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ABSTRACT The internet, a cornerstone of modern life, has profound implications across personal,
business, and society. However, its widespread use has posed challenges, especially concerning privacy and
cybersecurity. Besides, the threats on the internet are increasing in terms of danger, intensity, and complexity.
Distributed denial-of-service (DDoS) attacks have emerged as a common and dangerous cybersecurity
threat capable of disabling the network systems of targeted organizations and services. Therefore, various
security strategies, such as firewalls and intrusion detection systems (IDS), are employed to protect against
DDoS attacks. Enhancing the defensive capabilities of IDS systems through machine learning (ML) and
deep learning (DL) technologies is a significant trend nowadays. However, despite notable successes,
detecting DDoS attacks using ML and DL technologies still faces challenges, especially with Unknown
DDoS Attacks. In this research, the primary goal is to address the unknown DDoS detection problem
through efficient and advanced techniques. Our proposed method, CNN-RPL, integrates Convolutional
Neural Network (CNN) with Reciprocal Points Learning (RPL), a novel Open-Set Recognition (OSR)
technology. This model can effectively handle both known and unknown attacks. The CNN-RPL model
demonstrates excellent results, achieving an accuracy exceeding 99.93% against known attacks in the
CICIDS2017 dataset. Simultaneously, the model achieves a commendable average accuracy of up to 98.51%
against unknown attacks in the CICDDo0S2019 dataset. In particular, the CNN-RPL model simplifies the
architecture of the deep neural network by significantly reducing the number of training parameters without
compromising defense capabilities. Therefore, our proposed method is genuinely efficient, particularly
flexible, and lightweight compared to traditional methods. This can equip organizations and businesses with
a highly applicable yet powerful security approach against the evolving complexities in the network space.

INDEX TERMS Cybersecurity, unknown attack detection, distributed denial-of-service (DDoS), open-set
recognition (OSR), reciprocal points learning (RPL), machine learning, deep learning, incremental learning,
convolutional neural networks (CNN).

I. INTRODUCTION
The DDoS attack overwhelms the target system’s resources
and network bandwidth by generating numerous service
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requests or traffic. The goal is to overwhelm the target system,
rendering it incapable of managing the increased load and
affecting its availability. Critical attributes of DDoS attacks
encompass substantial decentralization, a notable surge in
attack traffic, and the concealment of attack sources. These
characteristics collectively amplify the detrimental effects
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of DDoS attacks on targeted systems, potentially leading
to service unavailability, data breaches, and disruptions to
business operations.

The fundamental principle behind DDoS attacks is to
occupy the target system’s resources, such as bandwidth,
processor resources, and memory, beyond their normal oper-
ational limits. Attackers typically utilize multiple infected
computers or other devices, forming a collective known as
a “botnet”. Through these botnets, attackers can centrally
orchestrate and launch their attacks. The internet’s thriving
information activities and the continuous development of
emerging services have led to the rapid evolution of
DDoS attack methods. This poses a significant challenge
to traditional IDS. Conventional defense mechanisms rely
on experts for identification. Attack samples are required
before identification. These attack samples also depend on
investigative work by personnel.

According to the report by Yoachimik et al. [1], in the
third quarter of 2023, Cloudflare faced the most complex
and sustained DDoS attacks in its history. Furthermore,
Cloudflare successfully mitigated thousands of high-capacity
HTTP DDoS attacks, with 89 surpassing a rate of one
billion requests per second (rps). The most significant attack
peaked at 2.01 billion rps, tripling the previous record
of 71 million rps. The overall HTTP DDoS attack traffic
volume increased by 65% compared to the previous quarter.
Similarly, L3/4 DDoS attacks also rose by 14%, with
multiple attacks reaching the Tbps level per second. The most
significant attack targeted Cloudflare’s free DNS resolver
1.1.1.1, reaching a peak of 2.6 Tbps. In October 2023,
Cloudflare, Google, and Amazon AWS disclosed a new zero-
day vulnerability known as “HTTP/2 Rapid Reset” [2],
[3], [4], [5]. This vulnerability exploits weaknesses in the
HTTP/2 protocol, leading to the generation of massive and
highly disruptive DDoS attacks. The HTTP/2 Rapid Reset
vulnerability poses a significant threat to online services
and highlights the ongoing challenges in securing internet
protocols against evolving attack vectors. Security experts
and service providers are actively working to address and
mitigate the impact of this vulnerability on their platforms.

Thus, defense against DDoS is urgent, and researchers
have proposed various methods for DDoS defense [6],
[7]1, [8] including firewall filtering, load balancing, cloud
defense, and intrusion detection methods that integrate
machine learning and deep learning. Studies have shown that
these intrusion detection methods exhibit excellent defense
capabilities, combining machine learning and deep learning.
Moreover, traditional deep learning and machine learning
models in DDoS detection systems tend to deal with Close-
Set training data. That means when the model in the training
phase only encounters known attack types and normal
traffic, its performance is usually quite good. Nevertheless,
when these models encounter previously unseen attack
forms or significantly different network traffic in real-world
applications, their performance is often limited, especially
when facing Open-Set data in real-life scenarios.

56462

This phenomenon has created a demand for improving
the generalization capability and practicality of DDoS attack
detection systems. In real-world network environments,
attackers continually innovate and develop new attack
methods, which may make it difficult for traditional Close-
Set training models to cope with unknown attack forms.
Therefore, this research is motivated to enhance existing
DDoS attack detection systems to make them more adaptable
to unknown attacks, thereby improving the accuracy and
performance of the models when dealing with Open-Set data.

A. RESEARCH OBJECTIVE

This research aims to propose an innovative model for
unknown DDoS attacks within the framework of OSR
to address novel forms of unknown DDoS attacks called
CNN-RPL. We integrate CNN with RPL to achieve this
objective, constructing an attack detection system with
robust generalization capabilities. Through CNN, features
are extracted from DDoS attack traffic, enhancing the
model’s accuracy in identifying known attacks and normal
traffic. Simultaneously, this helps capture the underlying
structure of attack traffic, enabling the model to better
differentiate between different attack types. Introducing RPL,
a OSR technology, equips the model with adaptability to
unknown DDoS attack forms. Utilizing CNN deep features
as samples, Reciprocal Points are identified for each known
category, constraining the distribution of known categories
to encourage the model to distinguish attack samples from
their corresponding normal samples. This learning approach
enhances the model’s discriminate ability, allowing it to
detect and respond effectively to new attacks in advance.

