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ABSTRACT Increasing motorization represents a severe problem worldwide, also affecting the emission
levels of the road network. Accordingly, congestion management has obtained growing importance because
of its strong economic, social, and environmental implications. Macroscopic Fundamental Diagram (MFD)
based traffic control is a popular and efficient approach in this scientific field. In our research work the
urban network has been divided into homogeneous regions, each of them characterized by its own MFD,
and they are regulated using a network-level control scheme. The proposed Multiobjective Model Predictive
Control (M-MPC) takes into account the congestion andCO2 emission levels of the urban network, modelled
by the emerging Emission Macroscopic Fundamental Diagram (e-MFD). The applied strategy has been
demonstrated in a realistic traffic scenario (Luxembourg City) using validatedmicroscopic traffic simulation.
According to the introduced multiobjective approach, the control method can better exploit the road network
capacity while efficiently reducing traffic-induced emissions.

INDEX TERMS Traffic congestion, emission, traffic management, MFD, e-MFD, multiobjective model
predictive control, route guidance.

LIST OF NOTATIONS
αij Accumulation rate.
1i Zone i oversaturation duration.
γi e-MFD of region i.
λ Cost function weigth.
N Set of urban regions.
Nc Set of regions of the city centre.
Ni Set of regions adjacent to i.
θhij Route choices reflecting crossing zone

h, starting from zone i, to reach zone j.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

Cih Receiving capacity of region h from
region i.

CS Congestion severity.
ECO2 CO2 normalized value of the city centre.
fih Linear transfer flow.
FTMPC MPC feedback time.
Gi Outflow of region i.
J1M CO2 maximum value of the city centre.
J2M Production maximum value of the city

centre.
k Time instant.
Kp Observation time.
kp Control time step.
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Li Average trip length of region i.
li Length of road lane segment i.
Mh
ij Transfer flow of vehicles that are in i and

must cross to region h, in order to reach
destination j.

Mii Internal trip completion rate of region i.
ni Total accumulation of region i.
Np Prediction horizon.
ncr,i Zone i critical accumulation value.
ni,max Maximum accumulation of region i.
nij Number of vehicles in region i which

have as their destination the region j.
npeak,i Zone i peak accumulation value.
P Production normalized value of the city

centre.
Pi Travel production of region i.
qwI Zone I weighted average flow.
qi Measure flow on road lane segment i.
qij Demand for vehicles, which are in

region i to reach destination j.
sP Deviation between P and thd .
sCO2 Deviation between ECO2 and thd .
si% Zone i oversaturation degree.
t1 Time instant in which zone congestion

appears on the first time.
t2 Time instant in which zone congestion

definitively ends.
Tp Controller sample time.
thd Threshold parameter.
co2i Measure CO2 on road lane segment i.

I. INTRODUCTION
Traffic congestion is a growing problem and is responsible
for many externalities, such as emissions and delays, and
its management is vital in order to efficiently use the road
infrastructure. Severe problems of urban traffic congestion
have characterized many cities worldwide since most of
the population activities are placed in the urban context.
Indeed, since the 70s, different control strategies have been
developed. In this regard, model-based control strategies
are used in order to optimize urban network performance
through the use of mathematical traffic models [1]. The most
developed model-based control techniques are UTOPIA [2],
MITROP [3], OPAC [4], PRODYN [5], RHODES [6],
CRONOS [7] and MOTION [8]. These strategies use
simple mathematical models offering limited prediction
capabilities. Alternatively, some control techniques use very
detailed micro and mesoscopic models that deal with local
information of the network; it is worth mentioning in
this regard, SCATS [9] and SCOOT [10]. Most parts of
the above-mentioned control techniques applied on urban
networks only focus on one part of the network, allowing
local optimization [11]. In some cases, a local optimization
could compromise the mobility performances of the rest of

the uncontrolled urban network. Indeed, it is not easy to
coordinate local controllers placed in different areas of an
urban network, and then it is often not possible to guarantee
the management of a large-scale network [12], [13], [14].

Another critical aspect is related to the computational
burden associated with these approaches, in particular when
they are based on very detailed traffic models since it is
difficult to acquire and analyze in real-time, thereby imposing
a computational burden on the system [15], [16]. An oppor-
tunity to solve this issue is represented by macroscopic traffic
flow models such as Cell-Trasmission-model (CTM) and
Link-Trasmission-model (LTM) that could be employed in
control applications based on more aggregated information
about the network [17]. This leads to increasing interest
in research about the topic of network-level traffic control
characterized by low computation effort [18]. In this regard,
control techniques based on the paradigm of the Macroscopic
Fundamental Diagram (MFD) [19] gained great interest [20].

A. LITERATURE REVIEW OF MFD BASED CONTROL
APPROACHES
The MFD provides aggregated information through the
use of a concave relationship between only two variables,
the accumulation (e.g. link-length weighted average den-
sity/number of vehicles), and the production (e.g. link-length
weighted average flow) which can be measured in real-time,
and thus strongly reduces the computational burden of the
measurement procedure inside a control framework [21],
[22].

For the above reason, the MFD modelling paradigm tool
has gained a lot of popularity in managing network-level
control techniques such as Perimeter control and Route
Guidance. Typically theMFD is defined for different portions
of an urban network, generating the so-called multireservoir
models that allow the performing of Hierarchical control
schemes [13], [23], [24]. In this hierarchical scheme, at the
upper level, the controller uses the MFD information to
understand the congestion level of each region and conse-
quently manipulates the macroscopic traffic flows through an
inter-regional actuation system. At the lower level, some local
controllers are used to regulate the mesoscopic traffic flows
through an intraregional actuation system (e.g. signalized
intersections, variable message signs).

A lot of works in literature combine the modelling
paradigm of the MFD with the use of the Model Predictive
Control (MPC) technique [25]. The motivation for the
aggregation of theMFD paradigm inside theMPC framework
is the computational complexity of the MPC, scaling poorly
for high-dimensional and non-convex problems [26]. One
of the first works using this control paradigm is proposed
by [27], where the authors solved an optimal perimeter
control problem, also known as gating, by using the MPC,
where the prediction model and the plant are formulated
by MFD. The gating protects a specific network area by
limiting access to it using a traffic light system. But this
strategy increases the waiting time and the queue could
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compromise the congestion levels of the other zones. The
Perimeter Control problem has become the main object
concerning network-level control and different aspects of the
problem have been deeply investigated [28], [29], [30], [31],
[32]. Indeed, the Perimeter control problem is still nowadays
capturing the attention of researchers [33], [34], [35], [36].
An alternative to Perimeter Control is the Routing strategy,

also known as Route Guidance, used to suggest alternative
paths offered by the road infrastructure. This application
has some advantages since its applicability suits well in a
period in which the spread of information is guaranteed by
the development of different technological systems such as
smartphones providing floating car data (FCD) [37], [38],
and emerging vehicle-to-everything (V2X) communication
technologies [39], [40], [41]. A second advantage relies on
the minor infrastructure costs since it is not necessary to
control the traffic light system, but the usage of Intelligent
Transportation Systems (ITS) technologies such as Variable
Message Signs (VMS) panels and emerging communication
technologies represents a valid way to spread the control
decisions among the network users [42], [43]. One of the
most relevant application in this field was proposed by [44],
where the authors used theMFD andMPC-based approach to
deal with traffic congestion mitigation. Most recently, in [13]
the authors show the great potential of a large-scale Route
Guidance scheme in achieving coordination and efficient
use of network capacity, leading to increased mobility.
Additionally, in [45] the authors demonstrated how the
integration of a Route Guidance system in a Perimeter
Control scheme improves the performance of the MPC and
MFD-based controller.

