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ABSTRACT We tackle a multi-layer knowledge distillation problem between deep models with
heterogeneous architectures. The main challenges of that are the mismatches of the feature maps in terms
of the resolution or semantic levels. To resolve this, we propose a novel transformer-based multi-layer
correlation knowledge distillation (TMC-KD) method in order to bridge the knowledge gap between a pair
of networks. Our method aims to narrow the relational knowledge gaps between teacher and student models
by minimizing the local and global feature correlations. Based on extensive comparisons with the recent KD
methods on classification and detection tasks, we prove the effectiveness and usefulness of our TMC-KD
method.

INDEX TERMS Correlation learning, image classification, knowledge distillation, model compression,
object detection, transformer-based learning.

I. INTRODUCTION
Over the decades, deep neural networks show promising
performance on many down streaming vision tasks such as
image classification and object detection. Recently, there
are many efforts to apply the powerful deep models for
small or embedded devices which have limited hardware
resources. To achieve this, one of the common approaches is
to reduce model size while preserving its learned knowledge
at most using pruning [1], quantization [2], and knowledge
distillation (KD) [3]. In particular, KD methods less suf-
fer from accuracy degradation and complex training than
others.

The vanilla KD method developed by [3] allows smaller
student models to mimic the representation of a larger teacher
model. This can be achieved by aligning the output responses
(e.g. logits and predictions) of both models. However, the
transferring of the output knowledge of the teacher often
achieves marginal improvement only due to the limited dis-
tillation of representations in the mid-level layers. Therefore,
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there are attempts to align the intermediate knowledge
between teacher and student networks for transferring more
knowledge. For instance, FitNets [4] adds the hint training
procedure for distillation of the selected intermediate layers
of a teacher. SemCKD [5] distills the correlation features
using the attention learning. Inspired by these works, our
work is also based on the distillation of the mid-level features
as well as output features.

In this work, we assume that relational knowledge within
feature maps of the teacher network is beneficial and should
be transferred to the student network. Unfortunately, the most
recent KD works with the knowledge of the intermediate
layers [5] less pay attention to this point. In some works
using the relational structure knowledge, it is the essential
knowledge needed to be transferred to the student model for
improving robustness or accuracy. For achieving this, feature
distance-wise or angle-wise losses are exploited in [6]. Inter-
channel correlation [7] of features is learned to capture
feature intrinsic distributions of a teacher model. However,
cross correlations between multiple features of teacher and
student models are not leveraged well as done in the multi-
layer KD methods. Therefore, our work aims to transfer the
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relational knowledge of a teacher model and align multi-layer
feature maps of different models.

In order to achieve that, a powerful KD model which
can capture both correlations is required, and we present a
novel transformer-based multi-layer correlation learning for
knowledge distillation (TMC-KD). One of the main issues of
applying the transformer for KD is how to encode the multi-
level feature tensors with different dimensionality. To resolve
this, we present a multi-layer feature converter (MLC) that
can transform the different-level features into a series of
encoded features. Based on the multi-head attention learning
of the transformer, we can then produce the decoded features
by feeding the serially encoded features to the transformer.

In order to align the knowledge level between teacher
and student networks across mid-level layers, we learn
the layer-wise matched local correlation with the similarity
between the teacher-student decoded features. Then, we min-
imize the local semantic gap between the internal layers
with the learned local correlation. Moreover, we reduce their
global knowledge gap by minimizing the self-correlation
discrepancy of the whole decoded features.

To prove the effectiveness, we compare our TMC-KD
with the recent KD methods on CIFAR-100 and ImageNet
datasets. Our TMC-KD method offers greater accuracy
improvements than other KD methods on both sets for most
student models regardless of its architecture. In addition,
we provide the ablation study to show the usefulness of each
method.

To sum up, our contributions are

‚ We propose a novel transformer-based multi-layer cor-
relation learning for the relational knowledge distillation
across intermediate layers.

‚ We design the multi-layer feature converter to transform
multi-level features into sequentially-encoded ones and
use them as the inputs of the transformer.

‚ We present global and local correlation learning for
bridging their local and global knowledge gaps.

In Section II, we present related works to the knowledge
distillation. In Section III, we discuss our TMC-KD method
composed of a multi-layer feature converter, local semantic
learning, and global relational learning. Section IV provides
experimental set-up and results. The conclusion is made in
Section V.

II. RELATED WORKS
A. MULTI-LAYER KNOWLEDGE DISTILLATION
As one of the pioneer works, Hinton et.al. [3] proposes a
simple knowledge distillation by minimizing the distance
between teacher and student outputs. Distilling only model
outputs is effective, but it shows some insufficient results
for many tasks. Using multiple teachers [8] and teacher
assistants [9], [10] improve the generalization, robustness,
and accuracy of the student model. Applying curriculum
learning [11] and generating virtual distribution [12] also
improve student models. For distilling more teacher

knowledge within other layers, some works present KD
methods using intermediate-layer feature maps. The existing
works can be categorized into based-on the local correlation
learning [13], [14], [15], [16], [17] between teacher-student
features and relational correlation learning [6], [7], [18]
of the model itself. In the former works, they use the
local correlation between the matched layer features of the
teacher and student models. FitNets [4] minimize between L2
distance of teacher-student intermediate features. Attention-
guided KD methods [16], [19], [20] for object classes are
introduced for transferring more knowledge of the crucial
regions. VID [21]maximizes themutual information between
teacher-student intermediate features. SimKD [15] reuses a
pre-trained teacher classifier.

