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ABSTRACT In the evolving landscape of interpretable machine learning (ML) and explainable artificial
intelligence, transparent and comprehensible MLmodels are crucial for data-driven decision-making. Tradi-
tional approaches have limitations in distinguishing whether the observed importance of features in principal
component analysis (PCA)-transformed similarity metrics is due to the intrinsic characteristics of the data or
artifacts introduced by the PCA. This ambiguity hampers the accurate interpretation of feature contributions
to similarity and distance metrics, which are fundamental to data-analysis techniques. To address these chal-
lenges, I introduce the novel PCA loading-dependent importance (PCaLDI), which elucidates the similarity
and distance metrics by synergistically leveraging the strengths of PCA loadings and permutation feature
importance. PCaLDI innovatively utilizes PCA loadings to prioritize the most influential features, streamlin-
ing the assessment of feature importance. This approach provides clearer insights into the contributions of the
features and reduces the computational inefficiencies inherent to traditional methods. Importantly, PCaLDI
uniquely clarifies the contributions of individual features to similarity metrics within the PCA-transformed
space, distinguishing between the effects attributed to PCA and genuine influence of features on the similarity
measures. This distinction is pivotal for accurately understanding the data structure and making informed
decisions.Moreover, the versatility of PCaLDI extends to any data format compatible with PCA, highlighting
its broad applicability and utility across data types. Comprehensive experiments and comparisons with
baseline methods demonstrate that PCaLDI exhibits high effectiveness and efficiency, offering rapid and
accurate assessments of feature importance with substantial reduced computational demands.

INDEX TERMS Explainable artificial intelligence (XAI), PCA loadings, PCA loading-dependent
importance (PCaLDI), permutation feature importance, similarity/distance metrics.

I. INTRODUCTION
In the modern era, machine learning (ML) and artificial
intelligence (AI) have become pivotal in various fields
including medicine, economics, finance, and marketing [1],
[2]. As these technologies increasingly influence decision-
making, understanding the factors behind the predictions,
estimates, and data features that shape these outcomes is
essential. The roles of interpretable ML and explainable AI
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(XAI) are becoming increasingly important in identifying
potential biases, confirming model reliability, and ensuring
legal and ethical accountability.

Furthermore, media content is increasingly being analyzed
in the vector form or when embedded representations are
used. Assessing the similarity and distance of media content
in these vector spaces can provide deeper insights into the
meaning of the content. However, clarifying the reasoning
behind the outcomes is crucial when evaluating the similarity
or distance between two data instances. Specifically, intro-
ducing explainable similarity and distance metrics is vital
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FIGURE 1. Overview of similarity computation using the proposed PCaLDI method on the Wine dataset [62]. Initially, (1) the Wine dataset is
prepared as dataset X, (2) PCA is applied to the dataset X, (3) the data instances are selected from dataset X, and although it is possible to
select data instances and measure the similarity and distance in this state, to reduce the curse of dimensionality, information redundancy,
computational efficiency, and multicollinearity, we apply (2) PCA to generate dataset X’ with dimensionality reduction. Next, (3) data
instances (5th and 18th in the example) are obtained from dataset X’, and their similarity and distance are computed. In this example, the
cosine similarity is 0.999868, which is a very high value. If we set the number of principal components to three, we can visualize dataset X’
in a three-dimensional scatter plot and see that the 5th and 18th data instances are in proximity. To explore the reason for the high similarity
between these two data instances, PFI is considered to evaluate the contribution of the features. However, if the number of features is large,
the computation may not be completed within runtime. Therefore, I propose identifying important features in advance and calculating PFI
only for these features. Specifically, we can calculate the feature contributions based on (4) PCA loadings and principal component space
values for the 5th and 18th data instances. Subsequently, (5) PFI is computed for only the top k features in the feature contribution. Thus,
we derive the features and their contributions to the similarity of the 5th and 18th data instances, as shown in (6). If the permutation feature
importance calculation is applied to the data after PCA, the result represents the contribution of the principal component axis, which may
lose its direct relevance to the original feature space. PCaLDI addresses this issue and provides a framework for evaluating the contribution
to the original features, while still accounting for the PCA results, thereby improving both the interpretability and computational efficiency.

for interpreting algorithms such as k-nearest neighbors and
k-means, which rely on these measures. Achieving explain-
able similarity and distance metrics is the first step toward a
profound understanding of societal challenges.

This study introduces a novel method known as principal
component analysis (PCA) loading-dependent importance
(PCaLDI; Fig. 1). This method combines PCA loadings with
permutation feature importance (PFI) to provide explainable
similarity and distance metrics. PCaLDI effectively weighs
feature contributions while minimizing the computational
costs. Feature importance is evaluated using PCA loadings,
and PFI is applied only to the top k features. Conventional PFI
is computationally demanding, and the proposed approach
significantly improves computational efficiency using PCA
loadings as a preliminary step. PCaLDI is general, versatile,
and applicable to any data format that supports PCA.

PCA loading is a well-known concept. However, its intro-
duction into the description of similarity metrics may have
the following effects: In conventional PFI, the values of
the principal components in the principal component space
are permuted, or permutation is performed in the feature
space. PCA is performed, the similarity is weighed, and the

differences are calculated. In the former case, features that
contribute to the original feature space cannot be obtained,
and only the contributions of the principal components can
be calculated. In the latter case, permutation, PCA, and sim-
ilarity are performed on each feature; therefore, determining
whether a difference exists or purely initial similarity is dif-
ficult using PCA. Therefore, in this method, by determining
the k features that contribute to each principal component in
the PCA loading, important features can be filtered out. This
enables permutation to significantly reduce computational
requirements without sacrificing the depth of interpretation
provided by the importance technique. In addition, by deriv-
ing the features that contribute to the similarity via differences
in the similarity permuted only to k features, the compu-
tational cost is reduced and features that contribute to the
similarity, including PCA, can be reliably extracted.

The primary contributions of this study are as follows:
• It introduces PCaLDI, an explainable similarity/distance
metric that combines PCA loadings with PFI. Tradi-
tional PFI methods are computationally demanding,
especially on large datasets, because they require the
importance of each feature to be computed across many
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permutations. PCaLDI overcomes this important techni-
cal difficulty by reducing the computational complexity
while maintaining interpretability.

• To validate the efficacy of PCaLDI, I implemented
the method along with several baselines and conducted
comparative experiments to demonstrate its effective-
ness and utility.

The remainder of this paper is organized as follows:
Section II reviews relevant previous studies. Section III elab-
orates on the formulation of PCaLDI. Section IV discusses
the implementation of PCaLDI across various data formats,
supported by comparative experiments. Section V presents a
discussion on this study. Finally, Section VI concludes the
paper.

II. RELATED WORKS
In recent years, substantial research has been conducted on
ML interpretability and XAI, with numerous surveys and
comprehensive descriptions [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22] addressing these issues. Chamola et al. [10] introduced
the concept of trustworthy AI, providing a comprehensive
review on building trustworthy AI and XAI systems. They
emphasized the importance of transparent posterior models
in developing XAI and outlined their potential drawbacks
and pitfalls. The prominent XAI techniques in ML include
LIME [23], SHAP [24], LRP [25], and Grad-CAM [26].

Various methodologies have been proposed to enhance
explainability. These include partial-dependence plots [27],
[28], which focus on explanatory variables and visual-
ize the estimates and impact of each feature; individual
condition explanations [29], which assess feature impor-
tance by randomly reordering or removing certain features;
and leave-one-feature-out importance [30], [31]. Sensitivity
analysis-based feature importance extraction methods [32]
evaluate the effects of changing the input features across
all subsets, considering the interactions and redundancies
among the features. However, these techniques are often com-
putationally intensive and expensive for high-dimensional
datasets. For example, they require an evaluation of the
impact of features on all subsets for n features. The quantita-
tive input influence measure [33] is another approach aimed
at quantitatively evaluating the impact of individual input
variables on algorithmic predictions and estimations.