B. LIMITATIONS AND CHALLENGES
Although very significant and promising, all the previous
applications were characterized by a common aspect related
to experimental validation in a simplified context. In all the
depicted cases, indeed, the highlighted strategies have been
applied in toy networks whose topology was not related to
existing road infrastructures. Furthermore, no MFD curves
calibration activity was carried out, and pre-defined curve
parameters established in the work of Yokohama [19] were
used for them. In this regard, typically, a unique reference
MFD curve was used for all the network regions [13],
[14], [27], [28], [29], [30], [31], [45], and [46]. It has been
extensively demonstrated that traffic congestion is typically
heterogeneously distributed along the network [24], [47],
[48], [49], [50]. In this regard, the partition procedure is
carried out in order to guarantee homogeneous regions in an
urban network. As a consequence, it is quite improbable that
the different regions obtained by the partition procedure have
the same topology. Consistently with results of [51], specific
curves should be defined for zones with different topological
characteristics.

Another relevant aspect concerns the proper representation
of the response of the controlled system and/or of the mech-
anisms underlying the actuation system. These assumptions

could compromise the prevision procedure carried out by the
MFD-model dynamics in the MPC framework. Undeniably,
a simplified and straightforward response of the traffic con-
text to the control actuation could be not enough to test and
evaluate the system’s robustness in real-world applications.
The approaches introduced by [13], [27], [28], [29], [30],
[31], and [45], are characterised by this limitation. Simulating
the controlled environment bymeans of an external tool could
help to overcome the issue ([52], [53], [54]). Specifically,
a microscopic traffic simulator could strongly improve the
realism of the application case study, given its ability to
emulate more precisely the stochasticity of flow propagation
and traffic dynamics. In this regard, during the last years some
efforts have been made in order to provide more realistic
case studies through the usage of Simulation tools in [55],
[56], and [57]. Moreover, typically the operating scenarios of
these works are not based on real (historical data) data taken
from the field, and the provided network infrastructures do
not cover the dynamics of a whole city. In this regard, in [55]
the demand generated with the traffic simulator Aimsun1

does not cover a whole day. In addition, the scenario created
does not cover the whole city of Barcelona, but 12km2 of
it (600 intersections and 1500 links have been modelled in
the network). In [56] the test network is made up of the
3rd and 6th districts of Lyon and the city of Villeurbanne
(3363 links) while in [57] the test site is a 64.7 km2 area
of Downtown San Francisco. The ability of the proposed
approaches to improve the mobility performances of the
tested areas has been demonstrated, but a question remains
about what happens in the rest (uncontrolled) portion of
the network. Certainly, all the applications mentioned focus
on analyzing and explaining their outcomes by referencing
the section of the network where control is implemented.
However, there is a notable absence of modelling the entire
network to assess the controller’s impact beyond the specific
test case.

A shared characteristic among all the examined works
is the common objective of control: either to minimize
the overall network travel time or maximize the network
throughput (i.e. the maximum rate of movement or flow of
vehicles through a transportation network) [36]. Neverthe-
less, it is widely acknowledged that transportation systems
exhibit conflicting dynamics, such as the tension between
maximizing network throughput and minimizing network
emission levels. For instance, the pursuit of higher network
throughput could potentially result in elevated emission
levels, as a larger volume of vehicles moves through the
infrastructure. Hence, there is an intriguing prospect to
develop a control framework that can effectively balance
these different aspects simultaneously. The need to develop
a monitoring system of network-wide emissions is recently
gaining popularity [58], [59]. The works of [60] and [61]
open the door for research in this direction. In particular,
in [60] the authors found a relationship between the network

1https://www.aimsun.com/aimsun-live
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FIGURE 1. An empirical e-MFD curve, [62].

aggregated variable average speed and the emission levels
of the network. In this way, they introduced new aggregated
curves called emission-Macroscopic Fundamental Diagrams
(e-MFDs). So, the e-MFD relates aggregate traffic dynamics
to emissions providing a mechanism to apply network-wide
traffic control and demand management policies to emissions
reduction objectives. This is confirmed in [62] in which the
authors explored the three branches of the e-MFD (i.e. free
flow, saturation and congested). In this regard, in Fig. 1 the
empirical e-MFD points collected by [62] are reported by
highlighting the free flow, the saturation and the congested
branches of the curve. The challenge of striking a balance
between congestion alleviation and emission reduction is
notably intricate, particularly when the network operates at
level of accumulations up to the saturation regime. Many
network control strategies focus on steering the network
into the saturation domain, where throughput is maximised.
However, by analysing the e-MFD curve, it becomes evident
that emission levels increase proportionally to the accumu-
lation values. Therefore, while a traffic management policy
maximizes throughput, it may cause excessive emission
levels. Moreover, the importance of adopting a harmonized
approach in urban management strategies, which reconciles
divergent objectives through the employment of multi-
objective methodologies, is underscored by recent literature
works [63], [64].

C. CONTRIBUTIONS
The objective of the current research is to make a further
step in the investigation of the MPC and MFD-based
network control. Indeed, the proposed application falls in the
stream of hierarchical network-level control where the upper
level optimizes network performance based on route choice
recommendations through different regions, whereas the
lower-level control performs a path assignment mechanism
satisfying the regional split ratios established by the MPC
controller at the upper level, and is inspired by the modelling

representation introduced in [12], [13], and [27]. However,
the advocated improvement with respect to the literature
concerns several different aspects that make this contribution
interesting.

First of all, the strategy is validated here on a large-
scale scenario, representing the whole city of Luxembourg;
this represents a unique case in the analyzed literature. The
complexity of the current application not only concerns
the width of the scenario itself, but also the realism of
the controlled system responses, since the Luxembourg
City demand and supply system is reproduced in the
microscopic traffic simulator SUMO [65], and is based on
the mobility studies performed in [66] that deal with city
traffic characteristics over recent years available on LuxTram
official Internet site.2 The higher realism has also led to an
increased need for calibration activities which confirmed that
different zones with different characteristics exhibit different
dynamics (and then MFD curves).

A second element of interest in the paper concerns the
investigation of the effects of the control when different
conflicting objectives are considered. In particular, the
CO2 aggregated emission levels of the urban network,
modelled by the emerging e-MFD, are taken into account
in the controller objective function in different combinations
with the generally used throughput maximization objective.
Notably, e-MFD curves have been calibrated specifically for
each zone. Finally, to implement the M-MPC a weighted cost
function in the MPC framework has been introduced, and
the original modelling framework has been improved with
a real-time mechanism for setting the value of the weights
according to the current network condition in order to balance
throughput maximization and CO2 levels minimization. The
multiobjective strategy has been benchmarked with respect to
simpler strategies, specifically:

• A Dijkstra Routing algorithm based on instantaneous
cost and user optimum already implemented in SUMO;

• Amono objectiveMPC framework for themaximization
of the network throughput;

• Amono objective MPC framework for the minimization
of the emission levels.

