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ABSTRACT In the service industry, some operations require preparatory measures and cannot deliver
immediate and reliable services. Identifying potential clients in densely populated environments presents
a significant challenge for improving service efficiency. Current methodologies used to predict pedestrian
trajectories demonstrate suboptimal performance in service-oriented contexts. In response to these
challenges, this paper introduces ‘‘POI-GAN’’, a novel approach tailored to forecasting pedestrian
trajectories in service-centric settings. POI-GAN devises an interest point model that conceptualizes service
locations within the scene as distinct obstacles. These service locations are subsequently characterized
employing a social force model. Additionally, the framework introduces a field of view angle model which
filters interactions between dynamic and static objects in the scene to establish plausibility. Subsequently,
a generative model is used to produce projected pedestrian trajectories for future time frames. Empirical
evaluations highlight the effectiveness of POI-GAN in improving trajectory prediction, particularly in
scenarios with multiple interest points in the scene. Notably, POI-GAN exhibits superior performance when
measured against analogous methods, as evidenced by the improved Average Displacement Error (ADE)
and Final Displacement Error (FDE) metrics. This innovative approach empowers service providers with
the capacity to effectively discern potential customers within the scene, ultimately elevating the quality of
service delivery.

INDEX TERMS Pedestrian trajectory prediction, generative adversarial networks, deep learning.

I. INTRODUCTION
In recent years, deep learning-based pedestrian trajectory
prediction has emerged as a highly researched topic in the
fields of artificial intelligence and computer vision. This
technology holds significant potential due to its wide-ranging
applications in intelligent transportation, smart security, and
other domains. In service-oriented scenarios, certain services
require advance preparation, and failure to complete this
preparation before the client’s arrival can result in wait
times, where the average wait time serving as a key metric
for assessing service quality [1]. Furthermore, proactive
identification of potential clients within a given environment,
coupled with tailored service provision, contributes to
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enhancing service efficiency [2]. Goal-oriented pedestrian
trajectory prediction algorithms enable models to identify
potential clients within a setting, empowering them to
comprehend the behavioral intentions represented by partial
trajectories and to prepare adequately before the client arrives
at the service point [3].

For some automated services, optimization through pedes-
trian trajectory prediction enhances service quality and saves
costs for service providers. For instance, by predicting user
intentions, vehicles within parking facilities can initiate
engine startup, adjust internal temperatures, and process
parking fees in advance. Brand marketers can leverage
pedestrian trajectory prediction to deliver targeted advertis-
ing, increase the frequency of core content playback, and
offer more detailed content recommendations upon detecting
potential target clients. In virtual reality (VR) and augmented
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reality (AR) applications, accurately predicting user focal
points and prioritizing the allocation of computational
resources improve user experience while simultaneously
reducing computational costs.

Pedestrian trajectory prediction entails inferring the future
position coordinates for a target pedestrian, which is achieved
through an analysis of their historical trajectory [4] and
behavioral characteristics [5]. However, the complexity of
pedestrian movement arises not only from environmental
influences but also individual social habits [6], making
pedestrian trajectory prediction a formidable challenge.

The widespread application of social force models enables
current mainstream pedestrian trajectory prediction algo-
rithms to understand social behaviors between pedestrians
and between pedestrians and objects [3]. However, these
objects are commonly classified as general obstacles and
pathways, encompassing entities such as vehicles, street-
lights, lawns, and sidewalks. Pedestrians tend to exhibit
avoidance behavior when encountering these general obsta-
cles, as illustrated in Figure 1(a). Conversely, in service
scenarios, pedestrians may be drawn to specific service
points and actively approach them, exemplified by billboards,
park benches, and snack stalls, as depicted in Figure 1(b).
However, from a physical perspective, these service points
may also be considered as obstacles. Using the social
modeling framework designed for general obstacles to
represent them results in predicted pedestrian trajectories
that diverge from reality. Specifically, these trajectories tend
to avoid these service points, which contradicts the actual
behavior of pedestrians actively seeking services, as shown
in Figure 1(c). Existing research often fails to adequately
address the intricate interaction dynamics between pedes-
trians and service points. Moreover, mainstream datasets
commonly used in trajectory prediction, such as ETH and
UCY, primarily focus on collecting data at densely populated
intersections, neglecting scenarios where pedestrians pause
to receive services. Therefore, to investigate the impact of
service points on pedestrian trajectories, it is imperative to
collect trajectory information in specific scenes.

A major challenge in pedestrian trajectory prediction
lies in the model’s potential limitation in perceiving
data dimensions. Especially when service points with low
interaction volumes are present, the model’s capacity to
learn pedestrian trajectories around these points diminishes.
Pedestrian trajectories that interact with these service points
hold considerably higher value than those that simply
pass by without interaction. Improving the performance of
pedestrian trajectory prediction near service points requires
exposing the model to a greater number of these high-value
trajectories.

To investigate the impact of service points on pedestrian
trajectory prediction within a scene, we propose a novel
method, POI-GAN, which integrates the interest point model,
field of view angle model, and generative adversarial net-
work. This method utilizes historical pedestrian trajectories
as input to forecast pedestrian movement in the upcoming
seconds.

FIGURE 1. The impact of general obstacles and service points on
pedestrian trajectories.

The primary contributions of this research are as follows:
(1) The abstraction of service points within the scene as

a distinct category of obstacles, termed ‘‘Points of
Interest’’ (POI). In contrast to traditional models that
treat all obstacles equally, POIs can attract nearby
pedestrians and possess attributes typical of obstacles,
such as collision volumes and pedestrian impassability.
The utilization of the social force model enables the
modeling of POIs, facilitating their rational participation
in social computations.

