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ABSTRACT Medical digital radiography (DR) is widely used in the clinical application. To deal with
the problems of noise, edge blur, low contrast in DR images, we propose a multiscale feature attention
module based pyramid enhancement network by training image blocks. The network is in the framework
of a simplified U-Net, which reduces the computational load by reducing the convolution layer, and
adopts Laplacian pyramid connection instead of concatenation operation to preserve the image boundary
information. In addition, we embed a simple multiscale feature attention (SMFA) module between the
encoder and decoder, which integrates the feature information of different scales precisely and makes
the network have a stronger ability to perceive the local feature information. Our proposed algorithm is
a network realization of Gauss-Laplacian pyramid decomposition with an attention module. Furthermore,
we design a side feature loss function combined with mean square loss and absolute loss. We adopt batch
normalization between convolution and activation operations to ensure information of all gray scale regions
to be considered, which enhances the robustness of the network. We use LeakyReLu activation function
and Sigmoid function in the previous layers and in the output layers respectively to preserve the negative
information of multiscale details and to keep the gray scale region of the output images. Experiments with
real data of different parts of human body validate the effectiveness of our algorithm, which shows that
our proposed algorithm performs well on contrast enhancement, structure details preservation, and noise
suppression. It has certain value of clinical application.

INDEX TERMS Medical DR image enhancement, multiscale features extraction, U-Net, pyramid network.

I. INTRODUCTION
Medical Digital Radiography (DR) images have the advan-
tages of high resolution, wide dynamic range, fast imaging
speed and small radiation dose. It has become one of the most
widely used medical imaging methods in clinical practice.
In order to eliminate the effect of scattered lines, most static
medical DR devices use a low-density antiscatter grid, which
results in grid artifacts in raw DR images. In order to reduce
the influence of antiscatter grid, most manufacturers carry
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out a fixed height correction to remove the grid image.
Fixed height correction ensures the removal of grid images
at the same height for the following image post processing.
However, in clinical practice, due to different doctors,
different scanning positions and so on, the scanning heights
are different. As a result, it is difficult to deal with grid images
in the raw scanning data and at the same time to keep image
details. In addition, due to noise, improper X-ray exposure
and unequal thickness of human tissue [1], DR images have
blurred edges and low contrast [2], [3], which will affect
disease diagnosis of the doctors. To meet the needs of
high-end clinical applications, DR image enhancement is of

53686

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3535-2845
https://orcid.org/0009-0005-7840-2709


W. Xue et al.: Multiscale Feature Attention Module Based Pyramid Network

research significance [4], [5] in the field of medical radiology
imaging.

Traditional image enhancement algorithms have certain
effects in both natural image and medical DR image
enhancement (especially in natural image enhancement),
such as histogram equalization (HE) [6], adaptive histogram
equalization (AHE) [7], contrast-limited adaptive histgram
equalization (CLAHE) [8], [9], [10], nonlinear enhance-
ment based on wavelet decomposition [12], [13], [14],
enhancement based on Gauss-Laplacian pyramid [15], [16],
[17] and other algorithms. These traditional enhancement
algorithms have some inherent problems. For medical DR
image enhancement, histogram equalization and its improved
algorithms need large computation cost with high noise
sensitivity, low local contrast, and insufficient sharpening
of the boundary, which reduces its clinical applicability.
Adaptive unsharp mask algorithm [18] uses local variance as
a parameter to enhance high-frequency components, which
can enhance the edges and image details to a certain extent.
However, it is also sensitive to noise and is prone to artifacts.
The nonlinear enhancement algorithms based on wavelet
decomposition are easy to cause serious artifacts because of
difficult parameter determination. The improved algorithms
based on Gauss-Laplacian pyramid need manual parameter
adjustment, which is difficult to adjust and not intelligent.