II. METHODS
An MPC-based control strategy is implemented in this work
to solve a routing problem. TheMPC framework is integrated
into a simulation environment, and it is tested and validated
in a realistic traffic scenario. In Fig. 2 the block diagram
of the control scheme is reported. The plant is the urban
network, i.e. the physical system whose behaviour should be
optimized. The network is divided into N regions, each of
which is characterized by its ownMFD curve used to estimate
its congestion level; this is aggregated information based on
the accumulation values of each zone (the number of vehicles
in the region) through the MFD modelling paradigm. The
state variable x(k) (veh) is an array of N elements containing

2https://www.luxtram.lu
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FIGURE 2. The control loop scheme.

the accumulation level of each zone of the network at the time
instant k . The state variable at the time instant k initializes the
forecasting model that is used in theMPC framework in order
to solve in real-time the optimization problem. The optimal
value of the control variable u∗(k) represents the optimal flow
split ratios among the regions (i.e. regional route choices) at
the time instant k that the users of the network should follow
in order to improve the network performances. This optimal
sequence is applied, through a proper actuation system, to the
whole network, by closing the loop. The control variable
u∗(k) and the traffic demand q(k) (veh/sec) at the time
instant k alter the network behaviour according to the loop
principle proposed in Fig. 2. However, the MPC represents
the high-level controller and the optimal value of the control
variable is the input of a lower-level controller. The spread
of the control signal throughout the urban network is applied
aiming to enhance the realism and applicability of this routing
strategy. This is achieved by replicating the functionality
of a conventional Intelligent Transportation System (ITS)
technology, specifically Variable Message Signs (VMSs).

Of course, VMSs are located in specific points of the
network, here defined SWitching Points (SWPs), that are
used to spread routing information in order to actuate the
optimal route choices. On the SWPs, the vehicle receives the
rerouting suggestion and it can change its route.

In the MPC framework, during the whole observation
time Kp [sec], the controller every control time step kp =

nTp, n ∈ N, solves a constrained optimization problem by
using a forecasting model that predicts, within a prediction
horizon window Np, the state variable values of the plant
whose behaviour it wants to optimize [25]. The parameter
Tp [sec] represents the controller sample time that establishes
its operating frequency, while the prediction horizon window
Np is an integer number expressed as the number of control
time steps kp in which the forecasting procedure is carried
out.

A. THE MFD AND E-MFD MODELLING TOOLS
In this approach, we use the MFD to have an aggre-
gated representation of the traffic flow dynamics of the
urban network. The MFD provides a relationship between
accumulation (the number of vehicles in the district) and
production (the weighted average flow in the district). Fig. 3
shows a typical MFD curve of an urban network region
distinguishing each operating condition on it (free flow,

FIGURE 3. A region MFD curve.

saturation, oversaturation). In the free flow regime, the
accumulation values are lower than the critical accumulation
value (i.e. sweet spot), and to an increase of accumulation,
an increase of production corresponds. Beyond the critical
value, the production decreases with the accumulation
increasing since the region’s capacity is reached. In the
saturation regime, the region achieves its optimal operating
conditions since the production is maximized and the zone
reaches the optimal throughput. We want to solve a routing
strategy in order to drive the network as nearest possible to
this operating domain, by controlling the accumulation values
near the critical one through an adequate manipulation of the
regional route choices. To apply the proposed control strategy,
the urban network is divided into different regions, each of
which is characterized by its MFD, as represented in Fig. 4.
Furthermore, an e-MFD curve has been associated with each
zone. In this work, the region e-MFD provides a relationship
between the zone accumulation and the CO2 level expressed
in kg, but this approach could be extended for other exhaust
emissions such as NOx and PMx . Nevertheless, focusing only
on optimizing for CO2 is adequate, given that the e-MFD
curves for various pollutants exhibit strong correlations.
Again, there is a need for proper calibration of each curve,
since [60], through experimental analysis, suppose that the
e-MFD might depend (similarly to the MFD) on the spatial
distribution of congestion, the driver adaptability, and the
unloading demand profile [24], [48]. In this regard, there
is some similarity between aspects that affect the shape of
an MFD (link length, signal settings, signal offsets, spatial
distribution of congestion) and the shape of an e-MFD curve.
Furthermore, emissions are significantly influenced by local
congestion phenomena such as stop-and-go traffic, that are
correlated with aggregated traffic quantities. Specifically, the
highest emission rates are linked to vehicle accelerations,
and the duration spent in acceleration is connected to the
frequency of stops each vehicle encounters during its path.
For these reasons, we assume that the same zone partitioning
of the network is used for the calibration of MFD and e-MFD
curves. It is worth noting that in [67] some properties of the
e-MFD have been highlighted. In this regard, it has been
demonstrated that the macro-emission reaches its peak value
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at the peak traffic flow (i.e. the MFD sweet spot point).
The observations in [67] showed that the flow breakpoint
around the sweet spot point segregates the e-MFD diagram
into three phases: stable (i.e. free flow), saturation and
unstable (i.e. congested). Indeed, the emission rate increases
rapidly with an increase in density/accumulation and reaches
a saturation level of maximum at the sweet spot value
during the loading phase. Then, the flow breakdown occurs
and the emission rate ([ton/hour]) starts to decrease by
accumulation increase until the recovery (unloading phase)
begins. It should be noted that, beyond the sweet spot
point, during the unstable phase, vehicles spend more time
on the network and produce more emissions. Therefore,
although the emission rate decreases during the unstable
phase, vehicles spend more time in the network and generate
more emissions. Indeed, more congestion results in more
cumulative emissions overall. This is confirmed in [62]
in which the authors explored the three branches of the
e-MFD already highlighted in Fig. 1. In accordance with the
proposal outlined in [62], the development of the emission
monitoring system is delineated into distinct phases. Initially,
the acquisition of network emission and traffic data is
undertaken, with a specific emphasis on utilizingmicroscopic
simulation software to emulate real-world conditions. This
process involves incrementally augmenting traffic demand
flow until the network attains gridlock, facilitating an
examination of e-MFD dynamics across congested and
free-flow regimes. Subsequently, in the second phase, the
correlation between the collected traffic data and network
emission levels is elucidated, enabling the calibration of
e-MFD curves essential for monitoring emissions on a
network-wide scale. To conclude, it is obvious that by relating
aggregate traffic dynamics to emissions, the e-MFD could
provide a mechanism to link network-wide traffic control
and demand management policies to emissions reduction
objectives. For this reason, in this research, we propose a
multiobjective controller trying to find a good compromise
between the maximization of the network throughput and the
minimization of network emissions.

B. THE MACROSCOPIC TRAFFIC FLOW MODEL
The proposed control strategy needs a mathematical model
to perform the forecasting procedure within the optimization
problem. In this regard, the mathematical model in [12] is
used to apply the forecasting procedure. For each region i a
set of equations is provided to describe the evolution in time
of the zone i accumulation.

nii(k + 1) = nii(k) + Tp
(
qii(k) −Mii(k)

−

∑
h∈Ni

Mh
ii(k) +

∑
h∈Ni

M i
hi(k)

)
, (1)

nij(k + 1) = nij(k) + Tp
(
qij(k)

−

∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj(k)

)
, (2)

FIGURE 4. Network zoning [12].

while the total accumulation of zone i is computed as
follows:

ni(k) =

∑
j∈N

nij(k), (3)

where:
• N = 1, 2, ..,N represents the set of regions of the urban
network;

• Ni indicates the set of all regions adjacent to region i;
• qij(k)[veh/s] represents the demand for vehicles, which
are in region i to reach destination j, aggregated in the
sample time Tp, at time instant k;

• nij(k) the number of vehicles in region i which have as
their destination the region j at the time instant k;

• M ii(k)[veh/s] is the internal trip completion rate of
region i (without going through another region);

• Mh
ij(k)[veh/s] the flow of vehicles that are in i and must

cross to region h, in order to reach destination j (transfer
flows).