(2) The establishment of a field of view model to filter
interactions among interest points and pedestrians,
as well as among pedestrians themselves. This model
mitigates unrealistic interactions prior to the social pool-
ing operation, thereby enhancing trajectory plausibility.

(3) The development of the Point of Interest - Generative
Adversarial Network (POI-GAN), which integrates the
proposed POI model and field of view angle model
into the Info-GAN [16] framework. Through continuous
input of generated pedestrian trajectories alongside real
trajectory information into the discriminator network,
the generator and discriminator engage in adversarial
training to iteratively optimize both network parameters,
thereby enabling the generator to produce high-quality
predicted trajectories.

(4) The adoption of importance sampling algorithms during
the training phase to increase the likelihood of selecting
high-value samples in the initial stages of training.
This measure reduces the required training epochs and
accelerates model convergence.

(5) The proposal of a data collection scheme based on
millimeter-wave radar and the HomeAssistant platform.
Compared to traditional approaches utilizing cameras
for data collection, the new scheme eliminates the
need for pedestrian trajectory recognition in images,
significantly reducing the investment costs of perception
hardware and computational hardware. Additionally,
manual steps such as image annotation in dataset
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creation are eliminated, thereby improving dataset
creation efficiency.

Empirical analysis reveals that the POI-GAN model
substantially enhances the accuracy and interpretability of
pedestrian trajectory prediction within service scenarios.
In test environments featuring interest points, the POI-GAN
model outperforms other comparable methods [14], [15],
[37] with respect to ADE and FDE indicators. Moreover,
in another indoor automated service scenario, POI-GAN
exhibited robust pedestrian intention discrimination capa-
bilities, leading to improved service quality in automated
systems.

II. RELATED WORKS
Current pedestrian trajectory prediction approaches can
be mainly categorized into two categories: shallow
learning-based prediction methods and deep learning-based
prediction methods. Some review articles [3], [7], [8], [9],
[10] provide detailed introductions to classical methods in
this field as well as the latest research endeavors. A seminal
contribution in this domain is the Social Force model,
proposed by Helbing and Molnar [11], which characterizes
pedestrian motion trajectories by considering interactions
between pedestrians and environmental factors, with social
forces being a primary determinant of pedestrian behavior.
Alahi et al. [12] proposed a method to capture social affinity
characteristics among pedestrians by learning their relative
positions within crowds. This approach leverages changes
in relative positions to describe pedestrian interactions,
thereby enhancing trajectory prediction accuracy. Yi et al.
[13] introduced a method that enhances crowd behavior
prediction by integrating human attributes as inputs. By using
human attributes for prediction, this method offers improved
descriptions of behavioral characteristics within various
crowd contexts, consequently enhancing prediction accuracy.
However, prediction methods based on shallow learning have
limitations in representing the complete spectrum of complex
and abstract interactions among pedestrians. Consequently,
these methods often fall short in capturing the intricacies of
real-world scenarios, making them less effective in predicting
complex pedestrian motion models and scenarios.

The proliferation of deep learning, driven by advancements
in hardware computing power, has led to the dominance
of prediction methods based on deep learning that utilize
historical data. Deep neural networks inherently have the
capability to autonomously learn pedestrian interactions,
eliminating the necessity for predefined pedestrian interac-
tion behaviors—a limitation of shallow learning methods.
Alahi et al. [14] introduced the Social LSTM pedestrian
trajectory prediction method, which models each pedes-
trian’s historical trajectory as an independent LSTM layer.
Adjacent pedestrians can share hidden states through a
social pooling layer, facilitating interaction modeling among
pedestrians. Amirian et al. [15] proposed the Social Ways
generative adversarial model, inspired by Info-GAN [16],
which not only addressed GAN training challenges but also
incorporated an attention mechanism to enable autonomous

allocation of attention to interaction information, further
enhancing trajectory prediction accuracy. Liu et al. [17]
introduced CoL-GAN, which integrated an attention mech-
anism into the generative adversarial network and employed
a convolutional neural network as a discriminator, enabling
the model to generate collision-free trajectories. Huang
et al. [18] devised STI-GAN, which harnessed generative
adversarial networks and a graph attention network (GAT)
based on pedestrian spatio-temporal interaction information.
This approach simulated pedestrian distribution to capture
prediction path uncertainty and generate more plausible
future trajectories. Mohamed et al. [19] introduced Social-
STGCNN, adopting a distinct research approach by replacing
the original model’s recurrent recursive architecture with
a graph convolutional network. Chiho et al. [20] proposed
a goal-oriented approach named DROGON, which utilizes
trajectory data to achieve higher-level objectives, specifically
the inference of driver and pedestrian intentions. In recent
years, with the optimization of computing hardware, methods
based on graph convolutional networks [21], [22], [23], [24],
[25], [26], [27] have shown significantly faster inference
speed compared to time series models [14], [28] and
generative models [15], [16], [17], [18], [29].

Insufficient data volume is a notable hindrance that limits
improvements in pedestrian trajectory prediction accuracy.
Consequently, some researchers have augmented prediction
by incorporating additional data dimensions, such as motion
posture [30], [31], [32], [33], semantic gaps [34], and other
information to aid inference.

