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ABSTRACT Machine learning often lacks transparent performance indicators, especially in generating point
predictions. This paper addresses this limitation through conformal prediction, a non-parametric forecasting
technique seamlessly integrating with regression algorithms to produce prediction intervals at specified
confidence levels. A crucial element in conformal prediction is the non-conformity score, traditionally based
on absolute residual errors. In this work, we propose a novel approach, introducing data-dependent weights
for computing non-conformity scores. This enhancement, considering the distances of training instances
from the test sample, aims to improve overall algorithm performance. Empirical investigations across various
real-world regression data sets, including scientific data, evaluate the efficiency and validity of prediction
intervals from different uncertainty quantification methods. Results show that prediction intervals computed
with data-dependent weights adapt to estimator uncertainty, offering more precise predictions in certain
scenarios and appropriately conservative predictions in high uncertainty situations. Additionally, we compare
predictive regions generated by conformal prediction with those from Gaussian Process Regression (GPR)
for scientific data in structural engineering. To augment conformal prediction, we explore Conformalized
Quantile Regression (CQR), a recent innovation combining conformal prediction with classical quantile
regression, claiming full adaptability to heteroscedasticity. Our findings indicate that conformal prediction
methods using data-dependent non-conformity scores achieve a 1% higher effective coverage level and a
15% reduction in prediction interval widths compared to other methods. The comparative analysis against
GPR and CQR underscores the practical value of our approach in providing accurate prediction intervals in
scientific and engineering domains.

INDEX TERMS Conditional coverage, conformal prediction, non-conformity scores, uncertainty
quantification.

I. INTRODUCTION
Machin learning models are valuable tools for predicting out-
comes in many scientific application areas. However, they are
mostly based on point prediction methods without any indi-
cation of their accuracy. These single-value-prediction-based
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models provide no information about associated uncertainties
or their level of reliability. This problem has become more
challenging when noise and outliers are present in the data
set or the outcomes are affected by inherent randomness [1].
When it comes to the decision-making process in real-world
problems, practitioners and engineers are eager to consider
several scenarios/solutions for uncertain conditions [2].
Providing the level of uncertainty associated with point

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 53579

https://orcid.org/0000-0003-4449-9774
https://orcid.org/0000-0003-4078-1676
https://orcid.org/0000-0002-4964-6609


P. Hajibabaee et al.: Adaptive Conformal Prediction Intervals Using Data-Dependent Weights

estimations would allow formore confident decision-making.
The uncertainty of machine learning models has been a topic
of interest in recent years, leading to the development of
various methods for quantifying uncertainty and evaluating
their effectiveness in various applications. For example,
studies [3], [4], [5] discuss various approaches to quantifying
uncertainty in machine learning models for engineering
problems, including methods such as conformal prediction,
Bayesian uncertainty estimation, and bootstrapping. They
also discuss the challenges and benefits of using these
methods in engineering applications and provide an overview
of the current state of the field.

One solution to quantifying the uncertainty associated
with machine learning models is to provide prediction
intervals rather than point predictions. Prediction intervals
and confidence intervals are often confused, but they are
distinct concepts. While confidence intervals quantify the
uncertainty in a population parameter, such as the mean or
standard deviation of a probability distribution, prediction
intervals represent the uncertainty of the predicted outcome
for a single new/test sample. Prediction intervals are typically
wider than confidence intervals because they take into
account both the uncertainty associated with the population
parameter and the variance of individual values at random [6].
That is, the prediction interval for a given new test sample
with a user-predefined confidence level is expected to cover
a moving response, whereas the confidence interval is only
intended to cover fixed response. Fig. 1 shows a simple
example of the distinction between a confidence interval and
a prediction interval. In this figure, there is a 95% probability
that the true best-fit line for the population lies within the
confidence interval. Additionally, it is expected that 95% of
the output values to be found for a certain input value will
be within the prediction interval around the linear regression
line.

FIGURE 1. Visualization of prediction intervals and confidence intervals
for a linear regression problem.

There are various approaches to constructing prediction
intervals, ranging from Bayesian and variational inference to
frequentist methods. Using a Bayesian framework, the poste-
rior credible set quantifies prediction uncertainty. In practice,
exact Bayesian inference is computationally prohibitive
for most machine learning and deep learning models.
With variational inference, the true posterior distribution is

approximated by an ensemble of neural networks, similar to
non-Bayesian ad hoc ensemble methods [7], [8], [9]. In these
methods, the model disagreement in the ensemble can be
used to measure prediction uncertainty. Nonetheless, a poor
approximation of the posterior distribution would result in an
incorrect quantification of prediction uncertainty. A frequen-
tist coverage guarantee cannot generally be satisfied by these
methods [10], [11]. Under certain additional assumptions
regarding the functional parameters, hierarchical and empir-
ical Bayes methods can construct reliable prediction regions
asymptotically [12], [13]. However, it is challenging to
confirm these assumptions in real-world situations, and some
machine learning models do not satisfy these assumptions.

One of themost important uncertainty quantificationmeth-
ods that satisfy the frequentist coverage guarantee in finite
sample regimes is conformal prediction [14]. Conformal
prediction is a statistical technique that is used to make
predictions while also providing a measure of the uncertainty
of those predictions. It is based on the idea of using a set
of ‘‘conformal’’ or ‘‘calibrated’’ models to make predictions
about new data. Conformal prediction is a non-parametric
forecasting technique that is distribution-free and based on
minimal assumptions about the data. It can be combined with
any regression algorithm to generate predictive regions to
satisfy a given confidence level. It should be noted that two
properties must be met for a prediction interval generation
procedure to be effective. Firstly, it should be capable of
providing valid coverage in finite samples, without imposing
strong distributional assumptions, such as Gaussianity. This
is referred to validity as an index of reliability. Secondly, the
intervals at each point in the input space must be as narrow
as possible, to ensure that the predictions are informative.
In other words, the level of uncertainty associated with
predictions should be as low as possible. This is referred
to efficiency as an index of informativeness. The efficiency
of the predictive region is also known as the sharpness of
the predictive region. When comparing conformal prediction
methods, the most important criteria are the tightness of
the prediction intervals (efficiency) and the target coverage
level (validity). In conformal prediction, the non-conformity
score is an important component that is typically calculated
based on the absolute residual error of the sample’s actual
and predicted values. With this type of non-conformity
score, conformal prediction methods produce conservative
prediction intervals that are constant or weakly varying in
width across an input space. Ideally, the size of the predictive
regions should vary according to how difficult it is to predict.
This paper aims to enhance the efficiency and adaptivity of
the prediction intervals while maintaining their validity. The
focus is on making the prediction intervals more sensitive
to the difficulty of the inputs and their distributions, thereby
ensuring that they provide accurate coverage.

A. PRIOR WORK
The foundational work by Vovk et al. [14] introduced the
fundamental framework of conformal prediction. Subsequent
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research [15], [16] has highlighted the challenges of
achieving conditional validity for prediction intervals without
specific assumptions about model regularity and consistency.
Conformal predictionwith neural networks has been a subject
of recent investigations, exploring coverage probability,
prediction accuracy, and computational complexity [17],
[18], [19].

Traditional conformal prediction, relying on estimating
a conditional mean function with constant interval widths,
assumes homoscedastic errors. To address heteroscedastic-
ity, Romano et al. [20] proposed conformalized quantile
regression. Kivaranovic et al. [21] explored adaptive and
distribution-free prediction intervals using deep neural net-
works. A comparative study by Sesia and Candès [22] delved
into conformal prediction based on quantile regression with
different non-conformity scores. Despite the flexibility of
regression quantiles, the quantile-crossing problem has been
observed in simple linear quantile regression models. This
issue becomes even worse in multivariate quantile regression.
Several research studies have been conducted in recent
decades on the quantile-crossing problem. For example, the
authors in [23] proposed simultaneous quantile regression as
a method of estimating quantiles by minimizing the pinball
loss, whereas the target quantile is randomly sampled in
every training iteration. The algorithm presented in [24]
is designed to predict an arbitrary number of quantiles,
which can maintain quantile monotonicity by restricting the
partial derivatives of the quantile functions. The use of these
approaches may alleviate the problem of quantile-crossing;
however, they cannot eliminate it entirely.