Recently there are more and more deep learning [19] based
methods in medical image processing and reconstruction.
For example, Singh and Gupta [20] proposed an enhanced
feature-level medical image fusion algorithm based on
gradient decomposition, but it has the problems of noise and
uneven brightness distribution. Halupka et al. [21] proposed
a deep learning based optical coherence tomography (OCT)
image enhancement method, but it also suffers from noise.
Liang et al. [22] proposed an improved low-dose computed
tomography (CT) image enhancement network based on
CycleGAN. This method can improve the structural details
and suppress noise and artifacts, but the GAN [23] network
is difficult to train because of gradient disappearance or
gradient explosion. Xia et al. [24] gave a deep residual neural
network based low-dose CT image enhancement algorithm.
Georgescu et al. [25] proposed a new multimodal multi-head
convolutional attention module for CT and MRI image
super-resolution. At present, there have been many deep
learning based image enhancement methods in natural image
processing, medical CT and OCT fields. However, due to
the particularity and difficulty of obtaining medical DR raw
data, medical DR image enhancement methods based on deep
learning are still relatively few.

Aiming at the above problems, we propose a pyramid
network based on a multiscale feature attention module for
medical DR image enhancement, which introduces deep
learning method into medical DR image enhancement. The
shape of the proposed network is in the framework of a
simplified U-Net with a simple multiscale feature attention
module and a special skip connection, which is some
kind of network realization of Gauss-Laplacian pyramid

decomposition with an attention module. Experiments with
real data of different body parts verify the effectiveness and
generalization ability of the algorithm.

The network is small in scale with reduced network
parameters to improve the training speed. The whole image
can be enhanced through the training of image blocks,
and the image enhancement effect is remarkable. The main
contributions of our work are as follows:
• We design a small scale network in the framework of
U-Net [26], [27] with a Gauss-Laplacian pyramid skip
connection. We use a single-square convolution layer
instead of the traditional two-square convolution layer
to reduce the convolution operation. And we choose
a Gauss-Laplacian pyramid connection between the
encoder and the decoder to enhance the image boundary
features, which makes our method a network realization
of Gauss-Laplacian pyramid decomposition method.

• The proposed network contains a simplified multi-scale
feature attention (SMFA) module embedded in the
bottom of the encoder and decoder, which integrates
much more local feature information of different scales.
Hence it can improve the local feature information
perception ability of the network to preserve detailed
features to the maximum extent.

• We design a side penalty loss function combined with
absolute loss and square loss and add a batch normal-
ization (BN) [28] operation between the convolution
and activation operations to ensure the robustness of the
network and to enhance the information of every gray
range of the images. Due to DR image features and
BN operation, multi-scale details of DR image contains
negative values. Accordingly, we adopt the LeakyReLu
activation function [29], [30] at the layers other than the
output layer to retain the negative information of multi-
scale details, so the enhanced image can better restore
more features of DR images. At the same time, we use
the Sigmoid activation function [31] in the output layer
to ensure that the output image and the input image have
the same gray scale range.

II. RELATED WORK
A. U-NET
U-Net [26], [27] is a classical convolutional neural network
architecture with a structure shape like the letter U, so it
is called U-Net. It can effectively capture local and global
information in images, and has a good ability of capturing
deep features. Specifically, U-Net network structure consists
of symmetrical encoders and decoders. The encoder part
gradually reduces the size of the feature map and increases
the channels through a series of double-layer convolution
blocks and pooling operations. To extract abstract features
of the data, each convolution block contains a convolution
and a ReLu activation function. In the decoder part, the
feature map is gradually restored to the size of the original
input image by upsampling and double-layer convolution
operation, and then the details are gradually restored.
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In U-Net, the convolution blocks in the decoder usually
make skip connections with the corresponding convolution
blocks in the encoder to concatenate features, so the decoder
can make use of the different-level feature information. Its
network structure is simple and effective, and we can freely
adjust the depth of the network according to the needs of the
processing task.