III. PEDESTRIAN TRAJECTORY PREDICTION ALGORITHM
BASED ON POINT OF INTEREST MODEL
A. PEDESTRIAN TRAJECTORY PREDICTION PROBLEM
DEFINITION
Pedestrians typically adhere to pre-planned routes in unob-
structed environments, but on complex roads, they are often
influenced by other pedestrians and environmental factors.
However, on complex traffic roads, they are often influ-
enced by pedestrians and environmental factors. Pedestrians
consider various factors in their own path planning and
may modify their intended route based on the surrounding
environment, as well as the direction and speed of other
pedestrians and vehicles.

Pedestrian trajectory prediction problem can be regarded
as a problem of predicting the future path based on the
current pedestrian’s historical path and historical information,
which is essentially a prediction problem based on time
series [7]. We defines the pedestrian’s trajectory X =

(X1,X2, . . . ,Xn), where Xi =
{(
x ti , y

t
i

)
| tϵ (1, · · · , tobs)

}
, t

is the trajectory frame, tobs is the first frame at the beginning
of the observation, n is the number of all target pedestrians
in the observed scene,

(
x ti , y

t
i

)
is the two-dimensional plane

coordinate of the target pedestrian at time,
(
x ti , y

t
i

)
is the

observation time sequence length, and the pedestrian’s real
trajectory can be expressed as:

Y = (Y1,Y2, . . . ,Yn) (1)
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Yi =
{
(x ti , y

t
i )|t ∈ (tobs + 1, tobs + 2, . . . , tobs + tpred )

}
(2)

where tpred is the prediction time sequence length. Similarly,
the pedestrian trajectory predicted can be expressed as:

Ŷ =

(
Ŷ1, Ŷ2, . . . , Ŷn

)
(3)

Ŷi = {(x ti , y
t
i )|t ∈

(
tobs + 1, tobs + 2, . . . , tobs + tpred )

}
(4)

B. MODEL STRUCTURE
POI-GAN is based on Social-ways trajectory prediction
algorithm, which itself is built upon the framework of Info-
GAN [16]. Its main components consist of a trajectory
generator (Generator) and a trajectory discriminator (Dis-
criminator). Within the generator, POI-GAN incorporates
modules optimized for service scenarios, namely the Point
of Interest module (POI Module) and the Field of View
module (FOVModule). Figure 2 depicts the overall algorithm
framework. Info-GAN tackles the issue of controlling the
GAN’s generation distribution by adjusting latent code
tendencies in unsupervised settings. Unlike traditional GANs,
it concentrates on unsupervised learning without data labels,
introducing two novel components into the GAN network:
latent code and information loss. Throughout training, the
discriminator evaluates the authenticity of the generated data,
calculates errors through a loss function, and provides feed-
back to different segments of the model to adjust parameters.
After training, the discriminator becomes inactive, and the
generator directly produces predicted trajectories using input
pedestrian historical trajectory data.

POI-GAN employs LSTM networks [14] to capture the
complex dynamics of pedestrian movements and interac-
tions in crowded environments. Both the generative and
discriminative models integrate LSTM networks to fulfill
their respective objectives.

The generator accepts input data consisting of Gaussian
noise Z , latent code C , and pedestrian trajectory data
samples from the dataset. Latent code C , a new input
compared to traditional GANs, standardizes the output. The
generator’s core employs an Encoder-Decoder architecture.
G-Encoder integrates multiple LSTM-PED pedestrian his-
torical trajectory feature encodings. The feature vector for
pedestrian i undergoes encoding via the trajectory encoder,
employing a fully connected neural network layer with
ReLU nonlinear activation. Apart from pedestrians, the
interest point module (POI Module) abstracts predefined
interest points in the scene as LSTM-POI encodings. LSTM-
PED encoding and LSTM-POI encoding interact via the
field of view angle module (FOV Module) to screen for
interaction behaviors. This step eliminates unreasonable
interactions before entering the social pooling module for
social computation, providing interaction information. Noise
Z , latent code C , pedestrian trajectory encoding LSTM-
PED, and interaction information serve as the four inputs for
G-Decoder, which decodes and outputs the pedestrian
trajectory prediction coordinate sequence Ŷi:T .

The discriminator discerns between true and false trajec-
tories. It simultaneously receives the predicted trajectories

from the trajectory generator and the actual pedestrian tra-
jectories concurrently, producing a high-dimensional feature
vector via a fully connected neural network layer (FC).
Subsequently, LSTM networks and a multilayer perceptron
calculate the probability of the generated trajectory’s authen-
ticity. The output of the fully connected layer is divided into
D and Q components. Info-GAN diverges from the L2 loss
function in Social GAN by incorporating a subnetwork Q
within the discriminator to generate information loss. Q
functions as a latent code retriever, where information loss
is defined as the Mean Squared Error (MSE) between the
recovered latent code ĉ and the actual latent code c.

The loss function consists of two components: LGAN (G,D)
and LL1 (G,Q). LGAN (G,D) represents the generative adver-
sarial network’s loss function, encompassing discrimination
and adversarial losses. LL1 (G,Q) denotes the mutual infor-
mation between the latent code and generated samples,
essentially indicating information loss.

C. POINT OF INTEREST MODEL
Amidst complex traffic environments, pedestrians often
consider the speed, direction, and relative Euclidean distance
of nearby individuals when determining their movement
trajectory. Consequently, they adapt their trajectory based on
their own judgment. Simultaneously, environmental factors
and changes in neighboring pedestrians’ trajectories can
influence other pedestrians. Consequently, pedestrians’ tra-
jectories evolve continually over time due to these influences.
In service scenarios, pedestrian movement trajectories are
influenced not only by fellow pedestrians, roads, and
conventional obstacles but also by specific service points.