B. NOTATION
In this paper, we denote column vectors with lower-case bold
letters and real values with lower-case letters. We consider
a set of n independent and identically distributed (i.i.d.)
data points (x1, y1), . . . , (xn, yn) with x1, . . . , xn ∈ Rd

along with corresponding scalar-valued outputs denoted by
y1, . . . , yn ∈ R.

We assume the function f̂ : Rd
→ R to be a regression

model fitted on the training data set. Given the new test
sample (xn+1, yn+1), taken from the same distribution, the
function f̂ can provide a predicted output value as f̂ (xn+1).
However, in this study, we aim to construct a prediction
interval Ĉ : Rd

→ R2 (here, 2 refers to lower and upper
bounds of the interval) instead of point estimationf̂ : Rd

→

R. We assume a significance level α or the target coverage
level 1 − α, where α ∈ (0, 1). We let q+

α,n {vi} represent the
upper bound of the interval such that for any values vi, i =

1, . . . , n, we define q+
α,n {vi} = the ⌈(1−α)(n+1)⌉th smallest

value of vi, i = 1, . . . , n. Similarly, we let q−
α,n {vi} represent

the lower bound of the interval such that for any values vi,
i = 1, . . . , n, we define q−

α,n {vi} = the ⌈(1 − α)(n + 1)⌉th

largest value of vi, i = 1, . . . , n.

C. REGRESSION AND PERFORMANCE METRICS
This study focuses solely on regression problems, and we
mostly use ridge regression, one of the most popular machine

learning methods, as an underlying (base) algorithm. In the
following, we define some notions and performance metrics
in a regression setting, which are mostly used by researchers
in the area of uncertainty quantification [14].

• Marginal Coverage: Given target coverage level 1−α,
we aim to construct a prediction interval Ĉα,n for a new
test sample xn+1 such that

P
{
yn+1 ∈ Ĉα,n (xn+1)

}
≥ 1 − α, (1)

where the probability is taken over n training data
samples and the unseen test sample (xn+1, yn+1).
Marginal coverage property of Ĉα,n is only defined as
having 1 − α chance of being correct on average across
all data points (marginalizing over the test sample).
However, for some sub-regions in the data set, there may
be no marginal coverage at all. Marginal coverage has
the disadvantage of not being conditioned upon x. This
is where conditional coverage at 1 − α would be more
appropriate.

• Conditional Coverage: The concept of adaptivity,
which implies that the size of the prediction intervals
can change according to the difficulty of the inputs,
is typically formalized by asking for the conditional
coverage property such that

P
{
yn+1 ∈ Ĉα,n (xn+1)|xn+1 = (x)

}
≥ 1 − α, (2)

for almost all x or training samples x1, . . . , xn. Here,
we fix xn+1 and the probability is taken over the
training data points and yn+1. The conditional coverage
may exceed 1 − α at some values of xn+1 = x
and may be less than 1 − α in other cases. In other
words, we aim to return prediction regions with 1 − α

coverage for every value of the training and test sets. For
example, the coverage of the prediction intervals should
be consistent for all inputs, regardless of their difficulty.
This property is important for ensuring the reliability and
informativeness of the prediction intervals.

• Effective Coverage: The test sample is considered
covered if the true label falls within the prediction
interval. Using an average over all samples in a test
set, we can estimate the method’s effective coverage for
the data set. Effective coverage is the actual fraction of
test points whose true values lie within the prediction
intervals.

• Prediction Interval Width: The distance between the
upper limit and the lower limit of a prediction interval
represents the width of that prediction interval. In our
analysis, we use an average of prediction interval widths
over all samples in a test set.

D. MAIN CONTRIBUTIONS
Researchers in conformal prediction are actively innovating
methods to construct enhanced prediction intervals, extend
applications across domains, explore intersections with
other machine learning areas, incorporate domain-specific
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knowledge, and tailor approaches for specific data types.
Despite its strengths, conformal prediction often leans
towards conservative intervals, even in situations of high
estimator certainty. This study concentrates on refining the
regression non-conformity measure, specifically addressing
absolute residuals, with the primary goal of improving
efficiency and enhancing conditional coverage.

In the following, we provide a list of our contributions.

• We propose a new non-conformity measure that con-
siders the relevance between the training instances and
the test sample in regression conformal prediction. Non-
conformity scores are calculated by assigning weights to
the training points based on their distance from the test
sample. In this way, the constructed prediction intervals
are more adaptive than those derived from absolute
residuals.

• We present a thorough empirical evaluation of the
proposed and existing non-conformity measures using
several real-world data sets. To illustrate the merits
and limitations of these uncertainty quantification
techniques in the presence of heteroscedastic or not
identically distributed data, we report effective coverage,
conditional coverage, and prediction interval width for
different target coverage levels.

• We show that the proposed non-conformity measure is
suitable for quantifying uncertainty in scientific appli-
cations. Developing machine learning-based surrogate
models for advanced computer simulations of scientific
models has received significant attention [25], [26],
[27], [28], [29], [30], [31], [32]. This paper studies
a regression data set stemming from computational
models of structural and earthquake engineering. The
objective is to quantify uncertainty using conformal
prediction methods to construct prediction intervals of
the structural response, e.g., shear forces.

• As part of our study, we compare the predictive
regions produced by conformal prediction methods
with those produced by Gaussian Process Regression
(GPR) and Conformalized Quantile Regression (CQR),
which are two of the most popular Bayesian and
frequentist machine learning approaches, respectively.
Specifically, our proposed method achieves narrower
prediction intervals with higher effective and conditional
coverage rates than both GPR and CQR, demonstrating
its suitability for practical uncertainty quantification in
scientific applications.

E. PAPER ORGANIZATION
The remainder of the paper is outlined as follows: In
Section II, we start with some background information
on conformal prediction methods. Section III explains the
proposed idea of using data-dependent weights in leave-one-
out/out-of-fold non-conformity scores when constructing
prediction intervals. Next, we present our numerical exper-
iments and discussions based on the synthetic data set and

standard benchmark data sets in Section IV. Furthermore,
in Section V, we outline the scientific simulation model in
earthquake engineering and demonstrate the effectiveness of
proposed non-conformity scores for uncertainty quantifica-
tion. Finally, Section VI presents concluding remarks and
future research directions.

II. BACKGROUND
A. CONFORMAL PREDICTION
This section provides a brief description of conformal
prediction; the interested reader is referred to the book [14]
for a more detailed description. There is only one model
fitting step required for split conformal prediction, but this
comes at the expense of statistical efficiency. In contrast, full
conformal prediction is more computationally intensive and
requires many steps for model fitting but is statistically more
efficient.

• Split Conformal Prediction: This method is also called
inductive conformal prediction which begins by par-
titioning the n available labeled data points into two
disjoint subsets including a training set of size m
(m < n) and a holdout set of size n − m. We let
training set as (x1, y1), . . . , (xm, ym) and holdout set
as (xm+1, ym+1), . . . , (xn, yn). To obtain a fitted model
f̂ , the regression algorithm is run on the training set.
Finally, the prediction interval on the new test sample
(xn+1, yn+1) is defined as

Ĉα,n (xn+1) = f̂ (xn+1) ± q̂holdout , (3)

where q̂holdout is defined as ⌈(1 − α) (n− m+ 1)⌉ −

th smallest value of the residuals in holdout set∣∣∣ym+1 − f̂ (xm+1)

∣∣∣ , . . . , ∣∣∣yn − f̂ (xn)
∣∣∣. Although split

conformal offers both computation efficiency and
distribution-free coverage, its accuracy may be compro-
mised due to the loss of sample size resulting from the
subdivision of the data set.