The total accumulation values of each zone compose the state
variable x in the array form: x = [n1(k) n2(k) . . . nN (k)].
The transfer flow Mh

ij represents the minimum between the
sending flow from the region i to the adjacent region h and
the receiving capacity of the receiving region h Cih(nh(k)).
This flow capacity is presented as a piecewise function of
the receiving zone accumulation nh [12]. It is introduced to
mitigate the occurrence of overflow events within specific
areas; in other words, each region, denoted as i, possesses a
maximum accumulation, ni,max such that:

0 ≤ ni(k) ≤ ni,max . (4)

The transfer flows and the internal trip completion rates have
the following expression:

Mh
ij(k) = min

(
Cih(nh(k)), θhij(k)

nij(k)
ni(k)

Pi(ni(k))
Li

)
, (5)

Mii(k) = θii(k)
nii(k)
ni(k)

Pi(ni(k))
Li

, (6)
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in which:
• Pi(ni(k)) represents travel production, calculated
through the MFD function [(vehm)/s];

• θhij(k) ∈ [0, 1] and θii(k) ∈ [0, 1] the route choices,
that reflect the percentage of choices of the route that
involves crossing zone h, starting from zone i, to reach
zone j and the percentage of choices of the route
that involves remaining in zone i, to reach zone i,
respectively;

• Li, the average trip length [m], independent of the time
and the destination area associated with the crossing of
zone i.

The values θhij(k) compose the control variable u(k) in the
form u = [u1 u2 . . . uN ], where:

uh =


θh11 θh12 . . . θh1N
θh21 θh22 . . . θh2N
. . . . . .

. . . . . .

. . . . . .

θhN1 θhN2 . . . θhNN

 , ∀h = 1, 2, . . . ,N .

In Eq. (5) it is clear that there is a non-linear relationship
between transfer flows and accumulation. A linearization
is carried out in order to implement a linear optimization
problem. Some dummy variables are used:

• The accumulation rates αii(k) = nii(k)/ni(k) and
αij(k) = nij(k)/ni(k), ∀i, j ∈ N , measured every time
that we roll the horizon and considered constant during
the optimization horizon;

• The new decision variables fii = θiiGi(ni(k))αii and
fih = Gi(ni(k))

∑
j∈N

θhij(k)αij(k), ∀i, j ∈ N , h ∈ Ni,

where the function Gi(ni(k)) represent the outflows of
the regions of interest Pi(ni(k))/Li.

Similar to numerous other studies, the expression for the
capacity Cih(nh(k)) in Equation (5) is excluded, as observed
in [12]. This exclusion is justified from a control per-
spective, deeming it unnecessary. The implemented control
actions are designed to prevent the system from operating
in states approaching gridlock, making the modelling of
receiving capacity unnecessary within the M-MPC problem.
This assurance is further reinforced by incorporating the
constraint (4) in the formalization of the optimization
problem. Moreover, a simple assumption is considered: the
source-destination information regarding the zone accumu-
lations is not tracked, since is not necessary for control
purposes. So the set of equations (1), (2) and (3) becomes:

ni(k + 1) = ni(k) + Tp
(
qi(k) − fii(k)

−

∑
h∈Ni

fih(k) +

∑
h∈Ni

fhi(k)
)
. (7)

C. HIGH-LEVEL CONTROLLER: MULTIOBJECTIVE MPC
(M-MPC)
Eq. (7) is used to perform the forecasting procedure inside the
optimization problem. The goal is to optimize the congestion

and emission levels in the city centre, where the traffic
situation is the most critical. In this regard, the objective
function has the following expression:

J (k) = λ
J1(k)
J1M

− (1 − λ)
J2(k)
J2M

, (8)

where:
• J1(k) =

∑
i∈N

γi(ni(k)) represents the CO2 level of the
urban network of the city centre, estimated by using the
e-MFD curves γi of each region i;

• J2(k) =
∑

i∈N
Li(fii(k)+ fih(k)), ∀h ∈ Ni represents the

Travel Production of the city center;
• λ ∈ [0; 1] is the weight used to give priority to an aspect
or the other one.

In Eq. (8) the two cost functions J1 and J2 are normalized
by their maximum values J1M and J2M respectively, in order
to make a consistent comparison between the two quantities.
The parameters J1M and J2M were determined during the
calibration processes, through to the collection of simulation
data. Therefore, the optimization problem to be solved from
an MPC perspective is as follows:

min
θhij(k)

Np−1∑
k=kp

J (k) (9)

subject to (7), (4),

fii = θiiGi(ni(k))αii, (10)

fih = Gi(ni(k))
∑
j∈N

θhij(k)αij(k), (11)

∑
h∈Ni

θhij(k) = 1, (12)

0 ≤ θhij(k) ≤ 1,

∀i, j ∈ N , h ∈ Ni, h ̸= i,with

k = kp, kp + 1, . . . , kp + Np − 1. (13)

The objective function takes into account the congestion
level of the city centre and the CO2 levels at the same
time by predicting the network congestion state in the
following Np control time steps. The decision variables are
the route choices θhij, the MPC computes in real-time the
optimal sequence of them in order to minimize the levels of
congestion (i.e. maximize the travel production) and CO2 in
the city centre.

In this strategy, the value of the weight λ in the cost
function (8) is set in real-time (i.e. each control time step),
according to a specific weight-assignment criterion. Once the
value of λ has been established by the assignment criterion,
the cost function (8) is set accordingly and the MPC can start
the optimization procedure. The assignment criterion is based
on the comparison between the current normalized values of
the city centre emission and production at time instant k ,
called ECO2 (k) and P(k), respectively. The goal is to set λ
in order to assign the weight in (8) that guarantees an MPC
optimization providing Emission levels at least lower than
a given threshold of its maximum value (i.e. thd ∈ [0, 1])
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FIGURE 5. Time evolution of normalized emission and normalized production w.r.t. the chosen thd and comparison in
the time step k .

and Production levels higher than thd . An example of the
criterion application can be found in Fig. 5 which shows
the comparison of ECO2 (k) and P(k) with a value of thd
fixed to 0.7. The comparison is made each time we roll
the horizon and it can lead to 4 different cases covering all
the possible combinations between the normalized values of
CO2, Production, and thd . In each case a specific value is
assigned to λ and in this framework, the only parameter that
needs to be calibrated is the threshold value thd since it is
fixed a priori. The list of the 4 possible cases resulting from
the comparison is reported below:

1 ECO2 (k) ≤ thd and P(k) ≤ thd ;
2 ECO2 (k) ≤ thd and P(k) > thd ;
3 ECO2 (k) ≥ thd and P(k) > thd ;
4 ECO2 (k) ≥ thd and P(k) ≤ thd .