Our contributions mainly focus on the following:

o This research proposed a novel IDS model to classify
known and detect unknown DDoS attacks with the
CNN-RPL OSR method.

o The proposed model is designed to adapt dynamically,
allowing it to learn incrementally from filtered-out
unknown attack data labeled by security experts for
expanding defense capabilities. This model not only
benefits from the continuous integration of updated data
but also retains core functionality with a high rate of
defense against learned information.

« The proposed model has a relatively compact parameter
set, which gives it significant operational flexibility
while still ensuring a high defense capability with an
average accuracy of up to 98.51%.

Il. RELATED WORK

A. MACHINE LEARNING IN DDoS DETECTION

Bansal and Sanmeet [9] discuss the challenges of designing
an efficient intrusion detection system in the fast-growing
digital era. It emphasizes the importance of security in
the IT sector and highlights machine learning algorithms,
particularly XGBoost, for detecting DDoS attacks. The paper
compares the performance of XGBoost with other classifiers
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such as AdaBoost, Naive Bayes, MLP, and KNN. It reports
that XGBoost outperforms these classifiers in detecting
DDoS attacks. The document also provides details of the
methods and materials used in model building, experimental
results, and a comparison with other classifiers. It concludes
by discussing future work in the field of intrusion detection
systems. Furthermore, the XGBoost classifier outperforms
other classifiers such as AdaBoost, Naive Bayes, MLP, and
KNN in detecting DDoS attacks. The True Positive Rate
(TPR) for XGBoost is reported to be 0.97, which is higher
than the TPR rates of the other classifiers mentioned in the
document. This indicates that XGBoost is more accurate in
detecting DDoS attacks than traditional approaches.

Deep learning-based IDS differs from traditional methods
in that it does not require a lot of attack signatures or a list of
normal behaviors to generate detection rules. Instead, deep
learning defines intrusion features by itself through training
empirical data. This contrasts traditional methods that rely on
predefined signatures or rules for detecting intrusions. The
use of deep learning allows the system to learn its features
and adapt to new attack patterns, addressing the limitations
of traditional intrusion detection systems.

Kin et al. [10] designed a CNN model with two convolu-
tional layers and two max-pooling layers. This architecture
is suitable for processing images, and they converted the
network traffic dataset into images for this purpose. The
experimental results indicate that their CNN model achieved
high accuracy in detecting benign and attack data in the CIC-
2018 dataset. They have also evaluated the dataset using an
RNN model for multi-class classification. Their CNN model
outperformed the RNN model in terms of accuracy when
applied to CIC-2018. This suggests that for this specific task
and dataset, CNNs are more effective. In the end, Balancing
the dataset and optimizing model architecture are essential
steps in improving the robustness and accuracy of intrusion
detection systems, especially given the evolving nature of
cyber threats.

Kin et al. [11] developed a Convolutional Neural Network
based model for the detection of DDoS attacks using the
KDD [12] and CSE-CIC-IDS 2018 [13] datasets. Focusing on
improving intrusion detection systems, the study addressed
the challenge of distinguishing DoS attacks, including
advanced types, from benign traffic. Unlike typical binary
classifications, it encompassed both binary and multiclass
classifications, enabling the identification of different attack
categories within KDD. To enhance model performance, the
researchers generated RGB and grayscale intrusion images
and conducted extensive experiments with various hyperpa-
rameters. Notably, RGB images consistently outperformed
grayscale ones, and the number of convolutional layers had
a significant impact on accuracy. The study also compared
the CNN model’s performance with a RNN, with the CNN
model demonstrating superior accuracy in both binary and
multiclass classifications. This research contributes to the
advancement of intrusion detection systems, particularly in
identifying complex DoS attacks.
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Hu et al. [14] aim to improve the recognition rate of the
intrusion detection system. The problem addressed is the low
average recognition rate of a multi-class intrusion detection
system that uses CNNs for classification. Intrusion detection
systems are used to identify and classify potentially malicious
activities in computer networks. The proposed method uses
the Fruit Fly Optimization Algorithm (FOA) during the
pre-training process. FOA is used to help balance the
representation of different classes in the dataset. Imbalance is
a common issue in multi-class DDoS classification problems.
The NSL-KDD [15] dataset is used to test the model.
The NSL-KDD dataset is a commonly used dataset for
evaluating intrusion detection systems. Testing the model
on this dataset allows for a comparison of the proposed
approach’s performance with a CNN method that does not
include data equalization. The proposed method is more
accurate when compared to a CNN method that does not
address class imbalance or data equalization. This suggests
that the combination of CNNs, FOA, and the resampling
method has resulted in an improved recognition rate for the
intrusion detection system.

B. OPEN-SET RECOGNITION
In Yang et al.’s survey [16], OSR is a sub-topic of Out-of-
Distribution (OOD) detection that focuses on recognizing
known classes while rejecting unknown or out-of-distribution
samples. In other words, OSR is concerned with recognizing
samples from a fixed set of classes while being able to reject
samples that do not belong to any of those classes. The
main challenge in OSR is that the model must distinguish
between known and unknown samples, even if it has not
seen any examples of unknown samples during training. This
requires the model to learn to identify the boundaries between
the known and unknown regions of the input space and to
make decisions based on the confidence or uncertainty of
its predictions. OSR has many practical applications, such
as in image classification, object detection, natural language
processing, and DDoS attack detection, where it is important
to recognize known classes while rejecting unknown or
irrelevant samples.

The following is a list of the main categories of OSR
methods along with a brief description of each:

1) Classification-based methods: These methods use a
threshold on the output of a classifier to distinguish
between known and unknown classes. Examples
include the Extreme Value Theory (EVT)-based [17]
uncertainty calibration, addressing neural network
overconfidence with Compact Abating Probability
(CAP) and EVT methods. EVT-Free [18] Confidence
Enhancement methods provide alternative empirical
successes. Furthermore, Unknown Generation [19]
employs image synthesis and boundary adjustment
strategies.

2) Distance-based methods: These methods use a distance
metric to measure the similarity between a test sample
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FIGURE 1. The diagram of CNN-RPL.

and the training data. The CROSR’s [20] fusion of
visual embeddings adds depth to distance computation.
GMVAE’s [21] Gaussian mixture model and the
adaptation of nearest neighbors for OSR exemplify
practical and efficient techniques.

3) Reconstruction-based models: Sparse Representation
Method [22] assume that normal data can be accurately
reconstructed using a limited set of basis functions,
whereas anomalous data should suffer from higher
reconstruction costs, thus generating a dense repre-
sentation. Reconstruction-Error Method [23] assume
that a reconstruction model trained on the normal data
will produce higher-quality outcomes for normal test
samples than anomalies. Deep reconstruction models
include AEs, VAEs, GANs, and U-Net, which can all
be used as the backbone for this method.