Aslam et al. [34] acknowledged that XAI recognizes
the importance of human factors and the cognitive effort
required to understand explanations. They proposed incorpo-
rating human factors into the design process and intentionally
designing explanations that are alignedwith themental model
of the user. In addition, they suggested the development of an
ontology-driven conceptual model for XAI. Zhang et al. [35]
emphasized the significance of XAImethods in cybersecurity
applications. They presented a comprehensive survey of the
up-to-date XAI approaches that are applicable to cybersecu-
rity problems. Theissler et al. [36] focused on time-series
data and reviewed various techniques for organizing and

analyzing such data. They categorized these methods into
point-, subsequence-, and instance-based approaches. They
also identified open research areas for types of explanations
and for assessing explanations and interpretability. Bobek
et al. [37] focused on the XAI problem in unsupervised
ML. They observed that global explanations might be overly
broad, whereas local explanations based on the centers of
gravity may overlook valuable information regarding the
shape and distribution of clusters. They proposed a new
approach known as ‘‘cluster analysis with multidimensional
prototypes,’’ which assists cluster-analysis experts by provid-
ing human-readable rule-based explanations.

I have previously developed a method known as approx-
imate inverse model explanations (AIME) to visualize the
difficulty of identifying features in black-box models. AIME
constructs an approximate inverse operator for the ML
model [38]. My experiments demonstrated that AIME pro-
vides simpler and clearer explanations than those generated
by established methods, such as LIME [23] and SHAP [24].
The rationale behind such performance is the unique
approach to interpreting black-box models. By address-
ing the inverse problem, AIME aligns more closely with
human cognitive processes that seek to understand outcomes
based on their causes. This method derives approximate
inverse operators and establishes a direct link between input
features and model predictions, thereby offering a more
intuitive understanding of the decision-making process and
rationale behind it. In addition, AIME introduces a represen-
tative instance similarity distribution plot, thereby enabling
a unique visualization of the connection between the dataset
and its predictions, which enhances interpretability. Although
LIME and SHAP provide valuable local feature contributions
to model predictions, the combination of global and local
feature importance assessments of AIME facilitates a com-
prehensive understanding of the decision-making process of
the model, which simplifies the explanations.

My concern extends beyond ML models to include the
explainability of similarity and distance metrics between vec-
tor representations such as embedded representations. This is
relevant for supervised ML as well as unsupervised methods
such as k-means [39], in which understanding the calcula-
tions behind the similarity and distance metrics is crucial for
explaining cluster memberships.

Several studies have investigated the extraction of features
that contribute to similarity and distance metrics between
datasets. For example, Ngu et al. [40] focused on image
databases and developed a combination of multiple visual
features that emulates human identification and classification
of images using multiple visual elements. This approach
essentially serves as a feature extraction method based on
human visual features. Li [41] introduced a similarity mea-
surement technique for symbol sequences based on order
statistics by identity by state (IBS) and combined it with
CCNN,which leverages convolutional neural network (CNN)
feature extraction and IBS distance measurement to analyze
movements in Sanda (or Sanshou, a form of Chinese martial
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arts). Specifically, the CCNN model denoises the acquired
images of movements and simplifies them into sequence
diagrams representing human skeletal nodes, thereby offering
a fresh perspective on feature selection for similarity metrics.
Entezami and Shariatmadar [42] applied an autoregressive
moving average model to select eigenmode functions for
extracting model residuals as damage susceptibility features.
They introduced amultivariate distance correlationmethod to
identify structural damage by comparing multivariate resid-
ual sets from the normal and damaged states. Opitz et al. [43]
proposed a method that uses abstract meaning-representation
(AMR) graphs to introduce explainable metrics for assess-
ing controversial similarities. This method uses AMR graph
metrics to gauge the similarity of arguments and pro-
vides explanatory information for assessment. Fang et al.
[44] employed patient similarity analysis to develop an
explanatory and interpretable clinical risk prediction model.
Specifically, they used the k-nearest neighbor method to
model patient similarity based on expert input. Papoutsakis
and Argyros [45] presented an unsupervised approach for
estimating the similarity between two videos using the bipar-
tite graph edit distance of the corresponding action graphs.
This method accounts for the similarity between videos
when the objects in the videos are semantically related,
interact similarly, or both, by establishing spatiotemporal cor-
respondences between objects across videos. Lin et al. [46]
introduced explainable cosine (xCos), a new explainable sim-
ilarity metric for face detection. xCos calculates the weighted
sum of similarities by drawing upon the facial grid features
extracted using a CNN feature extractor. These weights are
determined from an attention map, thereby identifying facial
features that are more representative.

PFI has been leveraged [47] to identify features that
significantly influence similarity and distance calculations.
However, the computational burden of PFI is considerable
because of the repeated reconstruction of models while shuf-
fling each feature.

König et al. [48] introduced the relative feature importance
method as a more detailed alternative for assessing feature
importance. This method encompasses PFI and conditional
feature importance, and it is designed to evaluate the fea-
ture importance across any subset of features. This method
not only clarifies the inter-feature relationships but also
appears to reduce computational complexity. Meanwhile,
Doyen et al. [49] proposed ‘‘hollow-tree super’’ (HOTS)
as a novel approach for dissecting and visualizing feature
importance in boosted tree models. They asserted that HOTS
is particularly useful for managing large feature datasets. Niu
et al. [50] introduced the batch-wise PFI (BPFI) method as a
lightweight alternative to the traditional PFI. Instead of apply-
ing permutations across an entire test dataset, BPFI restricts
the permutations to individual batches. Consequently, a com-
putationally efficient approximation of the traditional feature
importance metrics is obtained because the permutations are
confined to smaller data subsets.

Previous research has focused on the extraction of impor-
tant features, particularly by leveraging PCA and its load-
ings [51]. PCA transforms a large set of correlated features
into a smaller set of uncorrelated variables known as prin-
cipal components, which effectively captures the variability
of the data. For instance, Baisantry et al. [52] introduced
a feature selection method based on the loadings acquired
from spectral-spatial principal components. Similarly, Li and
Qiu [53] proposed an improved PCA-based feature selection
method that uses the loadings of each indicator on various
principal components, along with its variance contribution.
Another study conducted by Baisantry et al. [54] suggested a
novel band selection method based on PCA loadings. Their
method aims to integrate the benefits of two-dimensional
reduction strategies by selecting bands in relation to their
associated principal components. This approach ensures the
retention of the original bands, thereby challenging the pre-
vailing notion that all essential information is consolidated in
the upper principal components. My findings indicate that the
middle principal components play a more dominant role in
discrimination, particularly when different classes are spec-
trally similar or overlapping. Kiyoki et al. [55] used eigenvec-
tors derived from eigenvalue decomposition to create a vector
space for a semantic associative search. They introduced the
semantic spectrum analyzer, which enhances search results
by considering the variability in the individual values of the
eigenvectors. Similar to this method, my approach incorpo-
rates PCA loadings and emphasizes the individual values of
eigenvectors.

The method proposed in the present study innovatively
combines PCA loadings with PFI to offer a fresh perspec-
tive on the similarity and distance metrics. The calculation
of the PFI is typically computationally complex. However,
by initially employing PCA loadings to assess feature impor-
tance, the permutation calculations can be limited to only
the top-ranking features. This considerably reduces compu-
tational costs, especially when dealing with large datasets or
high-dimensional feature spaces.