In the first case, according to the expression of the cost
function (8), λ is set to 0 because the control needs to
guarantee a level of city centre production of at least the thd
value. In the 2nd case, there is no need to apply the control
since city centre emission levels don’t exceed the thd and
production is higher than the threshold. The 3rd case is the
opposite of the 1st one, so λ is set to 1. Finally, in the 4th case,
the controller needs to act in both directions (minimization of
ECO2 andmaximization ofP); it is needed to take into account
the deviations between ECO2 and thd that is called sCO2 =∣∣ECO2 − thd

∣∣ and between P and thd , called sP = |P− thd |.
The 4th case includes three different subcases:
a. sp > sCO2 , in which λ is set to sCO2 ;
b. sp < sCO2 , in which λ is set to thd + sCO2 ;
c. sp = sCO2 in which λ is set equal to 1/2.

All the rules mentioned above are defined a priori and
they include all the possible states that the network could
assume. It’s noteworthy that the specified criterion enhances
the flexibility of the cost function by establishing a direct
correlation between the weight values in the cost function (8)
and the network states related to congestion and emission.

An alternative approach could involve integrating constraints
such as emission thresholds or throughput, either as hard
constraints or as soft constraints using barrier functions.
However, adopting such a solution may introduce added
complexity to the optimization problem, as it necessitates
consideration of other constraints. Furthermore, the weight
assignment criterion described above imparts dynamism to
the weights in the cost function, making them more respon-
sive to changes in network states and thereby enhancing
the robustness of the cost function in the face of such
variations.

D. LOW-LEVEL CONTROLLER: ACTUATION SYSTEM
As foreseen in the methodology section, the proposed control
framework adheres to a hierarchical structure. Specifically,
the upper and lower levels maintain communication as the
MPC utilized at the upper level and the central command
governing the actuation system are co-located within the
Traffic Monitoring Center (TMC). Upon the establishment
of regional split ratios by the MPC, it is assumed that this
information is readily available within the actuation system,
which is responsible for effectively coordinating each VMS
panel to transfer routing suggestions to the network users.
VMS are programmable traffic control devices that convey
real-time information on network traffic conditions to drivers
encountering them through the usage of LED panels installed
on the roads. It is recognized that the VMS panels aim
to influence driver routing decisions to enhance network
performance. In this regard, they have a potential role in
managing demand to match the capacity available, not only to
alleviate acute problems caused by roadworks and accidents,
but also to contribute to satisfactory performance of networks
operating close to capacity over extended periods of high, but
variable, demand [68].
In the context of our experiment, we define as SWPs the

VMS-equipped roads. VMSs hold a strategic position in the
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network because at these points vehicles can switch their path
to an alternative one on the basis of the routing suggestion.
Each SWP provides information concerning a specific target
region, enabling vehicles to efficiently reach their intended
destinations through an optimal sequence of crossing regions.
Technically, SWPs display on their VMS panels the road
(namely the Via road) selected as a reference for constraining
the vehicle path through a specific crossing region. Indeed,
in our experiment, the Via road represents a specific road
located on the borders between two adjacent regions where
vehicles can execute a regional crossing.

It is worth mentioning that the primary computational
challenge for the low-level controller lies in selecting, for
each of the SWPs, the most suitable Via road to be suggested.
Clearly, the optimal Via roads are also chosen consistently
with the optimal regional split ratio determined by the MPC.
Specifically, the selection of the optimal Via road is guided
by three conditions:

1 Identify less congested Via roads, considering their
congestion index, such as the travel rate [69];

2 From the less congested Via roads associated with the
SWP, choose the one closer to the current position of the
SWP;

3 Display the selected Via on the VMS panel so that
vehicles travelling through the destination can modify
their route accordingly.

Once the information is displayed on the VMS panel, the
vehicle can navigate toward its destination by entering the
established crossing region. In doing so, the vehicle computes
the optimal path for its final destination passing through
the suggested Via road (the standard routing algorithm
embedded in SUMO is used for this task). It is worth noting
that leaving to each vehicle the effort of computing its
actual path on the basis of the routing constraints reduces
strongly to computational burden associated with the low-
level controller. Furthermore, it is crucial to underscore that
the setup of the VMS panels relies on the assumption of
drivers’ compliance when presented with route suggestions
displayed on these panels. Notably, our primary focus in
this study does not delve into the implications of driver
compliance on the effectiveness of the dissemination of
control actions among users.

Fig. 6 provides an example concerning the split of the
traffic flow Qij destined for zone j from i into two distinct
portions:

• Qhij, representing the traffic flow that will traverse zone
h en route to j.

• Qjij, representing the traffic flow that will directly reach
j without traversing h.

Aligned with the optimal splitting determined by the MPC,
the actuation system advises individual users to navigate the
neighboring crossing regions, denoted as h or j. This guidance
is communicated through the display panel, indicating the
appropriate Via roads. Crucially, the system ensures that the
sum of Qhij and Q

j
ij equals Qij.

FIGURE 6. Illustration of the possible splits between different zones.

TABLE 1. Scenario topology information, [66].

III. NUMERICAL ANALYSIS
A. CASE STUDY
To test the proposed framework on a relevant and realistic
case study, the whole city of Luxembourg has been chosen
as a reference. The used scenario has been validated on real
data [66], and is freely available in the microscopic traffic
simulator SUMO.3 Specifically, the simulation parameters
utilized in [66] have been integrated into the traffic simulator
to facilitate the case study. To achieve realistic traffic
patterns in [66] the authors used the data published by the
government, which is available on the Internet site of the
Luxembourg National Institute of Statistics and Economic
Studies (STATEC4) (e.g. population, age distribution) to
generate the activity demand for the ACTIVITYGEN.5 The
used traffic demand is characterized by 300000 vehicles per
day and it includes both transit and local traffic. A local
vehicle has an origin, a destination, or both within the city.
A vehicle in transit, on the other hand, has both its origin
and its destination outside the city. The mobility model
also includes public transport. The scenario covers a very
extended area of almost 156km2 with 931km of road, to the
authors’ knowledge, the highest ever used to test this kind
of application. Some information is summarized in Table 1,
while Fig. 7 shows the network topology. Information has
been retrieved from OpenStreetMap (OSM) and STATEC.

B. SIMULATION ENVIRONMENT
The simulation environment is generated by coupling various
tools such as SUMO [65], Matrix Laboratory (MATLAB),
and Optimization toolbox (OPTI).6 SUMO is a micro-
scopic traffic simulator and it emulates ground truth more

3https://github.com/lcodeca/LuSTScenario
4https://www.statistiques.public.lu
5http://sumo.dlr.de/wiki/ACTIVITYGEN
6https://github.com/jonathancurrie/OPTI
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FIGURE 7. Luxembourg network topology, [66].

realistically. It supports online interaction with the MATLAB
environment through the Traffic Control Interface (TraCI)
regarded as TraCI4MATLAB [70]. The TraCI4MATLAB
offers a high level of flexibility since it allows clients to insert
and modify the objects inside the simulated environment as it
operates in client-to-server scenarios.

Furthermore, SUMO guarantees the modeling of inter-
modal traffic systems such as the contemporary simulation
of private vehicles, public transportation systems, and
pedestrians. It features support tools that are integrated to
manage tasks such as route search, network import, display,
and calculation of pollutant emissions. SUMO incorporates
a set of tools to create and execute microscopic road traffic
simulation scenarios, these tools are grouped into three
categories:

• Mapping tools, to create the ‘‘map’’ (network).
• Traffic demand modeling tools.
• Simulation tools.