4) Hybrid methods: These methods combine multiple
techniques to improve the performance of OSR. Exam-
ples include the Hybrid Threshold-Distance method
and the Hybrid GAN-Distance method.

C. OPEN-SET RECOGNITION ON UNKNOWN DDOS
DETECTION

In recent years, various OSR-based methods of detecting
unknown DDoS attacks have been proposed with the
increasing prevalence of DDoS attacks. These methods can
be categorized into two classes: one based on integrating
deep learning and machine learning and the other relying
on Generative Adversarial Network (GAN) identification
methods.

On the deep learning and machine learning side, a novel
framework was proposed in 2021 [24], integrating BI-
LSTM, Gaussian Mixture Model (GMM), and incremental
learning. The GMM captures unknown traffic, which traffic
engineers discern and label. These labeled instances are
subsequently incorporated into the framework as additional
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training samples. In 2022, another novel framework was pro-
posed [25], leveraging reconstruction error and distributing
hidden layer characteristics to detect unknown DDoS attacks.
The architecture employs DHRNet. It is reimagined as a 1D
integrated neural network, incorporating a loss function with
a Spatial Location Constraint Prototype Loss (SLCPL) to
address Open-Set risks. In the subsequent stage, a One-Class
SVM based on a random gradient descent approximation was
employed to recognize unknown patterns.

On the GAN side, in 2022, the study proposes a novel
DDoS detection framework featuring GAN with Dual
Discriminators (GANDD) [26]. The additional discriminator
is specifically designed to identify adversarial DDoS traffic.
Experimental results indicate that GANDD can effectively
solve adversarial DDoS attacks. The model is trained using
adversarial DDoS traffic synthesized by GP-WGAN and is
compared with three other deep learning technologies: DNN,
LSTM, and GAN. The GANDD model outperforms the other
deep learning models, demonstrating its efficacy with a TPR
of 84.3%.

Moreover, a novel GAN with a symmetrically constructed
generator and discriminator defense system (SDGAN) [27]
was proposed in the same year. Both symmetric discrimina-
tors aim to identify adversarial DDoS traffic simultaneously.
Experimental results demonstrate that the suggested SDGAN
is effective against adversarial DDoS attacks. While training
on adversarial DDoS data generated by CycleGAN, SDGAN
outperforms other machine learning models, achieving a
TPR of 87.2%. Furthermore, a comprehensive test evaluates
SDGAN’s ability to defend against unseen adversarial
threats, where it remains effective with a TPR of around
70.9%, compared to RF’s 9.4%.

Finally, in 2023, the CNN-Geo [28] was proposed.
The CNN-Geo framework leverages a CNN construction
focusing on Geometrical metrics, employing deep learning
techniques to enhance accuracy in identifying DDoS attacks.
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Additionally, the authors have incorporated an incremental
learning module capable of efficiently integrating novel,
unknown traffic identified by telecommunication experts
during the monitoring process.

D. RECIPROCAL POINTS LEARNING AND COMPARISION
WITH CONTEMPORARY APPROACH

This section delves into comparing our RPL integration
model with state-of-the-art methods. Using an approach that
specifically emphasizes separating and identifying unknown
attack patterns through innovative learning mechanisms,
RPL marks an advancement in cybersecurity efforts. This
comparative analysis will highlight the advantages of RPL
in navigating the complexity of cyber threats but also set the
stage for discussion when comparing it against other state-
of-the-art approaches. For convenience, we have compiled a
table of comparisons of recent research studies in machine
learning and deep learning. A summary of the methodologies
employed, the extent of the challenges encountered, and
certain constraints of the research are provided in Table 1.

lll. PROPOSED METHODOLOGY

Our proposed model The CNN-RPL is designed to detect
both known and unknown attack features simultaneously,
enhancing the capabilities of existing Intrusion Detection
Systems. The model comprises three distinct architectures:
the Data Pre-processing Module, the OSR IDS Module,
and the Unknown DDoS Detection Module, as illustrated in
Fig. 1. By harnessing the capabilities of these three com-
ponents, our proposed model excels in data pre-processing
and identifies known and previously unseen DDoS attacks
through OSR techniques. While Fig. 1 may suggest a
structural with standard 1D CNN models, the ingenuity of
proposed model lies in its subtle components. Central to its
innovation is the Open Set Recognition IDS module, which
integrates a unique RPL algorithm within the Unknown
DDoS Detection Module. This algorithm adeptly identifies
and learns from new DDoS patterns, thereby boosting the
model’s adaptability. Additionally, our classifier surpasses
conventional designs with domain-specific optimizations that
sharpen its ability to discern between benign and malicious
traffic.

Traditional and some recent CNN architectures, while
proficient in pattern recognition, are typically constrained
by their reliance on known data distributions, often leading
to a local optima performance when encountering novel
or sophisticated DDoS attacks. The proposed model stems
from the need to address the gap in identifying novel attack
patterns that conventional models often miss. By integrating
RPL, the model adeptly discerns unknown traffic types,
enhancing its predictive capabilities. This approach is rooted
in a thorough analysis of existing CNN architectures, where
the RPL component refines classification boundaries for
better generalization to unknown data. These improvements,
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although not visually distinct in the schematic, significantly
elevate the model’s detection capabilities beyond state-of-the-
art methods.

A. CNN CLASSIFIER

The model comprises three convolutional layers, each
followed by a PReL.U activation function and interconnected
with max-pooling operations as shown in Fig. 2 and detailed
as Fig. 3. Convolutional layers are used to extract the features
from the input data, and PReLU (Parametric Rectified Linear
Unit) is an activation function that introduces learnable
parameters to enhance the model’s capacity. Max-pooling
helps reduce the dimensionality of the data while retaining
the most important information. The flattened features are
connected to a fully connected layer. The model has two
output branches. One output is for the classification of
known features, which is typical in Close-Set classification
tasks. The other output is designed to process input features
associated with Reciprocal Points Learning. These are the
two-dimensional embedded features, obtained after being
down sampled by the output of the fully connected layer.

B. LOSS FUNCTION FOR OPEN-SET RECOGNITION
Adapting the loss function of a Convolutional Neural
Network model is essential when working with OSR. The
Softmax loss function is often used in Close-Set multiclass
classification problems, where the goal is to assign an input
data point to one of several possible classes. It is particularly
associated with neural networks and deep learning models
for tasks like image classification and natural language
processing. In OSR or anomaly detection tasks, using the
Softmax loss alone may not be suitable because it does not
inherently handle unknown or out-of-distribution data. The
defection of Softmax can be expressed by o (z;):

2
G(Zi)=+, fori=1,2,...,K (1)

21 €

where the z; is the input vector of CNN output, the %
is the standard exponential function for input vector, the
K is the number of classes in the multi-class classifier,
the €% is standard exponential function for output vector.
To address these limitations and make models suitable for
OSR or anomaly detection tasks, modifying the loss function,
model architecture, or incorporating additional techniques is
common. This can involve techniques like using a “‘reject”
class, margin-based losses, calibration methods, or leveraging
auto-encoders and uncertainty estimation.

