
Received 11 March 2024, accepted 24 March 2024, date of publication 11 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387453

Accelerating Federated Learning via Sequential
Training of Grouped Heterogeneous Clients
ANDREA SILVI , ANDREA RIZZARDI, DEBORA CALDAROLA ,
BARBARA CAPUTO , AND MARCO CICCONE
Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Debora Caldarola (debora.caldarola@polito.it)

This work was supported by the FAIR—Future Artificial Intelligence Research and European Union (EU) Next-GenerationEU [Piano
Nazionale di Ripresa e Resilienza (PNRR)—Missione 4 Componente 2, Investimento 1.3—D.D. 1555 11/10/2022] under Grant
PE00000013 Computational resources were partly provided by HPC@POLITO.

ABSTRACT Federated Learning (FL) allows training machine learning models in privacy-constrained
scenarios by enabling the cooperation of edge devices without requiring local data sharing. This approach
raises several challenges due to the different statistical distribution of the local datasets and the clients’
computational heterogeneity. In particular, the presence of highly non-i.i.d. data severely impairs both the
performance of the trained neural network and its convergence rate, increasing the number of communication
rounds required to reach centralized performance. As a solution, we propose FedSeq, a novel framework
leveraging the sequential training of subgroups of heterogeneous clients, i.e., superclients, to learn more
robust models before the server-side averaging step. Given a fixed budget of communication rounds, we show
that FedSeq outperforms or match several state-of-the-art federated algorithms in terms of final performance
and speed of convergence. Our method can be easily integrated with other approaches available in the
literature, and empirical results show that combining existing algorithms with FedSeq further improves
its final performance and convergence speed. We evaluate our method across multiple FL benchmarks,
establishing its effectiveness in both i.i.d. and non-i.i.d. scenarios. Lastly, we highlight that the sequential
training introduced here does not introduce additional privacy concerns when compared to the de facto
standard, FedAvg.

INDEX TERMS Federated learning, distributed learning, privacy-preserving machine learning, statistical
heterogeneity, deep learning.

I. INTRODUCTION
Federated Learning (FL) [1] is a Machine Learning (ML)
framework designed to train models in decentralized settings
while preserving the privacy of participants – the clients. Such
a paradigm eliminates the need for clients to disclose their
private data with a central authority, thus ensuring compliance
with regulations in force. Federated training involvesmultiple
communication rounds, during which a shared global model
is trained independently on selected devices. The updated
parameters are then aggregated by the server into a new
model.While usually effective in homogeneous scenarios [1],
[2], [3], where clients have access to similar data, in realistic

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

settings they observe data by breaking the conventional
assumption of independence and identical distribution (i.i.d.)
of classic ML systems. In these scenarios, users collect
data from an underlined global distribution based on prefer-
ences [4], [5] or geographic position [6], [7], [8], forming a
heterogeneous distribution of local datasets. Several works
have shown that heterogeneity generally results in slow
and unstable convergence of FL algorithms [3], [9], [10],
hampering final performance [11], [12] because of local
gradients diverging towards different minima [1], [3], and the
difficulty to merge specialized models, a phenomenon called
client drift [13]. This results in a biased and suboptimal global
solution compared to the actual minimum [14]. In this work,
we focus on heterogeneity caused by i) label skew, i.e. given
an instance-label pair (𝑥, 𝑦) ∼ 𝑃𝑘 (𝑥, 𝑦), 𝑃𝑘 (𝑦) varies across

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 57043

https://orcid.org/0009-0005-2104-4576
https://orcid.org/0000-0002-8328-8622
https://orcid.org/0000-0001-7169-0158
https://orcid.org/0000-0002-3306-1323
https://orcid.org/0000-0001-7005-6489

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

FIGURE 1. To mitigate statistical heterogeneity in FL, FedSeq forms
superclients by grouping clients with distinct local data distributions
(different colors), creating simulated larger and homogeneous datasets.
Sequential training takes place within the selected superclients at each
round. The current global model is received by the first client in the chain
and sent back by the last one.

clients 𝑘 while 𝑃(𝑦 |𝑥) is identical, ii) features shift, i.e. 𝑃𝑘 (𝑥)
varies while 𝑃(𝑦 |𝑥) is identical, and iii) different local dataset
cardinality.

To mitigate the effects of the client drift, many methods
focus on regularizing the local objective to bring it closer
to the global one [10], [13], [15], or on improving the
generalization of the learned model [3], [16], [17]. Multitask
FL views each local distribution as an individual task and
aims to train separate but related models concurrently [18],
[19], [20], while [21], [22], [23], [24], [25], [26] cluster
clients with similar tasks together and assign a specific model
each. Data sharing approaches instead leverage fine-tuning
of the model over small quantities of public or synthesized
i.i.d. data to ensure a more balanced representation of the
overall distribution on the server side [11]. However, most
of these methods fall short of replicating the performance
of centralized scenarios or struggle with extremely skewed
heterogeneous distributions [3]. In contrast, this paper
approaches heterogeneity from a different angle, focusing
on the training orchestration rather than the training
objectives, to learnmore robust models before the server-side
averaging step, resulting in reduced noise and achieving
centralized performance.

This work presents Federated Learning via Sequential
Superclients Training (FedSeq), a novel approach effectively
addressing the issue of statistical heterogeneity in FL. FedSeq
employs sequential training among clients, carried out in
parallel across distinct client groups to harness the distributed
setting’s parallelism. By allowing the model to access a larger
portion of data before the averaging step, the negative effects
of data heterogeneity are mitigated, speeding up the training
and moving closer to the desired minimum. By grouping
clients having diverse local distributions together in a super-
client, we simulate the existence of a larger, homogeneous
dataset while maintaining data privacy, as illustrated in Fig. 1.
Clients within the same superclient form a chain and train
the received model in a sequential manner. The final updates
are sent from the last client to the server and merged there.
Intuitively, this scheme emulates the training dynamics
observed on devices with more extensive and evenly
distributed datasets, resulting in a favorable setting for FL.

Communication is known to be the main bottleneck in
federated training, e.g. due to the clients’ unavailability
and unreliability [27]. While sequential training provides
robustness against data heterogeneity, it can potentially
result in slower training progress. This occurs when slower
clients end up in the same superclient, leading to increased
waiting times on the server side. To overcome this lim-
itation, we present FedAsyncSeq, a novel approach that
introduces asynchronous client-server communication by
implementing sequential training among superclients.
Rather thanmerging updates at the end of each training round,
FedAsyncSeq allows the model updated by one superclient
to be sent directly to another one, enabling faster groups
of clients to complete multiple training iterations before
merging their updates. At regular intervals of every 𝑅 rounds,
the updates received by the server, potentially stemming from
varying numbers of training iterations, are aggregated. This
approach not only reduces the number of aggregation and
synchronization steps with the server but also allows the
model to be trained on a larger number of clients before the
averaging step. Consequently, this brings the model closer to
a centralized scenario, as ideally, it encounters all superclients
before being merged.

A. EXTENSION DETAILS
This work represents an extension of the previous
manuscript [28] in several aspects, as summarized in Fig. 2.
1 Firstly, we introduce a novel metric for estimating
local distribution similarity without compromising user
privacy or needing additional public data, outperforming
the performance of the previously presented approximation
techniques. Based on Task2Vec [29], it captures both
taxonomic and semantic representations of each task, i.e.,
the local data of each client. In addition, we note that
sequential training can suffer from saturation in the later
stages of training due to overfitting [30], which can further
slow down the overall training process. 2 Building upon
[30], FedSeq2Par is presented as a solution to increase
parallelism as training moves on. FedSeq2Par dynamically
updates the number of superclients and their corresponding
client assignments as the rounds progress. It prioritizes
sequentiality, i.e. larger groups, during the initial stages,
and gradually transitions to parallelism, emphasizing smaller
groups in the later stages. This allows easier adaptation to
varying numbers of devices and distributions.

Empirical analyses demonstrate the superior performance
and convergence speed of the introduced methods compared
to the current state-of-the-art algorithms in federated scenar-
ios with various data distributions and tasks. 3 To provide
a comprehensive evaluation, the experimental benchmark
is extended to include vision datasets that exhibit feature
shifts in addition to label skew, as well as Natural
Language Processing (NLP) datasets.

4 Lastly, the robustness of the algorithm against threats
posed by potentially malicious participants is a crucial aspect
in the FL paradigm [31], [32], [33]. Malevolent clients

57044 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

may attempt to disrupt the training process by manipulating
their input data [34], [35], or even try to infer private
information of other clients by exploiting the received global
model [36], [37]. To assess whether our novel client-to-
client sequential training approach introduces any privacy
vulnerabilities, in this extension we conduct tests against
these attacks and observe that FedSeq often exhibits higher
privacy resistance compared to the widely-used FedAvg
[1], considered the de-facto standard algorithm for Federated
Learning.

B. CONTRIBUTIONS
To summarize, our main contributions are the following:

• We introduce FedSeq, a new FL algorithm that learns from
groups of sequentially-trained clients (superclients).

• Several lightweight procedures to compare the clients’
probability distributions, analyzing their impact on the
creation of superclients. Extending the previous [28], this
work proposes to estimate the distribution of the clients’
tasks via Task2Vec, eliminating the need for external public
data.

• Three grouping strategies are evaluated and compared with
the naïve random assignment, showing the impact of group
quality on the algorithm convergence.

• To speed up training, we introduce FedAsyncSeq to
decrease the need for synchronization between superclients
and server, and FedSeq2Par to increase parallelism.

• The extensive empirical analyses and tests demonstrate that
the developed approaches outperform the state of the art
in terms of convergence performance and speed in both
i.i.d. and non-i.i.d. scenarios. This paper further extends
the benchmark’s scope by incorporating both vision and
language datasets.

• We prove the resistance of FedSeq to common attacks
against clients’ privacy, showing its robustness.

C. PAPER STRUCTURE
The paper is structured as follows. Section II discusses the
related works. Section III defines the standard FL problem
formulation (III-A) and the proposed method, detailing the
definition of superclients (III-B) and the sequential training
within superclients (III-C), distinguishing between FedSeq,
FedAsyncSeq and FedSeq2Par. Experimental results are
analyzed and discussed in Section IV, where the introduced
approaches are compared with state-of-the-art baselines in
terms of final performance, convergence speed and commu-
nication costs. Section IV-C presents the ablation studies.
Lastly, privacy concerns and experiments are addressed in
Section V.

II. RELATED WORKS
A. DATA HETEROGENEITY IN FL
Federated Learning (FL) [1] is a framework to learn a
global model distributedly while preserving the users’ data
privacy [2], [27], [38]. Training [1] is based on rounds
of communication between clients and a server, and the

global model is built as the weighted average of the updated
parameters (FedAvg) obtained via client-side training on
local data. In realistic scenarios, a major challenge is posed
by the presence of non-i.i.d. and unbalanced clients’ data,
often referred to as statistical heterogeneity [39], [40].
In those settings, the local optimization objectives drift from
each other [13], leading to unstable trends [3] and slower
convergence rates [6], [10], [39], [41], [42]. This work
preserves FedAvg for the server-side updates aggregation
while focusing on enhancing convergence performance.