One common limitation of these methods requires the
prior knowledge of the target layers to be distilled within
teacher and student models. To overcome this, some KD
methods [22], [23] solve the layer assignment problem by
using the attention mechanism. In specific, SemCKD [5]
and ASM [13] calculate the correlations across intermediate
layers.

On the other hand, in the latter approach, a student model
tries to learn the relational representation of a teacher. [24]
defines the flow of solution procedure (FSP) matrix to distill
the flow knowledge between sequential layers. RKD [6]
learns the relational knowledge of data samples in terms of
the angles and distances. In [18], a student is learned to
mimic the activation patterns of similar training samples for a
teacher. ICKD [7] computes the inter-channel correlation by
capturing feature diversity and homology. LSL [25] defines
the inter-class and inter-layered Grammatrices to evaluate the
diversity and discrimination of feature maps.

Since both approaches show promising results and can
be complementary to each other, we present a transformer-
based KD method to combine both approaches. This allows
us to transfer important knowledge related to internal feature
relationship within a model and cross-correlations between
models to the student, resulting in improved performance for
the target student.

B. TRANSFORMER-BASED KNOWLEDGE DISTILLATION
Even though a transformer [26] came up with for natural
language processing, its variant models achieved remarkable
performance for other vision tasks [27], [28]. In addition,
the KD methods [29], [30] which distill a bunch of internal
knowledge of a teacher transformer have been developed.
A target-aware transformer [14] transfers the spatial semantic
knowledge of a teacher via one-to-all spatial matching.
In this work, we exploit a transformer for learning global
and local correlation between many-to-many matching layers
between different models rather than using it as a teacher
itself [29], [30].

III. METHOD
We first discuss the preliminary for KD and multi-
layer based KD methods. We then explain our TMC-KD
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FIGURE 1. The overall architecture of a transformer-based multi-layer knowledge distillation (TMC-KD) mainly consisting of (a) local semantic learning
and (b) global relational learning parts is described in Sec. III-B. Local semantic learning minimizes the discrepancy between intermediate-layer features
using the learned local correlation, but global semantic learning reduces the gaps of decoded features from a transformer using self-attention.

method that can reduce local semantic and global rela-
tion gaps between models using our multi-layer feature
converter.

A. PRELIMINARY
1) KNOWLEDGE DISTILLATION
We denote ft and fs as teacher and student models, respec-
tively. In general, the pre-trained ft with more parameters is
superior to fs with less one. Then, the goal of the knowledge
distillation is to improve the fs by transferring the core
knowledge of ft on a dataset D “

␣

(x(i), y(i))
(N
i“1 with N

samples. Here, for the image classification task, each sample
consists of an image x(i) and its label y(i). In general, in Hinton
et. al. KD [3], the knowledge gaps between ft and fs are
reduced by minimizing the cross entropy (CE) between the
student predicted label σ (zis) from the softmax layer σ (¨)
with an input of the logits z(i)s “ fs(x(i)) and the one-hot
encoded target label y(i) for the image x(i). In addition, the
Kullback-Leibler (KL) divergence between the teacher and
student predicted probabilities σ

´

z(i)t
¯

and σ
´

z(i)s
¯

is added
as the total KD loss as follows:

LKD “

N
ÿ

i“1

(CE(σ (z(i)s ), y(i)) ` τ 2KL(σ (z(i)s {τ ), σ (z(i)t {τ ))

(1)

where τ is a temperature factor and controls the softness of
the outputs. Since the KDmethod aims at reducing the output
predictions of both models, the multi-layer KD methods
introduce the additional losses to reduce the discrepancy of
the mid-level features.

2) MULTI-LAYER KNOWLEDGE DISTILLATION
Since the dimension of a feature map at each layer for a model
is usually different, we denote Fmt P RBˆCmt ˆHm

t ˆWm
t and

F js P RBˆC jsˆH j
sˆW j

s as the m-th and j-th feature maps for the
teacher t and student s, where H and W are the height and
width of the feature map, and B and C are the cardinality of
the batches and channels. M and J indicate the number of
teacher and student layers. Then, the multi-layer KD [4],
[5] reduce the feature gaps across layers between both by
minimizing the total mean square error as:

LLocal “

J
ÿ

j“1

M
ÿ

m“1

3
j,m
Local

›

›

›
φs(F js) ´ φt (Fmt )

›

›

›

2

2
(2)

where φs(¨) and φt (¨) are transformation functions to match
the channel number and feature resolution between F js and
Fmt . Different from papers [4] themulti-layer KDmethods [5]
avoid the usage of the prior knowledge to be an associated
pair by learning the local correlation 3j,m

Local . For instance,
SemCKD [5] computes the correlation 3j,m

Local between m-th
teacher and j-th student model features with the query-key
attention learning.