• Full Conformal Prediction: This method is also called
transductive conformal prediction, and it is extremely
computationally intensive since it makes use of all
the training data available for model fitting. Here,
we assume every possible label of the new test sample
as (xn+1, y), where y ∈ R. Then we fit the regression
model on all n available labeled data points along with
the new test sample as (x1, y1) , . . . , (xn, yn) , (xn+1, y).
Finally, the prediction interval on the new test sample is
defined as

Ĉα,n (xn+1) =

{
y ∈ R :

∣∣∣y− f̂ (xn+1)

∣∣∣ ≤ qy
}

, (4)

where qy is ⌈(1 − α) (n+ 1)⌉ − th smallest value
of the residuals

∣∣∣y1 − f̂ (x1)
∣∣∣ , . . . , ∣∣∣yn − f̂ (xn)

∣∣∣ ,∣∣∣y− f̂ (xn+1)

∣∣∣. In addition to the distribution-free cover-
age guarantee, full conformal prediction is statistically
more efficient than split conformal prediction because
it does not require splitting the training data. However,
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the computational cost of this method is high; the
prediction interval can only be determined by running
the regression algorithm for every possible real value of
y infinitely many times. To alleviate this problem, recent
work [33] developed discretized conformal prediction
algorithms that are guaranteed to cover the true value
with the target coverage level. This method uses only
a finite grid of finely spaced values for the response
variable y to offer a trade-off between computational
cost and prediction accuracy.

B. JACKKNIFE CONFORMAL PREDICTION
There is a method known as jackknife prediction that
lies between the computational complexity and statistical
efficiency of the full conformal and split conformal methods.
This method defines prediction intervals based on the
quantiles of leave-one-out residuals. The ‘‘leave one out’’
procedure, similar to the cross-validation technique, was first
proposed in [34]. First, the idea of the ‘‘leave one out’’
procedure was used to estimate the bias of an estimator. Then,
[35] extended the use of this idea and named it as a jackknife
estimate of standard error. The jackknife method can be used
to estimate the parameter systematically. Given the data set
with size n, we create a subsample of size (n − 1) each time
by removing one data point and estimating the parameter i.e.,
the population mean of random variables, over the remaining
data points. Here, we have n jackknife replicates which can
be considered as an approximation of the distribution of
the mean. Finally, the jackknife estimator can be obtained
by aggregating these calculations and taking the average
and variance of these n replicates. In comparison with the
split conformal method, the jackknife method utilizes more
of the training data to construct the absolute residuals and
corresponding quantiles. Therefore, jackknife methods often
produce shorter prediction intervals than split conformal
methods.

In the following, we briefly review jackknife and its
recently introduced modification, jackknife+, as well as CV
and CV+, which are cross-validation versions.

• Jackknife (J): Given n training data points and tar-
get coverage level 1 − α, the jackknife (J) method
considers a leave-one-out construction to find error
margin. That is, for each training sample i =

1, . . . , n, we remove i-th sample point and then fit
the regression function f̂−i to the remaining training
data and compute prediction interval Ĉα,n on the new
test sample as f̂ (xn+1) ± ( the (1 − α) quantile of∣∣∣y1 − ˆf−1 (x1)

∣∣∣ , . . . , ∣∣∣yn − ˆf−n (xn)
∣∣∣). The J technique

should, on average, have the right coverage qualities
since it avoids overfitting.
We denote a prediction interval with J method as ĈJ

α,n.
On the new test sample, it can be computed as

ĈJ
α,n (xn+1) =

[
q−
α,n

{
f̂ (xn+1) − RLOOi

}
,

× q+
α,n

{
f̂ (xn+1) + RLOOi

}]
, (5)

where q̂−
α,n and q̂+

α,n denote the lower and upper
(1 − α) quantile of the distribution. The leave-one-out
non-conformity score RLOOi can be defined as

RLOOi =

∣∣∣yi − ˆf−i (xi)
∣∣∣ , i = 1, . . . , n. (6)

• CV: CV prediction interval is cross-conformal predic-
tion method [15], [36]. We should split the training data
points into K disjoint subsets [n] = S1 ∪ · · · ∪ SK each
of size m =

n
K . f̂−Sk is as the fitted model when the k-th

fold SK is removed from the n training data points. The
CV prediction interval is defined as

ĈCV
α,n,K (Xn+1) =

[
q−
α,n

{
f̂ (xn+1) − RCVi

}
,

× q+
α,n

{
f̂ (xn+1) + RCVi

}]
, (7)

where q−
α,n and q

+
α,n denote the lower and upper (1 − α)

quantile of the distribution. RCVi , the residuals from this
K-fold process, is defined as

RCVi =

∣∣∣Yi − f̂−Sk(i) (xi)
∣∣∣ , i = 1, . . . , n, (8)

where k(i) ∈ {1, . . . ,K } identifies the subset that
contains i, i.e., i ∈ Sk(i). CV requires fewer models to
be calculated when we choose a smaller K (K models
instead of n models in the J method), but at the expense
of slightly wider intervals, since the models f̂−Sk are
fitted with fewer samples i.e., (n− n/K ), thus resulting
in larger residuals.

• Jackknife+ (J+): As the name suggests, J+ is a simple
modification of the J method to construct prediction
interval [37]. Although both variants (J and J+) use the
leave-one-out residuals, the distinction is that in the J
method, we center our interval on the predicted value
f̂ (xn+1) fitted on the entire training data, whereas in J+,
we use the leave-one-out predictions ˆf−i(xn+1) for the
test sample point.
It should be noted that two methods, J and J+, should
produce almost identical prediction intervals if the
leave-one-out fitted functions ˆf−i are similar to f̂ , fitted
on the entire training data. However, the result may be
quite different in cases where the regression algorithm is
highly sensitive to the training data, eliminating one data
point might significantly impact the predicted value at
(xn+1). We denote a prediction interval with J+ method
as ĈJ+

α,n. On the new test sample, it can be computed as

ĈJ+
α,n (xn+1) =

[
q−
α,n

{
f̂−i(xn+1) − RLOOi

}
,

× q+
α,n

{
f̂−i(xn+1) + RLOOi

}]
, (9)

where q−
α,n and q

+
α,n denote the lower and upper (1 − α)

quantile of the distribution. RLOOi is defined in Eq. 6.
• CV+: CV+ is a K-fold cross-validation version of
jackknife+ [37]. We should split the training data points
into K disjoint subsets [n] = S1 ∪ · · · ∪ SK each of size
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m =
n
K . In this sense, J+ can be considered a special

case of CV+, with K = n. By choosing a smaller K,
we compute only K instead of n models. f̂−Sk is as the
fitted model when the k-th fold SK is removed from the
n training data points. Both CV and CV+ use out-of-fold
non-conformity scores; however, the only modification
is that CV centers our interval on the predicted value
f̂ (xn+1) fitted to the entire training data, whereas CV+
uses the out-of-fold predictions ˆf−i(xn+1) for the test
sample point. The CV+ prediction interval is defined as

ĈCV+

α,n,K (Xn+1) =

[
q−
α,n

{
f̂−Sk(i) (xn+1) − RCVi

}
,

× q+
α,n

{
f̂−Sk(i) (xn+1) + RCVi

}]
, (10)

where q−
α,n and q+

α,n denote the lower and upper
(1 − α) quantile of the distribution. RCVi is defined in
Eq. 8. Compared to J+, it is likely that CV+ results
in slightly wider intervals because the models f̂−Sk are
fitted with fewer samples, i.e., (n − n/K ), resulting in
slightly larger residuals.

