

we employed Bayesian optimization search over the search
space mentioned in Table 2 using the Optuna framework [70].
Due to the observed variance in performance between
runs with the same hyperparameters, we ran each set of

TABLE 2. Hyperparameter search space χ for SDRM.

candidate hyperparameters five times and averaged the
results presented in Tables 3 and 4. We ran each evaluation
model (SVD,MLP, NeuMF)with the benchmark datasets and
SDRM between 30 to 300 trials. We computed these results
using RTX 3080, RTX 4090, T4, V100, and A10 GPUs over
several weeks.

B. TRAINING PROCEDURE
We showcase the ability of diffusion to generate realistic
user-item preferences in two conditions: when the synthetic
data is used to augment the original training set, and when
the synthetic data is used to replace the original training set.
For augmenting data, we combine the synthetic data with
the training portion of the original dataset and evaluate the
results on the holdout ratings from the test set. Similarly,
for replacing the original data with synthetic, we train each
baseline recommender algorithm with the synthetic data
combined with 20% of ground truth user ratings from the
test set. This approach is necessary to show how synthetic
data can enhance the predictive performance on real users,
as it is impractical to measure the effectiveness of synthetic
data in a recommendation model without incorporating some
actual user data. During the evaluation process, we predict
all possible items for each user in the test set and mask any
items rated during training to prevent data leakage in our
results.

Each generative model was trained five times on each
dataset and a synthetic dataset was generated matching
the same number of users in its respective training set.
Subsequently, each baseline recommender model was trained
with and without the original data. Similarly, SDRM was
trained five times and each run generated a synthetic
dataset for the MultiVAE++ and SDRM using full (F-
SDRM) and multi-resolution (M-SDRM) sampling. This
way, every MultiVAE++, F-SDRM, and M-SDRM result
was calculated from the same exact runs. We generate top-
k recommendations for each user in the validation set and
compare them to the ground truth using Recall@k and
NDCG@k .
To account for the negative sampling needed for training

NeuMF, we utilized items with the lowest ratings from each
user in the synthetic datasets. For the actual users, we selected
the items with a 0 rating.

VOLUME 12, 2024 58281



D. Lilienthal et al.: Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems

TABLE 3. Overall performance comparison between baselines by training with synthetic and the original dataset. The best results are in bold and the
second best are underlined. Average overall improvement: Recall 4.48%, NDCG 5.07%.

C. RESULTS
We compare SDRM against the baseline generative models
used during SDRM training and present the average and
standard deviation of Recall@k and NDCG@k over five runs
in Tables 3 and 4. We also report the overall percentage
improvement of SDRM over the best-performing baseline
model for top-10 generated recommendations. In Table 6,
we report the average improvement over MultiVAE++
in Recall@k and NDCG@k , calculated over all the rec-
ommender algorithm and dataset combinations for both
the augmented and the synthetic dataset training setups.
We report additional improvements for various top-k (k ∈
1, 3, 5, 10, 20, 50) over the MultiVAE++ baseline in the
appendix in Tables 7 and 8.

1) TRAINING WITH AUGMENTED DATASET
As shown in Table 3, F-SDRM and M-SDRM achieved
the best or second-best results in all Recall@10 and all
but one NDCG@10 results. There are many runs where
MultiVAE++ placed second-best over either F-SDRM or
M-SDRM, highlighting that even doing diffusion over a
Gaussian latent variable can boost the performance. Overall,
SDRM improves over the baseline generative methods
by 4.48% for Recall@10 and 5.07% for NDCG@10
with the single best overall improvement from base-
line of 24.28% and 21.87% for Recall and NDCG,
respectively.

2) REPLACING TRAINING DATA WITH THE SYNTHETIC
DATASET
As shown in Table 4, when substituting the original datasets
with synthetic datasets, SDRM again consistently achieves
the best or second best overall results for each of the
recommender models and averages an overall improvement
of 2.08% for Recall@10 and 0.88% for NDCG@10,
achieving as high as 14.67% and 8.47% for Recall and
NDCG, respectively, on the Amazon Digital Music dataset.
This demonstrates the potential of using SDRM as a method
to substitute an original dataset and achieve competitive or
improving performance.

3) COMPARING SDRM AGAINST MULTIVAE
Since SDRM employs a MultiVAE for compressing and
representing user-item data as a smaller latent variable z, then
learns to transform one Gaussian representation into another,
it raises a legitimate question whether the additional com-
putational effort for SDRM genuinely enhances performance
compared to using MultiVAE alone. To address this concern,
we compared the percentage increase of max Recall and
NDCG value between M-SDRM and F-SDRM (represented
as SDRM in Figure 2) against MultiVAE++ from the same
runs.