B. TRANSFORMER-BASED MULTI-LAYER CORRELATION
LEARNING
The limitation of the the multi-layer KD methods discussed
above is that they do not leverage the relational knowledge
between the feature maps within a teacher network. However,
in most cases, there is some relationship between multi-layer
features since the output feature at the preceding layer is used
as an input of the succeeding layer. We conjecture that the
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FIGURE 2. The structure of multi-layer feature converter (MLC). The
parameter size of the Conv and FC layers can be tuned by the
dimensionality of an input feature. Thus, it can produce the output
encoded feature Vtm and Vsj with the same dimensionality.

feature relational knowledge within a teacher model should
be transferred to the student. In particular, we strive to transfer
the strong global relation among features of the teacher
to the student, and present a transformer-based multi-layer
KD to achieve this. More concretely, we encode multi-layer
features of teacher and student models to the sequential
features for compensating feature dimension mismatches.
Then, we generate the decoded features of each model by
exploiting the encoded features as keys or queries alternately.
Subsequently, we learn local correlation between the decoded
features and use it for local and global relational learning.
In the local semantic learning, we use the local correlation
as 3j,m

Local of the Eq. (2), and minimize the decoded feature
discrepancy. On the other hand, the global relation learning
allows the student to mimic the global representation across
all feature maps within the teacher model.

1) MULTI-LAYER FEATURE CONVERTER
Due to the mismatches of intermediate features between
teacher and student models, we design a multi-layer fea-
ture converter (MLC) before feeding each feature to the
transformer. As shown in Fig. 2, our MLC consists of two
1 ˆ 1 Conv, ReLU, normalization layer, and fully-connected
layer. By applying each MLC ψ(¨) to each Fsj and Ftm ,
we can produce the encoded features Vtm P RBˆE and
Vsj P RBˆE with the same dimensionality E : Vtm “ ψtm (Ftm )
and Vsj “ ψsj (Fsj ). We then concatenate features of all

the layers tVtmu
M
m“1 and

␣

Vsj
(J
j“1 to obtain the sequentially

encoded features Vt and Vs using

Vt “ Concat(Vt1 , . . . ,Vtm , . . . ,VtM )

Vs “ Concat(Vs1 , . . . ,Vsj , . . . ,VsJ ) (3)

Then, we use the Vt and Vs as the inputs of the transformer as
described in the next section.

2) LOCAL SEMANTIC LEARNING
Because a transformer [26] is a powerful way to learn global
feature correlation as mentioned, we use it for our multi-
layer KD. Followed by the implementation [26], we design an
encoder Enc and a decoderDec of a stack ofNE “ 6 identical
layers. By feeding the sequentially-encoded features Vt and
Vs in Eq. (3) to the transformer, we can produce the decoded
features Pt P RBˆMˆE and Ps P RBˆJˆE as:

Pt “ Dec(Enc(Vs),Vt )

Ps “ Dec(Enc(Vt ),Vs) (4)

For describing the encoding process in Enc, we denoteWQ P

REˆE andWK P REˆE as the query and key weight matrices.
Then, we learn the global correlation CGlobal within Vt or Vs
by the self-attention mechanism with matrix multiplication
(˚) as

CGlobal(Vq) “
(WQ ˚ Vq) ˚ (WK ˚ Vq)T

?
E

(5)

where Vq can be Vt or Vs. We then learn h-th head attention
featuresHh

Enc ofNH “ 8multiple attention heads by applying
the global correlation CGlobal :

Hh
Enc(CGlobal,Vq,WV ) “ CGlobal ˚

`

WV ˚ Vq
˘

(6)

where WV P REˆE is the learned weight matrix for
Vq. The multi-head attention consists of concatenating
heads, additional weight, residual connection, and layer
normalization. Then, we obtain e-th encoder outputs FeEnc by
applying two feed-forward networks and a single activation
function, and layer normalization. Each encoder layer output
FeEnc is fed into the next encoder layer subsequently. Then,
we represent the output of the last encoder layer as FNEEnc.

In the decoder Dec, Vp, which can be Vt or Vs, is fed into
the self-attention, and its outputF

Vp
Self and encoder outputF

NE
Enc

are fed into cross-attention. Using multi-head attention with
Eq. (5) and (6), we produce the enhanced feature F

Vp
Self for

Vp. Then, we compute the cross-attention CCross with output
of encoder FNEEnc and F

Vp
Self :

CCross(F
Vp
Self ,F

NE
Enc) “

(WQ ˚ F
Vp
Self ) ˚ (WK ˚ FNEEnc)

T

?
E

(7)

The cross attention-applied feature map Hh
Cross is given as:

Hh
Cross(CCross,WV ,F

Vp
Self ) “ CCross ˚ (WV ˚ F

Vp
Self ) (8)

Similar to the encoder, we feed each Hh
Cross to the next

decoder for NE ´ 1 steps, and denote Pt or Ps as the outputs
of the last decoder for the teacher and student.