C. RECIPROCAL POINTS LEARNING

Reciprocal Points Learning (RPL) [37], [38] is a technique
used to address OSR problems. The RPL calculates the
distance between deep features extracted from the model’s
feature space. This feature space can be the output of
a neural network layer or any other embedding space
used in your model. For each feature, the RPL calculates
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TABLE 1. Comparative analysis of recent advances in DDoS detection models.

Author Dataset Problem Scope  Technical Limitation
The study’s exclusive reliance
. on the NSL-KDD dataset may
. . A RBF system using . N
Beitollahi et al. (2022) [29] NSL-KDD CSR . restrict the generalizability of
the CSA technique. . .
the model, particularly in the
context of OSR.
A federated learning approach Future work need to focus
Neto et al. (2022) [30] CICDDoS2019 CSR for collaborative, privacy-preserving on model optimization and
DDoS detection. real-time application improvements.
DBSCAN labels traffic, while The proposed method may
e CICIDS2017, . . . .
Najafimehr et al. (2022) [31] CSR, OSR statistical measures define the ML be excessively computationally
CICDDosS 2019 . . .
framework for DDoS detection. intensive for real-world use.
CICDDo0S2019
CICIDS2017, Genetic aleorithms tomati The main emphasis of this
enetic algorithms for automatic
Zhao et al. (2023) [32] CICIDS2018, CSR & . research is the development
DNN network generation.
KDD_CUP99 of models for CSR
NSL-KDD, UNSW
The studv attempts to detect DDoS The study’s focus on the
Sharif et al. (2023) [33] CICIDS2017 CSR © Stucy affempts fo defect DLo CICIDS2017 dataset may limit
attacks from various tools using MLP. . .
its applicability in OSR.
The proposed method’s
Shieh et al. (2023) [25] CICIDS2017, CSR. OSR The DDoS d'efense model uses complexi?y may limit
CICDDoS2019 OC-SVM with SGD. computational resources
and real-time applicability.
Low throughput and high
The framework employs L
ToTID20 an ensemble method, AUWPAE latency indicate a trade-off
Yonas et al. (2023) [34] CSR . . ? ? between accuracy and speed,
CICIoT2023 combining various models L .
. with little exploration of other
to adaptively detect DDoS attack. . ..
attack scenarios or network conditions.
. . The study notes the need for
CIC-IDS-2017, A hybrid model combining SOCNN, K . .
K balancing real-time detection
Nguyen et al. (2024) [35] CIC-IDS-2018, CSR, OSR LOF, and iNNE detect known . .
efficiency and adapting to
BoT-IoT and unknown DDoS attacks. . -
evolving attack strategies.
R Due to its many parameters,
CICIDS2017 CNN-based algorithm the model may be difficult t
Lam et al. (2024) [36] ’ CSR, OSR incorporating OSR and FCM for e model may be Aieuit fo
CICDDoS 2019 K implement,especially in
unknown attack detection. . . . .
computationally intensive environments.
An IDS incorporated
CICIDS2017, . . . .
Our CSR, OSR CNN with Reciprocal Points Learning ~ N/A
CICDDo0S2019

makes the model flexible and effective

the reciprocal (the inverse) between the feature and its
corresponding center point. This reciprocal term represents
how far the feature is from its associated class center. The
loss encourages the model to push deep features far away
from their reciprocal points, particularly those reciprocal
points associated with out-of-distribution data. This step
ensures a clear separation between known and unknown
features.

The prototype loss [39], integrated into the RPL frame-
work, is an adjustment of the Softmax loss [40]. Its objective
is to encourage the model to acquire prototype representa-
tions for each designated class. The learning process involves
minimizing the loss associated with classifying reciprocal
points by using the negative log-probability of the true class
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K through Stochastic Gradient Descent (SGD) as:

—d0(x), o)
L.(x; 6,0)=—log—————, fori =

o 1,2,....K

@)

where d (9 ), oi) is the Euclidean distance between 0 (x)
and o', the # (x) is the denote as the embedding function
which is the output of CNN and o' is the center of
each classes. Minimizing Equation (2) that maximizes the
dissimilarity between known data and the set of reciprocal
points, facilitating the expansion of the gap between the
closed space and the open space. This outcome aligns with
our initial objective.
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*  |ConviD|ConviD *  |ConviD|ConviD
— J ~RelU | +ReLU Max <RelU |+ RelU Max
: Pooling Pooling
Input
Convolution 1 Convolution 2
FIGURE 2. The CNN model of propose model.
Layer (type:depth-idx) Output Shape Param #
CNNModel [512, 6] 6,424
f—convid: 1-1 [512, 16, 73] 64
[—PReLU: 1-2 [512, 16, 73] 1
—convid: 1-3 [512, 16, 73] 784
—PReLU: 1-4 [512, 16, 73] 1
—convid: 1-5 [512, 32, 72] 1,568
[—PReLU: 1-6 [512, 32, 72] 1
—convid: 1-7 [512, 32, 72] 3,104
[—PReLU: 1-8 [512, 32, 72] 1
—convid: 1-9 [512, 32, 71] 3,104
—PReLU: 1-10 [512, 32, 71] 1
—convid: 1-11 [512, 32, 71] 3,104
—PReLU: 1-12 [512, 32, 71] 1
—Convid: 1-13 [512, 4, 70] 132
—PReLU: 1-14 [512, 4, 70] 1
—Linear: 1-15 [512, 2] 562
—PReLU: 1-16 [512, 2] 1
FLinear: 1-17 [512, 6] 18

Total params: 18,872
Trainable params: 18,872
Non-trainable params: ©
Total mult-adds (M): 434.63

FIGURE 3. Architecture of CNN model.