We observe that SDRM improves the overall Recall@k
and NDCG@k scores compared to using MultiVAE across
different k values. Our method achieves an average 6.81%
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TABLE 4. Overall performance comparison between baselines by training with synthetic data. The best results are in bold and the second best are
underlined. Average overall improvement: Recall 2.08%, NDCG 0.88%.

FIGURE 2. Baseline improvement of SDRM over MultiVAE++ across all
datasets for various sizes of top-k recommendation lists. Augmented
average improvement: Recall@k : 6.81%, NDCG@k : 7.73%,
Synthetic average improvement: Recall@k : 1.79%, NDCG@k : 1.56%,
Combined average improvement: Recall@k : 4.30%, NDCG@k : 4.65%.

and 7.73% increase in Recall@k and NDCG@k when
augmenting the original data with synthetic and 1.79% and
1.56% increase in Recall@k and NDCG@k . The scores
shown in Figure 2 and Table 6 (located in the Appendix)
are the average increase across each of the three baseline
recommender models and four datasets for each Recall@k
and NDCG@k . SDRM has the greatest average performance
increase in Recall for lower k values scores when used for
augmentation and a higher average performance increase
in NDCG for larger k scores when used as a substitution

method. These findings further demonstrate that using
a score-based diffusion model between the encoder and
decoder of aMultiVAE architecture can significantly increase
performance.

4) DISCUSSION OF RESULTS
We hypothesize that SDRM generates better synthetic data
than MultiVAE++ because we use a score-based diffusion
model to model the VAE’s prior distribution pθ (z). This
allows us to create higher resolution noise processing before
reconstruction using the decoder.

In the diffusion process, different timesteps t affect data
interpolation—larger t values result in coarser and more
varied interpolations, whereas smaller t values preserve
global features without fine details [11], [46]. By sampling
across a range of t values, M-SDRM surpasses F-SDRM in
capturing global patterns within latent z space, which can
improve recommender systems by better identifying intrinsic
user or item clusters [17].

Additionally, as shown by our extensive evaluation, our
method surpasses other tabular data generation methods [24],
previous recommendation variational autoencoders [13],
and earlier recommendation diffusion models [20], [21]
in synthesizing recommendation datasets. We intentionally
designed our approach to leverage the strengths of both vari-
ational autoencoders and diffusion models: the high-quality
sampling capabilities of diffusion models and the mode
coverage and diversity offered by variational autoencoders.
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This strategic combination enables us to outperform all
existing data generation methods for recommendation
datasets.

D. PRIVACY-PRESERVATION
It has been previously shown that diffusion models and
variational autoencoders can effectively reproduce training
data even when sampled from a Gaussian distribution [71],
[72]. It has also been observed that using a Gaussian
distribution for generating synthetic data does not guarantee
the privacy of the data [73]. However, considering the high
sparsity of recommendation data and the design of SDRM
to generate binary item-rating preferences, we posit that our
approach does not replicate the original training data, even
when adhering to the same sparsity constraints as the original
data.

To confirm that the proposed model is privacy-sensitive,
we present empirical evidence that demonstrates that the
overwhelming majority of SDRM-generated data does not
reproduce the training examples from each dataset, while
maintaining a similar distribution of rated items and user
ratings as to the original.

1) ASSESSING SIMILARITY
To assess the difference between the synthetic and original
data, we employ the Jaccard similarity metric, which
quantifies the similarity between two sets by dividing the size
of the intersection of the sets by the size of their union.

J (x, x̂) =
|x ∩ x̂|
|x ∪ x̂|

=
|x ∩ x̂|

|x| + |x̂| − |x ∩ x̂|
(12)

We obtain a score for each pairwise comparison of each
synthetic user x̂ to genuine user data x using M-SDRM and
the MultiVAE++ and present the results in Table 5. We also
explore the distribution of the items-per-user and user-per-
items cardinalities in the synthetic data compared to the
original dataset, as shown in Figure 3.

TABLE 5. Pairwise comparison using Jaccard similarity on original data vs
synthetic data with M-SDRM and MultiVAE++ on Amazon Digital Music
dataset.