1) CLIENT-SIDE APPROACHES
Several works addressed data heterogeneity issues via
client-side training regularization. SCAFFOLD [13] miti-
gates the effects of the clients’ drifts through control variates,
while [10], [43] minimize the gap between local and global
model parameters to limit the impact of the clients’ updates.
FedAlign [44] aligns the Lipschitz constants of the models’
last blocks to promote smooth optimization and global con-
sistency. Other approaches leverage the Alternating Direction
Method of Multipliers to asymptotically align local and
global objectives [45], [46], [47]. Among those, FedDyn [15]
dynamically modifies the local loss function so that local
and global stationary points coincide at convergence. Another
recent direction studies generalization through the lens of the
loss landscape. By seeking flat minima during local training,
FedSAM [3], [16], FedSpeed [17], and FedSMOO [48]
improve the poor generalization of models in heterogeneous
scenarios. Since FedSeq does not modify the client-side
training, it can be applied alongside any of these approaches.

2) SERVER-SIDE APPROACHES
While client-side regularization is effective for mitigating
client drift and enhancing local model learning, server-
side aggregation is not to be overlooked. Using server-side
optimizers [6], [40], [49], [50] allows coping with FedAvg’s
lack of adaptivity. Server-side momentum [40], [51], [52]
addresses the bias towards recently observed clients by
leveraging the memory of past updates. Other studies utilize
global momentum to guide local updates [53], [54], [55],
[56]. Additionally, [3] and [57] suggest to aggregate global
updates across rounds to increase the robustness of the model
to distribution shifts. The proposed revised orchestration of
the training process can effortlessly integrate with any of
these techniques.

As the learned local model under-represents the deducible
patterns from the missing classes, [11] shows how sharing
a small set of public data among the clients leads to
notable improvements. A similar approach is followed
by [58], where the public data enables knowledge distillation.
Reference [59] leverages public unlabelled data to learn a
general representation robust to domain shifts. Similarly,
FedSeq keeps the public data on the server side, with the
different purpose of using it to estimate the clients’ data
distribution in a privacy-compliant way. Unlike [11], [58],
and [59], such data is never used for training.

VOLUME 12, 2024 57045

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

3) FEDERATED MULTI-TASK LEARNING
Another line of works tackles the problem from a multitask
perspective [60], where each client with its own data
distribution is seen as a different task [18], [61]. In [21], [22],
[23], [24], and [25], clients with similar tasks are clustered
together and a specific model is assigned to each cluster.
Reference [8] leverages the local style information to identify
and group clients having similar distributions. Other works
build clusters based on the edge systems complexity and
available resources [26], [62]. Following the same approach
of [21], [24], and [23], FedSeq approximates the clients’ data
distribution via the locally trained models, which is later
used to build groups of dissimilar clients. Reference [19]
uses the relatedness among clients’ tasks to improve weight
aggregation. Here, Task2Vec [29] embeddings, based on the
Fisher information matrix (FIM) of fine-tuned local models,
are leveraged to capture similarities among the clients’ tasks
without needing external public datasets.

4) ANTI-CLUSTERING FL
FedSeq uses clustering techniques to effectively group clients
with distant distributions, resulting in a homogeneous under-
lying dataset within each group. This approach relates to the
‘‘anti-clustering’’ literature [63], [64], whose goal is to build
similar groups from dissimilar elements [65]. Building upon
the strategy of FedGSP [30], which dynamically expands the
number of client groups in each round to enhance parallelism,
we propose merging this approach with the data estimation
strategies and grouping techniques unique to FedSeq. This
combination results in FedSeq2Par, an approach that further
increases parallelism.

B. BEYOND SYNCHRONOUS SERVER-CLIENT FEDERATED
LEARNING
1) PEER-TO-PEER FL
Peer-to-peer (p2p) FL [66], [67] is a decentralized approach
where clients communicate directly with each other in order
to learn global models, eliminating the need for a central
server. In particular, FedSeq shares some common traits with
[68], which introduces two network topologies based on
cyclic model parameters exchange among clients to enhance
performance in heterogeneous scenarios, namely FedCyclic
and FedStar. Similarly, our approach enables model sharing
among clients within the same superclient. Unlike such
works, FedSeq retains the central server as a proxy between
clients, while ensuring communication costs equivalent to
those of FedAvg.

2) ASYNCHRONOUS FL
Asynchronous FL was introduced to handle stragglers and
heterogeneous latency [69], [70]. In this scenario, the server
does not wait for all devices to send back their updates
but keeps aggregating the models as they arrive. Several
approaches rely on a parameter accounting for staleness [69],
[71], leverage gradient compression techniques to reduce the

communication latency [72], or store the early updates for a
given timeframe and discard the late ones [73]. Similarly to
these methods, the server in FedAsyncSeq does not wait for
all superclients to return their updates but allows faster ones
to continue training for multiple rounds before the averaging
step. Differently from the standard asynchronous approach,
updates are not averaged as they come, but after a fixed
window of rounds so that the exchanged models are trained
on a larger portion of data.

C. PRIVACY IN FEDERATED LEARNING
A primary objective within the FL framework is to ensure
the algorithm’s resilience against potential threats posed by
malicious participants. However, it’s essential to recognize
that the FL paradigm, in its current form, is not entirely
impervious to threats [74], [75]. Malevolent clients may
poison the training process by altering the input data [34],
[35], worsening the capacity of the global model to acquire
new useful knowledge. An attacker might reconstruct clients’
private data by exploiting the incoming update model [36].
As an example, [76] leverages a GAN (Generative Adver-
sarial Network) [77] to reconstruct other users’ personal
data, while [78] uses a GAN to ensure the quality of the
data that the attacker aims to reconstruct and [79] tries to
infer characteristics of the clients with ad-hoc classifiers.
Additionally, a malicious server might put in place label
and feature fishing attacks by intentionally modifying some
parameters of the global model [80]. For an in-depth
discussion on threats and attacks in FL, we refer the readers
to [32] and [33]. Common defense techniques involve using
differential privacy [81], [82], or mixing fragments of the
local updates before sending them to the server [83]. This
work explores some of those attacks against FedSeq and
shows that the proposed novel client-to-client sequential
training approach is robust in terms of privacy compared to
FedAvg.

III. METHOD
This section details the problem formulation (Sec. III-A),
and the components of the proposed method, distinguishing
between FedSeq, FedAsyncSeq and FedSeq2Par (Secs. III-B
and III-C). The overall procedure is outlined in Fig. 2, high-
lighting the extension’s additions, while the used symbols are
summarized in Table 1.

A. PROBLEM FORMULATION
The objective of FL is to learn a global model 𝑓𝜃 : X →Y,
where X and Y are the input and output space respectively,
and 𝜃 ∈ R𝑑 the model parameters. The server communicates
with a subset of active clients sampled uniformly at random
from a set of users C across 𝑇 rounds. In cross-device
settings [27], the number of clients 𝐾 := |C| is in the order
of millions. Each client 𝑘 ∈ C has access to a local private
dataset D𝑘 of the form {𝑥𝑖 , 𝑦𝑖}𝑛𝑘𝑖=1 where 𝑥𝑖 ∈ X is the
input data point, 𝑦𝑖 ∈ Y its label and 𝑛𝑘 = |D𝑘 | the local

57046 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

FIGURE 2. Summary of the method components. Extensions with respect to [28] are highlighted with colored boxes. Best seen in colors.

TABLE 1. Summary of main introduced symbols.

dataset cardinality. Due to communication constraints [2],
only a fraction C𝑡 of clients is randomly selected without
replacement for training at round 𝑡 ∈ [𝑇]. Each client 𝑘 ∈ C𝑡
receives the current global model parameters 𝜃𝑡 from the
server and computes the update 𝜃𝑘

𝑡+1 by minimizing the local
empirical risk 𝐿𝑘 (𝜃) = E(𝑥,𝑦)∼D𝑘

[ℓ𝑘 (𝑓𝜃𝑡 ; (𝑥, 𝑦))] where ℓ𝑘
is the loss function of the 𝑘-th client, e.g. the cross-entropy
loss. The updates {𝜃𝑘

𝑡+1}𝑘∈C𝑡 are then sent to the server to be
aggregated into the global model 𝑓𝜃𝑡+1 . The global training
objective is

arg min
𝜃∈R𝑑

∑︁
𝑘∈C𝑡

𝑛𝑘

𝑛
𝐿𝑘 (𝜃), 𝑑 ∈ N+ (1)

where 𝑛 =
∑
𝑘∈C𝑡 𝑛𝑘 . The de-facto standard algorithm for

solving the FL objective in Eq. 1 is FedAvg [1], which
computes a weighted average of the clients’ updates as
𝜃𝑡+1 ←

∑
𝑘∈C𝑡 𝑛𝑘/𝑛𝜃𝑘𝑡+1. As noted by [49], this is equivalent

to performing one step of stochastic gradient descent (SGD)
with unitary learning rate as 𝜃𝑡+1 ← 𝜃𝑡 −

∑
𝑘∈C𝑡 𝑛𝑘/𝑛 (𝜃𝑡 −

𝜃𝑘
𝑡+1), where the difference between the local model and the

round initialization acts as pseudo-gradient for the client’s
direction.

FIGURE 3. FedSeq pre-training phase to build superclients. a) The initial
random global model 𝑓𝜃0 is sent to all the clients, which train it using
their local data D𝑘 ∀𝑘 ∈ C. b) The local data distributions are estimated
(𝜓) using the clients’ updates while preserving their privacy. c) Based on
the grouping strategy 𝜙, clients are assigned to 𝑁𝑆 superclients. Best
seen in colors.

As shown in [6], in realistic scenarios, clients likely do
not draw data from the same underlying distribution, namely
P(𝐷𝑖) ≠ P(𝐷 𝑗) ∀𝑖 ≠ 𝑗 ∈ C, resulting in slower and unstable
convergence [39]. More in general, 𝑓𝜃𝑘· ≠ 𝑓𝜃· ∀𝑘 ∈ C [23].
To address the challenges arising from data heterogeneity
and speed up convergence, FedSeq introduces modifications
to the training orchestration process. Specifically, clients
with diverse data distributions are grouped into superclients
{𝑆𝑖}𝑁𝑆

𝑖=1, aiming to minimize the divergence in distribution
among superclients. Sequential training is then performed
by clients within the same group. Intuitively, this approach
allows local models to accumulate knowledge from the
overall data distribution, even when client datasets exhibit
significant heterogeneity.