B. BATCH NORMALIZATION AND ACTIVATION FUNCTIONS
Batch normalization (BN) [28] can ensure that the input data
of each layer obey the normal distribution, which can speed
up the training speed and improve the generalization ability
of the network. Only γ and β parameters in the BN layer are
learnable parameters. The calculation process is as follows:

µB ←
1
m

m∑
i=1

xi, σ 2
B ←

1
m

m∑
i=1

(xi − µB)
2,

x̂i←
xi − µB√
σ 2
B + ϵ

, yi← γ x̂i + β ≡ BN γ,β (xi), (1)

where xi, yi, i = 1, · · · ,m are the input and the final output,
and µB, σ 2

B are their mean value and variance, respectively.
Activation function can do nonlinear processing of the

linear weighted summation of each neuron in the deep
neural network. At present, there are various activation
functions with their own characteristics. In our experiments,
the convolution of each layer except the output layer adopts
the LeakyReLu activation function (as shown in Fig. 1
(a)), which responds to the negative input and retains the
information of the negative input. The LeakyReLu activation
function [29], [30] is formulated by

σ (x) =

{
αx, x < 0,
x, x ≥ 0,

(2)

where x is the input and α is a small positive number,
always set to 0.1. LeakyReLu assigns small amplitudes to all
negative values instead of setting them all to 0, preventing
negative information loss and effectively solving the problem
of gradient disappearance.

The output layer convolution uses the Sigmoid activation
function [31] (as shown in Fig. 1 (b)), a smooth curve that
can map the input nonlinearly and capture more information.
With its derivability, it is more convenient to use the
optimization algorithm for model training and parameter
updating. The Sigmoid activation function formula is as
follows:

σ (x) =
1

1+ e−x
. (3)

III. OUR METHOD
Inspired by the structure of U-Net and Gaussian-Laplacian
pyramid, we design a pyramid network in the framework
of U-Net with an attention module SMFA and name it
SMFA-Pyramid network. Section III-A describes the whole
SMFA-Pyramid network structure. Section III-B introduces

FIGURE 1. Activation functions.

the simple multiscale feature attention module. Section III-C
gives the loss function for training the network.

A. SMFA-PYRAMID NETWORK
SMFA-Pyramid network is a new image enhancement
algorithm with a simple multi-scale feature attention module
based on U-Net structure and Gauss-Laplacian pyramid,
whose architecture is shown in Fig. 2. In our U-shape pyramid
network, without changing the information extraction effect
of the network, we use a single square convolution instead
of the two square convolutions in U-Net, which reduces
the convolution operation and improves the training speed.
To ensure information of each gray range of the image to be
enhanced and the robustness of the network, we introduce
a BN operation between the convolution and the activation
operation. According to the pixel characteristics of medical
DR image, we adopt LeakyReLu activation function in
all layers except the output layer to retain the multi-scale
negative information of the image, which preserves the
multi-scale information of medical DR image to a greater
extent. And we use Sigmoid activation function in the output
layer to ensure that the output image and the input image are
in the same gray scale range.

For the skip connection, we use the Laplacian pyramid
connection to replace the concatenation connection between
channel features of the encoder and decoder in the U-Net.
Let Ui, i = 1, 2, 3 denote the downsampling features in the
encoder, and Li, i = 1, 2, 3 the Laplacian pyramid features.
That is to say, the downsampling features Ui of the encoder
is upsampled to obtain U ′i , i = 1, 2, 3, and then compute the
difference between the features beforeUi andU ′i to obtain the
Laplacian pyramid features Li, where we use a convolution
layer to make their channels consistent, which is formulated
by 

U ′1 = up(U1),
L1 = f3(f2(f1(input))− U ′1),
U ′2 = up(U2),
L2 = f5(f4(U1)− U ′2),
U ′3 = up(U3),
L3 = f7(f6(U2)− U ′3),

(4)

where up(·) is the upsampling function, fi(·), i =

1, 2, · · · , 7 the Convolution+BN+LeakyReLu operations
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FIGURE 2. SMFA-Pyramid network structure.

with convolution kernel size of 3×3, respectively. The details
are shown in Algorithm 1.