Even though each original dataset has been pre-processed
to account for each user having a minimum of 5 ratings per
item, SDRM produces synthetic users with less than five
items (something that is not necessarily bad, given that it
better reflects real datasets that have such cold-start users and

FIGURE 3. Distribution of the number of items and users for the Amazon
Digital Music dataset.

items). Even so, SDRM still adheres to the natural long-tail
distribution in recommendation data, where a smaller number
of users (items) account for the majority of related item
(user) ratings in the dataset, leading us to believe SDRM
accurately models intricate item-rating distributions in a
recommendation dataset.

2) ASSESSING PRIVATE SYNTHETIC DATA
Table 5 reveals that using M-SDRM to generate datasets of
the same size and sparsity as the original does not reproduce
(copy) the training examples, resulting in almost 99%
dissimilarity. This significant difference is partly illustrated
in Figure 3, demonstrating that the synthetic dataset’s long-
tail distribution of rated items is less right-skewed than the
original. Despite this, the user-per-item distribution remains
consistent between the synthetic and original datasets, high-
lighting SDRM’s effectiveness in synthesizing data while
preserving preference distributions per item.

Overall, our analysis demonstrates that SDRM-generated
data can balance the ability to protect users in privacy-sensitive
circumstances while still offering the ability to train rec-
ommender system models with equal or better performance
than the original, something that true differential privacy
implementations inherently struggle with [29].

VI. CONCLUSION
In this work, we propose SDRM, a novel approach to gen-
erating synthetic recommendation data through score-based
diffusion modeling. We take advantage of the VAE frame-
work to capture compressed latent representations into a
Gaussian distribution and apply multi-resolution sampling to
further improve distributional modeling for recommendation
systems. Due to the disjointed training process and modeling
of the latent z vector using score-based diffusion, we increase
the performance of the variational inference process in a VAE
when sampling new data, leading to significant improvements
in performance in synthesizing recommendation datasets.
Through various ablation studies, we show that our model
is capable of modeling complex distributions and achieves
an overall average improvement of 4.30% in Recall@k and
4.65% in NDCG@k when applying these novel samples to
augment or replace existing datasets. We presented evidence
that our method produces data that is 99% dissimilar from the
original dataset while still retaining the characteristics of the
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TABLE 6. Baseline improvement over MultiVAE++ across all datasets. Augmented average improvement: Recall@k: 6.81%, NDCG@k : 7.73%, Synthetic
average improvement: Recall@k : 1.79%, NDCG@k : 1.56%, Combined average improvement: Recall@k 4.30%, NDCG@k 4.65%.

TABLE 7. SDRM augmented data percentage improvement over MultiVAE++.

TABLE 8. SDRM synthetic training data percentage improvement over MultiVAE++.

original data distribution. This work addresses the problem of
dataset sparsity but also creates a novel way for organizations
to preserve the privacy of their users’ data while still training
robust recommender systems.

Our approach to synthesizing recommendation datasets
using diffusion models addresses a gap in prior literature,
which has primarily focused on synthesizing tabular datasets
but often overlooks recommendation datasets in their bench-
marks. We bridge this gap by not only comparing against
popular tabular generators, but also evaluating recommender
diffusion models and variational autoencoders.

A. LIMITATIONS
One limitation of our method is its reliance on a Multi-Layer
Perceptron (MLP) network for denoising Gaussian data to
generate user data one sample at a time. Unlike diffusion
models used in image processing that utilize segmentation
models for local pixel relationships, our approach may
miss the chance to generate user data in batches, which
could capture clustering patterns among users. Furthermore,
our evaluations were limited to smaller recommendation
datasets due to resource constraints. The largest dataset we
tested, Amazon Digital Music, showcased SDRM’s varying
performance across different recommender models. This

underscores the need for further research to evaluate SDRM’s
applicability and scalability to larger datasets. Additionally,
our current method may not adequately model tabular
datasets with continuous and categorical features of high
cardinality, due to the heuristic approach used to enforce
sparsity in SDRM’s stochastic output.

B. FUTURE WORK
While we have demonstrated consistent improvements
across various recommendation datasets, several avenues
remain open for future research. Future efforts will aim
to integrate auxiliary and temporal data to create synthetic
data conditioned on user or group attributes. We believe
this strategy can help mitigate biases and enhance fair-
ness in recommendation datasets, enabling the training of
fairness-aware recommendation models from a data-driven
perspective. Further exploration could also yield success in
experimenting with alternative noise perturbation techniques,
network architectures, sampling methods, adversarial loss
functions, and training methodologies.

APPENDIX
ADDITIONAL RESULTS TABLES
See Tables 6–8.
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