Moreover, the control strategy to be implemented in the
proposed control framework is the MPC, which is based
on the cyclic resolution of an optimization problem. In this
regard, OPTI is used for the formalization of the optimization
problem and its real-time resolution. OPTI is an open-source
tool for the realization and resolution of linear, non-linear,
continuous, and discrete optimization problems and can be
easily integrated into the MATLAB simulation environment.

C. PRELIMINARY OPERATIONS
In order to apply the proposed routing scheme in Luxembourg
some preliminary operations have been carried out. The first
step has been zoning. Specifically, the city has been divided
into different 9 regions as depicted in Fig. 8. Secondly, each
region has been characterized by its own MFD and e-MFD
curve. The MFD curves have been calibrated by following
the fitting procedure proposed in [71] in which the authors
create a confinement region through the intersection of linear

lines (cuts) representing an upper bound of traffic states
(uMFD). The MFD curve that emerges serves as a refined
approximation of the minimum operator, that is called soft −
min. An application example of this method is represented
in Fig. 9 in which the fitted MFD of zone 4 is reported. It is
worth noting that the weighted average flow of zone I, qwI ,
is calculated, consistently with [19], as:

qwI =

∑
i∈I qili∑
i∈I li

(14)

in which li denotes the length of a road lane segment
i belonging to the set of the lane of the zone I and
qi represents the flow measured by the corresponding
detectors in a particular time slice. To construct the MFD
curves, we computed the weighted average flow using
data exclusively gathered from residential roads, while
excluding arterial and highway segments from our dataset.
This methodological approach aligns with prior research,
acknowledging the distinct traffic dynamics observed on
different road types [72]. Furthermore, when providing
rerouting suggestions, we exclusively considered residential
roads within the suggested paths.

The e-MFD curves were calibrated using the same
fitting procedure outlined in [71], resulting in smooth
approximations of the upper bound of emission levels (ue-
MFD). It is noteworthy that the calibration of both MFD
and e-MFD curves involved applying different perturbations
to the original traffic demand provided by the application
case study. This approach aimed to augment the quantity of
data utilized during calibration, thereby enhancing its signif-
icance. Moreover, the same methodology was employed to
estimate the quantities J1M and J2M in the cost function (8),
which served to normalize the production and emission
values estimated by the MFD and e-MFD curves.

However, the e-MFDs are non-linear curves, and make
the optimization problem non-linear when used in the cost
function (8) to estimate the CO2 levels of the city centre.
To overcome this issue, we decided to linearize them with
piecewise linear functions (PWLFs), as depicted in Fig. 10,
with reference to zone 1, in which the saturation branch of the
e-MFD curve has been explored. The CO2 emission levels of
the region I are computed as:

CO2I (k) =

∑
i∈I

co2i(k), (15)

where co2i(k) represents the CO2 emission value of the
road segment i, belonging to the zone I, at time instant
k . The emissions relative to each road segment have been
computed by using the model Handbook Emission Factors
for Road Transport (HBEFA) v2.17 embedded in SUMO,
which provides the data for each lane equipped with a
detector. HBEFA is a standard data source for emission
calculations in numerous studies8 and other applications

7https://elib.dlr.de/89398/1/2ndGenEmissions.pdf
8https://www.hbefa.net/en/use-cases
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FIGURE 8. Luxembourg zoning.

TABLE 2. RMSE% CO2 estimated values.

such as EcoTransIT World, IMMIS, TREMOD Transport
EmissionModel, and COPERT. It is the product of a common
effort by funding agencies and development partners in
six countries (i.e. Germany, Switzerland, Austria, Sweden,
Norway, and France).

The CO2 levels estimated by using both the PWLF and
the non-linear e-MFD have been compared with the data
measured in SUMO. Fig. 11 shows, for zone 4, the
comparison between the estimated CO2 levels, and the
values measured in SUMO. The RMSE values, expressed in
percentage, of each zone of the city centre have been reported
In Table 2. Based on this analysis, it has been determined
that employing PWLFs for estimating emission levels yields
results comparable to those obtained using the nonlinear
e-MFDs.

As already anticipated, the MPC control system is
applied only in the city centre, i.e. the first 4 regions of
Fig. 8, since these are the ones that usually get congested.
However, in order to optimize the mobility performances
of the city centre, the control acts on all the vehicles
crossing the city centre, regardless of their origin and
destination. It is worth noting that the modelling of a
wider scenario with respect to the controlled part, allows
us to evaluate the impact of the proposed methodology
both outside the area of main interest (e.g. the whole city),
and in the controlled part (e.g. the city centre); even in
this case, to the authors’ knowledge this kind of evaluation
has been never carried out in literature in this kind of
experiments.

The ultimate preliminary step, which involves the SWPs
utilized to enact the control decisions of the MPC, has been
completed. These points have been strategically positioned
within each of the four controlled regions by carefully
selecting roads that serve as bifurcations between two ormore
adjacent areas.

TABLE 3. Performed scenarios.

D. DESIGN OF EXPERIMENTS
In order to test the proposed methodology, different scenarios
were prepared. In each scenario, the mobility and emission
conditions of the network have been monitored for one day
(24 hours) and data were aggregated for 300 second intervals;
consistently the operating period of the MPC controller has
been set to 5 min (Tp = 300 sec). The first scenario (S0) is
used for benchmarking and it does not include control (open-
loop). It is used to evaluate the performances of the network
without any control action, for successive comparison with
the other scenarios. In other words, in S0 the original demand
provided in the application case study has been launched
without the performed routing control scheme.

The first set of experiments is dedicated to the controller
settings. In particular a set of simulations described in Table 3
has been prepared in order to find the best values for
Np and thd . In Table 3, 5 different scenarios correspond
to a fixed value of thd , while the prediction horizon Np
varies between 3 and 7. These scenarios are used also to
evaluate the computational burden of the MPC, quantified by
means of the MPC feedback time FTMPC , e.g. the execution
time required to the MPC in one control time step to
compute the optimal control sequence. The controller adopts,
in all these cases, the multiobjective function introduced
in the previous chapter. Once the best operating setting is
established, a second set of experiments, corresponding to
the simulation of scenarios Sλ1, Sλ2, and Sλ3, has been
performed, to evaluate the benefits of changing lambda each
time step. Specifically, in Sλ1, the weight λ inside the cost
function (8) has been set to 0.8 in order to prioritize the
minimization of theCO2 levels. Conversely, in Sλ2 the weight
has been set to 0.2 and finally in Sλ3 the two terms of the
cost function (8) have been weighted with the same value by
choosing λ = 0.5. Finally, the scenarios SSUMO, SCO2, and
SPR, have been performed, with the objective of evaluating the
advantages of the proposed approach with respect to simpler
ones and demonstrate its robustness. Specifically, in the
SSUMO scenario, the routing suggestions at SWPs are based
on the default (Dijkstra) re-routing algorithm implemented
in SUMO [73], then the system is not performing any
network optimization, but the suggestion only minimizes
each user travel time. Scenarios SCO2 and SPR implement the
reference controlling framework but with the single objective
of minimizing emissions, and maximizing traffic throughput
respectively. These three additional scenarios have been
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FIGURE 9. Zone 4 MFD calibration.