I further validated the efficacy of this approach by compar-
ing it with several established baseline methods, the details
of which are presented in Section IV. A key strength of
this method is its versatility; it can be applied to different
types of data, such as tabular or textual data, to extract fea-
tures that influence the similarity or distance between data
instances.

III. FORMULATION OF PCaLDI
This section outlines the framework of the proposed
PCaLDI. Section III-A presents the key principles and
theoretical underpinnings of PCaLDI as well as its limita-
tions. Section III-B elaborates on the specific algorithms
developed for PCaLDI, based on these conceptual foun-
dations. Section III-C assesses the computational com-
plexity of the PCaLDI and its suitability for large
datasets.
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A. INTRODUCTION TO PCaLDI
The goal of working with a dataset is to quantify the sim-
ilarity or distance between two instances. In the context of
similarity, a high value indicates that the instances are similar.
Conversely, a small distance indicates proximity. However,
the straightforward calculation of similarity and distance in
a dataset poses several challenges. In particular, the ‘‘curse
of dimensionality’’ (a term first coined by Bellman [56])
describes the phenomenon in which the distinction among
distances between data points becomes less clear as the data
dimensionality increases.

One strategy for solving such problems is to introduce
PCA as a preprocessing method. This method mitigates the
dimensionality problem and reduces noise by condensing the
main data variations into lower dimensions. The compact,
low-dimensional representation also improves computational
efficiency and enables the visual confirmation of data rela-
tionships when two or three principal components are used.

However, limitations exist in contexts in which PCA is
less effective, for example, nonlinear data structures, fea-
tures with uniform variance, noisy data, sparse data, and
data that contain many outliers. In such situations, alternative
dimensionality reduction methods such as t-SNE [57] or
UMAP [58] may be more suitable. Nevertheless, this study
takes advantage of the unique properties of PCA loadings for
PCA-enabled datasets.

A key strength of PCA is its computational loading, which
clarifies the relationship between each variable and its corre-
sponding principal components in the original feature space.
These PCA loadings serve as indicators of feature impor-
tance, thereby facilitating the identification of important
features for determining similarity. Distance PCA loading
represents the contribution of a variable (feature) to each
principal component extracted via PCA in the matrix form.
This matrix indicates the extent to which the variance in the
dataset is explained by a particular variable and is therefore
key to understanding how each feature shapes the overall data
structure. For similarity measures in a space consisting of
principal component axes, features with high PCA loading
values play an important role in shaping similarity within
the dataset. Specifically, through the weighting indicated by
the PCA loading, the importance of features in a particular
principal component can be quantitatively evaluated, thereby
efficiently identifying the features that contribute the most to
similarity.

Therefore, I introduce PCaLDI, a novel metric frame-
work for assessing similarity and distance; this framework
combines the strengths of PCA loadings and PFI. This syner-
gistic combination enables the evaluation of both the global
variability within a dataset and feature-specific effects on
variables of interest, such as similarity and distance. By per-
forming permutations on each of the k features, features
that are particularly important in the case of this similarity
measure can be derived, and the computational cost can be
significantly reduced compared with that of permuting all

features. As opposed to conventional PFI, the contribution of
features in the original feature space to the similarity in the
PCA space can be obtained via PCA loading. In conventional
PFI, the difference is obtained either by permuting the values
of the principal components in the principal component space
or by permuting in the feature space, performing PCA,weigh-
ing the similarity, and then obtaining the difference. In the
former case, the contributing features in the original feature
space cannot be obtained, and only the contribution of the
principal components can be calculated. In the latter case, per-
mutation, PCA, and similarity are performed on each feature,
which makes it difficult to distinguish between a difference in
the PCA or purely initial similarity. Therefore, in this method,
by determining k features that contribute to each principal
component in the PCA loading, important features can be
filtered. In addition, by deriving the features that contribute to
similarity via differences in the similarity permuted only to k
features, the computational cost is reduced and features that
contribute to the similarity, including PCA, can be extracted
more reliably. In other words, PCaLDI, which combines PCA
loadings and PFI, provides new insights into the similarity
measurement in the PCA space with a lower computational
cost for deriving which features initially contribute to the
similarity. This approach is a mathematically and statistically
justified means of clarifying the structure of the data and the
features that are important in shaping the similarity, while
significantly reducing the computational cost compared with
that of traditional PFI. It is applicable to different data types
and provides transparent and interpretable similarity and dis-
tance metrics. In this section, I will describe the mathematical
formulations for PCA, PCA loadings, and PFI.

1) PCA
Let X denote the original dataset that is represented as a
matrix with m instances (rows) and n features (columns).
The mean and standard deviation are obtained for each fea-
ture in the original dataset X . Subsequently, normalization
is performed by subtracting the mean and dividing it by
the standard deviation for each feature, as expressed in the
following equation:

xi,j =
xi,j − µj

σj
, (1)

where xi,j is the element in row i and column j of dataset X ,µj
is the mean of column j, and σj is the standard deviatio of
column j. Next, we calculate the covariance matrix, C , using
the normalized dataset X :

C =
1
m
XTX , (2)

where T denotes the transpose operation, and m is the total
number of data points in the dataset, that is, the total number
of rows of data. Subsequently, we proceed to determine the
eigenvalues and corresponding eigenvectors of C .

Cv = λv, (3)
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where λ represents the eigenvalue, and v is the corresponding
eigenvector. Amaximum of n eigenvalues λ and eigenvectors
v (number of features) can be derived. The eigenvalues and
eigenvectors correspond to one another, and the eigenval-
ues represent the variance of the corresponding eigenvector,
which serve as the principal components i PCA. In particular,
the eigenvector corresponding to the largest eigenvalue is the
first principal component. These eigenvectors are arranged
in the order of increasing eigenvalues. Subsequently, when
the number of principal components p is set to two, if the
eigenvectors are selected in the order of the largest eigenval-
ues, they become the first and second principal components.
Finally, dataset X is projected onto the first and second
principal component. In essence, the dataset can be reduced
to p dimensions. Specifically, if X ′ represents the dataset
after dimensionality reductio to p dimensions, the following
equation applies:

X ′
= XVp, (4)

where Vp is a matrix consisting of the first p principal com-
ponents as the column.

2) PCA LOADINGS
PCA loadings quantify the relationship between each original
feature and the associated principal components. They serve
as themarkers of the extent to which each variable contributes
to a given principal component. Each element of the eigenvec-
tor is considered a loading for the principal component of that
variable. Mathematically, the loading for each feature on the
ιth principal component derived from the covariance matrix
of dataset X can be expressed as

l ι =

√

λ ιvι, (5)

where λι and vι represent the ιth eigenvalue and eigenvector,
respectively, and vι is the ιth principal component. l ι ranges
from −1.0 to 1.0. This equation (5) scales each element of
the eigenvector using the square root of its corresponding
eigenvalue. Each element of vector l ι represents the loading
of each feature on the principal component. These loadings
offer insights into the relative importance or influence of each
variable by showing its contribution to a specific principal
component [59].