III. PREDICTION INTERVALS WITH DATA-DEPENDENT
WEIGHTS
In conformal prediction, the non-conformity score is a mea-
sure of how closely a sample complies with the training set.
It is used to determine the likelihood that the sample belongs
to the same distribution as the training set. In regression
settings, the non-conformity score is typically calculated
based on the absolute residual error between the actual and
predicted values of the sample (L2-loss). However, using
the L2-loss as the non-conformity measure can result in
conservative prediction intervals that are constant or weakly
varying in width across the input space. For example, in J
and J+ methods, for any future unseen test samples, we will
have the same set of non-conformity scores calculated in
Eq. 6. This may be undesirable from the perspective of
uncertainty quantification, as the size of the predictive regions
should vary depending on the difficulty of predicting each
sample in the test set. For example, more challenging test
samples should have larger prediction intervals, while easier
test samples should have smaller intervals.

To address this issue, researchers have been exploringways
to improve the adaptivity of conformal prediction methods.
This includes developing new non-conformity measures that
can better capture the difficulty of predicting individual
samples, as well as methods for adapting the prediction
intervals to specific types of data, such as time series data
or data with complex dependencies. This work is ongoing
and is an active area of research within the field of conformal
prediction [18], [20], [38], [39].

On the other hand, the main assumption behind conformal
prediction is that data are exchangeable and distributed
identically. However, this assumption is often violated in
practice, as the distribution of data may vary depending on
the specific context or domain. In these circumstances, all

training data points should not be treated equally. Some
training points should have been considered more relevant
and given greater weights to modify the non-conformity
scores that are used to generate the prediction intervals. In this
approach, the non-conformity scores are calculated based on
the absolute residual error between the actual and predicted
values of the sample. However, instead of using a fixedweight
for all samples, data-dependent weights are used that are
based on the distances of the training instances to the test
sample. This approach allows the prediction intervals to be
adaptive and to vary in width according to the difficulty of
predicting each sample in the test set. Using data-dependent
weights to modify the non-conformity scores can improve
the adaptivity of conformal prediction methods and provide
more accurate and reliable prediction intervals. It allows the
method to better capture the variations in the distribution of
data and to generate intervals that are more informative and
relevant to the specific context or domain.

To be formal, we consider the input data set X =

{x1, . . . , xn} comprising n samples in the ambient space Rd .
We compute the similarity between each training data point
and the test sample using the metric ρ, which is inversely
proportional to the distance between them

ρ(xi, xn+1) :=
1

∥xi − xn+1∥2
. (11)

This step requires just a single pass over the data stream, and
the computational cost scales linearly with the data size n.
Using the computed distances in Eq. (11), we propose the
following weighted score for each data point with respect to
the test sample xn+1:

wi :=
ρ(xi, xn+1)

1
n

∑n
i′=1 ρ(xi′ , xn+1)

, i = 1, . . . , n. (12)

In our method, we normalize the similarity of each training
sample to the test sample by using the average value of ρ in
the denominator (as shown in Eq. (12)). This ensures that the
sum of weights for all n training samples is equal to n, similar
to methods J and J+. However, our method differs in that the
weights are not all equal to 1, but rather are determined based
on the proximity of each training sample to the test sample.
To further explain this point, a hypothetical scenario would be
that we have 100 samples, all of which are located at the same
distance from the test sample. In this case, methods J+ and
WJ+ should work identically and wi must be equal to 1 for
all samples. In other words, the numerator and denominator
in Eq. (12) are equal and wi = 1, i = 1, . . . , n.
Hence, using the corrective weighting scheme, we assign

greater weights to data points that are closer to the test
sample, and lower weights to data points that are farther
away. In the following, we present how we can use data-
dependent weights to compute non-conformity scores and
construct prediction intervals. Our study only focuses on
J+ and CV+; however, this can be applied to any other
conformal prediction methods.
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A. J+ WITH WEIGHTED NON-CONFORMITY SCORE (WJ+)
With WJ+, we use data-dependent weights in computing
non-conformity scores in the J+method. That is, we compute
the weight of each data point based on the distance between
that data point and the future unseen test sample. In this
method, higher weights are given to data points closest to the
test point, and lower weights are given to data points farther
away from the test point. This means that residuals resulting
from data points close to the test point will have a greater
effect on the prediction interval.

According to what we have for J+ in the Section II,
we denote a prediction interval using J+with weighted leave-
one-out non-conformity score method as ĈWJ+

α,n . On the new
test sample, it can be defined as

ĈWJ+
α,n (xn+1) =

[
q−
α,n

{
f̂−i (xn+1) − (wiRLOOi )

}
,

× q+
α,n

{
f̂−i (xn+1) + (wiRLOOi )

} ]
, (13)

where RLOOi and wi are shown in Eq. 6 and Eq. 12.

B. CV+ WITH WEIGHTED NON-CONFORMITY SCORE
(WCV+)
According to what we have for CV+ in the Section II,
we denote a prediction interval using CV+ with weighted
out-of-fold non-conformity score (WCV+) method as
ĈWCV+

α,n,K . For the new test sample, it can be defined as

ĈWCV+

α,n,K (Xn+1) =

[
q−
α,n

{
f̂−Sk(i) (xn+1) − (wiRCVi )

}
,

× q+
α,n

{
f̂−Sk(i) (xn+1) + (wiRCVi )

}]
,

(14)

where k(i) ∈ {1, . . . ,K } identifies the subset that contains i,
i.e., i ∈ Sk(i). Finally, RCVi and wi are defined in Eq. 8 and
Eq. 12.
Given the challenging nature of real-world data or data

sets coming from engineering, there is likely no equal
variance across the levels of independent variables. This
is known as heteroscedasticity, which violates one of
the most fundamental assumptions of regression analysis,
homoscedasticity, where we assume that the variance of
the error term (the residual term) in a regression model is
constant. Furthermore, the main assumption of conformal
prediction regarding the identical distribution of data is often
violated. Under such circumstances, it is necessary not to treat
all observations equally. Some observations in the training set
are more relevant to the test sample. In contrast to assuming
that all data points are treated equally, this method seems to
be more robust to distributional changes in different regions
of the training set.

In assessing the performance of our adaptive conformal
prediction intervals, we focus on three key metrics: Effective
Coverage, Conditional Coverage, and Prediction Interval
Width. Effective Coverage quantifies the proportion of
instances where the true value falls within our predicted
intervals across all predictions, offering a measure of our

model’s overall accuracy. Conditional Coverage evaluates
the adaptability of our prediction intervals, ensuring they
adjust appropriately to the difficulty of each prediction
scenario. Lastly, Prediction Interval Width measures the
range within which we expect the true value to fall, with
narrower intervals indicating more precise predictions and
wider intervals reflecting greater uncertainty. These metrics
collectively provide a comprehensive view of our method’s
reliability and precision in uncertainty quantification.

IV. EXPERIMENTAL RESULTS
A. SYNTHETIC DATA SET
We generate 1-dimensional (1D) heteroscedastic noisy data
when the actual signal is defined by a ground truth function
f (x) = x sin(x). The output variable is generated indepen-
dently from y = f (x) + ϵ, where ϵ is the heteroscedastic
noise that is assumed to increase linearly with input values.
However, it is important to note that this is just one specific
example, and in general, heteroscedastic noise can occur in
a variety of forms and may not necessarily increase linearly
with input values.

To be specific, we generate 300 train points and 1500 test
points in the interval (0, 5) as shown in Fig. 2.