To simulate the influence of pedestrian interactions with
service points on their movement trajectories, we concep-
tualize service points as interest points using the social
force model [11]. The force exerted by interest point i on
surrounding pedestrians can be described as follows:

F⃗α(t) =
−→
fαβ

(
r⃗αβ

)
+

−→
fαi

(∥∥−→rαi
∥∥ , t

)
(5)

−→
fαβ

(
r⃗αβ

)
= −1−→rα βVαβ

[
b

(
r⃗αβ

)]
(6)

−→
fαi

(∥∥−→rαi
∥∥ , t

)
= −1−→rα iWαi (∥r⃗αi∥ , t) (7)

where:
−→
fαi

(∥∥−→rαi
∥∥ , t

)
represents the attraction force exerted by

interest point i on the surrounding pedestrians at time t , with
r being the action radius. Pedestrians within a certain range
are drawn toward interest points.

−→
fαβ

(
r⃗αβ

)
represents the repulsion force exerted by interest

point i on surrounding pedestrians at time t , with r being the
action radius. Pedestrians within an r2 range are repelled by
the obstacle property inherent to interest points.

The interaction dynamics between interest points and
pedestrians can be classified into three scenarios, illustrated
in Figure 3:

(1) If the Euclidean distance r i,jt between pedestrian j and
interest point i exceeds rl , the movement trajectory of
this pedestrian remains unaffected by interest point pl .
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FIGURE 2. POI-GAN framework.

(2) If the Euclidean distance between pedestrian and interest
point is greater than rl but less than r2, the pedestrian
will be attracted by interest point p1. If the Euclidean
distance between a pedestrian and an interest point is
less than r2, the pedestrian will be impeded by the
obstacle posed by the interest point, making further
approach difficult.

(3) If the Euclidean distance between a pedestrian and an
interest point is less than r2, the pedestrian encounters
obstacles presented by the interest point, making further
approach difficult.

FIGURE 3. Interaction between points of interest and pedestrians.

D. FIELD OF VIEW MODEL
During interactions with interest points and pedestrians,
as well as interactions among pedestrians themselves,

individuals tend to direct their focus towards those directly in
front of them. They glean pertinent information within their
field of vision by adjusting their head orientation. According
to the social force model, pedestrians demonstrate increased
sensitivity to strangers within their field of view, resulting
in a repulsion force. Conversely, they generate an additional
attraction force for companions within their field of view.
Notably, interest points and pedestrian trajectories outside
their field of view do not exert influence on them. The
POI-GAN model introduces a filtering approach based on
the pedestrian field of view angle mechanism. This approach
determines pedestrians’ head angles, models the field of view
range established by the predicted pedestrian, identifies the
attention and focus ranges, and determines the impact of
dynamic and static elements within the pedestrian’s field of
view on their trajectory.

Assuming pedestrians only focus on what lies ahead, at the
initial moment t , the head rotation angle of the predicted
pedestrian j can be represented as θ

j
t , According to research

conducted by Luo et al. [35] and Atchison [36], the horizontal
field of view attention range for this pedestrian is defined
as approximately θ

j,1
t ≈ 120◦, and the focus range is

approximately θ
j,2
t ≈ 30◦. The field of view domain of

pedestrian j is expressed as follows:

wjt =

{
(ρ, σ )|ρ ∈ (0, l], σ jt ∈

[
θ
j
t −

η

2
, θ

j
t +

η

2

]}
(8)

The operational states of the pedestrian field of view angle
model can be classified as follows:
(1) In Figure 4(a), at time t , pedestrian m lies beyond

the attention range of pedestrian n, while pedestrian n
falls within the field of view of pedestrian m. Therefore,
pedestrian n remains uninfluenced by pedestrian m
when selecting a trajectory. Conversely, pedestrian m ’s
trajectory may be influenced by pedestrian n.
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(2) In Figure 4(b), interest point i lies within the attention
range of pedestrian m, and the Euclidean distance
r i,mt between them falls below r2 but exceeds r1.
Consequently, pedestrian m is attracted toward interest
point i.

(3) In Figure 4(c), interest point i is also falls within the
attention range of pedestrian n but lies outside the
focus range. Therefore, despite the Euclidean distance
between them meeting the criteria r i,nt < r2 and r

i,n
t >

r1, the trajectory of pedestrian n remains uninfluenced
by interest point i.

E. IMPORTANCE SAMPLING ALGORITHM
Traditional pedestrian trajectory prediction research typically
treats the attention of all pedestrians within the data
collection range as equal. However, our study focuses more
on pedestrians who may interact with points of interest.
In certain scenarios, the number of pedestrians interacting
with interest points is relatively small, resulting in low
interaction frequencies. Consequently, the value of these
interaction data surpasses the average value of all pedestrian
trajectory data. If traditional uniform sampling and batch
updating training methods are employed, it may lead to slow
convergence of the model and poor prediction performance.

To address this challenge, the POI-GANmodel utilizes the
Annealing The Bias algorithm [37] during the training phase
to enhance training efficiency. This method first segments the
raw data evenly based on time intervals and assigns priority
to each segment according to the frequency of interactions
between pedestrians and points of interest within the segment.
During training, the probability of extracting segments can be
expressed as:

P(i) =
pα
i

6kpα
k

(9)

pi =
1

rank(i)
(10)

where:
α governs the extent of priority utilization, α = 0 signifies
uniform sampling, 6kpα

k serves as a normalization factor to
ensure that the sum of all P(i) probabilities equals 1, rank(i)
denotes the priority ranking of segment i.
To mitigate deviations, importance sampling and an

annealing factor β are introduced. The sampling weight is
expressed as:

wi =

(
1
N

·
1
P(i)

)β

(11)

where:
β ∈ [0, 1], when β = 0, the importance sampling algorithm
is not applied, while β = 1 signifies standard importance
sampling.