We acknowledge that trying to set hard boundaries or
constraints on the open space itself can be problematic,
especially when dealing with scenarios where a significant
number of unknown or out-of-distribution samples are
present. Rather than directly bounding the open space,
we propose to manage open space risk indirectly. This is
achieved by controlling the distance between the samples in
the known class space and their respective reciprocal points
as Ly(x; 0, p):

M
1 . .
Lo(x; 9,p)=MZ;d(9(x)—p;), fori=1,2,....K
]:

3)

where d (9 x) — pj’) is the Euclidean distance between 0 (x)

and p', the 0 (x) is the denote as the embedding function
which is the output of CNN and p' is the reciprocal of each
classes, M represents the number of reciprocals for each
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*  |ConviD|ConviD *  [ConviD
< RelU |+ ReLU Max +RelU
Poaoling
1 Deep
-+ feature =
Linear output
___________________________ Flatten layer
Convolution 3
<> Target known feature
1
= <> <> Other known features
Iy [1 Unknown feature
<> <> Q Target reciprocal point

FIGURE 4. A closer look at embedded feature shifting in RPL.

classes. In essence, as Fig. 4 shows, this approach encourages
the model to have known class samples clustered around their
respective class’s reciprocal point while keeping them away
from the more uncertain and potentially risky regions of the
open space.

The overall loss function of Reciprocal Points Learning
combines two key components: the Classification Loss (L.)
and the reduction of Open Space Loss (L,). The classification
loss measures the error associated with classifying known
data accurately. The open space loss focuses on managing
open space risk by encouraging a separation between known
classes and the open space, which may contain out-of-
distribution or unknown samples.

L(x; 0,0,p) =L¢(x; 0,0) + ALy(x; 0,p) 4

where the X is the Hyperparameter to control the constrain
scale. With the Open-Set capable Loss function, the training
data set can be used to train the model. This method
improves the model’s ability to distinguish between known
and unknown data, making it more robust for OSR tasks.

D. UNKNOWN DDoS ATTACKS DETECTION METHOD

To identify unknown DDoS attacks, we have devised a
method for computing the probability of the target feature.
This technique employs the Exponential function to deter-
mine the probability, relying on the RPL’s Euclidean distance
between the target feature and the center, denoted as P(x):
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FIGURE 6. Unknown feature labeling and incremental training.

To identify unknown DDoS attacks, we have devised
a method for computing the probability of the target
feature. This technique employs the Exponential function to
determine the probability, relying on the RPL’s Euclidean
distance between the target feature and the center, denoted
as P(x):

P(x) = e OG- fori— 1.2 .. K 5)

where d(0(x") — o) is the is the Euclidean distance between
0 (x) deep feature and o' center, X is the constrained term of
probability, it adjusts the falling trend of Exponential. Conse-
quently, this function is adaptable to various distributions.

As shown in Fig. 5, in this study, Equation (5) is employed
to compute the P(x) for each embedded feature. This dynamic
adjustment helps in defining the boundaries between known
and unknown classes.

E. INCREMENTAL LEARNING FOR UNKNOWN DDoS
ATTACKS DETECTION

Features labeled as unknown will be annotated by the human
engineer as either attack or benign class and reintroduced
into the training dataset for incremental training as shown in
Fig. 6. The retraining model is capable of identifying labeled
unknown attacks after training and enhances the model’s
recognition capabilities.

IV. EXPERIMENT

This experiment was conducted using the Ubuntu 22.04 LTS
operating system, equipped with an 11th Gen Intel i17-11700
processor running at 4.800GHz, 96GB of DDR4 system
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memory, and an NVIDIA GeForce RTX 3090 as the machine
learning accelerator. The setup included the NVIDIA Driver
version 535.113.01 and CUDA Version 12.1, managed
through the Anaconda development environment. Python
version 3.8.17 was used, and the model framework employed
libraries such as PyTorch 2.0.1, numpy 1.24.3, scikit-learn
1.2.0, among others.

A. DATASET

The Canadian Institute for Cybersecurity (CIC), an institution
dedicated to cutting-edge research, training, and innovation
in cybersecurity. The institute engages in research covering
various cybersecurity domains, including intrusion detection,
information security management, data privacy, encryption
techniques, vulnerability analysis, and defense strategies. The
network flow datasets produced by them are also widely used
in the field of cybersecurity research. Therefore, this study
utilizes two datasets created by this organization, namely
CICIDS 2017 [41] and CICDDoS 2019 [42], as the training
and testing datasets for the model:

o CICIDS 2017 dataset [41], a labeled collection distin-
guishing benign from attack traffic, captured through a
mirror port and covering all common protocols. This
dataset includes more than 80 network flow features
extracted and presented in a CSV file.

e« CICDDoS 2019 dataset [42], which addresses the
shortcomings of existing DDoS attack datasets by
including a comprehensive set of 11 representative
DDoS attacks. The dataset is completely labeled with
80 network traffic features, and the authors provide the
most important feature sets to detect different types of
DDoS attacks. Additionally, a new taxonomy for DDoS
attacks is proposed [43], [44], categorizing attacks based
on their characteristics and including a new category for
“hybrid attacks”.

Table 2 shows the utilization of the CICIDS 2017 and
CICDDoS 2019 datasets in this study, including analysis
of attack categories, quantities, and whether they serve as
training data.

1) CLOSE-SET LABELS

During the Close-Set training phase, as detailed in Table 3,
two primary categories are identified: Benign and Malicious.
The Benign category encompasses all benign network traffic
and is denoted solely as BENIGN. In contrast, the Malicious
category encompasses all forms of known malicious traffic,
with distinct labels assigned to each specific type of malicious
traffic. Consequently, when subjected to testing, the model’s
challenges are multiple. It must discern between benign and
malicious traffic and exhibit the capability to discriminate
among the various types of malicious traffic, effectively
identifying and categorizing them based on their specific
characteristics.
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TABLE 2. Dataset usage analysis.

TABLE 5. Training parameters.

TABLE 3. Labels of close-set classification.

Benign Malicious
DoS slowloris, DoS Slowhttptest, DoS Hulk,
DoS GoldenEye, Heartbleed, DDoS LOIT,
BENIGN DrDoS LDAP, DrDoS MSSQL, DrDoS DNS,

DrDoS NetBIOS, DrDoS NTP, DrDoS UDP,
DrDoS SNMP, DrDoS SSDP, SYN data

2) OPEN-SET LABELS

In the OSR phase, as delineated in Table 4, the dataset is
divided into two primary categories: Known and Unknown.
The Known category comprises traffic originating from the
CICIDS 2017 Wednesday dataset, which was previously
utilized in the Close-Set training phase. On the other hand,
the Unknown category encompasses data that was not
incorporated into the training dataset. This includes data from
CICIDS 2017 Friday and DDoS attack data sourced from
CICDDoS 2019.

TABLE 4. Labels of open-set classification.