FIGURE 10. Zone 1 e-MFD calibration.

compared with the best-performing scenario of the tuning
activity that has been used as a benchmark in the comparison.
In total, 21 different scenarios have been developed, and each
of them has been run using 3 different computer machines and
3 different seed values of the traffic simulator SUMO [65].
Therefore, 189 simulations have been run globally, 9 for each
scenario, in order to increase the significance of the results.
In all simulations in which the controller is activated (closed-
loop), in any form, its action starts when the congestion in

the city centre occurs (MPC activation condition) and it is
disabled when congestion ends so that the MPC action is
event-based (conditional MPC). This means that the vehicles
in the simulation stick to the path they were previously
assigned by the controller when the activation condition of
the MPC is not satisfied, while the new vehicle inserted in
the simulation follows the original path assignment provided
by default by the original traffic demand of the application
case study.
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FIGURE 11. Zone 4 estimated CO2 levels.

E. KEY PERFORMANCE INDEXES
Two Key Performance Indexes (KPIs) are defined in order
to quantify the congestion level of each zone, si% and 1i.
The indicator si% quantifies the level of congestion in a
zone in terms of the difference between the zone i maximum
accumulation value and the zone i critical value, expressed
in percentage. While 1i simply represents the time window
in which the accumulation in the zone i exceeds the critical
value. In Fig. 12 from the zone i accumulation trend in time,
it is possible to mark the si% and 1i values. The KPI si%
expression is the following:

si% =
npeak,i − ncr,i

ncr,i
· 100, (16)

where npeak,i represents the zone i peak accumulation value
and ncr,i the critical value of the zone. The KPI1i, by looking
the Fig. 12, is simply calculated as:

1i = t2 − t1, (17)

where t1 represents the time instant in which the congestion
occurs in zone i and t2 is the time instant in which the
congestion ends. The aggregation of the peak accumulation
value and the associated1 value of each zone provides a third
metric, here defined as congestion severity CS [veh ·h] of the
city centre, that it is represented as follows:

CS =

∑
i∈Nc

npeak,i · 1i, (18)

where the 1i value of each zone i is expressed in hours and
Nc = [1, 2, 3, 4] represents the city center zones set.

Apart from these quantitative KPIs, the time evolutions of
each zone CO2 emission level and travel Production, and the
empirical MFDs, are used to give a qualitative evaluation of

FIGURE 12. Quantitative KPIs representation.

the controller effects. In particular, the networkCO2 emission
level and travel Production values have been further taken
into account in order to qualitatively analyze the global
impact of the proposed control framework on the whole
network. These quantities have been calculated by extending
the Eqs (14) and (15) from zone to network level, including
in the formulas each link of the network.

IV. RESULTS AND DISCUSSION
In this section, three different categories of results are
presented. Firstly, activities carried out for tuning the
thd value used in the multiobjective cost function weight
assignment criterion are introduced. The second results
category concerns the comparison of the proposed control
framework, where the optimal thd tuning is set on the basis
of the previous, with other control strategies. Finally, the
analysis of the effects of themultiobjectiveMPC on thewhole
network, namely the global effects of the multiobjective
MPC, are introduced and discussed.
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FIGURE 13. Congestion levels of S0 scenario.

FIGURE 14. CO2 levels of S0 scenario.

A. TUNING ACTIVITY RESULTS
A preliminary step for any tuning activity is the definition of
a reference and of some KPIs. To do that, in this case, the
congestion and CO2 emission levels of the city centre in the
open-loop scenario S0 have been measured. The congestion
levels of the city centre are detected for each zone by
monitoring accumulation trends in time. Fig. 13 reports the
values for the whole day for zones 1-4, and also looking at it
qualitatively it is clear that zone 3 is the only one zone where
the accumulation never exceeds the critical value. For this

reason, the KPIs chosen for evaluating congestion levels, s%
and 1, have been not reported in Table 4 for zone 3. Fig. 14
presents the time series of the CO2 emission values of the
zones 1-4. Consistently, theCO2 emission levels related to the
zone 3 are significantly lower w.r.t. the other zones of the city
centre. On the basis of the previous, zone 3 has been excluded
from the analysis both in S0 and in any further scenario.
To evaluate the improvement introduced by the M-MPC

activation, the scenarios of Table 3 have been performed.
Results of the KPIs associated with these scenarios are
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reported in Fig. 15 where each curve has a fixed value of the
parameter thd , used in the real-time cost function (8) weight
computation, and the values of the congestion severity CS
vary on the basis of the different prediction horizons Np used
in the MPC framework. It is worth noting that each curve has
a decreasing trend with the increase of Np since a greater
value of the prediction horizon allows the MPC to have a
wider optimization timewindow. Furthermore, the curve with
the value of thd fixed to 0.6 leads to better mitigation of
the congestion volume of the city centre. We remind that in
this case, the MPC tries to set the cost function weight in
order to guarantee in the city centre of Luxembourg, at the
same time, CO2 emission levels not greater than the 60%
of the maximum value and Travel Production values at least
equal to the 60% of the maximum value. On the basis of
that, in the thd calibration activity values of thd lower than
0.6 have been investigated, but they do not guarantee any
significant improvement in terms of city centre CS. For this
reason, 0.6 has been finally chosen as the optimal operating
value. For the sake of clarity, the values of s% and1, related to
each zone in each performed scenario have been reported in
Table 4. It is clear that the optimal setting of the controller
parameters relies on the Scenario S13, at which the lowest
value of CS is reached. However, each closed loop scenario
leads to an improvement in terms of s% and 1 w.r.t. the open
loop scenario S0. This aspect demonstrates the robustness of
the controller towards parameter changes.

In Table 4 each scenario is also characterized by the
average value of the MPC Feedback time during the whole
MPC operation time window F̂TMPC [ms]. It is worth noting
that also in the heaviest cases, where the Np is set to
the greatest value (i.e. 7 control time steps of prediction)
and the optimization problem is made up of 294 variables,
183 constraints and 224 bounds, the Feedback time of the
MPC remains lower than 1sec, and its average value still
remains in the order of the milliseconds. Of course, the
performance of the tool could be further improved by means
of specific hardware/software solutions, however on the basis
of this result we conclude that this control scheme is able to
work in a real-time application.

There are some important aspects associated with the
optimal setting of the prediction horizonNp. On one hand, the
prediction horizon should be comparable to the time needed
to travel through a region network. In this regard, a much
shorter horizon may lead to ‘‘myopic’’ control actions [74].
On the other hand, theoretically speaking, the usage of a
smaller prediction horizon could lead to a more accurate
estimation of the region accumulation state variables in
the forecasting procedure. But this latter aspect is strongly
sharpened by the operating frequency of the MPC since the
impact of the model inaccuracies on the quality of the traffic
variables prediction is strongly reduced. Indeed the real-time
feedback allows for frequent updates on the control strategy
decisions on the basis of the current measurement of network
traffic states. In summary, the optimal operating value of the
prediction horizon (Np = 7) seems to be a good compromise

FIGURE 15. City center congestion severity with different values of the
controller parameters.

TABLE 4. Local KPIs of the scenarios in the tuning activity.

TABLE 5. Local KPIs of the scenarios in the comparison activity.

between performance sensitivity with respect to inaccuracies
of the traffic parameters and myopic control actions.