At the beginning of training, the POI-GAN model sets
β to 1, prioritizing the extraction of the extraction of
high-priority samples. As training progresses, β gradually
approaches 0, causing the importance sampling algorithm to
progressively diminish until training is completed.

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENT SCENARIOS
In order to thoroughly investigate the performance of
POI-GAN in terms of trajectory prediction and quan-
tify its effectiveness in improving service quality in
service scenarios, we designed two control experimental
scenarios.

Experiment 1: We selected an outdoor stall scenario as
the data collection site. This scenario comprises multiple
stalls, which serve the dual purpose of attracting pedestrians
to avail of services and acting as general obstacles that can
hinder pedestrian passage, thus being categorized as points
of interest. The service targets are the general public, and
pedestrians who interact with the points of interest typically
do not have a predefined intention before entering the scene,
reflecting impulsive consumption behavior. The locations of
the stalls and the types of goods sold are not fixed. In essence,
pedestrians only actively approach and linger at specific
stalls after expressing interest in them within their field
of view. This experiment aims to illustrate that POI-GAN
can accurately discern the attributes of points of interest
as special obstacles that draw some pedestrians in public
service scenarios, thereby offering trajectory predictions that
are more rational compared to baseline models.

Experiment 2: We chose an indoor tearoom scenario
as the data collection site. This scenario encompasses
unique obstacles such as coffee machines, water dispensers,
refrigerators, and snack trays, which are also regarded as
points of interest. The service targets are fixed users, and
the locations and service offerings of the points of interest
remain constant. Pedestrians enter the scene with a clear
intention to receive service; for instance, theymay carry a cup
to the water dispenser to obtain water, and they are unlikely
to deviate from their walking route due to other points of
interest within their field of view. This experiment aims
to demonstrate that POI-GAN can forecast the automated
services that pedestrians will receive in fixed-user service
scenarios, thereby enabling service providers to prepare
services in advance.

B. EXPERIMENTAL ENVIRONMENT AND TRAINING
PARAMETER SETTINGS
Our experiments were conducted using consistent hardware
conditions. The experimental setup included an AMD Ryzen
R5-5600 CPU @3.5 GHz, featuring 6 cores and 12 threads,
an NVIDIA 1080ti GPU with 11 GB of video memory, and
utilized the PyTorch framework.

The generator was structured in an encoder-decoder, with
the encoder comprising 128 LSTMunits. The poolingmodule
utilized 2 consecutive latent codes, a noise vector of length
62, and a pooling vector of size 64. Similarly, the decoder
also consisted of 128 LSTM units, with weight sharing
between LSTM layers performing identical functions. The
discriminator utilized two LSTM blocks (LSTM-OE and
LSTM-PE) with a hidden layer size of 128 for processing
observed trajectories.
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FIGURE 4. Interaction between points of interest and pedestrians.

Each dataset was trained using consistent hyperparameters
for GAN network training, including a batch size of 64,
a generator learning rate set to 0.001, and a discriminator
learning rate set to 0.0001. The GAN training consisted of
20,000 rounds.

C. PUBLIC ORIENTED SERVICE SCENARIO EXPERIMENT
1) DATASETS AND EVALUATION METRICS
Pedestrian interaction video data was collected from a
drone perspective, covering a rectangular area measuring
12 meters in length and 7.5 meters in width, as depicted
in Figure 5. This region included 10 predefined interest
points, labeled 1 through 10 in Figure 5, with lower numbers
denoting interest points frequented by more visitors. Figure 6
exhibits the trajectories of select pedestrians over the previous
3.2 seconds, while Figure 7 depicts the center line of the
pedestrian field of view.

FIGURE 5. Data collection scenario.

In the experiment, we selected 17 segments and annotated
1840 key frames at intervals of 0.4 seconds. Pedestrians’
two-dimensional coordinates were recorded frame by frame,
adhering to the format of the ETH and UCY datasets.
Additionally, we annotated the deflection angle θ of the
pedestrian field of view centerline. We allocated 80% of the
data as the training and validation set, with the remaining

FIGURE 6. Partial pedestrian trajectories.

20% designated as the test set. The data format is presented
in Table 1.

TABLE 1. Data format.

Consistent with prior research methodologies [14], [15],
[38], our evaluation metrics included ADE (average displace-
ment error) and FDE (final displacement error). ADE quan-
tified the accuracy of predictive sequences by determining
the mean Euclidean distance between the predicted trajectory
and the actual trajectory at each time step. Meanwhile, FDE
assessed predictive sequence accuracy by measuring the
mean Euclidean distance between the predicted trajectory
position and the actual trajectory position at the final time
step. Additionally, we explored the correlation between
training iterations and trajectory errors, along with the
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FIGURE 7. Pedestrian deflection angle.

influence of prediction duration on service hit rate, to gauge
the algorithm’s practical viability.

The comparative analysis included the following models,
each briefly summarized as follows:

• LSTM [14]: A basic LSTM model without interactions
between pedestrians or with the environment.

• Social LSTM [14]: Modeled each pedestrian with a
separate LSTM, aggregating hidden states using a social
pooling layer at each time step.