3) PFI FOR SIMILARITY/DISTANCE
PFI is a technique for assessing the influence of a given
feature on the predictive power of an ML model. The fea-
ture values are randomly shuffled within the dataset, and
the change in prediction quality is monitored. A significant
variation implies that the feature is crucial for the model
predictions. Although PFI is commonly used to evaluate
model performance, in this study, the model is adapted to
assess the contribution of each feature to the calculation of the
similarity or distance metric. This study introduces a novel
framework for directly assessing the importance of features
in calculating similarity and distance, thereby distinguishing

it from traditional model-based predictions. This is achieved
using the following formulation:

PCA is performed on the original dataset X to obtain the
transformed dataset X ′, as detailed in Section III-B. The
similarity or distance ρ between two instances x′

τ and x′
υ

of dataset X ′ is calculated as

1original = ρ
(
x′

τ , x′
υ

)
. (6)

A new dataset Xpermuted is generated by shuffling (replacing)
the values of feature j in X . Subsequently, PCA is reapplied to
Xpermuted to produce X ′

permuted . The data instances x ′
τ permuted

and x ′
υ permuted that are replaced and transformed by this

operation are used to calculate the new similarity or distance
as

1permuted = ρ(x ′
τ permuted , x

′
υ permuted ). (7)

The importance of feature j, denoted by Ij, is measured as the
difference between the original and new similarity or distance
metrics as

Ij =
∣∣1permuted − 1origial

∣∣ . (8)

A large value signifies that feature j has a substantial impact
on the calculation of similarity or distance. This procedure is
applied iteratively to all features to evaluate their individual
importance.

B. PCaLDI ALGORITHM
As detailed in Section III-B, the computation of PFI for
similarity or distance is computationally demanding. This is
particularly true for datasets with numerous features, where
rea-time derivation is infeasibl.

PCaLDI can address this limitation. Using this approach,
we focus only on the top k features ranked by their contribu-
tion levels. The steps involved are outlined below.

The feature contribution is computed by integrating the
loadings obtained via PCA with the projected values of the
two data instances under consideration. Specifically, let x ′

τ

and x ′
υ represent two data instances projected onto the princi-

pal component space. The corresponding contribution scores,
denoted by s, are calculated as follows:

s =
∣∣x′τ · L

∣∣ ◦
∣∣x′υ · L

∣∣ , (9)

where s is an n-dimensional vector that encapsulates the
contribution scores of features in the original dataset. Both
x′τ and x′υ are p-dimensional vectors representing the data
instances following the PCA transformation for rows τ and
υ, respectively. L is an n × p matrix of the loadings, where
each column corresponds to the loading vector for a specific
principal component, ◦ represents the Hadamard product
(element-wisemultiplication), and · denotes the inner product
in the p-dimensional real space. Using this formulation, the
contribution scores for each feature can be effectively com-
puted. This approach essentially calculates a score to gauge
the influence of each feature on the similarity or distance
between x ′

τ and x ′
υ . This can be achieved by combining the
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post-PCA data values with the loadings to form the contribu-
tion vector s.
Thereafter, the contribution score vectors s are sorted by

magnitude, and the PFI is calculated for only the top k
features based on a predetermined k . Subsequently, we deter-
mine the extent to which each feature contributes to the
calculated similarity or distance.

This approach enables us to derive the contributions of the
features from multiple perspectives, thereby minimizing the
computational cost of the PFI. Additionally, this methodol-
ogy underscores the adaptability and broad applicability of
PCaLDI to various PCA-enabled data formats.

The applicability and effectiveness of the proposed
PCaLDI method are based on certain assumptions and con-
straints. The main limitation is the linear nature of PCA: PCA
assumes linear relationships among data; therefore, when
data have strong nonlinear relationships, PCA-basedmethods
cannot adequately capture their structure. For example, when
PCaLDI is applied to datasets with pronounced nonlinear
relationships, such as gene expression or financial market
data, the principal components may have limitations in cap-
turing essential data features. However, the PCaLDI method
is effective when the nonlinear relationships are weak, such
as the text data that were considered in this study. In the
case of nonlinear relationships, approximate inverse reactants
can be employed using AIME [38]. AIME has already been
demonstrated to resolve nonlinear relationships such as those
in CNNs by means of golden-order inverse reactants.

Furthermore, the sample size should exceed the number
of features for high-dimensional datasets. This is important
to avoid overfitting and to extract principal components that
reflect the true structure of the data. For example, in bioinfor-
matics studies with thousands of features but limited sample
sizes, dimensionality reduction and data filtering should be
considered before PCA. This can also be achieved using
AIME to derive the important features in advance and to
calculate them [38].
A limitation of PCA loadings is that if a particular principal

component is strongly dependent on a particular variable,
the variation in that variable may substantially affect the
interpretation of the principal component, which may also be
the case with the PCaLDI method [59]. PCaLDI can include a
PFI component to determine whether the feature is important.

Assessing the importance of a feature using PFI aids in
understanding which variables best explain the variance in
the data; however, it is computationally expensive and does
not directly account for interactions between features. This
limitation arises because the PCaLDI method uses PCA and
limits the number of features to permutation from the PCA
loading values, making it computationally less expensive than
regular PFI.

C. COMPUTATIONAL CONSIDERATION
Fig. 2 demonstrates the overall framework of PCaLDI as
formulated thus far. It consists of the normalize and PCA
function, normalization and principal component mapping

function, top k important feature extraction function, per-
mutation and evaluation function, and similarity or distance
computation function.

The normalize and PCA function performs normalization
and PCA using dataset X in the field as input, for which (1)
to (3) in III-B are applicable. The component mapping
function takes xτ , xυ from the user as input and performs
normalization and PCA using the normalized PCA function.
The top k important feature extraction function uses PCA
loadings to represent the relationship between the original
features and principal components, x′τ , x′υ . The similar-
ity or distance computation function computes the distance
between two vectors (in this case x′τ , x′υ ) using the PCA
loadings that represent the relationship between the original
features and principal components, which corresponds to (5)
in III-B. The permutation and evaluation function performs
permutations on the top k important features specified by
the top k important feature extraction function, computes the
difference between the similarity or distance computed by the
similarity or distance computation function, and determines
the features to be important if the difference is larger than the
original similarity or distance. The permutation and evalua-
tion function follows (9) to derive the features that contribute
to the similarity or distance of the two vectors x′τ , x′υ .

FIGURE 2. Flow of the PCaLDI algorithm.

Given the computational complexity of PCA, calculating
the covariancematrix requiresO(m×n2) time, whereas eigen-
value decomposition requires O(n3) time. Consequently, the
frequent recomputation of PCA, particularly when using PFI,
is impractical for large datasets with numerous features. How-
ever, calculating the contribution score is computationally
efficient and requires only O(n) time for both the Hadamard
and inner products. Therefore, an overall computational com-
plexity of O(n) is obtained. Thus, PCaLDI is cost effective,
enabling initial contribution score calculations that can be
refined to focus on the top k features of the PFI.
Thus, employing PCA requires retaining both the origi-

nal dataset and PCA transformation matrix in memory. The
transformation matrix is used to project the original dataset
onto the principal component space. This is particularly
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concerning when dealing with large datasets, in terms of both
the volume and feature count, as it leads to increased memory
usage.

Standardizing or normalizing the original dataset is rec-
ommended when using this method. Features with different
scales can significantly skew PCA outcomes; in particular,
features on larger scales can disproportionately influence the
orientation of the principal components [60], their loadings,
and even the PCaLDI contribution calculations.

Parallelization and distributed computing [61] can be
implemented to facilitate rapid processing of large datasets.
However, this approach introduces challenges such as ensur-
ing equal data partitioning, effective integration of partial
results, and calculation synchronization.

Several strategies can be adopted to optimize PCA cal-
culations. For instance, Sparse PCA [62] assumes that the
principal components for computing PCA efficiently are
sparse. Randomized PCA [63] offers a rapid approximation
method for large datasets. Incremental PCA [64] is memory
efficient and processes data in smaller batches. Leveraging
these methods in combination can make PCA computations
highly efficient in various scenarios. The use of hardware
that is optimized for parallel computing, such as graphics
processing units, can further accelerate these calculations.
This can pave the way for the application of PCaLDI to very
large datasets.