We use the ridge regression algorithm with polynomial
features of degree 2 and compare the prediction intervals
obtained from the methods including J, J+, WJ+, CV, CV+,
andWCV+ at the target coverage level 0.95. Fig. 3 represents
the prediction interval bounds as well as the true interval
bounds of the test points. Here, to obtain a 95% confidence for
our prediction intervals, we set α = 0.05. In each sub-figure,
the title shows the method used along with the effective
coverage and average prediction interval width of that method
in parentheses. This figure shows that the effective coverage
levels of WJ+ and WCV+ are slightly lower than those of
the other methods, which may not be desirable at first glance.
However, they result in smaller average prediction interval
widths. The interesting observation here is that WJ+ and
WCV+ offer solutions that adjust the prediction intervals
to the local noise while the prediction intervals obtained
from the other four methods appear to be constant over
different regions in the input space. As noise levels are low,
the prediction intervals derived from WJ+ and WCV+ are
tight, and as noise levels are high, the prediction intervals
derived from these methods are wide. This means that WJ+
and WCV+ methods closely follow the true width and data
heteroscedasticity is taken into account with these methods.
Hence, it can be conferred that the prediction intervals of
WJ+ and WCV+ are much more accurate than those of the
other methods. While the constant high prediction interval
widths in J, J+, CV, and CV+ might contribute to high
effective coverage, their conditional coverage may not be as
reliable as those of WJ+ and WCV+.
Fig. 4 compares these six methods when the value of

the input variable and the corresponding noise increase. The
input interval (0,5) is divided into five bins as shown on the
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FIGURE 2. Synthetic 1D data uniformly distributed from the given function and heteroscedastic noise
that is assumed to increase linearly with input values.

FIGURE 3. Comparison of six methods, including J, J+, WJ+, CV, CV+, and WCV+ on test points at the 0.95 target coverage level. The
effective coverage and prediction interval width of each method are shown in parentheses. Effective coverage refers to the fraction of test
points whose true values are within the prediction intervals. Prediction interval width refers to the average of prediction interval widths
over all samples in the test set.

x-axis. In the top sub-figure, the y-axis shows the conditional
coverage, and the dashed horizontal line refers to the target
coverage level of 0.95. In the bottom sub-figure, the y-axis
presents the average prediction interval width. According to
Fig. 4, J, J, CV, and CV+ provide the same prediction interval
width over all different bins. In the first two bins, J, J+, CV,
and CV+ provide the highest coverage level (1), even greater
than the desired coverage (0.95). However, it should be noted
that this high confidence comes at the expense of very wide
prediction intervals, which is unnecessary. Note that the
main advantage of quantifying uncertainty is providing the
prediction intervals as tight/informative as they can be while
keeping the desired coverage level.

Looking at Fig. 3 and Fig. 4, when the input range is
low, the noise is low and there is no need to have very
wide prediction intervals which shows the high uncertainty
in the first bins. As can be seen from Fig. 4, the prediction
intervals obtained from WJ+ and WCV+ are much tighter

than those obtained from the other methods while keeping the
conditional coverage more or less 0.95 in the first two bins.
We also noticed that when the input value and consequently
the noise are increased, the prediction interval widths ofWJ+
andWCV+ have been increased leading to higher conditional
coverage levels. For example, in the last bin which is 4 < x <

5, where the noise is high, WJ+ and WCV+ perform better
than other methods.

Whenever we construct prediction intervals, there is a
trade-off between validity and efficiency. As prediction
intervals Ĉα,n (obtained from any uncertainty quantification
method with the target coverage level 1 − α) can always
be set to be infinitely large to satisfy the validity condition
P

{
yn+1 ∈ Ĉα,n (xn+1)

}
≥ 1 − α, which is undesirable.

Ideally, we want to reduce the size of the predictive region
(e.g., the width) as much as possible, provided that the
validity condition is met. In this example, the proposed
methods WJ+ and WCV+ produce more adaptive intervals
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FIGURE 4. Six methods, J, J+, WJ+, CV, CV+, and WCV+, were assessed based on conditional coverage and prediction
interval width across different input bins (0,5). Bins, depicted on the x-axis, reveal variations in noise levels. In the
top sub-figure, the y-axis indicates conditional coverage, with a dashed line denoting the 0.95 target. For the (0,1)
interval, representing minimal noise, J, J+, CV, and CV+ achieve full coverage (level 1) surpassing the 0.95 target.
However, this comes at the cost of unnecessarily wide prediction intervals. In contrast, WJ+ and WCV+ nearly hit the
target coverage, maintaining small average prediction interval widths in the first bin. The bottom sub-figure displays
consistent prediction intervals for J, J+, CV, and CV+ across all bins, while WJ+ and WCV+ adapt, widening from the
first to the last bin with increased data noise. This illustrates their capacity for adaptive prediction intervals across
the input space. In the last bin with the highest data noise, WJ+ and WCV+ exhibit wider average prediction interval
widths compared to other methods.

than the other methods; therefore, using data-dependent
weights in non-conformity scores should be preferred in the
presence of heteroscedastic noise.

B. BENCHMARK DATA SETS
Six real-world regression data sets that we consider in this
section are listed in Table 1, describing the data size, the
number of (used) features, and the skewness and kurtosis
(Pearson) of the response variables. All data sets are publicly
available and from DELVE [40], UCI [41], and KEEL [42].
For each data set, we standardize the features to have zero
means and unit variances and rescale the responses by
dividing them by their mean values.

Fig. 5 represents the histogram of the response variables by
counting the number of observations that fall within discrete
bins. It also shows smooth curves obtained by using kernel
density estimates to provide complementary information
about the shape of the distributions. This figure also shows
three vertical dashed lines referring to the 10th, 50th, and
90th percentile of the response variables in each data set.
As can be seen in Table 1, the skewness and kurtosis of
response variables in all data sets are reported. In essence,
skewness measures distribution symmetry, while kurtosis
measures distribution tail heaviness (heavy-tailed or light-
tailed). The data are perfectly symmetrical if skewness = 0;
however, having a skewness of exactly zero in real-world
data is quite unlikely. As a rule of thumb, the distribution

can be considered approximately symmetric if the skewness
is between −0.5 and 0.5 (Kinematics, Energy, Wizmir).
The distribution of response variables of remaining data sets
(Communities, Treasury, and Mortgage) can be called highly
skewed (skewness > 1). It is possible that the tail region
of skewed data may appear as an outlier to the statistical
model, and outliers adversely affect themodel’s performance,
particularly in regression-based models. When kurtosis is
high (Communities, Treasury, and Mortgage), distributions
tend to have heavy tails or outliers, whereas when kurtosis is
low (Kinematics, Energy, Wizmir), distributions tend to have
light tails or few outliers.

All data sets used in this study are divided into train
and test sets in an 80-20 ratio. As mentioned earlier, the
base regression algorithm to quantify uncertainty is ridge
regression with polynomial features. In each data set, the
degree of the polynomial features and regularization strength
is tuned using the hyperparameter optimization technique.
This information is provided in Table 1. The goal of the
experiments is to evaluate different uncertainty quantification
methods discussed in Sections II and III when the target
coverage level is set to 1 − α = 0.95.
Table 2 summarizes the effective and conditional coverage

levels, as well as the associated prediction interval widths
while setting the target coverage level at 0.95. Over the
test set, effective coverage levels indicate the proportion
of test points whose true values lie within the prediction
intervals. To report conditional coverage, the test set is
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TABLE 1. Overview of the publicly available data sets.

FIGURE 5. Histogram of data sets showing the distribution of the response variables. Kernel density estimation curves are also visualized
to show how each distribution is shaped. Vertical dashed lines represent 10th, 50th, and 90th percentiles of the distributions.

TABLE 2. Reporting the effective coverage and average prediction interval width over the test set. For each data set, the true responses are divided into
10 bins by quantiles, in the test set. The conditional coverage levels (generally the higher the better) and the average prediction interval widths (generally
the lower the better) of each bin are presented. For each bin of each data set, the contour color of a column varies from red (worst case) to green (best
case). However, each uncertainty quantification method should consider both coverage and width at the same time in order to be effective. For each data
set, the most effective methods considering both coverage levels and widths are shown in bold.

divided into 10 bins by quantiles based on the true values
of the response variables. Our next step is calculating the
average coverage and prediction interval width per bin.
Within each bin of a data set, the contour color varies from
red (the worst case) to green (the best case). When evaluating
uncertainty quantification methods, both coverage and width
should be considered simultaneously. For each data set, the
best methods considering both coverage levels and widths
are shown in bold. For example, looking at Communities,
in the first five bins, all six methods provide coverage
1 meaning that all test samples in these bins are covered.