B. COMPARISON OF THE PROPOSED CONTROL
FRAMEWORK WITH OTHER CONTROL STRATEGIES
The reference optimal performing scenario (S13) has been
benchmarked with Sλ1, Sλ2, and Sλ3. In this regard in Table 5
the values of s% and 1 have been reported in order to
quantify the congestion levels of these scenarios. In Fig. 16
theCO2 levels of S13 have been comparedwith theCO2 levels
of Sλ1, Sλ2, and Sλ3. The data presented in Table 5 clearly
shows that scenarios Sλ2, and Sλ3 offer superior congestion
mitigation compared to Sλ1 in which the value of the weight
λ has been set in order to prioritize the minimization of
the city centre CO2 levels. Despite this, the scenario S13
still outperforms others in terms of congestion mitigation.
Conversely, in Fig. 16 the CO2 values registered in Sλ1 are
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FIGURE 16. Zones 1 and 2 CO2 values.

FIGURE 17. City center zones accumulation values.

lower than those in Sλ2 and Sλ3. Notably, the CO2 levels
observed in Sλ1 align with those in S13. These findings
highlight the advantages of dynamically adjusting the weight
λ in real-time, as opposed to using a constant value.

Finally, the benchmarking scenario S13 has been compared
with 3 alternative (and simpler) control strategies represented
by the scenarios SSUMO, SCO2 and SPR; as a reference, also
the open-loop scenario S0 is considered in the comparison.
Consistently with others, the Dijkstra re-routing algorithm
of the scenario SSUMO is enabled from 6 pm to 8 pm
representing the critical time window in which the congestion
occurs in the scenario. Also the characterizations of scenarios
SCO2 and SPR are totally consistent with those presented
in the previous section. The only difference concerns the
objective function (8), where the value of the weight λ is
fixed to 1 and 0, respectively in the scenarios SCO2 and SPR,
in order to isolate the effect of minimizing CO2 emissions or
maximizing Production for the whole MPC operating time.

Accumulation values of zones 1, 2 and 4 observed in each
scenario are depicted in Figure 17; the values are reported

with a focus on the time window in which the control scheme
operates. It could be noted that all the routing strategies
allow congestion mitigation of the city centre zones wrt
S0 scenario. The developed control scheme in S13 reaches
better performances in terms of congestion mitigation,
especially in Zone 1. The SPR shows a performance totally
consistent with S13, while the routing systems of SSUMO
and SCO2 are not able to completely delete the congestion.
Also, the values of s% and 1 associated with these scenarios,
reported in Table 5, confirm the qualitative analysis of
Figure 17.
Subsequently, CO2 levels in zones 1,2, and 4 are compared

in Figure 18. This time, emission levels of the city centre
regions w.r.t. the open-loop scenario are not significantly
reduced in the scenarios SSUMO and SPR. This was totally
expected since the Dijkstra routing algorithm of SUMO
does not take explicitly into account the CO2 emission
levels of the city, and similarly happens for the objective
functions of the MPC developed in SPR. Conversely, the
controller shows its best performances in SCO2 where the
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FIGURE 18. City center zones CO2 values.

FIGURE 19. Global results of scenarios S0 and S13: Average network flow.

CO2 emissions are reduced wrt S0 on average of 14%, 12%
and 4% in zone 1, 2 and 4 respectively. It is worth noting
that the performances of the controller in the scenario S13
are consistent with those in SCO2. Considering all together,
it can be affirmed that the proposed M-MPC is able to deal
with both congestion and emission levels in the city centre of
Luxembourg and allows finding a good compromise between
the two conflicting aspects.

C. GLOBAL EFFECTS OF THE PROPOSED CONTROLLER
The evaluation of the effects of the proposed control
scheme on the whole city of Luxembourg has been carried
out by considering both congestion and CO2 emissions.
Of course, the two aspects are here evaluated by defining
a unique measure for the whole network. In this regard,
in Figures 19, 20 and 21, the Empirical Network Fundamen-
tal Diagram, the time series of theAverageNetwork Flow, and
the time series of the NetworkCO2 emissions of the scenarios
S0 and S13 have been compared respectively. The analysis
of the figures confirms that even if the MPC controls only

FIGURE 20. Global results of scenarios S0 and S13: CO2 network levels.

FIGURE 21. Global results of scenarios S0 and S13: Empirical network
fundamental diagrams.

the vehicles that have to cross the city centre, it alters the
mobility and emission performances of the whole network.
In particular, the best-performing controller in the scenario
S13 allows an increment of the 17.7% of the average network
flow while reducing network level CO2 emission by 8%. The
empirical network fundamental diagram related to scenario
S13 confirms that the network, differently from scenario S0,
does not operate in the congested regime, but in the saturation
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one inwhich theAverageNetwork Flow ismaximized and the
behaviour of the network is optimized.

V. CONCLUSION AND FUTURE DEVELOPMENTS
In this work, a Multiobjective Model Predictive Control has
been developed in order to mitigate both congestion and
CO2 emission levels in an urban network. The proposed
approach has been tested on the realistic and challenging
scenario represented by the whole network of the city of
Luxembourg. The paradigm of MFD has been used for traffic
dynamics modelling efficiently, while the e-MFDs curves
have been used to compute the CO2 aggregated emission
levels of the urban network. A tuning activity of the controller
parameters Np and thd has been carried out, in order to
test the robustness of the MPC towards different values
of the operating parameters and select the best-performing
parameter settings. The results of the tuning activity show
that the proposed framework is generally able to improve the
network performances (with each parameter setting).

The best-performing controller has been compared with
a naive approach based on the activation of the routing
algorithm embedded in SUMO. Apart from that, the mul-
tiobjective approach has been compared with 2 simpler
single-objective versions of the controller. The congestion is
related to the emissions so it is expected that by reducing the
congestion levels of a network a decrease of CO2 emission
levels consequently appears. Unfortunately, this is not so
obvious. Indeed, the routing algorithm implemented in the
scenario SSUMO is able to reduce the congestion levels, but it
does not guarantee a significant decrease in theCO2 emission
levels. The usage of a multiobjective cost function in the
MPC framework allows us to find a good compromise
between congestion and emission mitigation. By means of
scenarios SPR and SCO2 we demonstrated that this is not
guaranteed by modelling separately the 2 aspects in the cost
function.

More interestingly, the multiobjective controller reduces
simultaneously congestion and emissions levels in the city
center, but it also impacts strongly on the global network by
allowing an increment of the 17.7% of the average network
flow and reducing network CO2 emissions by 8%.
As a future development, other pollutant emission levels

could be taken into account inside the multiobjective cost
function in the MPC framework. There is a need for further
investigation into the economic costs and potential social
challenges related to the adoption of the proposed M-MPC
strategy, as well as strategies for effective communication
and implementation with the public. This involves analyzing
financial implications, including setup andmaintenance costs
and potential savings. Addressing social challenges requires
engaging stakeholders to mitigate community impacts and
equity concerns. Effective communication strategies are
crucial, requiring clear materials and engagement across
channels. A well-defined implementation plan is vital,
delineating milestones for seamless coordination among
stakeholders in deploying the proposed M-MPC strategy.

Besides, the advent of automated vehicles will also leverage
advanced traffic management solutions (such as MPC based
control) soon [75], [76].
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