Basically, we canminimize the local semantic gap between
models by Eq. (2). However, in our TMC-KD, we use the
decoded features Pt and Ps for evaluating 3j,m

Local . To this
end, we first slice Pt P RBˆMˆE and Ps P RBˆJˆE to
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FIGURE 3. Examples for rip current dataset. .

Algorithm 1 Transformer-Based Multi-Layer Correlation
Knowledge Distillation (TMC-KD)
Input: Training dataset D, a pre-trained teacher ft with
parameter θt , a student fs with parameter θs
Output: A trained fs
1: while θs is not converged do
2: Extract feature maps Ftm and Fsj by feeding a mini-

batch sampled from D to ft and fs.
3: Compute LKD by Eq. (1)
4: // Multi-layer feature converter
5: Convert Ftm and Fsj to Vtm and Vsj using ψ(¨).
6: Compute Vt and Vs by Eq. (3).
7: // Local semantic learning
8: Compute Pt and Ps by Eq. (4).
9: Slicing Pt and Ps to obtain tptmu

M
m“1 and

␣

psj
(J
j“1.

10: Compute 3j,m
Local by Eq. (9).

11: Compute LLocal by Eq. (2).
12: // Global relational learning
13: Compute self-correlations of Pt and Ps.
14: Compute LGlobal by Eq. (10).
15: Compute LTotal by Eq. (11).
16: Update θs by minimizing Eq. (11).
17: end while

␣

ptm P RBˆE
(M
m“1 and

␣

psj P RBˆE
(J
j“1. We then learn the

local correlation 3j,m
Local in the form of the softmax with the

dot-produce attention as

3
j,m
Local “

exp(ptm ¨ pTsj )
řM
i“1

řJ
j“1 exp(Ptm ¨ PTsj )

. (9)

3) GLOBAL RELATIONAL LEARNING
We make the student learn the global feature dependency
within the teacher model as well as the global feature

correlation between them. Since both decoded Pt and Ps
are the refined-attention features from the global and local
correlation learning Eq. (4), they could include the global
relational information and use them for this. To transfer this
knowledge, we define LGlobal with the self-correlation of each
decode feature as

LGlobal “

›

›

›
Pt ¨ PTt ´ Ps ¨ PTs

›

›

›

2

2
(10)

By minimizing Eq. (10), we make the student mimic the
global representation of the teacher. Finally, we define a total
TMC-KD loss including local and global losses from Eq. (2)
and Eq. (10):

LTotal “ LKD ` ζLGlobal ` βLLocal (11)

where β and ζ are balancing parameters to be tuned
experimentally.

In the Figure 5, we study sensitivity of hyper-parameter ζ
and β. Our training process is described in Algorithm 1.

IV. EXPERIMENTS
In this section, we have evaluated our TMC-KD by com-
paring the recent KD methods. We also provide the ablation
study and sensitive analysis for proving our method.

A. DATASET
We exploit the CIFAR-100 [31] and ImageNet [32] datasets
for classification. We report the accuracy of methods in terms
of Top-1 accuracy. So, a higher Top-1 score indicates better
results.

The CIFAR-100 has 100 classes and each class consists
of 500 training samples and 100 test samples. All samples of
CIFAR-100 have 32ˆ32 resolution. The ImageNet has 1.2M
images and 1,000 object classes. All the images are resized to
224 ˆ 224 during training and testing.
We have evaluated our TMC-KD for a more challenging

object detection problem, and compared the KD performance
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TABLE 1. Comparison results with the recent multi-layer KD methods on CIFAR-100. ˚ and ˛ results are in [5] and [14], respectively. The best results are
marked with bold.

with other KD methods. For this comparison, we use the Rip
currents detection dataset [34]. The dataset contains 1,600
annotated images with rip currents and 700 images without
rip currents. For training, we use 1,200 images with rip
currents and 700 images without rip currents. For evaluation,
we use 400 images with rip currents. Since the appearances
of the rip currents are various, it is very challenging for the
target student detector to learn the generalized features of the
rip currents. Therefore, we use a teacher detector with the
stronger backbone (R-101) for this KD comparison.

B. IMPLEMENTATION DETAILS
The architecture of our TMC-KD mainly consists of the
multi-layer converter and the transformer. The details of the
MLC structure is described in Sec. III-B. We set a batch
size B to 64 or 256 for the CIFAR-100 or ImageNet. The
embedding size E is tuned to 16. When implementing the
transformer, we follow the implementation of the original
version [26]. Therefore, the transformer is composed of the
stack of 6 encoders and 6 decoders. We also use 8 parallel
attention heads. For the teacher and student models, we use
the various CNN models such as ResNet [35], VGG [36],
ShuffleNet [37], WRN [38], MobileNet [39] with different
model combinations.