B. BUILDING SUPERCLIENTS
This section details how to create a superclient 𝑆 from users
with diverse local distributions while respecting the privacy
constraints, i.e. without accessing clients’ data directly.
Assigning clients to equally-sized groups while minimizing
distribution distance is a challenging problem similar to
the bin packing problem [84], and is NP-hard in nature.
Thus, this work proposes using multiple greedy strategies
to estimate the local distributions in a privacy-preserving
way and solve the clients’ clustering problem, being flexible
towards dynamic and constantly evolving FL environments.
In this Section, we introduce different grouping criteria
𝐺𝑆 which are based on i) a client distribution estimator
𝜓 (.) , providing privacy-preserving statistics on the local data
distribution, ii) ametric 𝜏, for evaluating the distance between
the estimated data distributions, and iii) a grouping method
𝜙 (.) , to assemble dissimilar clients, i.e. 𝐺𝑆 := {𝜓 (.) ;𝜏;𝜙 (.) }.
The approach is depicted in Fig. 3.

VOLUME 12, 2024 57047

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

1) CLIENTS DISTRIBUTION COMPARISON
The model 𝑓𝜃 can be defined as a combination of a deep
feature extractor ℎ𝜃 feat : X →Z and a classifier 𝑔𝜃clf :Z →
Y, where 𝜃 = {𝜃feat, 𝜃clf} is the entire set of model parameters
and Z the output feature space. The classification output is
given by 𝑔 ◦ ℎ : X → Y, where we drop the subscripts to
ease the notation. FedSeq exploits a pre-training phase to
estimate the users’ data distribution. Each client 𝑘 ∈ C trains
a common random model 𝜃0 on its dataset D𝑘 for 𝑒 epochs,
resulting in 𝑓𝜃𝑘0

, which serves as a starting point for the
following distribution estimation approaches. The proposed
client distribution estimators are
• 𝜓clf: as the model classifier is biased towards the training
data [85], its parameters 𝜃𝑘0,clf serve as a proxy for the
client’s local data distribution.

• 𝜓conf relies on the predictions of the local models on
a server-side public dataset, i.e., { 𝑓𝜃𝑘0 (𝑧) =: 𝑓

𝑘
0 , 𝑧 ∈

D𝑝𝑢𝑏, 𝑘 ∈ C}. D𝑝𝑢𝑏 contains 𝐽 samples for each class
𝑐 ∈ [𝑁𝐶]. The predictions are averaged by class as 𝑝𝑘,𝑐 =
1
𝐽

∑
𝑥∈D𝑐

𝑓 𝑘0 (𝑥), where D𝑐 ⊂ D𝑝𝑢𝑏 contains only samples
of class 𝑐. The 𝑘-th client’s confidence vector is defined as:

𝑝𝑘 := softmax({𝑝𝑘,1, . . . , 𝑝𝑘,𝑁𝐶
}) ∈ [0,1]𝑁𝐶 (2)

Since the 𝑘-th model’s predictions are favorable towards
the majority of the classes seen in D𝑘 [86], 𝑝𝑘 is an
acceptable privacy-preserving representation of D𝑘 .

Although 𝜓conf has proven to be the most effective
approach [28], it relies on the availability of a public dataset
that accurately reflects the overall data distribution — a
requirement that can be challenging to meet. Therefore,
extending [28], this study introduces an alternative method
to overcome this limitation, without introducing any privacy
liabilities.
• 𝜓t2v: based on Task2Vec [29], which extracts vectorial
representations of given tasks based on an approximation
of the Fisher Information Matrix (FIM), defined as

𝐹 := E(𝑥,𝑦)∼ 𝑓𝜃 (𝑥,𝑦) [∇𝜃 log 𝑓𝜃 (𝑦 |𝑥)∇𝜃 log 𝑓𝜃 (𝑦 |𝑥)𝑇] . (3)

The FIM serves as a metric for the information content
of a parameter regarding the joint distribution 𝑓𝜃 (𝑥, 𝑦).
If it has limited influence on the classification performance
for a specific task, its corresponding entry in the FIM
will be low. Thus, the FIM represents the task itself, here
corresponding to each client’s local dataset. Starting from
a pre-trained set of weights ~𝜃0, the classifier is fine-tuned
on D𝑘 and the FIM is computed on the feature extractor
parameters. The resulting representations are demonstrated
to capture taxonomic and semantic similarities between
tasks.
In the following sections, we indicate as ~D𝑘 the estimate

provided by 𝜓 (.) for the 𝑘-th device’s data distribution.

2) GROUPING CLIENTS
D𝑆 =

⋃
𝑘∈C𝑆D𝑘 is defined as the union of the data from

the clients C𝑆 ⊂ C belonging to a superclient 𝑆. The aim is

to find the maximum amount of superclients 𝑁𝑆 satisfying
the following constraints: i) minimum number of samples
|D𝑆 |𝑚𝑖𝑛, and ii) maximum number of clients 𝐾𝑆,𝑚𝑎𝑥 per
superclient. Given 𝜓 (.) and 𝜏, FedSeq [28] approximates the
solution of the problem using:

• 𝜙rand, a naïve yet practical method that randomly assigns
clients to superclients until the stopping criterion is met.

• 𝜙kmeans: K-means [87] is first applied to obtain 𝑁𝑆
homogeneous clusters. Each superclient is formed by
iteratively extracting one client at a time from each cluster,
until |D𝑆 | ≥ |D𝑆 |𝑚𝑖𝑛 and 𝐾𝑆 ≤ 𝐾𝑆,𝑚𝑎𝑥 ∀𝑆.

• 𝜙greedy initially assigns one random client 𝑘𝑖 ∈ C to
the superclient 𝑆. The next 𝑘 𝑗 ∈ C \ {𝑘𝑖} is chosen
so as the distance between 𝑘𝑖 and 𝑘 𝑗 is maximized,
i.e. max 𝑗∈[𝐾] 𝜏(~D𝑘𝑖 , ~D𝑘 𝑗). The process is repeated by
iteratively maximizing 𝜏(~D 𝑗 ,

1
|𝑆 |

∑
𝑖∈ |𝑆 | ~D𝑖), with |𝑆 | being

the cardinality of 𝑆, until the defined constraints are met.
• While highly effective [28], the best-performing 𝜙greedy is
hindered by its iterative nature, leading to slower execution.
In response, this work adapts the faster Inter-Cluster
Grouping (ICG) algorithm from [30] to our approach
(𝜙ICG). Differently from ICG that requires superclients of
equal size, FedSeq relaxes this constraint by redistributing
the unassigned clients.

At the end of this procedure, we obtain a set S of 𝑁𝑆
superclients, where each superclient 𝑆𝑖 includes 𝐾𝑆𝑖 :=
|C𝑆𝑖 | ≤ 𝐾𝑆,𝑚𝑎𝑥 clients and |D𝑆𝑖 | ≥ |D𝑆 |𝑚𝑖𝑛 data points, with∑
𝑆𝑖∈S 𝐾𝑆𝑖 = 𝐾 .

C. SEQUENTIAL TRAINING
This section introduces three alternatives to leverage sequen-
tial training within the created superclients, namely FedSeq,
FedAsyncSeq and FedSeq2Par. The approaches are summa-
rized in Algorithm 1.

1) FEDSEQ
As showed in Fig. 4, the clients {𝑘𝑖,1, . . . , 𝑘𝑖, |𝑆𝑖 | } ∈ C belong-
ing to the superclient 𝑆𝑖 ∀𝑖 ∈ [𝑁𝑆] form a chain performing
sequential training. At each round 𝑡, the server selects a subset
of 𝑆𝑡 ∈ S superclients. Within each superclient 𝑆𝑖 , the first
device 𝑘𝑖,1 receives the global model 𝑓𝜃𝑡 from the server
and locally trains it for 𝐸𝑘 epochs on D𝑘𝑖,1 . The updated
parameters 𝜃𝑘𝑖,1

𝑡+1 are sent to the next client of the sequence
𝑘𝑖,2. Such training procedure continues until the last client
𝑘 |𝑆𝑖 | updates the received model and sends it back to the
server. The passage over all the clients of the chain can be
repeated 𝐸𝑆 times allowing a ring communication strategy.
However, 𝐸𝑆 ≠ 1 leads to an increase in communication as
multiple messages have to be exchanged between clients,
which is why we discourage this approach and set 𝐸𝑆 =

1 in our experiments. On the server-side, the superclients
updates are averaged following Eq. 1. Intuitively, by training
the model over multiple clients’ data before the averaging
step, we simulate the existence of a larger, homogeneous
dataset.

57048 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

Algorithm 1 FedSeq , FedAsyncSeq and FedSeq2Par
Require: 𝑓𝜃0 , 𝐺𝑆 , 𝐾𝑆,𝑚𝑎𝑥 , |D𝑆 |𝑚𝑖𝑛 . Epochs 𝑒, 𝐸𝑘 , 𝐸𝑆 . 𝑇 rounds. Clients C.

Fraction 𝐶 of superclients selected at each round.
Growth function and parameters 𝑓𝑔𝑟 , 𝛼𝑔𝑟 and 𝛽𝑔𝑟 .

1: S ← CREATE_SUPERCLIENTS
(
𝑓𝜃0 ,𝐺𝑆 , 𝑒, 𝐾𝑆,𝑚𝑎𝑥 , |D𝑆 |𝑚𝑖𝑛 , 𝐾,

𝑓𝑔𝑟 (𝛼𝑔𝑟 , 𝛽𝑔𝑟 ; 𝑡)
)

2: 𝑁𝑆 ← |S|
3: Θ← [𝜃0 , . . . , 𝜃0]1×𝐶𝑁𝑆

, 𝑤← [0, . . . , 0]1×𝐶𝑁𝑆
4: for 𝑡 = 1 to 𝑇 do
5: if 𝑓𝑔𝑟 (𝑡 , 𝛼𝑔𝑟 , 𝛽𝑔𝑟) > |𝑁𝑆 | then
6: S ← CREATE_SUPERCLIENTS (𝑓𝜃0 ,𝐺𝑆 , 𝑒, 𝐾, 𝑓𝑔𝑟

(
𝛼𝑔𝑟 , 𝛽𝑔𝑟 ; 𝑡

)
)

7: 𝑁𝑆 ← |S|
8: end if
9: S𝑡 ← Subsample fraction 𝐶 of 𝑁𝑆 superclients
10: for 𝑆𝑖 ∈ S𝑡 in parallel do
11: Shuffle clients in 𝑆𝑖
12: 𝜃

𝑆𝑖 ,0
𝑡 ← 𝜃𝑡 { FedSeq and FedSeq2Par }

13: 𝜃
𝑆𝑖 ,0
𝑡 ← Θ[𝑖]

14: for 𝑒𝑆 = 1 to 𝐸𝑆 do
15: 𝜃

𝑆𝑖
𝑡+1← SEQUENTIAL_TRAINING(𝜃

𝑆𝑖 ,0
𝑡 , 𝐸𝑘)

16: end for
17: Θ[𝑖] ← 𝜃

𝑆𝑖
𝑡+1, 𝑤𝑖 ← 𝑤𝑖 + |D𝑆𝑖

|
18: end for
19: 𝜃𝑡+1← FedAvg({ 𝜃𝑆𝑖

𝑡+1 , ∀𝑆𝑖 ∈ S𝑡 }) { FedSeq and FedSeq2Par }
20: if 𝑡 mod 𝑁𝑆 = 0 then
21: 𝜃𝑡+1←

∑
𝑖
𝑤𝑖
𝑤 Θ[𝑖], 𝑤 =

∑
𝑖 𝑤𝑖

22: Θ← [𝜃𝑡+1 , . . . , 𝜃𝑡+1]1×𝐶𝑁𝑆
, 𝑤← [0, . . . , 0]1×𝐶𝑁𝑆

23: end if
24: end for

FIGURE 4. Sequential training with FedSeq. At each round 𝑡 , a subset of
superclients (here 𝑆1 and 𝑆2) is selected and receives 𝜃𝑡 , which is trained
sequentially by the clients. Final updates are sent back to the server,
where they are aggregated with FedAvg. Best seen in colors.