Algorithm 1 Laplacian Pyramid Connection
Input: The SMFA-Pyramid Network input, the maxpooling

features Ui, i = 1, 2, 3;
Output: Feature map Li, i = 1, 2, 3;
1: Upsampling operation is performed on U1 to obtain U ′1;
2: Perform two Convolution+BN+LeakyReLu operations
f1 and f2 on input, and do subtraction with U ′1 to
get f2(f1(input)) − U ′1, and then perform one Convo-
lution+BN+LeakyReLu operation f3 on the obtained
difference to obtain L1;

3: Upsampling operation is performed on U2 to obtain U ′2;
4: Perform one Convolution+BN+LeakyReLu operation
f4 on U1 and subtract U ′2, and then perform Convo-
lution+BN+LeakyReLu operation f5 on the obtained
difference to obtain L2.

5: Upsampling operation is performed on U3 to obtain U ′3;
6: Perform one Convolution+BN+LeakyReLu operation
f6 on U2 and subtract U ′3, and then perform Convo-
lution+BN+LeakyReLu operation f7 on the obtained
difference to obtain L3.

7: return L1, L2, and L3.

B. SIMPLE MULTI-SCALE FEATURE ATTENTION (SMFA)
MODULE
In this subsection, we introduce the proposed simple
multi-scale feature attention (SMFA)module in detail. SMFA

module is embedded between the encoder and decoder of
our proposed SMFA-Pyramid network. It is composed of
3 branches in parallel and its basic structure is shown in
Fig. 3. The right branch consists of one downsampling, one
Convolution+BN+LeakyReLu operation and upsampling.
The left branch mainly includes two downsamplings and two
different kernel-size Convolution+BN+LeakyReLu opera-
tions. The middle branch combines features of the left and the
right branches using Convolution+BN+LeakyReLu oper-
ation, element-wise product and element-wise summation,
which is formulated by

l1(x) = up(f9(f8(dw(x)),
l2(x) = up(f11(f10(dw(dw(x))))),
l(x) = l1(x)+ l2(x),
r(x) = up(f12(dw(x)),
m(x) = f13(x) · l(x)+ r(x),

(5)

where x is the SMFA module input, dw(·) the downsampling
function to resize the input to half size and double its
channels, up(·) the upsampling function to adjust the feature
size and channel to the input size by bilinear interpolation,
fi(·), i = 8, 9 two Convolution+BN+LeakyReLu operations
with convolution kernels of size 5 × 5, fi(·), i = 10, 11 two
Convolution+BN+LeakyReLu operations with convolution
kernels of size 3 × 3, and fi, i = 12, 13 are two
Convolution+BN+LeakyReLu operations with convolution
kernels of size 1× 1. l(x), r(x) are the results of the left and
right dashed boxes in Fig. 3 respectively. m(x) is the output
of the SMFA module. The details are shown in Algorithm 2.
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Algorithm 2 SMFA Module
Input: Feature map x;
Output: Feature map m(x);
1: Perform one maxpooling operation on x, and two

Convolution+BN+LeakyReLu operations f8 and f9 with
kernel size of 5×5, and then do upsampling to obtain l1;

2: Perform one maxpooling operation on the feature map
in Step 1 after one maxpooling operation on x, and then
two Convolution+BN+LeakyReLu operations f10 and f11
with a kernel size of 3× 3, and then perform upsampling
to obtain l2;

3: l(x) = l1 + l2;
4: Perform one maxpooling operation on x, one Convolu-

tion+BN+LeakyReLu operation f12 with a kernel size of
1× 1, and one upsampling to obtain r(x);

5: Perform one Convolution+BN+LeakyReLu operation f13
on x with kernel size of 1 × 1, which is multiplied with
l(x) by elements and added with r(x) by elements to get
m(x).

6: return m(x).

The function of the right branch of the SMFA module
is to preserve the shallow features of DR data, and the
left branch is to extract deeper features of different scales.
The middle branch fuses features of different scales, and
the whole module adopts LeakyReLu activation function
to retain negative information of DR image, which can
more accurately integrate multi-scale feature information
to maximize the preservation of details and improve the
performance of the SMFA module.