However, the interesting point is that the corresponding
prediction interval widths obtained by WJ+ and WCV+ are
far narrower than those obtained by other methods. In bin
6, the coverage of these methods remains the same (1),
while having tighter widths compared to other methods. Even
though the prediction interval widths of other methods are
wider in bin 6, their coverage rate drops from 1 to 0.95, but
CV does not change. CV, however, cannot compete withWJ+
and WCV+ in this bin due to its large width. The trend can
be seen up to the last bin, where WJ+ and WCV+ have
better performance than other methods. Compared with other
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methods, these methods have relatively wider widths, which
is essential for this bin to achieve better conditional coverage
levels (almost 0.8).

As can be seen from Table 2, across all bins, the average
prediction interval widths obtained from the J method and its
cross-validation version CV method are the same. Compared
to J and CV methods, J+ and CV+ methods provide slightly
different prediction intervals in different bins; however, they
are not as adaptive as WJ+ and WCV+. The prediction
interval widths of WJ+ and WCV+ can differ significantly
over different bins based on the level of uncertainty associated
with each bin. To confirm these claims, we select two
data sets, Kinematics and Treasury, and plot the conditional
coverage and interval width on different bins separated by
quantiles. In Kinematics, the distribution of the response
variable is symmetric (low skewness and low kurtosis),
while in Treasury, the distribution of the response variable is
asymmetric with heavy tails due to high skewness and high
kurtosis.

Fig. 6 illustrates the true values vs. prediction intervals
of response variables of test points. Two data sets, namely,
Kinematics and Treasury, and six methods including J,
J+, WJ+, CV, CV+, and WCV+ at the target coverage
level of 0.95 are used. The top and bottom sub-figures
refer to Kinematics and Treasury data sets, respectively.
Effective coverage and average prediction interval width of
each method are shown in parentheses. As Kinematics is a
relatively large data set, we only plot 8% of the observations
in order not to crowd the plot. According to Fig. 5, the
distribution of the response variable in theKinematics data set
can be considered a Gaussian distribution. This may lead to a
situation in which symmetric regions can be found in the data
set. Under such circumstances, there should be no noticeable
differences among the methods used in this study. As can
be seen from Fig. 6, in this data set, the prediction intervals
obtained by J, J+, and WJ+ are approximately the same,
while the cross-validation versions, CV, CV+, and WCV+

provide slightly wider prediction intervals, resulting in higher
effective coverage levels.

In the Treasury data set, the distribution of the response
variable appears to be highly skewed, as shown in Fig. 5.
This may lead to the occurrence of dense and sparse regions
in different portions of the data set. It may be possible
to achieve better uncertainty quantification in this scenario
by using data-dependent weights when constructing non-
conformity scores. According to Fig. 6, we observe that the
prediction intervals for the WJ+ and WCV+ methods are
more adaptable than the intervals for the other methods in the
Treasury data set. The prediction intervals seem to increase
as the response variable (CD Rate) increases. It is also
noteworthy that while J, J+, and WJ+ have the same average
prediction interval width of 0.109, the effective coverage of
WJ+ is higher than those of J, J+, indicating that WJ+
provides superior performance. The same observation can be
seen in the results of CV, CV+, and WCV+. Looking at
this figure, it is interesting to note that the WJ+ and WCV+

methods result in fewer red points lying outside prediction
intervals than those using other methods.
Fig. 7 shows conditional coverage and prediction interval

width on test points using six methods at the target coverage
level of 0.95. The top and bottom sub-figures refer to Kine-
matics and Treasury data sets, respectively. As mentioned
earlier, in the test set, the true values of the response variables
are divided into 10 bins by quantiles. In each sub-figure,
the x-axis shows these 10 bins. In the top and bottom
sub-figures, the y-axes represent conditional coverage and
prediction interval width. As previously discussed, all six
methods perform similarly across all bins in the Kinematics
data set. In different bins, almost all methods appear to
have conditional coverage at the target coverage (0.95).
Furthermore, the prediction intervals obtained from these
methods are nearly identical across bins.
On the other hand, in the Treasury data set, the effec-

tiveness of using data-dependent weights in non-conformity
scores in the WJ+ and CV+ methods is demonstrated well.
Within the first eight bins, all methods have conditional
coverage equal to or above the desired coverage (0.95), while
WJ+ and WCV+ have much tighter prediction intervals
than other methods. In other words, using these methods, the
prediction intervals tend to be shorter when the estimator is
more certain. In contrast, in the last two bins, where there
is significantly more uncertainty, the conditional coverage
of WJ+ and CV+ methods is significantly higher than the
other methods. It is noteworthy that, while the prediction
interval width of all four methods is the same for all bins,
the prediction interval widths of WJ+ and CV+ differ for
different bins depending on how uncertain the bins are.

So far, we have shown how using data-dependent weights
in non-conformity scores help to construct valid prediction
intervals. The experiments show that WJ+ and WCV+

outperform other methods in terms of their efficiency and
adaptability over the input space.

V. APPLICATION TO SCIENTIFIC SIMULATION
In addition to benchmarks, we consider a high-rise telecom-
munication tower as a case study [43], [44], [45], [46].
The height is over 400 meters, made of reinforced concrete.
The concrete shaft is the main load-carrying structure of
the tower that transfers the lateral and gravitational loads
to the foundation. We consider several modeling aspects,
including material non-linearities (i.e., cracking, crushing,
and damage), and geometric non-linearities.

We develop a 2D finite element model of the tower,
including the head structure, shaft, and transition. A total
of 10 random models are generated using Latin Hypercube
Sampling (LHS), to consider the epistemic variability in
18 material/modeling parameters (concrete, steel, and system
level). Moreover, 100 ground motions are used to account
for aleatory uncertainty. Since a ground motion record
has a temporal nature, a series of scalar meta-features
should be extracted to be used in the context of machine
learning regression [47]. For each ground motion, we extract
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FIGURE 6. True values vs. prediction intervals of response variables of test points using six methods,
including J, J+, WJ+, CV, CV+, and WCV+ at the target coverage level 0.95. The top and bottom
sub-figures refer to Kinematics and Treasury data sets, respectively. For the Kinematics data set, only
8% of the observations are used for the visibility of the plot. The effective coverage and prediction
interval width of each method are shown in parentheses.

31 intensity measure parameters, including all peak val-
ues (e.g., peak ground acceleration - PGA), intensity-,
frequency-, and duration-dependent parameters. The com-
bination of 100 ground motions and 10 modeling samples
yields 1,000 unique assessments. To account for higher
seismic intensity levels (and possibly failure mechanism),
three scale factors are also considered. Overall, we create
a data set containing n = 3, 000 simulations with d = 49

attributes. The output space for the regression analysis
represents a structural response, base shear. We present a
schematic 3D finite element model and the histogram of
structural response in Fig. 8.

We compare the predictive regions produced by conformal
prediction methods with those produced by the Gaussian
Process Regression algorithm (GPR) [48], which is one of
the most popular Bayesian machine learning approaches.
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FIGURE 7. Conditional coverage and prediction interval width of six methods, including J, J+, WJ+, CV, CV+, and
WCV+ at target coverage level of 0.95 on different bins of test points. The top and bottom sub-figures refer to
Kinematics and Treasury data sets, respectively.

GPR models the distribution of possible functions that could
have generated the data, rather than just the mean or median
of this distribution. This allows it to provide uncertainty
estimates for its predictions by modeling the full distribution
of the prediction. To further explore the efficiency of our
proposed method, we also compared it with Conformalized
Quantile Regression (CQR) [20]. CQR combines conformal
prediction with classical quantile regression and offers the
benefits of both approaches. Our comparative analysis shows
that our proposed method tends to produce shorter intervals
than CQR. We present the results of our comparison by
first reviewing GPR and then comparing its performance
with conformal prediction methods on the scientific data set.
Subsequently, we discuss CQR and compare the performance
of our proposed method, WCV+, with CQR on the same data
set.