In the KD loss Eq. (1), we set the temperature factor τ
to 4. For finding optimal β and ζ used in the total KD loss
Eq. (11), we perform the sensitive analysis in Sec. IV-F, and
set β and ζ to 50 and 0.1. For KD training, we use the SGD
optimizer with Nesterov momentum. For CIFAR-100, the
initial learning rate is 0.01 for the variants of MobileNets
and ShuffleNets. Otherwise, it is set to 0.05. We train models
during 240 epochs and decay the learning rates by 0.1 times
at the 150, 180, and 210 epochs. For ImageNet, we train
models during 100 epochs. We set the initial learning rate
to 0.1, and decay it by a factor of 0.1 at the 30, 60, and
90 epochs. We implement all the KD methods by using the
same HW/SW: Intel-Xeon@2.40GHz, Titan-V, and PyTorch
(v1.10).

For implementing our TMC-KD knowledge distillation,
we use the MMRazor. For the KD between teacher and

TABLE 2. Comparison with the relation-based KD methods on CIFAR-100.
The PKT (EECV-18), RKD (CVPR-19), IRG (CVPR-19), CC (ICCV-19) and CRD
(ICLR-21) results marked with ˚ are in [5]. The ICKD (ICCV-21) result
marked with † is in [7].

student detectors, we compare the outputs of the feature
pyramid networks (FPNs) since our method focuses on the
multi-layer KD.More specifically, we use the outputs of FPN
as inputs ofmulti-layer converter (MLC) and use the output of
MLC as inputs of transformer for global and local correlation.

For more comparisons, we perform the KD between both
detectors using CWD [40], FBKD [41], and PKD [42]. In the
CWD-based implementation, we minimize the Kullback-
Leibler divergence between teacher and student activation
maps from FPNs. In the FBKD, we extract both spatial
and channel attentions from teacher and student detectors.
We then minimize each mean square error between teacher
and student attention maps. In the PKD, we normalize
outputs of FPNs and minimize the mean square error
between teacher and student normalized features.While other
methods perform KD between same-level layers, our TMC-
KD compares features among all FPN layers using the local
correlation Eq.(9).

C. COMPARISON ON CIFAR-100 AND IMAGENET
We compared our TMC-KD with KD [3] and multi-layer KD
methods: FitNets [4], AT [19], SP [18], VID [21], HKD [33],
SemCKD [5], ICKD [7], and TaT [14]. We also compared
the relational knowledge KD methods: PKT [43], RKD [6],
IRG [44], CC [45], CRD [46], and ICKD [7].
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TABLE 3. Results on knowledge distillation on rip current detection. The bold highlights the best results and the underline indicates the second best
results. ‡ represents our implementation result.

In Table 1, we provide the comparison results with multi-
layer KD methods on CIFAR-100. As shown, our TMC-KD
achieves the best results for all different teacher-student
combinations. Compared to scores of the student models, our
TMC-KD improves 4.74 scores in average. In particular, for
the similar architectures of teacher and student models (e.g.
VGG-13 and VGG-8), TMC-KD provides 4.09 accuracy gain
on average, but 4.99 gain for the heterogeneous architecture
setup (e.g. ResNet-32 ˆ 4 and VGG-13). TMC-KD provides
more gains between heterogeneous models where the exact
correlation learning between multi-layers is necessary.

Table 2 shows the results of the relation KD methods.
In this comparison, our TMC-KD is superior to other
methods. These comparison results show that exploiting both
inter-layer and intra-layer knowledge is very effective for KD.

For more comparison, we evaluate our method on Ima-
geNet as in Table 4. For reproducing results, we use the
officially released code of [5] from the KD to SemCKD
implementation, but use the code of [14] for ICKD and TaT
implementation. For the ResNet-18, our TMC-KD achieves
the better accuracy except for TaT. For the ShuffleNetV2 ˆ

0.5, our TMC-KD achieves the best performance in this
heterogeneous setting.1 From the results, we show that our
method can work well on the large-scale classification task.

Moreover, we provide the qualitative comparison in Fig. 6.
We visualize the saliency region for classification by using
Grad-CAM [47], and compare ours with other KD methods.
We visualize feature maps from a convolution layer before
the last fully-connected layer. Even some regions are not
discriminative in other methods, our TMC-KD provides
clearer saliency even for those regions. Compared to the
results of the teacher models, our TMC-KD produces almost
similar saliency responses. The more results can be found
in the appendix A. These qualitative results support that our
TMC-KD can achieve the better accuracy for the quantitative
comparison.

To compare complexity with other knowledge distillation
methods, we measure average training and inference time per
epoch on the ImageNet. We use the ResNet-34 and ResNet-
18 networks as a teacher and a student. The training speed
of TMC is slower than other methods due to the multi-layer
KD using the attached MLC and transformer. However, the
inference speed of our TMC-KD is similar to others since
the attached modules are not exploited during inference. This

1TaT does not provide the code for learning the ShuffleNetV2 ˆ 0.5.

TABLE 4. Comparison with other KD methods on the ImageNet. Bold
indicates the best Top-1 accuracy. ˚ results are in [5], and ‡ results are
from our re-implementation.