FIGURE 3. SMFA module structure.

C. LOSS FUNCTION
In order to better training the proposed network, we design
a loss function Ltotal including absolute error L1, the square
error L2 [32] and a side penalty loss Ls, which is formulated
by

Ltotal = αL1 + βL2 + γLs. (6)

The parameters α, β, γ represent the positive weight coeffi-
cients of three loss terms respectively, which satisfies α +

β + γ = 1. In our experiments, we take α = 0.1, β = 0.4,
γ = 0.5.

1) L1 AND L2 LOSS FUNCTIONS
The L1 loss function is expressed by

L1 =
m∑
i=1

n∑
j=1

|K (i, j)− I (i, j)|, (7)

where m, n are the numbers of image rows and columns, and
K (i, j), I (i, j) represent the labeled high quality image and the
network enhanced image respectively.

Compared with L1 loss function, L2 loss function is more
robust and smooth, which makes the optimization algorithm
more efficient in model training. The L2 loss function is
formulated by

L2 =
m∑
i=1

n∑
j=1

(K (i, j)− I (i, j))2. (8)

2) SIDE PENALTY LOSS FUNCTION
Considering that the differences between the side output
layers of our SMFA-Pyramid decoder and the labeled images
may provide some suggestion to mitigate the gradient loss
problem and facilitate encoder training by back propagating
the side output loss, we use two side outputs to compute the
side penalty loss, which is formulated by

Ls = ζLs1 + ηLs2 , (9)

where Lsi , i = 1, 2 are L2 losses for two side output layers
shown in Fig. 2. Parameters ζ and η represent the positive
weight coefficients of the two side output losses respectively,
which satisfies ζ + η = 1. In our experiments, we choose
ζ = 0.6 and η = 0.4 for better enhancement performance.
Gennerally, we can set ζ and η around 0.5, which has no
significant impact on the experimental results.

Since the features in the side output layers are as important
as those of the final output layer for the experimental results,
we choose γ ·ζ +γ ·η = 0.5 and α+β = 0.5. As the L2 loss
function is more robust and smooth than L1 loss function and
L2 loss is smaller than L1 loss, we choose β much larger
than α. According to this discipline, we set α, β, γ, ζ, and
η empirically by extensive experiments. In our experiments,
we use Ltotal = 0.1L1 + 0.4L2 + 0.3Ls1 + 0.2Ls2 .

IV. EXPERIMENTS
A. DATA PREPARATION AND EXPERIMENTAL
ENVIRONMENT
In order to verify the enhancement effect of our
SMFA-Pyramid network, we use the real clinical medical
DR image data set provided by Shinva Medical Instrument
Co., Ltd. for experiments. Several typical DR images after
black andwhite inversion (for simplicity, we call them the raw
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FIGURE 4. Typical images in the training dataset: (a) (c) (e) raw images of
hand and foot with different projection positions; (b) (d) (f) the
corresponding labeled images of (a) (c) (e).

images) and their corresponding enhanced labeled images in
the training dataset are shown in Fig. 4.
The data set contains 43 pairs of original and labeled

DR images, including hand, foot, wrist, knee, ankle, elbow,
patella, tibia and fibula images of different projection
positions. The specific numbers of cases for different body
parts are shown in Table 1. The training dataset contains
40 image pairs, and the test dataset contains 3 image pairs
with size of 3060× 3060.

TABLE 1. Our dataset statistics.