• Social GAN [38]: Utilized a generative adversarial
network applied to the S-LSTM prediction model.

• Social Ways [15]: Employed a generative pedestrian
trajectory prediction model based on Info-GAN and an
attention mechanism.

• Social-BiGAT [39]: A discriminative model that intro-
duces bidirectional graph attention mechanisms.

• Social-STGCNN [19]: A discriminative model based on
graph convolutional neural networks (GCNN).

2) PERFORMANCE COMPARISON
Table 2 presents a comparative assessment of ADE and
FDE metrics between POI-GAN and six different trajectory
prediction algorithms at prediction durations of 8 frames
(3.2 seconds) and 12 frames (4.8 seconds). The scene
comprises 5 interest points, delineated as 1, 2, 3, 4, and 5 in
Figure 4.

In terms of the FDE8 and FDE12 metrics, POI-GAN
demonstrates significant improvements relative to other
methods. This enhancement primarily stems from the
introduction of the point of interest (POI) model into the
scene, allowing the model to accurately understand the
interactions between pedestrians and points of interest, rather
than simply treating points of interest as generic obstacles.
Consequently, POI-GAN exhibits superior performance in
predicting the endpoints of trajectories for these pedestrians.

In contrast, the LSTM algorithm treats each pedestrian as
an independent entity, lacking interaction information among
pedestrians, thus resulting in relatively larger errors. The
Social LSTM algorithm models pedestrian interactions on
top of LSTM, rendering the generated pedestrian trajectories
more reasonable and significantly reducing errors. Both
Social GAN and Social Ways are generative models based
on GAN and LSTM, with broader social pooling scopes,
thereby enabling better understanding of global information
and further enhancing prediction performance. On the other
hand, Social-BiGAT and Social-STGCNN adopt graph-based
approaches, enabling better capture of spatial and temporal
relationships between trajectories. Particularly, owing to its
adaptability to complex social scenes, Social-STGCNN per-
forms exceptionally well in crowded environments, thereby
highlighting the prominence of theADE8 andADE12metrics.

TABLE 2. Comparison of trajectory prediction algorithm errors.

3) SENSITIVITY ANALYSIS
Sensitivity analyses were carried out to verify the efficacy of
the Point of Interest (POI) model and the field of view (FOV)
model within the POI-GAN framework. We selected Social
Ways as the baseline method and conducted comparative
experiments by incorporating the FOV model, interest
point model, and a hybrid of both into the baseline. The
consolidated findings are outlined in Table 3.

The experiments illustrate that the incorporation of the
FOV model results in marginal enhancements across several
metrics, highlighting its ability to effectively screen out
illogical interaction behaviors. Furthermore, the integration
of the interest point model improves the predictiveness of
endpoints in certain pedestrian trajectories, notably reflected
in the notable enhancements observed in the FDE8 and FDE12
metrics.

TABLE 3. POI-GAN sensitivity analysis.

To evaluate the efficacy of the importance sampling
algorithm employed during the training phase of POI-GAN,
we investigated the correlation between training iterations
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and the ADE and FDE metrics with and without the utiliza-
tion of the importance sampling algorithm. The experimental
findings, depicted in Figure 8, indicate that with the imple-
mentation of the importance sampling algorithm (Annealing
The Bias), the model achieved comparable outcomes to
conventional training with 300 iterations, as opposed to the
standard 800 iterations. As the number of training iterations
increased, the importance sampling algorithm consistently
outperformed in terms of ADE and FDE metrics. This under-
scores the algorithm’s ability to improve training efficiency.
Remarkably, the algorithm enables substantial reductions in
hardware resource consumption while maintaining training
efficacy, rendering it particularly beneficial for hardware-
limited platforms.

4) CASE ANALYSIS
In Figure 9(a), we depict trajectory prediction outcomes for
pedestrians p1 and p2 in the same scene and timeframe,
generated by the POI-GAN model and the Social Ways
model. In the illustration, solid lines and circles represent
the actual trajectories of the pedestrians, squares depict the
predicted trajectories of the POI-GAN model, and triangles
illustrate the predicted trajectories of the Social Ways model.
A comparison of these results reveals an intriguing distinc-
tion: the Social Ways model presupposes mutual influence
between pedestrians in the front and rear positions, with the
front pedestrian making evasive maneuvers to avoid the one
behind. Conversely, the POI-GAN prediction indicates that
the trajectory of the front pedestrian remains unaffected by
the pedestrian behind, while the latter’s trajectory is indeed
influenced by the former, demonstrating closer alignment
with real-world scenarios.

Figure 9(b) presents another set of comparative samples
under the same experimental conditions. The Social Ways
model regards the interest points within the scene as impass-
able and uninviting obstacles, predicting that pedestrians
would choose to detour around them. In contrast, the
POI-GAN model adeptly foresees pedestrians pausing and
lingering near these interest points.

5) PARAMETER ANALYSIS
To evaluate the impact of the quantity of predefined
interest points within the scene on trajectory prediction
accuracy, we performed a comparative analysis of ADE and
FDE indicators across various quantities of interest points
quantities ranging from 0 to 10. Figure 5 illustrates the
coordinates of these interest points, prioritizing those with
lower numerical designations when the count is below 10.