IV. EXPERIMENTS
I conducted a comprehensive evaluation of the PCaLDI sys-
tem, with a specific focus on explanations based on cosine
similarity for both the tabular and textual data. The cosine
similarity is calculated as the normalized dot product of
two vectors, representing the cosine of the angle between
them [65], and it measures how similar two vectors are in
terms of their orientation. It is particularly useful for datasets
in which directional information is significant. This consid-
eration is pivotal when evaluating the similarity in a space
that is defined solely by two vectors. Although the utility
of various metrics may be considered for such an analysis,
as geometrically evident, two vectors of the same magnitude
will have a shorter Euclidean distance between them if their
mutual angle is smaller, as can be observed with points on
the circumference of a circle. Therefore, in this case, the
experiment was limited to the cosine similarity.

The experimental setup and methodology are detailed in
Section IV-A, which outlines the evaluation procedures and
criteria. My initial experiment, described in Section IV-B,
involved dataset X, which was designed with randomly
assigned numbers and an incrementally increasing number
of features. This experiment aimed to assess the compu-
tational efficiency of PCaLDI under varying conditions.
Subsequently, Sections IV-C and IV-D present Experiments
2 and 3, which employed tabular and textual data, respec-
tively, to further evaluate the applicability and robustness of
the system in various data modalities.

A. EXPERIMENTAL ENVIRONMENT
I employed the Wine dataset [66] and Breast Cancer Wis-
consin dataset [67] as tabular data and the 20 Newsgroups
dataset [68] as text data. Both the Wine and Breast Cancer
Wisconsin datasets were subjected tomin–max normalization
and were sourced from Sklearn datasets.

Three baseline methods were employed for the compara-
tive analysis:

• All-feature permutation with PCA (AF-PCA): This
approach applies PCA across all features in the dataset
and then calculates the permutation importance for each
feature after PCA. Although this method assumes that
all features retain their importance after PCA, it is also
computationally intensive.

• Variance-based selection with PCA (Var-PCA): This
method calculates the variance of each feature in an
original dataset. Features with high variance are pri-
oritized, and PCA is applied only to these selected
features. Thereafter, the permutation importance is cal-
culated for this subset of features. This method assumes
that features with high variance in the original data are
important.

• All-feature permutation without PCA (AF-NoPCA):
This approach calculates the permutation importance
for all features in the original dataset without applying
PCA. It operates under the assumption that no dimen-
sionality reduction is required and considers all features
important.

Although the baseline methods used (AF-PCA, Var-PCA,
and AF-NoPCA) were adapted from standard practices for
the application of PCA and PFI, they were specifically
devised for this study to demonstrate their computational
and methodological differences with respect to PCaLDI.
These adaptations represent typical variations in the appli-
cation of PCA and PFI, which are widely understood in the
field, rather than novel methods that require specific refer-
ences. Their inclusion highlighted the innovative approach
of PCaLDI in terms of feature importance and computationa
l efficiency.

Note that although the level of agreement between PCaLDI
and these baseline methods may offer a measure of approxi-
mation, it does not necessarily attest to their accuracy. The
low agreement rate does not preclude the possibility that
PCaLDI can still effectively identify important features from
a different analytical perspective. Hence, a qualitative evalu-
ation was also included in this study by comparing specific
output results.

In Experiment 3, I omitted the results for AF-PCA and
AF-NoPCA because these computationally heavy baselines
could not be calculated in real time. Future studies may
address this limitation, potentially via parallel computation
or other techniques, as discussed in Section III-D.

The experimental setup was implemented using Python
3.10.12 on Google Colab Pro, leveraging libraries such as
scikit-learn 1.2.2, numpy 1.23.5, pandas 1.5.3, NLTK 3.8.1,
and matplotlib 3.7.1.
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B. EXPERIMENT 1: VERIFICATION OF COMPUTATIONAL
COST USING RANDOM MATRICES WITH DIFFERENT
NUMBERS OF FEATURES
In this experiment, I assessed the computational time required
for different numbers of features using the proposed PCaLDI
and baseline methods. Specifically, I set the data size to
1000 records and generated random number matrices with
varying numbers of features: 10, 50, 100, 150, 200, 250, 300,
350, 400, 450, and 500. The average computation time for
deriving the feature contributions was measured over 10 runs,
with k = 10, using the cosine similarity as the metric.

The results illustrated in Fig. 3 show that the compu-
tation time for AF-PCA increased sharply and linearly as
the number of features increased. Although PCA is effec-
tive in mitigating issues such as dimensionality, information
redundancy, andmulticollinearity, its computational demands
make calculating the PFI impractical as the feature count
increases. By contrast, the other methods, including PCaLDI,
exhibited only a moderate increase in the computation
time when the number of features increased, making them
more practical for real-world applications. The influence of
the number of principal components on the computational
efficiency of PCaLDI was further investigated in Experi-
ment 2. Interestingly, the computational time for AF-NoPCA
remained relatively stable and was not substantially bur-
densome, even without the incorporation of PCA or ML
retraining. The observed stability in the computation time
for the AF-NoPCA method can be attributed to the sim-
plicity of the permutation importance computation, which
does not involve complexity owing to dimensionality reduc-
tion or model retraining. This approach directly evaluates
the importance of features in the original space, thereby
avoiding the computational overhead associated with PCA
transformations. However, the scenario changes when the
method is applied to TF-IDF matrices, which inherently have
a high-dimensional feature space because of the vast num-
ber of unique words that are treated as individual features.
In such cases, the computational demand increases signifi-
cantly because permutation importancemust be computed for
each word across all documents, leading to a drastic increase
in the number of required calculations.

In summary, although I had to cap the number of features
to 500 for AF-PCA owing to computational constraints, the
experiment provided valuable insights into the computational
efficiency of each method. Importantly, the results demon-
strate that PCaLDI can derive feature contributions at lower
computational costs, making it a practical choice for real-
world applications.

C. EXPERIMENT 2: EFFECTIVENESS OF PCaLDI FOR
TABULAR DATA
1) QUANTITATIVE EVALUATION OF PCaLDI USING TABULAR
DATA
In this experiment, I used two distinct datasets: Wine [66] and
Breast Cancer Wisconsin [67]. The goal was to investigate

the commonalities and divergences in trends between the two
datasets. I investigated the results to highlight the key features
extracted by each method.

I assessed the shifts in the number of principal components
when comparing the proposed PCaLDI method with baseline
approaches. I set k = 5 for the Wine dataset and k = 10 for
the Breast Cancer Wisconsin dataset. The correlations in the
number of principal components are illustrated in Figs. 4
and 5 for the Wine and Breast Cancer Wisconsin datasets,
respectively. Note that these results represent the average of
100 calculations each, as the outcomes may be unstable for
smaller datasets owing to the inherent randomness in calcu-
lating the PFI. Here, the ‘‘degree of agreement’’ refers to the
inclusion of both feature names in the specified top k features.
The cosine similarity metric was used in this experiment.

FIGURE 3. Computation time with increasing number of features for the
proposed PCaLDI method and baseline methods AF-PCA, Var-PCA, and
AF-NoPCA.

For theWine dataset, as depicted in Fig. 4, the highest level
of concordance between the PCaLDI method and AF-PCA
(Baseline1) occurred while using four principal components.
This result suggests that the principal variations within the
dataset are primarily captured by the first four components
and that adding more components may introduce noise or
irrelevant information. Although some minor agreement with
other baselines was observed for one and two principal
components, relative consistency was observed beyond that,
indicating that the number of principal components was not
a significant variable in this context.

For the Breast Cancer Wisconsin dataset, as illustrated in
Fig. 5, the agreement between PCaLDI and AF-PCA (Base-
line1) peaked when four or five principal components were
used. This reiterates that major variances are captured effec-
tively by these components and that adding more components
may introduce noise. For the other baselinemethods, a peak in
agreement occurred at the sixth principal component; lesser
stability and plateauing were observed when fewer and more
than six components, respectively, were used.
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FIGURE 4. Agreement between the proposed method and baselines with
varying numbers of principal components for the Wine dataset.