A. REVIEW OF GPR
From a conventional regression perspective y = f̂ (x, β) +

e, we estimate β, a vector of unknown parameters, using
several tools, e.g., ordinary least squares (OLS), based
on the observed input-output pairs. In this case, we end
up with a set of fixed parameters β resulting in a fixed
function f̂ . However, from the GP perspective, not only
function f̂ is not fixed but also it is unknown/stochastic
and considered a major source of uncertainty. GP extends
the idea of a Gaussian distribution over discrete random
variables to the concept of a Gaussian distribution over
continuous functions, with inference occurring directly in the
function space. To put it another way, Gaussian distribution
is over random vectors, while GP is over random functions.
For more details, please see [49] and [50]. GP is used in
uncertainty quantification since it can take both the mean
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FIGURE 8. Schematic diagram of tower model and a histogram of the response variable, i.e., base shear. The
skewness and kurtosis of base shear are also shown in the legend. Vertical dashed lines represent 10th, 50th, and
90th percentiles of the distributions.

and covariance of the distribution into account. GP has been
extensively used in many machine-learning tasks, including
regression, classification, and clustering. However, in this
paper, we mainly focus on the use of GP in regression
settings. In the following, we show how GPR works.

To be formal, given x1, . . . , xn ∈ Rd , we describe
f̂ (x) by GP as f̂ (x) ∼ GP

(
m(x), κ

(
x, x′

))
, where a

mean function m(x) and a covariance (kernel) function
κ

(
x, x′

)
are defined as m(x) = E[f̂ (x)] and κ

(
x, x′

)
=

E
[
(f̂ (x) − m(x))

(
f̂
(
x′

)
− m

(
x′

))]
, respectively. The prior

expected function value is often set to m(x) = 0, since we
assume that we have no initial knowledge about all functions
in the distribution. So, the kernel function κ

(
x, x′

)
which

reflects the relationships between function values at each
input pair (x, x′), only define the GP. Here, we have f̂ (x) ∼

GP
(
0, κ

(
x, x′

))
.

All assumptions about underlying functions and general-
ization properties of a GP model lie in the specifying of the
kernel function. Kernel structures can determine modeling
assumptions in terms of smoothness, linearity, or periodicity
expected in the data. The appropriate selection of kernel
function plays an important role in the performance of GPR.
Some powerful and widely used kernels in GPR with a
smoothing parameter σb > 0 (called bandwidth) are shown
below:

• constant kernel is defined as κ(x, x′) = σ 2
b

• linear kernel is defined as κ(x, x′) = σ 2
b x

⊤x′

• squared exponential or radial basis function (RBF)
kernel is defined as κ(x, x′) = exp(−ν2(x, x′)), where
ν(x, x′) := ∥x − x′

∥2/σb.
In the GPR setting, we have ŷ = f̂ (x) + ϵ, where ϵ ∼

N
(
0, σ 2

)
. Here, ϵ is independent and identically distributed

random errors with zero mean and unknown variance σ 2.
Since the GP prior function f̂ over observations is assumed to

be aGaussian process, the GP posterior function is a Gaussian
process too.

Assume we want to predict the value of output yn+1, for
the test sample xn+1, given n training data points. Here,
we can have ŷn+1 ∼ N

(
f̂ (xn+1) , σ 2(xn+1)

)
. Considering

the distribution of function value at sample point is Gaussian
with mean m(xn+1) and variance σ 2(xn+1):

m(xn+1) = κ(xn+1,X )
(
σ 2I + κ(X ,X )

)−1
y, (15)

σ 2(xn+1) = κ(xn+1, xn+1)

− κ(xn+1,X )
(
σ 2I + κ(X ,X )

)−1
κ(X , xn+1),

(16)

where κ(xn+1,X ) is a kernel matrix between test sample
xn+1 and n training points X ; and κ(X ,X ) denotes the
kernel matrix of the n training points X . Although GPR
can provide us a measure of uncertainty for the prediction,
the time complexity of constructing the inversion of kernel
matrix κ(X ,X ) would be O(n3), which is computationally
intractable for large high-dimensional data on platforms that
have limited computing resources. Furthermore, storing the
computed kernel matrix needs O(n2) storage space, posing a
significant challenge for large data sets.

B. COMPARISON OF CONFORMAL PREDICTION
METHODS WITH GPR
In this section, we compare the predictive regions produced
by conformal prediction with GPR methods in our scientific
data. In conformal prediction, a ridge regression algorithm
with polynomial features is employed as an underlying
regression algorithm. The degree of the polynomial features
and regularization strength are set to 2 and 10, respectively,
using hyperparameter optimization. We also apply GPR
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with two different choices of kernel functions. In the
following, GPR refers to the use of the default kernel in
scikit-learn package (Version 1.0.1), whereas, in GPR∗

the kernel hyperparameters are optimized.
We use 80% of data for the training set (size = 2,400) and

20% of data for the test set (size = 600) and provide the
results based on the test set. Fig. 9 illustrates the effective
coverage at three target coverage levels (0.9, 0.95, 0.99),
as well as the prediction interval width for test points using
three conformal prediction methods including CV, CV+, and
WCV+ and the two GPR methods. To improve readability,
we only show the CV family in this figure and not the J
family. Across all target coverage levels, GPR without kernel
optimization performs the worst among all methods. While
GPR∗ with an optimized kernel performed better than GPR,
it is still inferior to the six conformal prediction methods.
Despite the shorter prediction intervals obtained by GPR than
by conformal prediction methods, they do not meet the target
coverage levels. Accordingly, GPR methods are less reliable
than conformal prediction methods.

Besides, users may believe that the choice of a kernel
function determines almost all the generalization properties
of GPs. However, it is important to note that we are dealing
with a black box model. This means that the user may
not be an expert, or may not have a deep understanding
of the data or the modeling challenge. In these cases,
the option to select the proper kernel function requires an
extensive hyperparameter optimization step, which can be
a very time-consuming task. The WCV+ method achieves
higher effective coverage levels than other methods, even
when their prediction intervals are smaller. Results indicate
that the proposed method WCV+ is more effective at
quantifying uncertainty than other methods. Using weighted
non-conformity scores when constructing prediction intervals
allows us to be more accurate/valid (higher coverage) while
being more efficient (smaller prediction intervals).

In the following, figures are presented only when the target
coverage level is set to 0.95 in order to save space and avoid
repetition. Fig. 10 shows true values vs. prediction intervals
of test points using different conformal prediction and GPR
methods. Elements in the parentheses indicate the effective
coverage, average prediction interval width, and the number
of red missed points outside of prediction intervals for each
method. This figure clearly illustrates the effectiveness of the
proposed methods WJ+ and WCV+ in comparison with all
other methods. According to this figure, with WCV+, the
number of missed points whose prediction intervals do not
cover the true values is less than the number of missed points
for other methods. Additionally, it is interesting to note that
the average prediction interval widths obtained by WJ+ and
WCV+ are significantly smaller than those obtained by other
methods except GPR, which is not reliable at all. Despite the
tightness of prediction intervals obtained by these methods,
effective coverage is not sacrificed at all. Using weighted
non-conformity scores when constructing prediction intervals

allows us to be more accurate/valid (higher coverage) while
being more efficient (shorter prediction intervals).