TABLE 5. Average training and inference speed of different KD methods
per epoch on ImageNet. All results are evaluated by our
re-implementation and measured on the same H/W environment.

TABLE 6. Results on different components of TMC-KD.

implies that our TMC-KD does not impose extra costs on the
target student during the inference stage.

D. COMPARISON ON RIP CURRENT DETECTION
For more comparisons, we apply the KD to object detection.
Despite the development of high-performance detectors [48],
[49], [50], [51] in recent years, we use a simple Faster
R-CNN [52] detector for implementation and comparison.
We perform the KD between both detectors using CWD [40],
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Algorithm 2 Our PyTorch Code for Implementing the Multi-layer Feature Converter (MLC)

import t o r c h . nn as nn

c l a s s MLC( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , in_chn , in_w , dim_out =16 , drop =0 ) :

super ( ) . _ _ i n i t _ _ ( )
## in_chn : The number o f i n p u t f e a t u r e map channe l s
## in_w : The w id th s i z e o f i n p u t f e a t u r e map
## dim_out : Dimension o f o u t p u t
## drop : Rate f o r Dropout

h idden_chn = in_chn ∗ 2
hidden_dim = in_chn ∗ in_w ∗ in_w
s e l f . conv1 = nn . Conv2d ( in_chn , h idden_chn , 1 )
s e l f . bn1 = nn . BatchNorm2d ( h idden_chn )
s e l f . a c t = nn . ReLU( i n p l a c e =True )
s e l f . conv2 = nn . Conv2d ( h idden_chn , in_chn , 1 )
s e l f . L i n e a r = nn . L i n e a r ( hidden_dim , dim_out )
s e l f . d rop = nn . Dropout ( drop )

def f o rwa rd ( s e l f , x ) :
B = x . shape [ 0 ] # B : Batch s i z e
x = s e l f . conv1 ( x )
x = s e l f . a c t ( x )
x = s e l f . bn1 ( x )
x = s e l f . d rop ( x )
x = s e l f . conv2 ( x )
x = s e l f . L i n e a r ( x . r e s h a p e (B , −1)) ## F l a t t e n and f u l l y c o nn e c t i o n
x = s e l f . d rop ( x )
re turn x

FIGURE 4. Sensitivity analysis by changing the cardinality of the encoder
and decoder layers.

FBKD [41], and PKD [42]. In the CWD-based implementa-
tion, we minimize the Kullback-Leibler divergence between
teacher and student activationmaps from FPNs. In the FBKD,
we extract both spatial and channel attentions from teacher
and student detectors. We then minimize each mean square
error between teacher and student attention maps. In the
PKD, we normalize outputs of FPNs and minimize the mean

FIGURE 5. Sensitivity analysis of our TMC-KD for ζ (bottom axis) and β

(top axis).

square error between teacher and student normalized features.
While other methods perform KD between same-level layers,
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FIGURE 6. Qualitative comparison of different KD methods on ImageNet: we visualize feature maps by
using Grad-CAM. We use ResNet-34 and ShuffleNetV2 ˆ 0.5 as the teacher and student models.
We represent the strength of the saliency with different colors (red indicates the stronger response).
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FIGURE 7. Qualitative comparison of different KD methods on ImageNet: we visualize feature maps by
using Grad-CAM. We use ResNet-34 and ShuffleNetV2 ˆ 0.5 as the teacher and student models.
We represent the strength of the saliency with different colors (red indicates the stronger response).
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FIGURE 8. Qualitative comparison of different KD methods on the Rip current dataset. We visualize
detection results with red box. For this comparison, we use Faster R-CNNs with ResNet-101 and ResNet-18
as the teacher and student detectors.

our TMC-KD compares features among all FPN layers
using the local correlation Eq.(9). For this comparison,
we evaluate detectors using the COCO style metrics: average
precision (AP) and recall (AR). We evaluate AP at IoU
P r0.5 : 0.05 : 0.95s (AP@0.5:0.95), at IoU 0.5 (AP@0.5)

and at IoU 0.75 (AP@0.75). We evaluate AR at IoU P

r0.5 : 0.05 : 0.95s (AR@0.5:0.95).
In Table 3, we provide the comparison results for KD

methods on the rip current detection. Compared to other
KD methods, our TMC-KD achieves best meanAP 44.2%.
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Algorithm 3 Our Code for Implementing the global Correlation CGlobal and the Self-attention HGlobal

import math
import t o r c h
import t o r c h . nn . f u n c t i o n a l a s F

def S e l f _A t t e n t i o n (W_Q, W_K, W_V, V_P ) :
## W_P : Weight f o r query
## W_K : Weight f o r key
## W_V : Weight f o r v a l u e
## V_P : I n p u t f e a t u r e
E = V_P . shape [ 2 ]

## Mat r i x m u l t i p l i c a t i o n
Q = F . l i n e a r (V_P , W_Q)
K = F . l i n e a r (V_P , W_K)
V = F . l i n e a r (V_P , W_V)

## Eq . ( 5 ) i n t h e main t e x t
Q = Q / math . s q r t (E )
C_Global = t o r c h .bmm(Q, K. t r a n s p o s e (−2 , −1))
C_Global = F . so f tmax ( C_Global , dim=−1)

## Eq . ( 6 ) i n t h e main t e x t
H_Global = t o r c h .bmm( C_Global , V)

re turn H_Global

By applying our TMC-KD, we greatly improve the mean
AP by 4.3 point. On average recall, TMC-KD achieved the
second highest score 51.7. While other KD methods ignore
the correlation between different-level feature maps, TMC-
KD considers both local and global correlations. Therefore,
we achieve the high scores on both AP and AR metrics.
Moreover, we provide the qualitative comparison in Fig. 8.