FIGURE 5. Agreement between the proposed method and baselines with
varying numbers of principal components for the Breast Cancer
Wisconsin dataset.

This pattern suggests that the agreement rates between
the proposed PCaLDI and AF-PCA (Baseline1) were opti-
mized for a specific number of principal components. Beyond
this number, the agreement rates remained steady. By con-
trast, the agreement rates for the other baselines were less
influenced by the number of principal components. This
finding suggests that these methods may be insensitive to
PCA results or may not be significantly affected by them
in terms of feature selection. The detected trend, whereby
the concordance between the novel PCaLDI method and
AF-PCA baseline stabilized after a particular count of princi-
pal components was introduced, aligns with the conventional
wisdom in the realm of feature reduction techniques. Accord-
ing to Jolliffe [60], including principal components past a
certain threshold generally results in a trivial enhancement
in the variance. This enhancement is often insufficient for
significantly improving the performance or comprehensibil-
ity of a model. Consistent with the observations made in the
present study, this phenomenon implies the presence of an
optimal count of principal components for effective feature
selection. This theme of diminishing marginal utility with an
increasing number of components is a recognized aspect of

diverse PCA applications, and it suggests an inherent trait
of PCA-centric feature selection approaches. For instance,
Var-PCA (Baseline2) may not have been influenced by the
number of principal components because it selects features
based on high variance, regardless of PCA. Similarly, NoPCA
(Baseline3) has no inherent connection to PCA. The decline
in agreement rates for PCaLDI and AF-PCA after the peak
suggests that additional principal components could make the
data either redundant or more noise prone.

Fig. 6 presents the agreement rates between PCaLDI and
the individual baseline methods (AF-PCA, Var-PCA, and
AF-NoPCA) when the number of principal components was
set to three and k = 5 for the Wine dataset and to three and
k = 10 for the Breast Cancer Wisconsin dataset. Overall, the
agreement was higher for the Wine dataset and slightly lower
for the Breast Cancer Wisconsin dataset. This result indicates
that Var-PCA aligns most closely with PCaLDI in terms of
feature selection for the Wisconsin Breast Cancer dataset.
In the case of theWine dataset, PCaLDI serves as a reasonable
approximation to other methods, probably because the Wine
dataset is simpler than the Breast Cancer Wisconsin dataset,
making it easier to capture its diversity and complexity.

2) QUALITATIVE EVALUATION OF PCaLDI USING FOCUSED
DATA
Next, I analyzed the actual feature contributions for specific
data pairs. For the Breast CancerWisconsin dataset, I focused
on pairs with the highest cosine similarity and three randomly
selected pairs. In my tests, the pair with the highest cosine
similarity was (174, 304) and the randomly selected pairs
were (308, 81), (512, 527), and (243, 56). The cosine simi-
larities for the target data pairs are presented in Table 1.

FIGURE 6. Agreement between the proposed method and baselines for
the Wine and Breast Cancer Wisconsin datasets.

Figs. 7, 8, 9, and 10 show the output contributions for the
pair with the highest cosine similarities (174, 304), as com-
puted via the proposed PCaLDI method and the baseline
methods AF-PCA, Var-PCA, and AF-NoPCA, respectively.
Fig. 11 further highlights the agreement between these meth-
ods. As shown in Figs. 7, 8, and 9, all three PCA-based
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methods, namely PCaLDI, AF-PCA, andVar-PCA, identified
‘‘worst concave points’’ as a major contributor to the cosine
similarity. The contribution of this feature eclipses that of the
other features, implying that it largely dictates the cosine sim-
ilarity for a specific pair of data instances. In stark contrast,
the AF-NoPCA output in Fig. 10 shows that ‘‘mean symme-
try’’ had the largest contribution. This discrepancy suggests
that AF-NoPCA, which operates without PCA, considers a
broader array of features, thereby capturing different facets
of data. AF-PCA also outputs ‘‘worst concave point’’ at the
top. This could be because PCA inherently magnifies the
significance of this feature. Conversely, AF-NoPCA, which
does not employ PCA, potentially captures a broader range of
feature diversity and places a greater emphasis on alternative
feature combinations. In general, these results show a clear
distinction between the methods that employ PCA and those
that do not. Methods using PCA highlight ‘‘worst concave
points’’ as a key feature contributing to data-pair similarity,
whereas non-PCA methods consider a more diversified set
of features. According to Fig. 11, the proposed PCaLDI, AF-
PCA, andVar-PCAmethods all showed similar trends, except
for the case of ‘‘worst concave points,’’ which exhibited lower
values, thereby resulting in minor deviations in the agreement
levels. However, the overarching directionality remained con-
sistent across the methods.

TABLE 1. Cosine similarity values for pairs of target data instances.

FIGURE 7. Feature derivation results contributing to the cosine similarity
of data instance pair (174, 304) using PCaLDI.

Figs. 12, 13, 14, and 15 show the feature contributions
determined by the proposed PCaLDI method and baseline
methods AF-PCA, Var-PCA, and AF-NoPCA, respectively,
for the randomly selected data pair (308, 81). The degree of
agreement between the methods is shown in Fig. 16. In line
with earlier observations, ‘‘worst concave points’’ emerged
as the dominant feature influencing the similarity for PCaLDI
and AF-NoPCA in Figs. 12 and 14. This result confirms that

FIGURE 8. Feature derivation results contributing to the cosine similarity
of data instance pair (174, 304) using AF-PCA.

FIGURE 9. Feature derivation results contributing to the cosine similarity
of the data instance pair (174, 304) using Var-PCA.

FIGURE 10. Feature derivation results contributing to the cosine
similarity of data instance pair (174, 304) using AF-NoPCA.

FIGURE 11. Degree of agreement between the proposed PCaLDI and
baseline methods AF-PCA, Var-PCA, and AF-NoPCA contributing to the
cosine similarity of data instance pair (174, 304).

this feature plays a pivotal role in a dataset. Fig. 13 shows
that AF-PCA elevated ‘‘mean texture’’ as the most conse-
quential feature. In addition, both ‘‘texture error’’ and ‘‘worst
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concave points’’ featured prominently in the rankings. For
AF-NoPCA in Fig. 15, ‘‘mean concavity,’’ ‘‘worst concave
point,’’ and ‘‘worst text’’ were the top features. The agree-
ment values depicted in Fig. 16 (0.6 for AF-PCA and 0.5 each
for Var-PCA and AF-NoPCA) suggest that texture-related
features significantly influence the similarity metrics for this
specific pair of data points. Notably, these agreement values
were higher than those observed in previous examples for
features not topping the list, hinting at a more diverse set
of influential features as shown in Figs. 12, 13, 14, and 15
compared with Figs. 7, 8, 9, and 10.

FIGURE 12. Feature derivation results contributing to the cosine
similarity of data instance pair (308, 81) using PCaLDI.

FIGURE 13. Feature derivation results contributing to the cosine
similarity of data instance pair (308, 81) using AF-PCA.

FIGURE 14. Feature derivation results contributing to the cosine
similarity of data instance pair (308, 81) using Var-PCA.

Figs. 17, 18, 19, and 20 present the feature contributions
calculated using the proposed PCaLDI and baseline methods
AF-PCA, Var-PCA, and AF-NoPCA, respectively, for the
randomly selected data pair (512, 527). The corresponding
agreement metrics for these methods are shown in Fig. 21.
According to Figs. 17, 16, and 19, ‘‘worst texture’’ was identi-
fied as a highly influential feature with values of 0.369384 for

FIGURE 15. Feature derivation results contributing to the cosine
similarity of data instance pair (308, 81) using AF-NoPCA.