Fig. 11 shows conditional coverage and prediction interval
width on test points using different conformal prediction and
GPR methods. For better readability, only the CV family is
shown in this figure and not the J family. Again, quantiles
are used to divide the true values of the response variable in
the test set into ten bins. This figure illustrates that almost
all conformal prediction and GPR∗ methods have acceptable
conditional coverage (0.95 or higher), except for the last
two bins. However, the WCV+ method has proven to be
highly effective when data-dependent weights are applied to
non-conformity scores. Compared to the other methods, this
method produces much tighter prediction intervals. Looking
at Fig. 11, as wemove from bin 1 to bin 10, we can observe an
increase in the widths of the prediction intervals for WCV+.
Hence, when there is less uncertainty in some regions of the
data set (here, first few bins), the prediction intervals obtained
from WCV+ are as tight and informative as possible. The
increasing trend of prediction interval widths using WCV+

over 10 bins shows how adaptive these methods are when
dealing with uncertainty. In the last bin, when uncertainty is
greatest, this method results in the widest prediction intervals
and the highest conditional coverage.

It should be noted that the predictive regions produced by
GPR are not valid and therefore they are unreliable if the
correct prior is not available. Looking at this figure and Fig. 9,
the tightness of prediction intervals of GPR comes at the
cost of low effective/conditional coverage rates. This problem
can be alleviated by using the appropriate kernel function.
However, choosing the right kernel is time-consuming, and
there is no guarantee that it will be the most optimized. On the
contrary, as shown in this section, conformal prediction
methods produce valid predictive regions even without the
need to optimize any hyperparameters. These methods can
also be applied to any underlying regression algorithm.
According to the results of the experiments conducted in this
section, conformal prediction methods using data-dependent
non-conformity scores are superior to other commonly used
methods in terms of validity and efficiency.

C. REVIEW OF CQR
The conformalized quantile regression method (CQR) [20]
is a prediction interval method that takes into account
heteroscedasticity in the data to construct narrower and more
accurate prediction intervals. CQR uses quantile regression
to estimate the prediction bounds and the residuals from this
method are used to create the guaranteed coverage value.

To use CQR to construct a prediction interval for a new
test point xn+1, we first fit a quantile regression model to the
calibration set, with quantile levels αlo and αhi corresponding
to the lower and upper prediction bounds, respectively.
We then predict the quantiles of the response variable at
xn+1 using the fitted quantile regression models, denoted by
q̂αlo (Xn+1) and q̂αhi (Xn+1), respectively.
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FIGURE 9. Effective coverage and prediction interval width on test points using three conformal
prediction methods including CV, CV+, and WCV+ and two GPR methods at three target coverage
levels (0.9, 0.95, 0.99). GPR without kernel optimization performs the worst among all methods across
all target coverage levels. GPR∗ with an optimized kernel performed better than GPR; however, it is
still inferior to the six conformal prediction methods. While GPR prediction intervals are shorter than
those obtained from conformal prediction methods, they do not meet the required coverage levels.
This makes GPR methods less reliable than conformal prediction methods. Despite the tight prediction
intervals, WCV+ achieves a higher effective coverage level than other conformal prediction methods at
all target coverage levels.

FIGURE 10. True values vs. prediction intervals on test points using six conformal prediction methods including J, J+, WJ+, CV, CV+,
and WCV+ and two GPR methods at the target coverage level of 0.95. Effective coverage, prediction interval width, and number of
red missed test points lying outside of the prediction intervals of each method are shown in parentheses.

The prediction interval is then constructed as follows:

ĈCQR
α,n (xn+1) = [q̂αlo (xn+1) − Q1−α(Elow, I2),

× q̂αhi (xn+1) + Q1−α(Ehigh, I2)], (17)

where Q1−α(E, I2) is the (1 − α)(1 + 1/|I2|)th empirical
quantile of the set of residuals Ei : i ∈ I2 and I2 is the
set of indices corresponding to the residuals of the quantile
regression estimator fitted on the calibration set. In the
symmetric CQR method, Elow and Ehigh are equal.
The idea behind CQR is to use the residuals of the quantile

regression method as a proxy for the heteroscedasticity in

the data. By using these residuals to adjust the prediction
interval, CQR can produce narrower and more accurate
prediction intervals than traditional methods that do not take
into account heteroscedasticity.

D. COMPARISON OF WCV+ WITH CQR USING LIGHTGBM
In this section, we compare the performance of two conformal
prediction methods, WCV+ and CQR, using LightGBM as
the base regressor. The MAPIE package is used to implement
CQR, as detailed in their documentation avaliable online at
https://mapie.readthedocs.io/. While Ridge regression with
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FIGURE 11. Conditional coverage and prediction interval width of six conformal prediction methods including CV,
CV+, and WCV+ and two GPR methods at target coverage level of 0.95 on different bins of test points.

FIGURE 12. True values vs. prediction intervals on test points using WCV+ and CQR methods using
LightGBM as the base regressor at the target coverage level of 0.95. Effective coverage, prediction
interval width, and number of red missed test points lying outside of the prediction intervals of each
method are shown in parentheses.

polynomial features was used as the base algorithm in
section V-B and the previous parts of this paper, here we use
LightGBM, a gradient-boosting ensemble method based on
decision trees.

Fig.12 displays the true values versus prediction intervals
of test points using WCV+ and CQR methods. The values
in parentheses represent the effective coverage, average
prediction interval width, and the number of redmissed points
outside of prediction intervals for each method. Compared
to Fig.10, it is clear that the proposed methods WCV+ with
base regressor LightGBM outperform WCV+ with Ridge
regressionwith polynomial features.WCV+with LightGBM
achieves higher effective coverage while providing tighter
prediction intervals and fewer missed test points.

However, as noted in [20], CQR can sometimes be
overly conservative, leading to unnecessarily wide prediction

intervals. According to Fig. 12, while the average prediction
interval width is 2.906 (slightly less than the 3.04 obtained
with WCV+), CQR’s prediction interval widths can be too
wide, especially in the tails of the data where the Base Shear
is greater than 20. This can be attributed to the fact that CQR
relies on quantile regression, which estimates the conditional
quantiles of a response variable. While this technique is
designed to provide a prediction interval that includes a
certain proportion of the data points, typically 95%, it can
be overly uncertain in areas where there is a lot of variation
in the tails of the data. As a result, the prediction intervals
can be unnecessarily wide, which can lead to lower effective
coverage rates and more red intervals. In other words, while
the prediction intervals provided by CQR may contain the
true values of the test samples, they can be too wide to be
informative.
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VI. CONCLUSION
In this paper, we proposed a modification to conformal
prediction methods to account for violations of the exchange-
ability and homoscedasticity assumptions. We introduced
data-dependent weights to the non-conformity scores, which
allowed us to treat relevant training points differently and
achieve improved accuracy in predicting seismic response.
Our numerical experiments showed that our proposedmethod
outperforms other commonly used uncertainty quantification
methods in terms of both validity and efficiency.We evaluated
the effective coverage, conditional coverage, and average
prediction interval width on different intervals of response
variables divided by quantiles. In particular, for the highly
skewed and heavy-tailed seismic response data, our method
achieved a 1% higher coverage level and a 15% decrease in
average prediction interval width compared to other methods
for all three target coverage levels (0.9, 0.95, 0.99). This
demonstrates the practical value of our proposed method in
scientific and engineering domains.

Furthermore, we compared our conformal prediction
methods to GPR and found that our proposed method is
superior in terms of reliability and ease of use. Our proposed
method requires less prior knowledge and optimization than
Gaussian process regression, making it more accessible to
practitioners.

In summary, our proposed modification to conformal
prediction methods, using data-dependent weights to adjust
the non-conformity scores, provides a more accurate and
reliable approach for quantifying uncertainty in machine
learning models. Our numerical experiments demonstrate the
effectiveness of our proposed method, including its compar-
ison with CQR, and our comparison to GPR highlights its
practical value. Future studies will explore the potential of
our method to enhance trust in machine learning models,
particularly for tasks with rare occurrences but significant
consequences. Additionally, we plan to broaden our approach
to encompass other well-regarded regression methods. Our
contributions push the boundaries of existing knowledge in
uncertainty quantification within machine learning, offering
substantial benefits to both practitioners and scholars in the
field.
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