We visualize the detection results and compare ours with
other KD methods. On ‘‘Rip-1705’’, ‘‘Rip-904’’ and ‘‘Rip-
863’’ samples, TMC-KD detects rip currents successfully,
whereas other KD methods produce some missing or
inaccurate detection results of the rip currents.

E. ABLATION STUDY
We evaluate the effects of each method applying for TMC-
KD by measuring Top-1 and Top-5 accuracy. For this study,
we use the ResNet-32ˆ 4 and VGG-8 as teacher and student
models, respectively. Then, we use (a) the baseline with the
KD method using [3]. We then add our method one-by-one
into the baseline: (b) with the multi-layer local loss Eq. (2),
(c) with the global relation loss Eq. (10). To show the effect of
our MLC, we also implement (d) that uses SemCKD instead
of using our MLC. In this case, we use the feature pooling
and 1 ˆ 1 convolution layers described in SemCKD for
matching the spatial resolution and channel number between
different layers. Compared to the baseline, (c) using all our

methods provides the 3.64 Top-1 accuracy and 1.63 Top-5
accuracy gain. By adding the local and global losses, we can
improve the accuracy by 75.96 and 76.23 Top-1 accuracies.
In addition, we can improve Top-5 accuracy by 93.40 and
93.47. When comparing (b) and (d), replacing our MLC
with the SemCKD-based feature converter degrades Top-1
and Top-5 accuracies by 74.95 and 92.98. This because our
MLC generates the more stronger sequential features which
are input of the transformer. These results indicate that all
our methods are beneficial of improving the multi-layer KD
training.

F. SENSITIVITY ANALYSIS
We investigate the sensitivity of our TMC-KD by varying the
values of the important hyper-parameters. We use ResNet-
32 ˆ 4 and VGG-8 as a teacher and student models, and
evaluate them on CIFAR-100.

1) THE SIZE OF TRANSFORMER
We change the number of stacked layers used in the encoder
and decoder from 1 to 12, and report the results in Figure 4.
We achieve the best score when using 6 layers. Using
too many layers degrades the accuracy even due to the
large discrepancy between decoded features. We expect that
transformers with many layers could be rather over-fitted due
to the small sample size of the CIFAR-100. On the other hand,
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Algorithm 4 Our Code for Implementing the local Correlation 3 and the Local Semantic Loss LLocal

import t o r c h . nn as nn
import t o r c h . nn . f u n c t i o n a l a s F
from e i n op s import r e a r r a n g e

c l a s s Loca l_Loss ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . c r i t = nn . MSELoss ( r e d u c t i o n = ’ none ’ )

def f o rwa rd ( s e l f , f_s , f _ t , P_t , P_s ) :
## f _ t : L i s t o f t h e f e a t u r e maps f o r p r o j e c t e d t e a c h e r
## f _ s : L i s t o f t h e f e a t u r e maps f o r p r o j e c t e d s t u d e n t
## P_t : Decoder o u t p u t f o r t e a c h e r
## P_s : Decoder o u t p u t f o r s t u d e n t

# Compute l o c a l c o r r e l a t i o n ( Lambda )
## Eq . ( 9 ) i n t h e main t e x t
## Rearrange d imens ion : From [B , M, E] t o [B , E , M]
temp_P_t = r e a r r a n g e ( P_t , ’B M E −> B E M’ )
Lambda = F . so f tmax ( t o r c h .bmm( P_s , temp_P_t ) , dim=−1)

# Compute Eq . ( 2 ) i n t h e main t e x t
B, J , M = Lambda . shape
## B : Batch s i z e
## J : The number o f s t u d e n t f e a t u r e maps
## M : The number o f t e a c h e r f e a t u r e maps

l o s s _ i = t o r c h . z e r o s (B , J , M)
f o r j in range ( J ) :

f o r m in range (M) :
l o s s _ i [ : , j , m] = s e l f . c r i t ( f _ s [ j ] [m] , f _ t [ j ] [m] ) . r e s h a p e (B , −1).
mean (−1) l o c a l _ l o s s = ( Lambda ∗ l o s s _ i ) . sum ( ) / (B∗ J )

re turn l o c a l _ l o s s

a transformer with few layers is likely to be insufficient to
extract the exact correlation features.