FIGURE 16. Degree of agreement between the proposed PCaLDI and
baselines AF-PCA, Var-PCA, and AF-NoPCA contributing to the cosine
similarity of data instance pair (308, 81).

PCaLDI, 0.370127 for AF-PCA, and 0.375162 for Var-PCA.
In addition, both ‘‘worst concave points’’ and ‘‘mean concave
points’’ were ranked among the top features, confirming
their significance for this data pair. However, Fig. 20 reveals
that, in AF-NoPCA, ‘‘worst concave points’’ was the highest
contributing feature. Note that the lower values of ‘‘worst
concave points’’ in AF-NoPCA than in the other methods
may be attributed to the absence of dimensionality reduc-
tion in AF-NoPCA. Without PCA-based feature extraction,
AF-NoPCA evaluates the importance of features in the orig-
inal space, where the distribution and scale of each feature
remain unchanged. This may result in different features being
identified as more influential, owing to the preservation of
the original data structure, which may not be the case in
PCA-based methods that realign the feature space. As shown
in Fig. 21, the agreement levels were 0.7 for PCaLDI and
AD-PCA, 0.6 for PCaLDI and Var-PCA, and 0.4 for PCaLDI
and AF-NoPCA. These levels highlight the strong influence
of ‘‘worst texture’’ on this data pair, especially in methods
that employ PCA. This result suggests that PCA tends to
amplify the impact of specific features. By contrast, AF-
NoPCA, which does not utilize PCA, appears to diversify
its focus, possibly by assigning greater weights to different
aspects or combinations of features. This disparity between
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the PCA and non-PCA methods emphasizes the tendency of
PCA to prioritize certain features over others.

FIGURE 17. Feature derivation results contributing to the cosine
similarity of data instance pair (512, 527) using PCaLDI.

FIGURE 18. Feature derivation results contributing to the cosine
similarity of data instance pair (512, 527) using AF-PCA.

FIGURE 19. Feature derivation results contributing to the cosine
similarity of data instance pair (512, 527) using Var-PCA.

Figs. 22, 23, 24, and 25 present the feature contribu-
tions from four different methods: the proposed PCaLDI
and baseline AF-PCA, Var-PCA, and AF-NoPCA meth-
ods, respectively. These figures depict the contributions of
the randomly selected data pair (243, 56). The agreement
between these methods is shown in Fig. 26. According to
Figs. 22, 23, 24, and 25, ‘‘worst concave points’’ emerged
as the most influential feature for PCaLDI, AF-PCA, Var-
PCA, and AF-NoPCA, respectively. Therefore, this feature
likely drives the majority of the cosine similarity for this data
pair. In addition, ‘‘mean fractal dimension’’ was ranked as
the second most influential feature in PCaLDI and AF-PCA,

FIGURE 20. Feature derivation results contributing to the cosine
similarity of data instance pair (512, 527) using AF-NoPCA.

FIGURE 21. Degree of agreement between the proposed PCaLDI and
baselines AF-PCA, Var-PCA, and AF-NoPCA contributing to the cosine
similarity of data instance pair (512, 527).

as shown in Figs. 22 and 23, respectively. Interestingly, this
feature did not appear in the top 10 features of Var-PCA.
However, ‘‘mean concave points’’ consistently ranked in the
top 10 across PCaLDI, AF-PCA, and Var-PCA, confirming
its importance. By contrast, the AF-NoPCA data in Fig. 25
deviate significantly from the observed trends of the other
methods. In AF-NoPCA, ‘‘worst smoothness’’ was ranked
eighth, whereas it did not feature in the top 10 in the other
methods. This result, combined with the generally lower val-
ues observed in AF-NoPCA, suggests that this method has a
poorer discriminative ability than those of the other methods.
In terms of the agreement shown in Fig. 26, the concordance
values for PCaLDI and AF-PCA, Var-PCA, and AF-NoPCA
were 0.4, 0.8, and 0.5, respectively.

Figs. 27, 28, 29, and 30 present the feature outputs from the
proposed PCaLDI and baseline methods AF-PCA, Var-PCA,
and AF-NoPCA, respectively, for the data pair (174, 304),
which exhibited the highest cosine similarity. The agreement
between these methods is shown in Fig. 31. ‘‘Worst concave
points’’ was prominent as the main contributor to the cosine
similarity in the PCA methods (PCaLDI, AF-PCA, and Var-
PCA), as shown in Figs. 27, 28, and 29. According to Fig. 30,
only AF-NoPCA ranked ‘‘mean concavity’’ first owing to
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the absence of PCA in the AF-NoPCA method. Regarding
the agreement depicted in Fig. 31, Var-PCA exhibited a
higher concordance rate. However, when examined individ-
ually, PCaLDI, AF-PCA, and Var-PCA demonstrated similar
directional tendencies, whereas AF-NoPCA exhibited a slight
variation.

FIGURE 22. Feature derivation results contributing to the cosine
similarity of data instance pair (243, 56) using PCaLDI.

FIGURE 23. Feature derivation results contributing to the cosine
similarity of data instance pair (243, 56) using AF-PCA.

FIGURE 24. Feature derivation results contributing to the cosine
similarity of data instance pair (243, 56) using Var-PCA.

The findings indicate that the proposed PCaLDI approach
shares similarities with the baseline methods AF-PCA and
Var-PCA, whereas AF-NoPCA diverges in its recommen-
dations. Employing PFI across all features is ideal, as in
AF-PCA and AF-NoPCA, to ascertain the precise feature
contributions. However, PCaLDI offers a more computation-
ally efficient alternative by leveraging PCA loadings and
delivering results that approximate those of its computation-
ally intensive counterparts.

In scenarios with a high feature count, computationally
expensive methods such as AF-PCA and AF-NoPCA may

FIGURE 25. Feature derivation results contributing to the cosine
similarity of data instance pair (243, 56) using AF-NoPCA.

FIGURE 26. Degree of agreement between the proposed PCaLDI and
baselines AF-PCA, Var-PCA, and AF-NoPCA contributing to the cosine
similarity of data instance pair (243, 56).

FIGURE 27. Feature derivation results contributing to the cosine
similarity of data instance pair (174, 304) using PCaLDI.

become impractical. Under such circumstances, opting for
PCaLDI or Var-PCA, both of which offer computational
advantages, may be a pragmatic choice.

However, Var-PCA calculates the PFI only for its top k fea-
tures that are predetermined by their variance. Given that the
feature variance remains static, Var-PCA is likely to identify
the same features as important repetitively depending on the
data type. From this perspective, PCaLDI provides a more
flexible and nuanced evaluation.
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FIGURE 28. Feature derivation results contributing to the cosine
similarity of data instance pair (174, 304) using AF-PCA.

FIGURE 29. Feature derivation results contributing to the cosine
similarity of data instance pair (174, 304) using Var-PCA.

FIGURE 30. Feature derivation results contributing to the cosine
similarity of data instance pair (174, 304) using AF-NoPCA.

D. EXPERIMENT 3: EFFECTIVENESS OF PCaLDI FOR TEXT
DATA
Data from the 20 Newsgroups dataset [68] were employed
in Experiment 3 to investigate the utility of PCaLDI in
generating explanations for text data. Specifically, I used
posts from the ‘‘rec.sport.baseball’’ and ‘‘rec.sport.hockey’’
categories. Posts with only spaces, line breaks, or fewer
than 15 words were excluded, leaving 953 records for anal-
ysis. The generated TF-IDF matrix for this dataset had
dimensions of 953 × 12733. Subsequently, I applied data
reduction to a 100-dimensional principal component space
using 200 principal components. The data instance pair
selected for this experiment was that with the highest cosine
similarity (569, 716).