Unknown

DDoS LOIT, DrDoS LDAP,
DrDoS MSSQL, DrDoS DNS,
DrDoS NetBIOS, DrDoS NTP,
DrDoS UDP, DrDoS SNMP,
DrDoS SSDP, SYN data

Known

BENIGH, DoS slowloris,
DoS Slowhttptest, DoS Hulk,
DoS GoldenEye, Heartbleed

B. TRAINING PARAMETERS
The training parameters, as outlined in Table 5, provide a
comprehensive overview of the training process. Throughout
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Dataset Label name Quantity | Training Parameter Value
Benign 319178 Yes Training epoch 100
DoS GoldenEye 159049 Yes Learning rate* 0.003
DoS Hulk 7647 Yes Batch size 512
CICIDS 2017 Wednesday | poS Optimi Ad
Slowhttptest 5707 Yes ptimizer am
— N Fixed random seeds 0,42, 123, 222, 419, 844,
DoS slowloris 5109 Yes 918, 1344, 65536, 815149
Heartbleed 11 Yes
carbee e Dataset split ratio Training 80%, Testing 20%
CICIDS 2017 Friday DDo$S 95114 No - — _ _ -
*The learning rate is adjusted using the MultiStepLR function,
LDAP 2179928 | No which decreases the learning rate of each parameter group by a
MSSQL 4522489 | No factor of gamma when the number of epochs hits one of the specified
milestones.
DNS 5071002 | No
NetBIOS 4093273 | No
CICDDoS 2019 NTP 1202639 | No training, 100 epochs are executed, with an initial learning
UDP 3134643 | No rate of 0.003. The MultiStepLR method adjusts the learning
SNMP 5159863 | No rate as training progresses dynamically. A batch size of
SSDP 2610610 | No 512 is chosen, and the optimization algorithm used is
SYN 1380015 | No Adam. To enhance the robustness of the model, training

is systematically conducted with a fixed set of 10 random
seeds, effectively reducing the variability associated with
seed values. This approach ensures the model’s performance
is not overly dependent on specific random initializations.
Furthermore, the training-to-testing data ratio is established
at 8:2, allowing for a substantial amount of data to be
used for training while reserving a significant portion for
testing and evaluation. This balance helps assess the model’s
generalization and performance on unseen data.

C. VALIDATION METRICS

The confusion matrix evaluates our proposed model and
others’ performance by comparing predicted and actual
classes. It is commonly used in supervised learning tasks in
machine learning and data mining. The confusion matrix is
used to calculate various metrics such as accuracy, precision,
recall, and F1 score, which are important evaluation metrics
in machine learning.

(TP +1N)
Accuracy = (6)
(TP +FP+ FN +1N)
. TP
Precision = ——— @)
TP + FP
TP
Recall = ——* ®)
TP + FN

2 x Precision x Recall

F1 9)

Precision + Recall

where True Positives (TP) represents the number of positive
cases that are correctly identified as positive, while False
Positives (FP) represents the number of negative cases that
are incorrectly identified as positive. True Negatives (TN)
represents the number of negative cases that are correctly
identified as negative, while False Negatives (FN) represents
the number of positive cases that are incorrectly identified as
negative. Those metrics gave a better understanding of how
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FIGURE 8. The ROC curve of the CNN-RPL model.

well the model performs and identified areas where it may
need improvement.

D. THE RESULT OF KNOWN DDoS ATTACK DETECTION
The first evaluation involves Close-Set DDoS attack detec-
tion, serving as a fundamental evaluation of the model’s
proficiency in recognizing known attacks. The model tries
to classify attacks into two distinct groups: benign and mali-
cious. Within the malicious category, it further challenges
the model to differentiate and categorize the various known
attack types, showcasing its capacity to provide detailed
attack classification.

The training dataset chosen is CICIDS 2017 Wednesday,
split into an 80:20 ratio for training and evaluation. Fig. 7 is
the training steps plot of the model, showing the change in
the loss metrics through the training process.

Fig. 8 is the ROC curve showing the performance of the
CNN-RPL model at different classification thresholds.

Besides the CNN-RPL model, we have employed and eval-
uated three other ML or DL methods, including XGBoost,
KNN, and SVM, for basic comparison.
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TABLE 6. The result of known DDoS attacks.

Dataset Method Accuracy | Precision | Recall | F1
XGBoost 0.9996 0.9996 0.9996 | 0.9996

%EIDS KNN 09931 | 0.9931 | 0.9931| 0.9931

Wednesday | SYM 09897 | 0.9897 | 0.9897 | 0.9897
CNN-RPL 0.9993 0.9993 0.9993 | 0.9993

The results in Table 6 show the performance of four
different models in this experiment. The baseline comparison
highlights the performance of CNN-PRL compared to
conventional methods. The CNN-RPL method stands out
with an impressive average score of 0.9993. These results
emphasize the effectiveness of the CNN-RPL method in
recognizing known attack patterns. It demonstrates the model
can efficiently distinguish between benign and malicious
traffic, maintaining clear differentiation without ambiguity or
confusion.

E. THE LIMITATION OF CLOSE-SET CLASSIFICATION

As Table 6 shows, the CNN-RPL model performs well
at Close-Set DDoS attack detection. However, real-world
DDoS attacks are often very diverse, with different attack
scenarios and techniques depending on the hackers. With new
attack methods, traditional ML or DL systems usually face
difficulty detecting and defending effectively. The systems
are constrained by their inability to recognize, classify,
or respond to attack patterns that they haven’t encountered
during the training process. Table 7 provides insights into
the performance of CNN-RPL on unknown DDoS attack
detection when OSR techniques are omitted.

TABLE 7. The result of unknown DDoS attacks without OSR of CNN-RPL.

Dataset Accuracy| Precision| Recall Fl1
CICIDS 2017 Friday 0.1510 0.3010 0.2315 0.2617
CICDDosS 2019 0.0989 0.0395 0.0989 0.0432
MSSQL

CICDDoS 2019 LDAP 0.1854 0.0814 0.1854 0.0932
CICDDoS 2019 DNS 0.0892 0.0352 0.0892 0.0382
CICDDosS 2019 0.1081 0.0436 0.1081 0.0480
NetBIOS

CICDDoS 2019 NTP 0.2921 0.1434 0.2921 0.1693
CICDDoS 2019 UDP 0.1367 0.0569 0.1367 0.0637
CICDDoS 2019 SNMP | 0.0878 0.0346 0.0878 0.0375
CICDDoS 2019 SSDP 0.1597 0.0682 0.1597 0.0772
CICDDoS 2019 SYN 0.2645 0.1071 0.2645 0.1381

In this experiment, we utilized two datasets: CICIDS 2017
Friday and CICDDoS 2019, including various unknown
DDoS attack patterns. Table 7 results show performance
with consistently low evaluation metrics. This demonstrates
that these attacks are new to the trained model. Without
the OSR module, the system mostly misclassifies attacks
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FIGURE 9. The embedded features distribution.
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FIGURE 10. Unknown detection diagram.

as regular access. This result emphasizes that incorporating
OSR techniques to handle and organize unknown attacks is
necessary.