2) FedAsyncSeq
In realistic scenarios, synchronous federated training can
become impractical, especially when considering factors
such as the latency of slower devices. The delays can be
further exacerbated by FedSeq since there is no control
over the capabilities of clients’ systems, and multiple
slow clients may be grouped together within the same
superclient, leading to a significant increase in server-side
waiting time. To mitigate the challenges posed by latency
and ensure efficient training, we propose FedAsyncSeq,
which leverages sequentiality at the superclient levelwhile
allowing asynchronous updates to be merged (Fig. 5). Instead
of aggregating the models after every round, the server
does so every 𝑅 rounds. During this time frame, the model
received by each superclient 𝑆𝑖 is instantly sent to another
random superclient 𝑆 𝑗 (where 𝑖 ≠ 𝑗). This approach allows the
fastest chains to continue with additional training iterations
instead of waiting for slower ones. After every 𝑅 rounds,
the most recent updates from each chain of superclients,

which may originate from distinct rounds, are combined.
This approach shares similarities with asynchronous settings,
where models are aggregated as soon as they become
available. It is worth noting that 𝑅 can potentially equal 𝑇 ,
meaning that the updated models are only averaged at the end
of training. This strategy reduces the number of aggregation
and synchronization steps with the server while enabling
the model to potentially observe the entire dataset before
averaging. This brings us closer to the centralized setting
while still leveraging FL’s parallelism.

3) FedSeq2Par
Sequential training of the model through a long chain
of clients with highly diverse data distributions may lead
to catastrophic forgetting [88]. This refers to the model
forgetting the knowledge acquired from the initial users
while becoming overly specialized to the most recently seen
datasets [30]. Additionally, maintaining a static sequence of
clients within each superclient may result in the model learn-
ing information based on the order of the clients, introducing
biases or unintended patterns. Building upon [30], this exten-
sion introduces the Sequential-to-Parallel (STP) approach in
FedSeq2Par to overcome these issues. Sequential training
is exploited during the initial stages, facilitating informa-
tion exchange among heterogeneous clients. Parallelism
is gradually introduced by incrementally increasing the
number of superclients and reducing their sizes, promoting
faster convergence. The dynamic creation of superclients
allows accounting for new clients, while eliminating potential
biases related to the static nature of superclients. Formally,
in each training round 𝑡, STP dynamically constructs an
increasing number of superclients {𝑆𝑖}

𝑓𝑔𝑟 (𝛼𝑔𝑟 ,𝛽𝑔𝑟 ;𝑡)
𝑖=1 , where

𝑓𝑔𝑟 (·, ·; ·) is a non-decreasing growth function dependent on
the training round 𝑡, and the hyperparameters 𝛼𝑔𝑟 , 𝛽𝑔𝑟 ∈ R+
control the growth rate and the initial number of superclients
respectively. The choice of 𝑓𝑔𝑟 is critical for the behavior of
STP. As in [30], we consider three possible growth functions:
linear, allowing for a smooth growth; logarithmic, promoting
an initial faster dynamic; exponential, with slower changes at
first,

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 (𝛼𝑔𝑟 , 𝛽𝑔𝑟 , 𝑡) = 𝛽𝑔𝑟 [𝛼𝑔𝑟 (𝑡 −1) +1], (4)

𝑓𝑙𝑜𝑔 (𝛼𝑔𝑟 , 𝛽𝑔𝑟 , 𝑡) = 𝛽𝑔𝑟 [𝛼𝑔𝑟 ln𝑡 +1], (5)

𝑓𝑒𝑥𝑝 (𝛼𝑔𝑟 , 𝛽𝑔𝑟 , 𝑡) = 𝛽𝑔𝑟 (1+𝛼𝑔𝑟)𝑡−1. (6)

IV. EXPERIMENTS
This section introduces the empirical evaluations of the pro-
posed approaches, comprising ablation studies (Sec. IV-C)
and comparison with the state of the art (Sec. IV-B).

A. DATASETS
FedSeq, FedAsyncSeq and FedSeq2Par are evaluated on both
vision and NLP datasets. Additionally to the Cifar10 and
Cifar100 [89] datasets proposed in our previous [28], this
extension aims to enlarge the paper’s scope and introduces

VOLUME 12, 2024 57049

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

FIGURE 5. Training with FedAsyncSeq with 𝑅 = 3. At round 𝑡 , the global
model is sent to the selected superclients {𝑆1 , 𝑆5 , 𝑆6 }, having varying
latency (full arrows). The first superclient to complete training (𝑆1) marks
the start of the new round 𝑡 +1. As soon as the server receives the
updated model, it sends it to another superclient (e.g., from 𝑆1 to 𝑆4).
Within the time it takes for 𝑆5 to finish training, the faster 𝑆1 and 𝑆4 can
also complete theirs. After 𝑅 rounds, the latest updates from each chain
of superclients (circled in red) are combined, and the process begins
anew. Best seen in colors.

Femnist [90] for image classification, Shakespeare [90] for
next character prediction and StackOverflow [91] for next
word prediction, all widely used as FL benchmarks [10], [15],
[49]. It is important to note that all datasets exhibit heteroge-
neous distributions concerning label skew. Differently from
the CIFAR datasets, FEMNIST also presents notable feature
shifts attributed to diverse calligraphy styles depicting the
same letter or number. Moreover, the local dataset cardinality
significantly varies across clients in both FEMNIST and the
NLP datasets.

In order to set up a heterogeneous scenario for Cifar10
and Cifar100, the local class distribution is sampled from
a Dirichlet distribution with 𝛼 ∈ {0,0.2,0.5} [40]. Both
Cifar datasets are divided into 500 clients with 100 images
each. The IID and non-IID (‘‘NIID’’ for short) data distri-
butions of Femnist introduced in [90] follow the writers’
ownership, i.e. each client is a distinct writer. The NIID
split accounts for both label skew and feature shift. The
IID and NIID distributions of Shakespeare [90] reflect
some Shakespearean characters, with 100 clients owning
around 3,743 samples each, while the implementation of
StackOverflow follows [49]. Femnist and StackOverflow
better represent realistic cross-device settings thanks to a
larger number of clients: 𝐾 = 3,500 and 40𝑘 respectively.
Additional information can be found in Appendix A of the
supplementary material. As proposed by previous works [3],
[15] accounting for the learning trends instability, the results
are averaged over the last 25 rounds on Shakespeare and
100 rounds on Cifar10/100 and Femnist. As done in [49],
due to its prohibitively large number of clients and examples,
testing on StackOverflow full dataset is performed only at the
end and a subsample is used during training.

B. COMPARISON WITH STATE-OF-THE-ART FL
ALGORITHMS
1) ALGORITHMS
To validate the effectiveness of the proposed approaches, this
study conducts a comparison with state-of-the-art (SOTA)
algorithms for heterogeneous FL. In addition to the standard
FedAvg [1] described in Sec. III, FedSeq and its variants are
tested against FedProx [10], which adds a regularization term

in the local loss function to encourage proximity between
clients’ and server’s model parameters, Scaffold [13],
addressing the client drift via stochastic variance reduction,
FedDyn [15], that aligns local and global stationary points,
and FedCyclic [68], which cyclically exchanges models
across clients without relying on a central server. FedCyclic
can be seen as the extreme case of FedSeq with 𝑁𝑆 = 1
and no server-side aggregation. FedCyclic was chosen over
FedStar (from the same paper [68]) due to the latter’s
impractical communication overhead in realistic scenarios.
FedStar indeed requires each client to send its updates to all
the other participants, leading to an exponential increase in
communication costs. To ensure a fair comparison, FedCyclic
is not trained on all clients at each round but randomly selects
a fraction 𝐶 of the available ones. The same applies to all
the other approaches and, most importantly, we ensure that
the number of model updates within rounds is the same for
all the compared methods. FedSeq and FedSeq2Par build
superclients using 𝜓t2v and the best corresponding 𝜙 (·) (see
Sec. IV-C). Local pre-training runs for 10 epochs chosen from
{1,5,10,20,30,40} (see Appendix B of the supplementary
material for details). We select 𝑅 = 𝑁𝑆 in FedAsyncSeq.

2) FINAL PERFORMANCE
Table 2 shows that FedSeq and its extensions are either
competitive or outperform other SOTA algorithms on all
tasks and datasets, especially on severe heterogeneous data
distributions. We point out that both Scaffold and FedDyn
require stateful clients, and Scaffold doubles the size of
the communicated message, differently from this paper’s
approaches. Being the extreme case of FedSeq with 𝑁𝑆 = 1,
FedCyclic reaches similar performances on most of the
datasets, implying that having one single superclient contain-
ing all clients does not dramatically increase performances
and instead hugely increments the amount of training time,
as each client needs to wait for the previous one’s update.
Focusing on the extensions of FedSeq, both FedAsyncSeq
and FedSeq2Par improve the baseline’s performances on all
tasks. We note that aggregating superclients updates every
𝑁𝑆 rounds not only requires less frequent synchronization
between clients and server, but also improves the reached
accuracy. FedSeq2Par achieves the best results in most cases,
exploiting the benefits of sequential training and parallelism,
being the second best to FedDyn only in the case of
𝛼 = 0.2 and 𝛼 = 0.5 in CIFAR100. However, differently
from FedSeq2Par, FedDyn relies on stateful clients, posing
a significant challenge for real-world deployments with
billions of edge devices [3], [92]. In such large-scale
settings, individual devices are unlikely to be called upon for
multiple training rounds. This transience renders their local
states obsolete quickly, compromising their effectiveness
in subsequent training iterations. The results obtained by
FedDyn on the more realistic FEMNIST (3,500 clients)
and STACKOVERFLOW (40𝑘 clients) datasets underscore
this point. On FEMNIST, FedDyn outperforms the baseline
FedAvg by only ≈ 0.4 points in accuracy. In contrast,

57050 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

TABLE 2. Comparison with state-of-the-art FL algorithms. Color coding: first, second and third best results.