2) HYPER-PARAMETER ζ AND β

We change the values of ζ and β which are used for balancing
between losses in Eq. (11). For ζ , we change the score
from 0.001 to 1000 by multiplying 10. To investigate the
effect of the architecture difference, we fix a teacher model
with ResNet-32 ˆ 4, but use ResNet-8 ˆ 4 and VGG-8 for
homogeneous and heterogeneous setup as a student model.
Figure 5 shows the results. We achieve the best scores to
76.23% and 76.63% for VGG-8 and ResNet-8 ˆ 4 when
using ζ “ 0.1. However, the accuracy difference between
0.01 and 1 is rather marginal. For β, we change the score
from 1 to 1000 by multiplying 10 (including 400 tuned in
SemCKD [5]). We also achieve the best scores to 76.23% and
76.63% for VGG-8 and ResNet-8 ˆ 4 when using β “ 400.

The accuracy of both student models tends to be enhanced as
increases β before β “ 400.

V. CONCLUSION
For multi-layer KD, we propose a novel transformer-based
multiple layer correlation KD (TMC-KD) method. Our
TMC-KD can bridge the knowledge gap between different
models via global and local correlation learning. For learning
both correlations between intermediate layers of different
architectures, we design a multi-layer feature converter
and exploit it to transform multi-layer features to serially-
connected encoded features. By using the decoded features
and attention tensors from a transformer, we can minimize
the discrepancy between models in terms of local and global
semantic relations. The comparison results with recent KD
methods prove the effectiveness of our method. In image
classification, our TMC-KD provides about 5% accuracy
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Algorithm 5 Our Code for Implementing the Global Relational Loss LGlobal

import t o r c h
import t o r c h . nn as nn
import t o r c h . nn . f u n c t i o n a l a s F

c l a s s Globa l_Loss ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f ) :

super ( ) . _ _ i n i t _ _ ( )

def f o rwa rd ( s e l f , P_s , P_ t ) :
B = P_s . shape [ 0 ] # Batch s i z e
t emp_t = P_t . r e s h a p e (B , −1)
temp_s = P_s . r e s h a p e (B , −1)

s e l f _ c o r _ t = t o r c h . matmul ( t emp_t , t emp_t . t ( ) )
s e l f _ c o r _ s = t o r c h . matmul ( temp_s , temp_s . t ( ) )
g l o b a l _ l o s s = F . mse_ lo s s ( s e l f _ c o r _ s , s e l f _ c o r _ t , r e d u c t i o n = ’mean ’ )

re turn g l o b a l _ l o s s

gain on average. It outperforms other methods for the
knowledge distillation between heterogeneous architectures
on the CIFAR-100. On ImageNet, TMC-KD provides the
best accuracy 54.72 accuracy. For more comparison, we also
evaluate our TMC-KD and other KD methods on the rip
current detection set. In this comparison, our TMC-KD
achieves the best mAP of 44.2 % surpassing the performance
of other methods. From the extensive ablation study, we show
the effects of multi-layer feature converter, local and global
correlation learning.

The training speed of TMC-KD is slower than other KD
methods due to the additional complexity of the transformer.
To reduce the complexity of the transformer, our future work
could combine the deformable attention techniques [48],
[53]. We believe that our work could be a solid guideline
of multi-layer KD.

APPENDIX A
QUALITATIVE COMPARISON
We visualize discriminative regions by using Grad-CAM [47]
for qualitative comparisons. We use images on Ima-
geNet [32]. As shown in Figure 6 and 7, our TMC-KD
shows our method produces almost similar discriminative
regions as the teacher model. Compared to other recent
KD methods, our method clearly shows the more distinctive
saliency regions. In particular, in some sample images (e.g.
Mergus serrator, a beagle, and a European fire salamander),
our TMC-KD shows the better results than the oracle teacher
model.

APPENDIX B
THE MAIN CODES FOR OUR METHOD IMPLEMENTATION
We provide our code for implementing the proposed
methods described in Sec. III-B of our manuscript: the

multi-layer feature converter (MLC), local semantic learning,
and global relational learning. Basically, we implement
our code using the PyTorch [54]. The Algorithm 2
describes the implementation of the MLC. The MLC
class constructor requires the number of input channels,
the size of input width, and an embedding size E for
outputs. During training, we set the rate for the dropout
to 0.

In Algorithm 3 and 4, we provide the code for imple-
menting local semantic learning. Algorithm 3 shows the
CGlobal and self-attention implementation described in Eq.
(5) and (6) of the paper. Given the weights for the query,
key, and value for the series of the MLC converted features
VP, we can compute the global correlation CGlobal and the
self-attention Hh

Global using the multiple attention heads.
Algorithm 4 shows how to compute the local correlation
and the local KD loss LLocal between multiple layers.
To evaluate 3, we first perform the matrix multiplication
between the teacher and student feature maps as Pt and Ps,
and normalize it using the softmax.We then compute the local
loss LLocal by evaluating the feature L2 distance applied to the
correlation 3.
The Algorithm 5 shows the implementation of the global

loss in Eq. (10). By using the L2 distance between the self-
attentions of the decode features Pt and Ps, we evaluate the
global loss.
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