In this research, the RPL technique is employed as the
primary one to address the challenge of unknown DDoS
attacks. The RPL calculates the loss function for Reciprocal
Points of each known class, as denoted in Equation (4),
which instigates a shift in the distribution of known features,
illustrated in Fig. 9. This transformation involves strategically
displacing each known feature outward in alignment with
the directional arrows. This process effectively carves out
a dedicated space in the center, ready to accommodate the
unknown features, making it a robust method for handling
unknown DDoS attacks.

F. THE RESULT OF UNKNOWN DDoS ATTACKS DETECTION
The evaluation procedure is shown in Fig. 10. Firstly,
the embedding features produced by the CNN layers and
processed by the RPL algorithm are input into the unknown
detection module. Equation (5) calculates the probability that
an attack is unknown or not. Unknown attacks are those
in which the probability exceeds the set threshold. On the
contrary, known attacks are those with a probability below
the set threshold.
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FIGURE 11. Unknown detection visualization.

1) EXPERIMENTAL PARAMETERS

In Equation (5) of the unknown detection module, there
are two key parameters to consider: lambda and threshold.
These parameters play a pivotal role in shaping the behavior
of the algorithm. The lambda influences the curve of the
algorithm’s descent, while threshold sets the standard for
distinguishing between known and unknown elements. The
lambda is configured at 0.3, and the threshold is 0.7 in this
specific study. These parameter values have been selected to
optimize the model’s ability to identify unknown elements.
It is important to note that these values can be adjusted to
accommodate different distribution scenarios, tailoring the
model’s performance for optimal unknown recognition. For
a visual understanding, Fig. 11 provides a clear description
of the descent curves under various lambda values and
the placement of the threshold. In this context, the red
line corresponds to lambda as 0.3, while the dashed line
represents a threshold value of 0.7.

2) RECIPROCAL POINTS LEARNING ON UNKNOWN DDoS
ATTACKS DETECTION
Reciprocal Points Learning is the foundational technique in
detecting unknown DDoS attacks, characterized by unknown
features that often yield similar confidence scores across each
known class. In simpler terms, the likelihood of classifying
an unknown feature into any of the known classes is roughly
equal. This phenomenon is clearly shown in Fig. 12, which
depicts the distribution of known and unknown samples in
the two-dimensional feature space. Unknown features tend
to congregate towards the center, while known features tend
to cluster closer to the outer edges. This visual representation
demonstrates an apparent clustering between the known and
unknown classes in the feature space.

This unique characteristic emphasizes the practicality and
effectiveness of the RPL method. Utilizing the distance
of each feature from the central, as illustrated in Fig. 13,
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FIGURE 13. The visualization of embedded features distance distribution.

visualizes the distribution of known and unknown features
along a number line. Notably, there is minimal overlap
between known and unknown features, indicating the model’s
ability to segregate them distinctly. Moreover, employing
the Equation (5) algorithm constructs the model’s confusion
matrix specifically for unknown features, as shown in
Fig. 14. This visualization helps us to estimate the model’s
effectiveness in recognizing unknown DDoS attacks with
precision and accuracy.

After integrating the OSR module, Table 8 show-
cases CNN-RPL’s detection performance concerning various
unknown DDoS attacks, encompassing datasets such as
CICIDS 2017 Friday and CICDDoS 2019. The results
emphasize the model’s ability to consistently attain an
average detection rate of 98% across ten different unknown
DDoS attacks. This noteworthy achievement underscores
CNN-RPL’s effectiveness in accurately identifying and
differentiating unknown DDoS attacks.

G. INCREMENTAL LEARNING

By utilizing the CNN-RPL method to detect unknown
attacks, we re-label the attack data and incorporate it into the
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TABLE 8. The result of unknown DDoS attacks with OSR.

Dataset Accuracy| Precision| Recall F1
CICIDS 2017 Friday 0.9901 0.9907 0.9901 0.9903
CICDDosS 2019 0.9879 0.9889 0.9879 0.9881
MSSQL

CICDDoS 2019 LDAP 0.9971 0.9971 0.9971 0.9971
CICDDoS 2019 DNS 0.9687 0.9762 0.9687 0.9707
CICDDosS 2019 0.9941 0.9941 0.9941 0.9941
NetBIOS

CICDDosS 2019 NTP 0.9840 0.9842 0.9840 0.9839
CICDDoS 2019 UDP 0.9937 0.9937 0.9937 0.9936
CICDDoS 2019 SNMP | 0.9631 0.9732 0.9631 0.9658
CICDDoS 2019 SSDP 0.9926 0.9927 0.9926 0.9925
CICDDoS 2019 SYN 0.9802 0.9802 0.9802 0.9802
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FIGURE 15. Before and after incremental learning comparison.

training dataset for another round of learning. After the re-
labeled data, CNN-RPL can effectively identify the specific
attack, enabling a robust defense against known attacks.

Fig. 15 compares F1 scores before and after incremental
learning for unknown DDoS attacks. After re-labeling and
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TABLE 9. The comparison with other methods on CICIDS2017.

Dataset Method Accuracy | Precision | Recall F1
DNN-GA [32] 0.9906 0.9896 0.9915 | 0.9905
CICIDS 2017 CNN-Geo [28] 0.9979 0.9962 0.9944 | 0.9953
Wednesday Alexnet-FCM [36] 0.9976 0.9944 0.9991 | 0.9967
CNN-RPL 0.9993 0.9993 0.9993 | 0.9993

training, the F1 scores have recovered to satisfactory ranks for
each type of unknown attack. This confirms the capability of
CNN-RPL to identify attack traffic after incremental training.

H. COMPARISON WITH OTHERS RESULTS

In this section, we will compare our method with recent
studies. First, we will evaluate the effectiveness of algorithms
in detecting known attacks. The recent algorithms selected
include Deep Neural Network with Genetic Algorithms
(2023) [32], Convolutional Neural Network featuring Geo-
metrical Metric (2023) [28], and AlexNet with Fuzzy
C-Means clustering (2024) [36]. The effectiveness of these
algorithms is assessed on the same traditional dataset,
CICIDS 2017 Wednesday. Table 9 shows the comparison
with these algorithms.