FIGURE 6. Accuracy convergence plots of FedSeq, FedSeq2Par, FedAsyncSeq (in bold) and SOTA algorithms on vision and NLP datasets. On average,
FedSeq2Par is the best-performing algorithm. All the proposed approaches can be distinguished for their improved speed. Best seen in colors. Full
results are reported in the Appendix E of the supplementary material.

FedSeq’s variants, especially FedSeq2Par, achieve a signif-
icant improvement of +6 points over FedAvg. On the even
larger STACKOVERFLOW dataset, FedDyn shows a loss of
≈ 0.4 points compared to the baseline, while FedSeq2Par
exhibits a gain of ≈ 1.3 points. These results confirm the
limitations of FedDyn in real-world cross-device scenarios,
where its reliance on stateful clients becomes a significant
disadvantage.

3) CONVERGENCE SPEED
Fig. 6 evidently shows that FedSeq and its extensions not
only achieve superior results but also exhibit accelerated
performance. Fig 7 compares the rounds necessary to
each algorithm to reach 70% and 90% of the centralized
accuracy on Cifar10/100 and Femnist. Table E.1 in Appendix
E of the supplementary material integrates the results
for the other datasets. FedSeq consistently demonstrates
significant improvements in convergence speed across
all tasks, achieving a speed-up factor of over 18𝑥 on
Femnist and 10𝑥 on StackOverflow, presenting high cross-
device variability. Achieving superior overall accuracy,
asynchronous training, and reduced latency compared to
FedSeq does not compromise the convergence speed of
FedAsyncSeq. FedSeq2Par notably improves convergence
speed on all tasks and datasets through its STP approach.
FedDyn enhances the convergence rates of FedAvg but
experiences parameter explosion in highly imbalanced
settings [92], requiring gradient clipping techniques. Among

the considered methods, FedCyclic achieves comparable or
better results than FedSeq2Par. However, it is important
to note that FedCyclic, as an extreme case of FedSeq
with 𝑁𝑆 = 1, eliminates any form of parallelism inherent
in distributed and FL settings. The results highlight the
significance of sequential training for rapid convergence in
initial rounds, while the superior performance of FedSeq2Par
in later stages underlines the role of parallelism in achieving
both improved final performance and convergence speed
up.

4) COMMUNICATION COST
Communication is the main bottleneck of federated train-
ing [93], due to the overload of the networks and message
size. Thus, when comparing the performance of FL algo-
rithms, their impact on the communication cost is of the
utmost importance. As already shown in Sec. IV-B3, our
methods speed up the convergence, implying that fewer com-
munication rounds are needed to reach a target performance.
This study additionally compares the number of client-server
exchanges required by the proposed method (FedSeq) with
leading SOTA algorithms. Table 3 demonstrates that FedSeq
achieves less network communication thanks to its client-
to-client approach. Similar analyses can be easily extended
to FedSeq2Par and FedAsyncSeq. Given the total number
of clients 𝐾 , the fraction selected at each round 𝐶, the
total number of superclients 𝑁𝑆 , and the rounds 𝑇 , we first
analyze the case in which all superclients are equally sized,

VOLUME 12, 2024 57051

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

FIGURE 7. Convergence rates in non-i.i.d. scenarios. Each plot shows the rounds necessary for each method to reach 70% and 90% of the
centralized accuracy. Not all the algorithms reach the 90% target (missing line). Our methods (in bold, stars) outperform the others in all
settings. Best seen in colors.

TABLE 3. Number of communication exchanges from server to client
(C2S), client to server (S2C) and client to client (C2C) at each round 𝑡 and
across all rounds 𝑇 .

i.e., 𝐾𝑆𝑖 = 𝐾𝑆 𝑗
= 𝐾/𝑁𝑆 =: 𝐾𝑆∀𝑖 ≠ 𝑗 . In FedAvg, the server

sends the global model to the 𝐶 · 𝐾 selected clients, which
then send back the updated version. As summarized in
Table 3, this process accounts for 2𝐶 · 𝐾 exchanges over
the network. The same goes for FedProx and FedDyn.
SCAFFOLD requires double the communication. In FedSeq
with equal 𝐾𝑆 instead, the server-to-client (S2C) and client-
to-server (C2S) communication only happens between the
first and last clients of the chain of each superclient
respectively. Since the server selects 𝐶 ·𝑁𝑆 superclients, the
process sums up to 2𝐶 · 𝑁𝑆 exchanges. Moreover, within
each superclient, the clients exchange messages following
the chain, for a total of 𝐾𝑆 − 1 transmissions ∀𝑆. If we
consider all 𝐶 · 𝑁𝑆 groups involved, this is equivalent
to

(𝐾𝑆 −1)𝐶 ·𝑁𝑆 =
(
𝐾

𝑁𝑆
−1

)
𝐶 ·𝑁𝑆 = 𝐶 ·𝐾 −𝐶 ·𝑁𝑆 . (7)

By summing everything up, the total is 2𝐶 · 𝑁𝑆 +𝐶 ·𝐾−𝐶 ·
𝑁𝑆 = 𝐶 (𝑁𝑆 + 𝐾). Since 𝑁𝑆 < 𝐾 , the overall communi-
cation cost of FedSeq is smaller than FedAvg, FedProx,
FedDyn and SCAFFOLD. If superclients are not equally
sized, the client-to-client (C2C) cost is

∑
𝑆𝑖∈S𝑡 (𝐾𝑆𝑖 − 1) =∑

𝑆𝑖∈S𝑡 𝐾𝑆𝑖−𝐶 ·𝑁𝑆 , where |S𝑡 | =𝐶 ·𝑁𝑆 , and the total becomes
𝐶 · 𝑁𝑆 +

∑
𝑆𝑖∈S𝑡 𝐾𝑆𝑖 , i.e., depends on the size of the selected

superclients. However, to ensure a fair comparison, we select
𝐾𝑆,𝑚𝑎𝑥 s.t. 𝐾/𝐾𝑆,𝑚𝑎𝑥 ≈ 𝑁𝑆 , i.e., most of the superclients are
of the same size, falling back to the first scenario. This
implies that FedSeq always has the lowest cumulative
cost. Lastly, FedCyclic is a limit case of FedSeq with
one superclient made of 𝐶 · 𝐾 clients, with a total cost of
𝑇 ·𝐶 (𝐾 + 1/𝐶).

FIGURE 8. CIFAR datasets. Ratio of the preserved components after
applying PCA with 90% of explained variance when varying the number
of local epochs 𝑒.

C. ABLATION STUDIES AND ANALYSES
This section discusses the impact of each method component
introduced in Sec. III.

1) ESTIMATING CLIENTS’ DATA DISTRIBUTION
The proposed method utilizes the parameters (𝜓clf) or
pre-trained model predictions (𝜓conf, 𝜓t2v) to compute a
privacy-preserving estimate of the clients’ dataset distribu-
tion. To mitigate the curse of dimensionality [94] on the
classifier parameters in 𝜓clf, PCA [95] is applied, keeping
90% of the explained variance. Fig. 8 shows that the
percentage of preserved components decreases with the
complexity of the dataset, e.g. fewer components are needed
for Cifar10, and increases directly proportional to 𝑒. As for
𝜓conf, not to severely impact the original dataset,D𝑝𝑢𝑏 is built
using 10 images per class from the test set for computing
the confidence vectors (Eq. 2). Once D𝑝𝑢𝑏 has served its
purpose, it is not used again.

Since a public dataset capturing the overall global distri-
bution may not be available in realistic settings, this paper
introduces 𝜓t2v, based on Task2Vec [29], which presents
two main advantages: i) no external dataset is required, and
ii) clients only fine-tune the classifier, reducing the latency.
Following [29], we use a pre-trained ResNet18 for image
classification tasks, and a GPT-2-like [96] languagemodeling
transformer for NLP tasks. To better understand the differ-
ence in their behavior, the embeddings of 𝜓t2v (right) and
𝜓conf (left) are compared in Fig. 9a. Specifically, we illustrate
the distance between their embeddings computed over the
first 75 clients of Cifar100 with 𝛼 = 0. The first 25 clients
exclusively have images of aquatic mammals (beavers,
dolphins, otters, seals, and whales), the next 25 clients have

57052 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

TABLE 4. FedSeq baselines: comparison of grouping criteria by varying 𝜙, 𝜓 and 𝜏. Results in terms of accuracy (%).

FIGURE 9. Cifar100, 𝛼 = 0. (a) Focus on 75 clients. Each group of
25 clients has access to either images of aquatic mammals, fishes or
flowers. (b) Focus on client with images of whales. Comparison of
embedding distances with clients containing images of progressively
different entities. 𝜓 t2v accurately recognizes the similarities between
animals, in contrast to 𝜓conf.

images of fishes (aquariumfishes, flatfishes, rays, sharks, and
trouts), and the last 25 clients have images of various flowers.
Vectors from 𝜓conf lack class similarity representation, while
the 𝜓t2v distance matrix reveals that clients with fish and
aquatic mammal images (red square) cluster together more
closely than those with flower images. In Fig. 9b, one
client with only whale images is compared in terms of
distance with other clients having progressively dissimilar
images to whales. Once again, 𝜓t2v accurately recognizes
the similarities between animals, in contrast to 𝜓conf.
To understand this behavior, we note that the embedding of
the 𝑘-th client with samples belonging to class 𝑐 ∈ [𝑁𝑐] given

by 𝜓conf is 𝑝𝑘 [𝑖] ≈
{
1 𝑖 𝑓 𝑖 = 𝑐,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. This aligns with

our expectations, as 𝑓𝜃𝑘0 is trained to classify observations
with label 𝑐. As a result, the embeddings of clients seeing
different classes (regardless of the similarity of the depicted
subjects) are equally distant. However, this contradicts our
intuitive understanding, as we would expect that similarities
in data distributions would manifest as closeness in the vector
space. In contrast, the distance between 𝜓t2v embeddings

aligns with our intuition on semantic and taxonomic relations
among entities. This behavior is evidently reflected in its
performance in Table 4, where 𝜓t2v consistently outperforms
the previous best approach, 𝜓conf [28], for both vision and
NLP tasks.

2) GROUPING CRITERIA
Table 4 compares the different combinations of grouping cri-
teria𝐺𝑆 . As for 𝜓kmeans, a reasonable value for the number of
clusters is 𝑁𝑐, and the Euclidean distance is used to compare
the resulting superclients. The confidence vectors extracted
by 𝜓conf have the form of a probability distribution (Sec. III),
additionally comparable via disomogeneity measures such
as the KL divergence and the Gini Index. The normalized
embeddings obtained with Task2Vec are compared with
the cosine distance (‘‘Norm-Cosine’’ in the Table) [29].
Notably, 𝜙rand returns groups obtaining competitive results
with the other grouping methods. The reason lies in statistical
considerations on the cross-device setting: with the number of
clients being large in all datasets, a randomly created group
is unlikely to contain clients belonging all to the same data
distribution. 𝜓t2v achieves the best performance across all
settings, demonstrating effective capture of task similarities.
We select 𝜙icg as grouping method due to its satisfying results
and efficiency, useful in the dynamic creation of superclients
especially with several groups.