In order to improve the image enhancement effect and
avoid overfitting caused by insufficient samples, we imple-
ment a series of preprocessing operations such as grid
shadow elimination, data clipping, flipping, expansion on the
raw data before training. Firstly, we use a Fourier domain
low-frequency filter to remove grid shadow and pre-denoise
the raw data. Secondly, we crop the background information
unrelated to the region of interest in the raw images, which
is mainly caused by DR scans without changing the opening
size of the beam collimator. Finally, we cut the data processed
in the first two steps into 200×200 image blocks with a
step size of 100, fill the boundaries of the image blocks
less than 200×200 with zeros, and flip them left and right,
up and down, and diagonally. Through the above operations,
the training set is extended to 78664 pairs of image block
pairs, which increases the diversity and number of samples,
and improves the generalization ability and robustness of the
model. To evaluate the model more rationally and accurately
and avoid overfitting, we add cross-validation in the training
of the network. 70% (55,000 pairs of image blocks) of the
training data is for model training and 30% (23,664 pairs of
image blocks) of the training data is for model validation.
In addition, due to the large differences in radiation dose

when DR devices scan for different parts and bodies, the
gray ranges of raw images are very different. In order to
eliminate the impact of data range difference on the model,
we normalize the range of raw and labeled images to [0, 1].
We implement all models in Windows environment, and

use PyTorch (1.10.0+cu102) to run the proposed network.
The hardware used in the experiment is Windows 10, with
an Intel (R) Core (TM) i9-9900K CPU@3.60 GHz and
an NVIDIA GeForce RTX 2080 graphics card. Adam [33]
optimizer is used to optimize the model. The momentum
parameters are β1 = 0.9, β2 = 0.999, Batch_size = 4, and
Crop_size = 200×200. The total epoch number is set to 300,
the initial learning rate lrinit is set to 0.05, and the learning rate
(lrnew = λ × lrinit ) is updated with the number of iterations.
The factor λ [34] is determined by

λ = δ
(
1−

epochi
2× n

)
+
epochi
2× n

, (10)

where epochi represents the ith iteration, n the number of
images in the training set, and δ is the parameter to prevent
the learning rate multiplication factor from being zero. In our
experiments, we set δ = 10−5.

B. EVALUATION INDEX
We evaluate the enhanced image quality through visual
effects and objective evaluation indexes including peak
signal-to-noise ratio (PSNR) [35], structural similarity index
(SSIM) [36], contrast-to-noise ratio (CNR) [37] and Cross
Sum Modified Laplacian (XSML) [38].

PSNR is used to measure the difference between enhanced
image and labeled image. It is obtained by calculating the
mean square error between two images. The PSNR function
is expressed by

PSNR = 10× log10
(MAX2

K

MSE

)
,

MSE =
1
mn

m∑
i=1

n∑
j=1

[I (i, j)− K (i, j)]2, (11)

where K (i, j) and I (i, j) represent the labeled high qual-
ity image and the network enhanced image respectively.
MAX2

K represents the square of the maximum grey level
of the labeled images K (i, j). Generally the smaller the
MSE [39] and the larger the PSNR is, and then the better the
enhanced image quality is.

SSIM is used to measure the similarity between two
images, formulated by

SSIM(x, y) =
(2µxµy + C1)(2σx,y + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
. (12)

Here µx and µy represent the mean values of images x and
y, σ 2

x and σ 2
y represent the variance of x and y, respectively.

σx,y represents the covariance of x and y. C1 and C2 are two
constants to avoid a zero denominator. The SSIM value is in
the range of [0, 1], the closer to 1 the better the image quality.
CNR is mainly used to measure the ratio relationship

between the contrast of useful information and the relative
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intensity of noise. In the experiments, we use CNR to quantify
the contrast and noise level of an enhanced image. The CNR
function is formulated by

CNR =
|µs − µn|√

σ 2
s + σ 2

n

,

σ 2
s = E{(|Is|2 − µs)2}, σ 2

n = E{(|In|2 − µn)2}, (13)

where µs represents the average gray value of useful
information in the image, µn the average gray value of noise
in the image, σ 2

s the variance of useful information in the
image, σ 2

n the variance of noise in the image, Is useful
information in the image, and In is noise information in the
image. In general, the greater the value of CNR is, the higher
the image contrast, the lower the noise level and the better
the image quality is. Because most pixel values of useful
information in the enhanced DR images and the labeled
images are greater than 0.5, we choose a threshold of 0.5 to
distinguish between the useful information and the noise.