The experimental findings depicted in Figure 10, demon-
strate a significant influence of the interest point quantity
parameter on the FDE8 and FDE12 indicators, with optimal
outcomes observed when the number of interest points is
set to 5. Through analysis and discussion of the trajectories
generated by the model, we believe that when the number of
predefined interest points is less than 5, the representation
ability of POI-GAN for pedestrian trajectories near interest
points is insufficient, resulting in a higher number of

misjudged trajectories around undefined interest points.
Conversely, when the number of interest points exceeds 5, the
interaction frequency between larger serial number interest
points and surrounding pedestrians is lower, leading to
insufficient training data for the model and a decrease in
prediction accuracy. Notably, interest points labeled as 7,
8, and 10 exhibit strip-like configurations, where the social
force interest point model employed by POI-GAN shows
suboptimal performance.

D. EXPERIMENT IN SERVICE SCENARIOS TARGETING
FIXED AUDIENCE
1) DATASET CREATION
To address the issues of high equipment costs and expensive
manual labeling in the process of creating trajectory datasets
based on image collection, we propose an innovative data
collection scheme. This scheme utilizes the HLK-LD6001A-
60G millimeter-wave radar as the data source, integrates
it with the HomeAssistant platform through an ESP32
gateway, and leverages the Node-Red plugin to interact with
third-party smart devices (such as Xiaomi Mi Home). This
end-to-end automation service scheme enables POI-GAN to
efficiently utilize data for training and testing. Figure 11
illustrates the overall framework of this scheme.

In this scheme, pedestrian trajectory data is obtained
from the HLK-LD6001A-60G millimeter-wave radar, which
can track the positions of human bodies within a square
area with a side length of 8m at a rate of 30 frames per
second and can simultaneously track 8 targets, thus providing
direct access to two-dimensional coordinates of pedestrians
within the area. The radar outputs data to the ESP32 via
serial port. When the ESP32 is on the same local area
network as the HomeAssistant server, data can be accessed
through the IP address and port number into the Node-Red
plugin installed on the HomeAssistant platform. During data
collection, Node-Red extracts pedestrian IDs and coordinates
based on a pre-defined decoding protocol, adds timestamps,
and saves them to log files. Additionally, Node-Red supports
the integration of other third-party devices. By capturing data
sent by these devices, we can clearly understand whether
users have accepted a service andwhen they have received the
service. This data can also be saved to log files and analyzed
in conjunction with radar data.

The innovation of this scheme lies in the use of
millimeter-wave radar as a low-cost data collection device,
avoiding the cost and technical barriers associated with
traditional image collection methods. Moreover, through
integration with smart home platforms, we can obtain richer
and more diverse data, providing more possibilities for the
training and application of trajectory prediction models.

In the experiment targeting fixed audience service sce-
narios, we adopted a data collection scheme based on
millimeter-wave radar, with a tearoom as the collection
scene. We selected a rectangular area measuring 6m in
length and 4.5m in width as the collection area, as shown
in Figure 12. When the door leading to the office area and
balcony is open, the radar signal can extend through the
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FIGURE 8. Comparative analysis of iteration times and training errors of importance sampling algorithm.

FIGURE 9. Comparison of POI-GAN and social ways generation
trajectories.

door, enabling the POI-GAN model to obtain pedestrian
coordinates earlier and make trajectory predictions, thereby
providing more preparation time for automated services. The
collection area includes four predefined points of interest,
labeled as numbers 1 through 4.

Among them, point of interest 1 is a coffee machine,
which serves as an automated service provider capable of
providing self-service hot drinks for office staff. Each time
a user uses the coffee machine, they need to press the
preheat button on the top of the machine to preheat the
water line. The preheating time depends on the interval
betweenmachine uses, typically ranging from 3 to 10 seconds
during weekday office hours. Our experimental goal is to

FIGURE 10. Analysis of the relationship between the number of POI-GAN
interest points and prediction error.

use pedestrian trajectory prediction to prompt the coffee
machine to preheat in advance, thereby reducing the waiting
time for users standing in front of the coffee machine.
The power socket of the coffee machine is connected to a
Xiaomi smart power plug, which can be integrated into the
HomeAssistant platform, reporting real-time switch status
and power consumption data. By monitoring power changes,
we can infer the usage status of the coffee machine, such as
standby, preheating, and dispensing.
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FIGURE 11. Analysis of the relationship between POI-GAN service hit rate
and prediction time.

FIGURE 12. Indoor data collection scenario.

We collected raw data for 15 working days, totaling
120 hours, using millimeter-wave radar and the HomeAs-
sistant platform. After excluding invalid data records when
the indoor population exceeded 8 people during lunchtime,
we obtained approximately 1.8K valid pedestrian trajectory
data points. Since the millimeter-wave radar cannot perceive
the turning angle of pedestrians’ heads, we used the direction
of pedestrian movement instead of head turning angle in this
experiment. When the pedestrian’s movement speed is less
than 0.5m/s, the field of view module does not operate, and
the deviation angle of the central line in the field of view is
recorded as -1. The data format is the same as that described
in Section IV-C, as shown in Table 1. We selected 80% of the
data as the training and validation sets and 20% of the data as
the test set.

To assess the benefits brought by various optimization
schemes to automated services, we define a profit function.
The total profit brought by the model for automated services
can be represented as:

VP = VB(H + E +M ) + VH · H − VE · E − VF (12)

where VB represents the basic profit provided by the
automated service itself, VH represents the additional profit
brought by the optimization algorithm when it hits, VE
represents the loss brought by the optimization algorithm
when it misjudges, and VF represents other overhead costs
introduced by the optimization algorithm, with single time
overhead not included. Here,H represents the number of hits,

E represents the number of misjudgments, andM is regarded
as a missed hit with no additional profit or loss.