Fig. 32 displays the top 20 features (words) contributing
to the cosine similarity for data pair (569, 716). Fig. 32
reveals that common words such as ‘‘go,’’ ‘‘york,’’ and
‘‘let’’ ranked highly. In addition, sport-specific terms such as
‘‘ranger,’’ ‘‘game,’’ and ‘‘champ’’ confirmed that these texts

FIGURE 31. Degree of agreement between the proposed PCaLDI and
baselines AF-PCA, Var-PCA, and AF-NoPCA contributing to the cosine
similarity of data instance pair (174, 304).

are sports oriented, particularly concerning field hockey. The
term ‘‘ranger’’ appears to refer to a hockey team. Academia-
related words such as ‘‘upenn,’’ ‘‘kkeller,’’ ‘‘quaker,’’ and
‘‘ivy’’ also featured prominently, suggesting that both texts
might focus on themes connecting sports and educational
institutions such as the University of Pennsylvania and the
Ivy League.

FIGURE 32. Feature derivation results contributing to the cosine
similarity of data instance pair (569, 716) using PCaLDI.

These experimental results demonstrate that the proposed
PCaLDI method is useful for extracting meaningful features
or words that elucidate why two data instances exhibit high
cosine similarity. The process begins with vectorizing the
text data using methods such as TF-IDF, followed by the
application of PCA for dimensionality reduction. This paves
the way for explaining the measures of cosine similarity
without requiring the computation of the PFI for each fea-
ture or word individually. Consequently, PCaLDI provides a
unique, approximate perspective for identifying contributing
features while reducing the computational overhead substan-
tially. In the experimental setting of the present study, the
average computation time for PCaLDI was approximately
90.97 s, with a standard deviation of 1.163 for five data
instance pairs. Given that the initial 953 × 12733 matrix was
compressed to 200 dimensions using PCA and that salient
features were identified from among 12733 possibilities, this
computation time is within practical limits.
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V. DISCUSSION
PCaLDI operates by using the loadings and values within
the principal component space for the data instances under
scrutiny. This aids in pinpointing the top k features that
contribute to cosine similarity. Subsequently, the PFI is cal-
culated using only the top k features. This drastically reduces
the computational complexity and yields a nuanced yet accu-
rate perspective of the feature importance. The efficacy of
PCaLDI was rigorously validated against the three baseline
methods used in this study.

Moreover, PCaLDI addresses the ‘‘curse of dimension-
ality,’’ which is a phenomenon that is encountered in
high-dimensional data spaces that can diminish the dis-
cernible distance between data points. Consequently, the
similarity and distance calculations are affected. PCaLDI
overcomes this challenge by employing PCA for dimension-
ality reduction, thereby enabling a more accurate evaluation
of feature contributions.

The findings of Experiment 3 on the text data are particu-
larly compelling. Salient features or words were successfully
distilled from a high-dimensional feature space, which sig-
nificantly contributed to the cosine similarity between data
instance pairs. These results suggest the potential of PCaLDI
as a novel text-mining tool.

However, this approach has some limitations. PCA tends
to falter with nonlinear data structures, noisy datasets,
or datasets that are replete with outliers. Although other
dimensionality reduction techniques such as t-SNE [57]
and UMAP [58] are well suited for such data, they were
not investigated in this study, leaving room for future
enhancements.

Future studies should consider integrating nonlinear
dimensionality reduction methods by introducing kernel
PCA, autoencoders, and AIME from previous studies to
improve the applicability of PCaLDI to nonlinear datasets.
I believe that this will enable us to understand the data
structure more accurately and gain useful insights, even in
complex datasets with nonlinear relationships.

In addition, this study focused on cosine similarity met-
rics to demonstrate the applicability of PCaLDI in various
scenarios. However, this framework can be extended to incor-
porate other vector evaluation methods, thereby providing
an avenue for future research. For example, investigating
the use of PCaLDI with metrics such as the Manhattan dis-
tance [65], which measures the absolute differences between
points in a vector space, or the Minkowski distance [69],
which is a flexible metric that can be adapted to different
scales, could reveal further insights. In addition, the Jaccard
index [65], which assesses the similarity based on members
that are shared between sets, could provide an alternative
perspective when analyzing categorical data. These potential
extensions highlight the wide applicability of the PCaLDI
framework and its relevance to various analytical challenges.
In future, this framework can be enhanced by integrating
more advanced vector evaluation methods that are beyond
the scope of PCA. Techniques such as t-SNE [57] and

UMAP [58], which lack the explicit concept of an explained
variance ratio, as in PCA, can benefit from the application of
AIME [38] to compute their embeddings in an inverse man-
ner. The combination of PCaLDI and AIME [38] could pave
the way for innovative explanations of the complex nonlin-
ear relationships inherent to the reduced-dimensional spaces
created by these methods. These advancements will enhance
the interpretative power of PCaLDI and expand its utility in
uncovering the intricate structure of data in various analytical
scenarios.

This method for deriving explanations for cosine similarity
also sets the stage for creating interpretability frameworks for
unsupervised ML algorithms that leverage these measures,
such as k-means clustering. For example, PCaLDI can be
applied to explain why a particular set of data points belongs
to a specific cluster and to identify and compare the feature
contributions of the centroid of each cluster. This is a com-
pelling direction for future research.

Finally, although PCaLDI reduces computational costs,
both computation time and memory usage increase with
larger datasets and more features. Further research should
address the issues surrounding the selection of computational
resources and implementation of parallel and distributed pro-
cessing to overcome these challenges.

In conclusion, the overarching aim of this study was to
develop explainable metrics, for which PCaLDI serves as the
foundational step. This method may be further refined and
extended in future studies.

VI. CONCLUSION
In response to the challenges of analyzing high-dimensional
data and understanding the factors that contribute to data
similarity and distance, this study has introduced PCaLDI.
As datasets become increasingly dimensional, traditional
methods cannot provide both explanatory power and high
computational efficiency. PCaLDI offers a solution that
strikes a balance between these aspects, thereby providing a
new perspective on high-dimensional data.

PCaLDI is an efficient method for identifying features
that influence the similarity and distance metrics in high-
dimensional datasets. This approach not only aids in uncov-
ering the mechanisms behind the similarity and distance
but also offers the potential to deepen our understanding
of data and pave the way for further research. PCaLDI has
been demonstrated as particularly effective in cases where
the original data have numerous features, such as text data.
In addition, PCaLDI addresses the computational ineffi-
ciencies of existing methods by isolating the most relevant
features for data similarity and distance.

The effectiveness of PCaLDI was rigorously assessed and
demonstrated via quantitative and qualitative comparisons
with three baseline methods. The applicability of PCaLDI
was established using a well-known text dataset to extract
words that contribute to the cosine similarity. The results
confirmed that PCaLDI could uncover new contributing fea-
tures with an improved computational efficiency.
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Similar to other analytical methods, PCaLDI is influenced
by the intrinsic properties of the data that it processes. It may
not be suitable for datasets with nonlinear structures, sig-
nificant noise, or outliers. Future studies could investigate
the integration of other dimensionality reduction techniques
to overcome these limitations. Furthermore, PCaLDI offers
potential beyond the scope of this study, with opportunities to
adapt and refine the method for various applications in fields
that require XAI.

In summary, PCaLDI serves as a robust tool for enhancing
transparent and reliable decision-making in the era of big
data. This is especially important given the growing demand
for XAI and ML models in critical sectors such as health-
care, finance, and public policy. Thus, this study represents
a significant advancement toward a more comprehensive and
nuanced understanding of data similarity and distance.
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