3) FedSeq2Par
As described in Sec. III-C3, the Sequential-to-Parallel
approach used in FedSeq2Par is based on the function
𝑓𝑔𝑟 (𝛼𝑔𝑟 , 𝛽𝑔𝑟 , 𝑡) (Eq. 4-6), that defines the number of
superclients at each round 𝑡. This section aims to understand
which growth function better suits the analyzed settings
(linear, logarithmic, or exponential) and the effect of the
parameters 𝛼𝑔𝑟 (growth rate) and 𝛽𝑔𝑟 (initial number of
superclients). 𝛼𝑔𝑟 is chosen so that a fully parallel scenario
is reached in the last rounds, while favoring sequential
training at the beginning. We test 𝛽𝑔𝑟 ∈ {5,10,20,25} for
all datasets except for the larger StackOverflow, for which
we select 𝛽𝑔𝑟 ∈ {50,100,200,250}. Fig. 10 analyzes the
impact of these parameters on the NIID splits of Femnist
and Shakespeare. Notably, starting with the smallest number
of superclients 𝛽𝑔𝑟 consistently yields superior performance,

VOLUME 12, 2024 57053

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

FIGURE 10. Sensitivity of FedSeq2Par to 𝑓𝑔𝑟 and the growth parameters
𝛼𝑔𝑟 and 𝛽𝑔𝑟 . Results in test accuracy (%) on the NIID splits.

TABLE 5. Parallelism and test accuracy: FedSeq vs FedSeq2Par.

as it exploits sequentiality more. 𝑓𝑒𝑥𝑝 has the best and most
consistent results. Due to the uniformity of these results,
the same configuration is maintained across all datasets.
We further compare FedSeq2Par with FedSeq in terms of
number of superclients and final performance in Table 5. For
FedSeq2Par, we compute the average number of superclients
𝑁𝑆 across rounds. We note that 𝑁𝑆 is constantly larger than
𝑁𝑆 , implying a more parallelized scenario on average with
FedSeq2Par w.r.t. FedSeq even if 𝛽𝑔𝑟 ≪ 𝑁𝑆 . This behavior
positively reflects on the final performance, confirming the
efficacy of the STP approach.

V. PRIVACY
Recent FL literature has highlighted the potential for attackers
to reconstruct sensitive information through the clients’
updates [36]. Thus, concerns on the potential privacy impli-
cations of the client-to-client sequential training approach
introduced by FedSeq arise. Specifically, this extension
poses the question: does FedSeq’s client-to-client sequential
training facilitate the retrieve of previous users’ personal
information by a malicious client? To answer, FedSeq is
evaluated against two famous attacks, namely the label
flipping [35] (LFA) and the GAN recovery attacks (GRA)
[76], and study potential private information leakages. The
well-known gradient inversion attack [36] is not considered
here, as its assumptions do not align with our approach (e.g.,
access of the attacker to both initial and updated models,
knowledge of private labels). Differently, in this case, clients
only receive the updated parameters from the previous user
and potentially malicious clients are not aware of other users’
private labels.

A. LABEL FLIPPING ATTACK
LFA is an active privacy attack aiming at deteriorating the
global model performances by switching labels at training
time. Here, the focus is on models solving the classification
task. To mislead the global model classification ability, the
set of malicious clients A := {𝑎𝑖}𝐿 ·𝐾𝑖=1 ⊆ C with 𝐿 ∈ [0,1]
willingly swaps the labels of their local data following a
set of criteria {𝛾𝑖}𝐿 ·𝐾𝑖=1 . The criterion 𝛾𝑖 defines the labels
to be swapped during the attack for each attacker 𝑎𝑖 . For
instance, 𝛾𝑖 = 𝛾 𝑗 implies that the attackers 𝑎𝑖 and 𝑎 𝑗
will swap the same classes. This work tests two possible
situations:

1) Different attackers swap distinct classes, i.e. each attacker
𝑎𝑖 chooses its 𝛾𝑖 independently (𝛾random),

2) All the attackers swap the same classes, i.e. 𝛾𝑖 = 𝛾 𝑗 ∀𝑖,
𝑗 ∈ A (𝛾fixed).

B. GAN RECOVERY ATTACK
GRA is a passive privacy attack that aims at reconstructing
other clients’ private information using GAN architec-
tures [97]. It is important to highlight that the primary
objective of GANs is to generate samples that closely
resemble those found in the training set without direct
access to the original ones. GANs rely on interactions
with a discriminative deep neural network to learn and
capture the underlying data distribution [76]. They are trained
to mimic the images encountered by the discriminative
network, starting from random initialization. However,
a potential concern arises when the discriminator is trained
on private data, as it can potentially be exploited to
train a generator network capable of reconstructing the
sensitive data. This poses significant privacy and security
concerns. Formally, the GANs’ optimization problem [76]
is

min
𝜃𝐺

max
𝜃𝐷

𝑛∑︁
𝑖=1

log 𝑓 (𝑥𝑖 , 𝜃𝐷) +
𝑛∑︁
𝑗=1

log(1− 𝑓 (𝑔(𝑧 𝑗 , 𝜃𝐺), 𝜃𝐷)),

(8)

where 𝑓 (𝑥, 𝜃𝐷) : X → Y is a discriminative network
parametrized by 𝜃𝐷 that, given an image, outputs a class label.
The generative network 𝑔(𝑧, 𝜃𝐺) : X → X receives random
noise as input and outputs an image. 𝑥𝑖 is the original image
and 𝑔(𝑧 𝑗) is a randomly generated one. In GRA, at round 𝑡,
an attacker 𝑎𝑖 ∈ C disguised as a client exploits the incoming
trained model 𝜃𝑡 as the discriminator of a GAN, i.e. 𝜃𝐷← 𝜃𝑡 .
The generator 𝑔 is then trained for 𝐸𝑎 epochs to reconstruct
inputs similar to the ones previously accessed by 𝜃𝑡 , thus
breaking the clients’ privacy.

C. TESTING FEDSEQ PRIVACY RESILIENCE
This section provides quantitative results of FedSeq’s
resilience against the LFA and GRA attacks. We show
that FedSeq not only does not introduce additional privacy
liabilities w.r.t. FedAvg, but it learns more robust models.

57054 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

TABLE 6. Label Flipping Attack experiments after 1𝑘 rounds. Results in accuracy (%) and drop in accuracy (↓) w.r.t. to the reference. In bold smaller drops
in each attack. Symbols: ‘‘◦’’ (negligible or non-existing drops), ‘‘Fixed’’ (𝛾fixed) and ‘‘Random’’ (𝛾random).

1) FedSeq AGAINST LFA
Table 6 summarizes the results on the different setups
proposed to evaluate the robustness of FedSeq to the LFA
attack. We distinguish between the fraction of malicious
superclients 𝐿𝑆 and the fraction of malicious clients within
each malevolent superclient 𝐿. The corresponding fraction
of attackers in FedAvg becomes 𝐿𝑆 · 𝐿. We test 𝐿𝑆 in
{0.1,0.3,0.5} and 𝐿 in {0.1,0.5}. For example, 𝐿𝑆 = 0.1 and
𝐿 = 0.5 implies that 10% of the superclients are malevolent,
and 50% of their clients are attackers. Following [35],
the four swapped classes in Cifar10 are: airplanes (label 0)
exchanged with birds (label 2), and dogs (label 5) with cats
(label3).We additionally swap all the aforementioned classes
(0,2,3,5) at the same time. When using Cifar100 instead, the
concept of ‘‘superclass’’ proper of the dataset is exploited
(e.g., aquatic mammals, flowers). We either swap 20 classes
that do not belong to the same superclass, i.e. one class
for each superclass (e.g., dolphins and roses), or exchange
pair of 20 labels belonging to the same superclass (e.g.,
dolphins with whales). We refer to the former as ExtraSC,
and to the latter as IntraSC. To evaluate FedSeq against the
easiest scenario for the attacker, all the experiments are run
with 𝛼 = 100 on both Cifar10 and Cifar100, meaning that
all 𝐾 clients see all the classes, and the LFA is always
feasible. 𝑇 is set equal to 1𝑘 . Table 6 shows the results of
the attack on each proposed configuration, analyzing both
the accuracy of the model on the overall test set and the drop
w.r.t. the reference experiment without attackers. On average,
the fixed attacks are more effective than the random ones.
The reason behind this behavior is intuitive: when using
𝛾fixed, the attackers never let the model learn the correct
patterns for classifying the swapped labels, differently from
the random acting. Swapping 4 labels in Cifar10 rather than 2

FIGURE 11. (a) GRA attack on global model with different accuracy. The
resulting FID scores on FedSeq are consistently higher, implying a less
effective attack. (b) Examples of images reconstructed by the GRA
attacker at distinct rounds.

brings on average more damage. For Cifar100, the ExtraSC
attacks are significantly more effective: the model likely
learns some common features for images belonging to the
same superclass, leading to a reduced efficacy of the IntraSC
attack. Importantly, FedSeq outperforms FedAvg on most
scenarios both in terms of accuracy and drop w.r.t. to the
reference: this means FedSeq is still able to achieve faster
convergence if under attack, and is more robust than FedAvg.

2) FedSeq AGAINST GRA
TheFréchet inception distance (FID) [98] assesses the quality
of the images created by a generative model. Given a

VOLUME 12, 2024 57055

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

dataset D and its reconstruction D̂, the FID measures the
distribution of their features, extracted using an InceptionV3
network [99], using the Fréchet distance [98]. A lower score
indicates better-quality images. Within the context of an
attack, the FID has to be as large as possible, signifying
the attacker’s inability to reconstruct private data effectively.
Unlike the approach in [76], we refrain from incorporating a
‘‘fake’’ class in the classifier, deeming it unrealistic. Instead,
we allow the attacker to utilize an additional binary dense
layer on top of the model to distinguish between ‘‘fake’’
and ‘‘real’’ data. Fig. 11a resulting from attacks on models
with varying levels of accuracy. It is clear that the attack
conducted on FedSeq consistently yields higher FID scores
in comparison to FedAvg, underscoring its enhanced privacy
characteristics. Fig. 11b shows some examples of images
reconstruction at different rounds.

VI. CONCLUSION
This work addresses the issues arising from the inherent
statistical heterogeneity in Federated Learning (FL) intro-
ducing FedSeq. FedSeq leverages sequential training among
groups of heterogeneous clients (superclients) to obtain
more robust models before the server-side averaging step.
Various strategies are proposed to effectively group clients
according to their data distribution. To reduce the waiting
time due to the latency of the slowest superclients, we develop
FedAsyncSeq, which allows asynchronous communication
between clients and server. Lastly, to exploit sequentiality
and parallelism at their best, FedSeq2Par dynamically
changes the number of superclients at each round. The
extensive experiments on multiple FL benchmarks prove the
efficacy of our approaches, in terms of final performances,
convergence speed and privacy resilience. include a deeper
analysis of FedSeq’s convergence properties. Theoretical
and empirical studies on large-scale vision datasets could
provide valuable insights. Furthermore, extending FedSeq’s
application beyond classification tasks would be a promising
avenue for future research. Finally, addressing the potential
for catastrophic forgetting inside superclients due to client
heterogeneity is crucial. Developing techniques to mitigate
this issue and preserve knowledge across clients would
significantly enhance the effectiveness of FedSeq.