In this experiment, we will use the following optimization
schemes for profit comparison. Here is a brief introduction to
each scheme:

Base: No optimization is used, and each cup of coffee
provided counts as one basic profit VB = 1.
Part-Time: During working hours on each workday, the

coffee machine is kept in a preheated state for an extended
period, considered as 100% hits. For each cup of coffee
provided, an additional hit profit VH = 0.4 is added on top of
the basic profit. Additional power consumption and machine
wear due to prolonged high-temperature operation introduce
additional cost VF = 10.

POI-GAN-2.4S: POI-GAN is used for trajectory prediction
with a prediction duration of 2.4 seconds. When the predicted
trajectory of a pedestrian within the next 2.4 seconds overlaps
with the range of the coffee machine point of interest and
the trajectory endpoint is also within this range, the coffee
machine is commanded to preheat in advance. For each hit,
an additional hit profit VH = 0.18 is added on top of the basic
profit, and a misjudgment introduces a loss VE = 0.02.

POI-GAN-3.2S: Similar to POI-GAN-2.4S, but with a
prediction duration of 3.2 seconds, hit profit VH = 0.24, and
misjudgment loss VE = 0.02.

POI-GAN-3.2S-N: Based on POI-GAN-3.2S, the field of
view module is removed to evaluate the feasibility of using
the direction of movement instead of the central line of the
field of view in such scenarios, with no change in hit profit
and misjudgment loss.

POI-GAN-3.2S-O: POI-GAN is used for trajectory pre-
diction with a prediction duration of 3.2 seconds. Each
prediction generates 20 trajectories, and if one or more of
these trajectories overlap with the range of the coffeemachine
point of interest and the trajectory endpoint is also within
this range, the coffee machine is commanded to preheat in
advance. Hit profit and misjudgment loss are the same as
POI-GAN-3.2S.

POI-GAN-4.0S: Similar to POI-GAN-2.4S, but with a
prediction duration of 4.0 seconds, hit profit VH = 0.27, and
misjudgment loss VE = 0.02.

POI-GAN-4.8S: Similar to POI-GAN-2.4S, but with a
prediction duration of 4.8 seconds, hit profit VH = 0.3,
and misjudgment loss VE = 0.02. Considering the limited
perception range of the millimeter-wave radar, the actual
effective prediction duration for pedestrians to approach the
coffee machine may be less than 4.8 seconds.

2) PERFORMANCE COMPARISON
We compare the Base scheme with the other six optimization
schemes in terms of profit and cost, and summarize the results
in Table 4:
Through a detailed analysis of the experimental results,

we draw the following conclusions:
(1) When the coffeemachine is used frequently,maintaining

preheating for an extended period significantly increases
profits compared to the baseline scheme. However,
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TABLE 4. Profit and cost comparison.

this requires optimization of the machine design to
ensure long-term operation without negative impacts,
such as improving insulation efficiency and ensuring
water quality safety.

(2) In practical applications, choosing a longer prediction
time helps increase hit profits. However, when the
prediction time exceeds the time required for the coffee
machine to preheat, the surplus prediction time only
wastes computing power without bringing additional
profits. Therefore, the prediction duration needs to be
carefully considered based on the actual situation.

(3) POI-GAN is suitable for automated services with
significant hit profits and minimal misjudgment losses,
such as the coffee machine preheating service chosen in
this experiment, where each misjudgment only incurs a
small amount of power consumption. Furthermore, as a
generative model, POI-GAN can output multiple pre-
dicted trajectories for a single target, further increasing
the model’s recall rate and improving service quality.

(4) For office tea rooms, where the recipients of automated
services are fixed users whose behavior is less affected
by other points of interest and pedestrians within
the field of view, the effect of the field of view
module is not significant in this experiment. These
characteristics of the scene minimize the drawbacks of
the millimeter-wave radar solution’s inability to detect
the turning angles of pedestrians’ heads.

(5) Due to the spatial structure of the tearoom and the
deployment position of the millimeter-wave radar,
the hit rate of POI-GAN significantly decreases
when the prediction duration exceeds 4.0 seconds.
Therefore, the application of POI-GAN is limited in
scenarios with narrow spaces and dense points of
interest.

V. CONCLUSION
POI-GAN is a pedestrian trajectory prediction method that
leverages the Point of Interest (POI) model and the field
of view angle model. By employing generative adversarial
networks, it produces diverse pedestrian prediction trajecto-
ries, showcasing enhanced prediction accuracy particularly
in the presence of points of interest within the scene.

The incorporation of the POI model enables POI-GAN to
accurately identify special obstacles in the scene, thereby
effectively improving the accuracy of predicting trajectory
endpoints. Furthermore, the field of view angle model serves
to filter out unrealistic interaction behaviors, consequently
yielding more realistic generated trajectories. Moreover, the
utilization of the biased annealing algorithm during model
training aids in the learning of high-value trajectories from
a limited subset of samples, thereby enhancing training
efficiency.

However, due to limitations in the social force model
used for modeling points of interest, POI-GAN is not
suitable for scenes with very high crowd densities where
queueing phenomena may occur [40]. Moreover, constrained
by data dimensions, POI-GAN may struggle to identify
specific interaction targets when multiple points of interest
are closely spaced. Furthermore, POI-GAN is not adept at
handling circular, linear, or movable points of interest that
may exist in real-world scenarios. Future work will focus on
optimizing point of interest modeling to enhance the model’s
applicability.
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