To better evaluate CNN-RPL, this research also compares
experimental results with three recent methods designed
to detect unknown DDoS attacks: DHR-Reconstruct error-
OCSVM [25], AlexNet-FCM [36], and CNN-Geo [28].
These three models tailored for unknown DDoS attack
recognition have exhibited notable performance. DHR-
Reconstruct error-OCSVM employs a combination of recon-
struction error and One-Class SVM algorithms to distinguish
unknown attacks effectively. AlexNet-FCM leverages the
powerful AlexNet architecture commonly used in image
recognition tasks along with the Fuzzy C-Means clustering
method. On the other hand, CNN-Geo relies on the Geomet-
rical metric method to excel in discerning unknown attacks.
It is crucial to note that the comparison employs identical
unknown datasets, CICIDS 2017 Friday and CICDDoS
2019, across all methodologies. Those make a remarkable
achievement in unknown DDoS detection domains.

The experiments entailed a comparison of five key
indicators: Parameter, Avg. Accuracy, Avg. Precision, Avg.
Recall, and Avg. F1:

o Parameter signifies the count of parameters present
in the model. The learning process revolves around
fine-tuning these parameters to enhance the network’s
proficiency in delivering precise predictions or clas-
sifications for a given task. The number of model
parameters also directly affects model size, memory
usage, and training time. Achieving and maintaining
accuracy while reducing the number of parameters can
optimize the computing resources.

o Avg. Accuracy, Avg. Precision, Avg. Recall, and
Avg. F1 pertain to the averaging of results obtained
through unknown DDoS detection on dataset containing
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elements from CICIDS 2017 Friday and CICDDoS
2019. Averaging these metrics simplifies the comparison
process, offering a more intuitive means of assessing and
contrasting the performance of various models.

TABLE 10. Comparison with others methods.

Avg. Avg. Avg. Avg.
Model Parameter Accuracy| Precision| Recall F1
CNN-
Geol28] 521834 | 09668 | 0.9621 | 0.9701 | 0.9608
AlexNet-
FCMI36] 3745138 | 0.9814 | 0.9778 | 0.9999 | 0.9888
DHR-
eRriffr’_“S“”“ 19159 | 09836 | 09832 | 09832 | 0.9829
OCSVM[25]
CNN-RPL | 18872 | 09851 | 09871 | 09851 | 0.9856

The test results are presented in Table 10, and a precise
observation emerges. Despite employing the fewest parame-
ters, CNN-RPL has attained highly commendable outcomes
in critical metrics such as Avg. Accuracy, Avg. Precision,
Avg. Recall, and Avg. F1. which substantiates that CNN-
RPL has effectively maintained a high unknown DDoS
attack defense performance while conserving computational
resources.

Fig. 16 shows a comparative chart among the four models,
and from the comparison of the Parameter, it is evident that
each of the four models has its strengths and weaknesses in
different indicators:

« DHR-Reconstruct error-OCSVM: This model uses
a similar number of parameters but has slightly
lower accuracy compared to CNN-RPL. The DHR-
Reconstruct error-OCSVM method employs a two-
layer filtering process, Reconstruct error and One
Class SVM, which reduces the issue of misclassifying
unknown attacks but also leads to decreased accuracy
simultaneously.
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o AlexNet-FCM: This model uses a large number of
parameters, resulting in the highest accuracy among the
four models. Regardless, it also exhibits the highest
variability in accuracy. Using a large model can increase
accuracy, but it can also introduce issues like vanishing
gradient and overfitting, reducing the model’s reliability.

o« CNN-Geo [28]: Although CNN-Geo has the lowest
accuracy among the four models and uses a considerable
number of parameters, it still achieves an accuracy of
over 95%. Additionally, in their research, this model also
possesses the ability to detect GAN attacks, a feature that
the other three models lack.

The results in Table 10 and Fig. 16 indicate that, compared
to models in the same research domain, CNN-RPL offers
several advantages, including a more lightweight model
design, consistent performance in detecting unknown attacks,
and a straightforward model architecture. Therefore, CNN-
RPL stands out as an outstanding model for detecting
unknown DDoS attacks.

V. CONCLUSION AND FUTURE WORK

This comprehensive and in-depth study explores methods to
conduct unknown DDoS attacks, addressing the detection
challenges associated with such attacks. The proposed CNN-
RPL model, based on Open-Set recognition, is introduced
to tackle the problem of detecting unknown DDoS attacks.
The study emphasizes that the model performs well in
defending against known DDoS attacks and exhibits superior
performance in handling unknown ones.

CNN-RPL achieves defense rates of over 98% for known
and unknown attacks in CICIDS 2017 and CICDDoS 2019,
which is the model’s validation data for DDoS attacks. Com-
pared with existing models, CNN-RPL reduces the number of
layers while maintaining the defense rate, a negligible decline
of 0.324% with the best model. Additionally, the CNN-RPL
significantly reduces the training parameters, accelerating the
training and deployment costs and enhancing the practical
feasibility of real-world applications.

As the network environment continually evolves and attack
techniques constantly develop, the CNN-RPL model, which
is an advanced tool for detecting unknown DDoS attacks,
faces the ongoing challenge of enhancing its performance
and adaptability. With attacks like HTTP/2 attacks, hackers
continuously exploit vulnerabilities in the network to launch
attacks, and DDoS attacks are growing at an incredible speed.
Therefore, the possible directions for future improvements
are as follows:

« Expanding the Diversity of the Dataset: It is essential
to represent different aspects of the studied problem
or scenario comprehensively and extensively. This
includes methods such as introducing data from dif-
ferent categories, considering various features and
attributes, accounting for duration and spatial variations,
considering extreme scenarios, and balancing dataset
distribution. By expanding the diversity of the dataset,
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the model’s generalization ability can be enhanced,
enabling it to better adapt to various scenarios and
challenges.

« Deepening Open-Set Recognition Techniques: Future
research will concentrate on further optimizing Open-
Set recognition methods. By introducing higher-level
feature extraction and more intelligent model selection,
we seek to improve CNN-RPL’s detection accuracy and
sensitivity to unknown attacks.

o Feasibility for Practical Deployment: We will further
study the practical deployment feasibility of the model,
considering computational resource requirements, oper-
ational efficiency, and real-world applicability. This
ensures that the model can operate efficiently in real-
world environments.

o Automate Data Labeling: This process is crucial in
developing machine learning models, as it helps to
train the model and determine its accuracy. Assigning
labels to datasets manually can be time-consuming
and tedious, especially for large datasets. Automated
data labeling can significantly reduce the time and
effort required for manual data labeling, resulting in
increased efficiency and speed. Gebrye et al. [45]
proposes an intelligent raw network data extractor and
labeler tool by incorporating the limitations of the tools
that are available to transform PCAP to CSV. The
authors employed several data preprocessing operations
on the selected network intrusion dataset to generate and
process a high-quality DDoS attack dataset suitable for
machine learning models.

Achieving these goals will contribute to maintaining CNN-
RPL’s leading in unknown DDoS attack detection and better
addressing the evolving challenges in network security.
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