ACKNOWLEDGMENT
This manuscript reflects only the authors’ views and opin-
ions, neither the European Union nor European Commission
can be considered responsible for them.
(Andrea Silvi, Andrea Rizzardi, and Debora Caldarola

contributed equally to this work.)

REFERENCES
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,

‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, 2017,
pp. 1273–1282.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[3] D. Caldarola, B. Caputo, and M. Ciccone, ‘‘Improving generalization in
federated learning by seeking flat minima,’’ in Proc. Eur. Conf. Comput.
Vis. Cham, Switzerland: Springer, 2022, pp. 654–672.

[4] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein,
H. Eichner, C. Kiddon, and D. Ramage, ‘‘Federated learning for mobile
keyboard prediction,’’ 2018, arXiv:1811.03604.

[5] L. Yang, B. Tan, V. W. Zheng, K. Chen, and Q. Yang, ‘‘Federated
recommendation systems,’’ in Federated Learning: Privacy and Incentive.
New York, NY, USA: Springer, 2020, pp. 225–239.

[6] T.-M. H. Hsu, H. Qi, and M. Brown, ‘‘Federated visual classification
with real-world data distribution,’’ in Proc. 16th Eur. Conf. Comput. Vis.,
Glasgow, U.K. New York, NY, USA: Springer, 2020, pp. 76–92.

[7] L. Fantauzzo, E. Fanì, D. Caldarola, A. Tavera, F. Cermelli, M. Ciccone,
and B. Caputo, ‘‘FedDrive: Generalizing federated learning to semantic
segmentation in autonomous driving,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2022, pp. 11504–11511.

[8] D. Shenaj, E. Fanì, M. Toldo, D. Caldarola, A. Tavera, U. Michieli,
M. Ciccone, P. Zanuttigh, and B. Caputo, ‘‘Learning across domains and
devices: Style-driven source-free domain adaptation in clustered federated
learning,’’ in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2023, pp. 444–454.

[9] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, ‘‘Robust and
communication-efficient federated learning from non-IID data,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413, Sep. 2019.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V.
Smith, ‘‘Federated optimization in heterogeneous networks,’’ in Proc.
Mach. Learn. Syst., vol. 2, 2020, pp. 429–450.

[11] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘‘Federated
learning with non-IID data,’’ 2018, arXiv:1806.00582.

[12] Q. Li, Y. Diao, Q. Chen, and B. He, ‘‘Federated learning on non-IID data
silos: An experimental study,’’ in Proc. IEEE 38th Int. Conf. Data Eng.
(ICDE), May 2022, pp. 965–978.

[13] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
‘‘SCAFFOLD: Stochastic controlled averaging for federated learning,’’ in
Proc. 37th Int. Conf. Mach. Learn., vol. 119, Jul. 2020, pp. 5132–5143.

[14] T. Zhou, Z. Lin, J. Zhang, and D. H. K. Tsang, ‘‘Understanding and
improving model averaging in federated learning on heterogeneous data,’’
2023, arXiv:2305.07845.

[15] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and
V. Saligrama, ‘‘Federated learning based on dynamic regularization,’’ in
Proc. Int. Conf. Learn. Represent., 2021.

[16] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu, ‘‘Generalized
federated learning via sharpness aware minimization,’’ in Proc. Int. Conf.
Mach. Learn., 2022, pp. 18250–18280.

[17] Y. Sun, L. Shen, T. Huang, L. Ding, and D. Tao, ‘‘FedSpeed: Larger local
interval, less communication round, and higher generalization accuracy,’’
in Proc. Int. Conf. Learn. Represent., 2023.

[18] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, ‘‘Federated multi-
task learning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[19] H. Jamali-Rad, M. Abdizadeh, and A. Singh, ‘‘Federated learning with
taskonomy for non-IID data,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 11, pp. 8719–8729, Nov. 2023.

[20] C. T. Dinh, T. T. Vu, N. H. Tran, M. N. Dao, and H. Zhang,
‘‘A new look and convergence rate of federated multitask learning
with Laplacian regularization,’’ IEEE Trans. Neural Netw. Learn. Syst.,
pp. 1–11, Dec. 2022.

[21] F. Sattler, K.-R. Müller, and W. Samek, ‘‘Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8,
pp. 3710–3722, Aug. 2021.

[22] K. Kopparapu and E. Lin, ‘‘FedFMC: Sequential efficient federated
learning on non-iid data,’’ 2020, arXiv:2006.10937.

[23] C. Briggs, Z. Fan, and P. Andras, ‘‘Federated learning with hierarchical
clustering of local updates to improve training on non-IID data,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–9.

[24] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, J. Jiang, and C.
Zhang, ‘‘Multi-center federated learning: Clients clustering for better
personalization,’’ 2021, arXiv:2108.08647.

[25] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodolà, and
B. Caputo, ‘‘Cluster-driven graph federated learning over multiple
domains,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2021, pp. 2743–2752.

[26] Y. Yan, X. Tong, and S. Wang, ‘‘Clustered federated learning in
heterogeneous environment,’’ IEEE Trans. Neural Netw. Learn. Syst.,
pp. 1–14, Apr. 2023.

57056 VOLUME 12, 2024

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

[27] P. Kairouz et al., Advances and Open Problems in Federated Learning.
Hanover, MA, USA: Now Publishers, 2021.

[28] R. Zaccone, A. Rizzardi, D. Caldarola, M. Ciccone, and B. Caputo,
‘‘Speeding up heterogeneous federated learning with sequentially trained
superclients,’’ in Proc. 26th Int. Conf. Pattern Recognit. (ICPR),
Aug. 2022, pp. 3376–3382.

[29] A. Achille, M. Lam, R. Tewari, A. Ravichandran, S. Maji, C. Fowlkes,
S. Soatto, and P. Perona, ‘‘Task2Vec: Task embedding for meta-learning,’’
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6429–6438.

[30] S. Zeng, Z. Li, H. Yu, Y. He, Z. Xu, D. Niyato, and H. Yu, ‘‘Heterogeneous
federated learning via grouped sequential-to-parallel training,’’ in Proc.
Int. Conf. Database Syst. Adv. Appl. New York, NY, USA: Springer, 2022,
pp. 455–471.

[31] L. Lyu, H. Yu, and Q. Yang, ‘‘Threats to federated learning: A survey,’’
2020, arXiv:2003.02133.

[32] L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and P. S. Yu,
‘‘Privacy and robustness in federated learning: Attacks and defenses,’’
IEEE Trans. Neural Netw. Learn. Syst., early access, 2022.

[33] J. Wang, A. Pal, Q. Yang, K. Kant, K. Zhu, and S. Guo, ‘‘Collaborative
machine learning: Schemes, robustness, and privacy,’’ IEEE Trans. Neural
Netw. Learn. Syst., pp. 1–18, 2022.

[34] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice,
V. Wongrassamee, E. C. Lupu, and F. Roli, ‘‘Towards poisoning of
deep learning algorithms with back-gradient optimization,’’ in Proc. 10th
ACM Workshop Artif. Intell. Secur., Nov. 2017, pp. 27–38.

[35] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, ‘‘Data poisoning attacks
against federated learning systems,’’ in Proc. Eur. Symp. Res. Comput.
Secur. Cham, Switzerland: Springer, 2020, pp. 480–501.

[36] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, ‘‘Inverting
gradients-how easy is it to break privacy in federated learning?’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 16937–16947.

[37] J. Jeon, K. Lee, S. Oh, and J. Ok, ‘‘Gradient inversion with generative
image prior,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 29898–29908.

[38] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, ‘‘Federated
learning for healthcare informatics,’’ J. Healthcare Informat. Res., vol. 5,
no. 1, pp. 1–19, Mar. 2021.

[39] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, ‘‘On the convergence
of FedAvg on non-iid data,’’ in Proc. Int. Conf. Learn. Represent., 2020.

[40] T.-M. H. Hsu, H. Qi, and M. Brown, ‘‘Measuring the effects of non-
identical data distribution for federated visual classification,’’ in Proc. Adv.
Neural Inf. Process. Syst. Workshop, 2019.

[41] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, ‘‘Adaptive federated learning in resource constrained edge
computing systems,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[42] A. Khaled, K. Mishchenko, and P. Richtárik, ‘‘First analysis of local GD
on heterogeneous data,’’ 2019, arXiv:1909.04715.

[43] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, ‘‘FedDC: Federated
learning with non-IID data via local drift decoupling and correction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10102–10111.

[44] M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen, ‘‘Local
learning matters: Rethinking data heterogeneity in federated learning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 8397–8406.

[45] Y. Chen, R. S. Blum, and B. M. Sadler, ‘‘Communication efficient
federated learning via ordered ADMM in a fully decentralized setting,’’
in Proc. 56th Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2022, pp. 96–100.

[46] Y. Gong, Y. Li, and N. M. Freris, ‘‘FedADMM: A robust federated deep
learning framework with adaptivity to system heterogeneity,’’ in Proc.
IEEE 38th Int. Conf. Data Eng. (ICDE), May 2022, pp. 2575–2587.

[47] H. Wang, S. Marella, and J. Anderson, ‘‘FedADMM: A federated primal-
dual algorithm allowing partial participation,’’ in Proc. IEEE 61st Conf.
Decis. Control (CDC), Dec. 2022, pp. 287–294.

[48] Y. Sun, L. Shen, S. Chen, L. Ding, and D. Tao, ‘‘Dynamic regularized
sharpness aware minimization in federated learning: Approaching global
consistency and smooth landscape,’’ in Proc. Int. Conf. Mach. Learn.,
2023, pp. 32991–33013.

[49] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, ‘‘Adaptive federated optimization,’’ in
Proc. Int. Conf. Learn. Represent., 2021.

[50] Y. Wang, L. Lin, and J. Chen, ‘‘Communication-efficient adaptive feder-
ated learning,’’ in Proc. Int. Conf. Mach. Learn., 2022, pp. 22802–22838.

[51] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, ‘‘Mime: Mimicking centralized stochastic algorithms in
federated learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2021.

[52] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, ‘‘SlowMo: Improving
communication-efficient distributed sgd with slow momentum,’’ in Proc.
Int. Conf. Learn. Represent., 2020.

[53] E. Ozfatura, K. Ozfatura, and D. Gündüz, ‘‘FedADC: Accelerated
federated learning with drift control,’’ in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2021, pp. 467–472.

[54] J. Xu, S. Wang, L. Wang, and A. C.-C. Yao, ‘‘FedCM: Federated learning
with client-level momentum,’’ 2021, arXiv:2106.10874.

[55] R. Das, A. Acharya, A. Hashemi, S. Sanghavi, I. S. Dhillon, and U. Topcu,
‘‘Faster non-convex federated learning via global and local momentum,’’
in Proc. Uncertainty Artif. Intell., 2022, pp. 496–506.

[56] G. Kim, J. Kim, and B. Han, ‘‘Communication-efficient federated learning
with accelerated client gradient,’’ 2022, arXiv:2201.03172.

[57] D. Caldarola, B. Caputo, and M. Ciccone, ‘‘Window-based model aver-
aging improves generalization in heterogeneous federated learning,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2023,
pp. 2263–2271.

[58] D. Li and J. Wang, ‘‘FedMD: Heterogenous federated learning via model
distillation,’’ in Proc. Adv. Neural Inf. Process. Syst. Workshop, 2019.

[59] W. Huang, M. Ye, and B. Du, ‘‘Learn from others and be yourself in
heterogeneous federated learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 10133–10143.

[60] R. Caruana, ‘‘Multitask learning,’’Mach. Learn., vol. 28, no. 1, pp. 41–75,
1997.

[61] A. Fallah, A.Mokhtari, andA. Ozdaglar, ‘‘Personalized federated learning:
A meta-learning approach,’’ in Proc. Adv. Neural Inf. Process. Syst., 2020.

[62] X. Zhou and X. Wang, ‘‘Memory and communication efficient federated
kernel 𝑘-means,’’ IEEE Trans. Neural Netw. Learn. Syst., 2022.

[63] M. Papenberg and G. W. Klau, ‘‘Using anticlustering to partition data
sets into equivalent parts,’’ Psychol. Methods, vol. 26, no. 2, pp. 161–174,
Apr. 2021.

[64] A. M. Fayaz, S. M. Neethimani, Y. S. L. Reddy, S. Subramanian, and
S. Ravichandran, ‘‘Comparative analysis of anti-clusters formed using
various distance metrics and 𝑘-medoids algorithm,’’ Int. J. Adv. Sci.
Technol., vol. 29, no. 6, pp. 7705–7717, 2020.

[65] V. Valev, ‘‘Set partition principles revisited,’’ in Advances in Pattern
Recognition, A. Amin, D. Dori, P. Pudil, and H. Freeman, Eds. Berlin,
Germany: Springer, 1998, pp. 875–881.

[66] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
‘‘BrainTorrent: A peer-to-peer environment for decentralized federated
learning,’’ 2019, arXiv:1905.06731.

[67] C. Hu, J. Jiang, and Z. Wang, ‘‘Decentralized federated learning:
A segmented gossip approach,’’ 2019, arXiv:1908.07782.

[68] S. Jain and K. R. Jerripothula, ‘‘Federated learning for commercial image
sources,’’ in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2023, pp. 6523–6532.

[69] C. Xie, S. Koyejo, and I. Gupta, ‘‘Asynchronous federated optimization,’’
2019, arXiv:1903.03934.

[70] C. Xu, Y. Qu, Y. Xiang, and L. Gao, ‘‘Asynchronous federated learning on
heterogeneous devices: A survey,’’ Comput. Sci. Rev., vol. 50, Nov. 2023,
Art. no. 100595.

[71] Y. Chen, X. Sun, and Y. Jin, ‘‘Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 10, pp. 4229–4238, Oct. 2020.

[72] X. Lu, Y. Liao, P. Lio, and P. Hui, ‘‘Privacy-preserving asynchronous
federated learningmechanism for edge network computing,’’ IEEE Access,
vol. 8, pp. 48970–48981, 2020.

[73] J. Hao, Y. Zhao, and J. Zhang, ‘‘Time efficient federated learning
with semi-asynchronous communication,’’ in Proc. IEEE 26th Int. Conf.
Parallel Distrib. Syst. (ICPADS), Dec. 2020, pp. 156–163.

[74] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov,
and N. Papernot, ‘‘When the curious abandon honesty: Federated learning
is not private,’’ in Proc. IEEE 8th Eur. Symp. Secur. Privacy (EuroS&P),
Jul. 2023, pp. 175–199.

[75] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov,
and N. Papernot, ‘‘Reconstructing individual data points in federated
learning hardened with differential privacy and secure aggregation,’’ 2023,
arXiv:2301.04017.

[76] B. Hitaj, G. Ateniese, and F. Perez-Cruz, ‘‘Deep models under the GAN:
Information leakage from collaborative deep learning,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 603–618.

VOLUME 12, 2024 57057

A. Silvi et al.: Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients

[77] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014.

[78] Z. Li, J. Zhang, L. Liu, and J. Liu, ‘‘Auditing privacy defenses in federated
learning via generative gradient leakage,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 10122–10132.

[79] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, ‘‘Exploiting
unintended feature leakage in collaborative learning,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2019, pp. 691–706.

[80] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, ‘‘Fishing
for user data in large-batch federated learning via gradient magnification,’’
2022, arXiv:2202.00580.

[81] C. Dwork, ‘‘Differential privacy,’’ in Proc. 33rd Int. Colloq. Automata,
Lang., Program.. Cham, Switzerland: Springer, 2006, pp. 1–12.

[82] K.Wei, J. Li,M. Ding, C.Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek,
and H. V. Poor, ‘‘Federated learning with differential privacy: Algorithms
and performance analysis,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[83] N. M. Jebreel, J. Domingo-Ferrer, A. Blanco-Justicia, and D. Sánchez,
‘‘Enhanced security and privacy via fragmented federated learning,’’ IEEE
Trans. Neural Netw. Learn. Syst., pp. 1–15, 2022.

[84] M. R. Garey and D. S. Johnson, ‘‘‘Strong’ NP-completeness results:
Motivation, examples, and implications,’’ J. ACM, vol. 25, no. 3,
pp. 499–508, Jul. 1978.

[85] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, ‘‘No fear
of heterogeneity: Classifier calibration for federated learning with non-
IID data,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 5972–5984.

[86] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[87] D. Steinley, ‘‘K-means clustering: A half-century synthesis,’’ Brit. J. Math.
Stat. Psychol., vol. 59, no. 1, pp. 1–34, May 2006.

[88] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, ‘‘Overcoming
catastrophic forgetting in neural networks,’’ Proc. Nat. Acad. Sci. USA,
vol. 114, no. 13, pp. 3521–3526, 2017.

[89] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny
images,’’ Univ. Toronto, Toronto, CA, USA, Tech. Rep. TR-2009,
Apr. 2009.

[90] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, ‘‘LEAF: A benchmark for federated settings,’’
in Proc. Workshop Federated Learn. Data Privacy Confidentiality,
2019.

[91] Tensorflow Federated Stack Overflow Dataset, TensorFlow, Mountain
View, CA, USA, 2019.

[92] F. Varno, M. Saghayi, L. R. Sevyeri, S. Gupta, S. Matwin, and M. Havaei,
‘‘AdaBest: Minimizing client drift in federated learning via adaptive bias
estimation,’’ inProc. Eur. Conf. Comput. Vis.Cham, Switzerland: Springer,
2022, pp. 710–726.

[93] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, ‘‘A survey
on federated learning systems: Vision, hype and reality for data privacy and
protection,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3347–3366,
Apr. 2023.

[94] R. Bellman, ‘‘Dynamic programming,’’ Science, vol. 153, nos. 37–31,
pp. 34–37, 1966.

[95] K. Pearson, ‘‘LIII. On lines and planes of closest fit to systems of points
in space,’’ London, Edinburgh, Dublin Phil. Mag. J. Sci., vol. 2, no. 11,
pp. 559–572, Nov. 1901.

[96] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
‘‘Language models are unsupervised multitask learners,’’ OpenAI Blog,
vol. 1, no. 8, p. 9, Feb. 2019.

[97] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’
Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020.

[98] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a
local Nash equilibrium,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2017.

[99] X. Xia, C. Xu, and B. Nan, ‘‘Inception-v3 for flower classification,’’
in Proc. 2nd Int. Conf. Image, Vis. Comput. (ICIVC), Jun. 2017,
pp. 783–787.

ANDREA SILVI received the bachelor’s degree in
computer engineering from Politecnico di Torino,
in October 2019, and the master’s degree in
data science and engineering, in December 2022.
He is currently pursuing the Ph.D. degree with
the Chalmers University of Technology, Göteborg,
Sweden, supervised by Prof. Moa Johansson.
He joined the Visual and Applied Learning
(VANDAL) Laboratory to work on federated
learning during the master’s thesis, under the

supervision of Prof. Barbara Caputo, Dr. Marco Ciccone, and Debora
Caldarola. His current research interests include emergent communications
in multi-agent systems and neuro-symbolic AI.

ANDREA RIZZARDI received the bachelor’s
degree, in 2018, and the master’s degree in data
science and engineering from the Polytechnic of
Turin, in 2022. His research interests include
statistics and coding, federated learning, and tiny
ML.

DEBORA CALDAROLA received the bachelor’s
and master’s degrees in computer engineering
from the Polytechnic of Turin, Italy, in 2018 and
2020, respectively, where she is currently pursuing
the Ph.D. degree supervised by Barbara Caputo
and co-advised by Marco Ciccone. She is also
visiting Stanford University advised by Sanmi
Koyejo. Her research interests include trustworthy
machine learning, with a specific interests include
federated learning and fairness studied through the

lens of the loss landscape (e.g., sharpness-aware training). She recently
organized theWomen in Computer VisionWorkshop (WiCV) in conjunction
with ICCV and is a member of Eta Kappa Nu and the IEEE Honor Society.

BARBARA CAPUTO received the Ph.D. degree in
computer science from the KTH Royal Institute
of Technology, Stockholm, Sweden, in 2005.
From 2007 to 2013, she was a Senior Researcher
with Idiap-EPFL. Then, she moved to Sapienza
Rome University, thanks to a MUR professorship
and joined Politecnico di Torino, in 2018, where
she is currently a Full Professor. She leads
the Artificial Intelligence (AI) Hub, Politecnico
di Torino. Since 2017, she has been a double

affiliation with Italian Institute of Technology (IIT). She is one of the
30 experts who contributed to write Italian strategy on AI and a Coordinator
of Italian National Ph.D. on AI and industry 4.0, sponsored by MUR. She is
an ERC Laureate and a fellow of ELLIS. Since 2019, she has been serving
on the ELLIS Board.

MARCO CICCONE received the Ph.D. degree
(cum laude) in computer science and engineering
from the Polytechnic of Milan, working on itera-
tive and conditional models for visual representa-
tion learning. He is currently an ELLIS Postdoc-
toral Researcher with the VANDAL Group, Poly-
technic of Turin. His research interests include
the intersection of meta, continual, and federated
learning to scale the training of agents with
heterogeneous data and mitigate the effect of

catastrophic forgetting and heterogeneity across tasks, domains, and devices.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

57058 VOLUME 12, 2024