To validate the effect of reducing blur, XSML is used to
evaluate the sharpness of images. Generally, the larger the
XSML, the better the image quality is. The Laplace operator
in XSML takes into account direct neighbors in the x and y
directions. In addition, diagonal neighbors are included and
weighted by a factor of 1

√
2
to compensate for their greater

distance to the center pixel. XSML is formulated by

XSML(x, y) =
L(x, y, z)− L̄(x, y)

L̄(x, y)
,

L̄(x, y) =
1
N

N∑
i=1

L(x, y, zi),

L(x, y)

=

∑
(i,j)∈D(x,y)

|K (i+ t, j)+ K (i− t, j)

− 2K (i, j)| + |K (i, j+ t)+ K (i, j− t)− 2K (i, j)|

+
1
√
2
|K (i+ t, j+ t)+ K (i− t, j− t)− 2K (i, j)|

+
1
√
2
|K (i− t, j+ t)+ K (i+ t, j− t)− 2K (i, j)|, (14)

where D(x, y) is a square pixel neighborhood of the pixel
(x, y). The parameter t can be adjusted according to the
characteristic size of texture elements in the image. We use
t = 3 for all computations in our experiments.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In this section, we give experimental results of our pro-
posed SMFA-Pyramid network for medical DR image
enhancement. At the same time, we compare our method
with AHE [7], CLAHE [8], Gauss-Laplacian pyramid [17]
(GLP), LLCNN [40], U-Net [26], structure and illumina-
tion constrained GAN [41] (StillGAN) and Self-Calibrated
Illumination [42] (SCI). To make the comparison more
fair and justified, all comparison algorithms use the same
preprocessed raw data.

FIGURE 5. Comparison of hand experimental results.

The visual results of the comparison experiments are
shown in Figs. 5 and 6. We use red boxes and orange boxes
to highlight the comparison areas in the raw DR images
and the enhanced images of various comparison algorithms
respectively. We can see from Figs. 5 and 6 that the overall
images enhanced by AHE and CLAHE algorithms are too
bright, especially in the orange box area. And there are still
some problems of low contrast, boundary blur and detail
loss. Gauss-Laplacian pyramid algorithm uses an exponential
enhancement adjustment parameter, which improves image
detail enhancement to some extent, but the overall image is
bright and the contrast is still not satisfactory.

LLCNN performs image enhancement based on convo-
lutional operation without manual parameter. However, the
enhanced image is dark in general, and the parts with small
gray value are lost especially in finger ends and muscle parts,
which may be caused by mislearning small values as the
background during the training process. And the problem of
blurred edges and poor contrast still exists. U-Net extracts and
restores image features based on encoder and decoder without
manual parameter adjustment, and has better enhancement
effect on sharpening edges andmaintaining details than AHE,
CLAHE and LLCNN algorithms. StillGAN extracts the
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image features based on adversarial network without manual
adjustment, and the contrast is better than the previous four
methods, but the enhanced images are too smooth and most
bone trabecula information is lost. SCI is an unsupervised
learning network, which is designed for enhancing low-high
natural image without labeled images, but its enhanced
images are too smooth and have poor contrast. Our proposed
SMFA-Pyramid network can effectively combines global and
local features and has the best contrast and image details
among all comparison methods.

FIGURE 6. Comparison of foot experimental results.

In order to validate that there is no over-fitting problem
in our proposed network, we give the cross-validation error
curve during the training process, as shown in Fig. 7. We can
see that the training error and the validation error can
decrease quickly and get steady during the training process.
That is to say, our data preprocessing and the network
structure can overcome the over-fitting problem to some
extent.

To further illustrate the effectiveness of the proposed
algorithm, we use the labeled images as reference images
to calculate the peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), contrast to noise ratio (CNR) and

FIGURE 7. The cross-validation error curve.

Cross Sum Modified Laplacian (XSML) of all comparison
algorithms, as shown in Tables 2 and 3.

TABLE 2. Hand PSNR, SSIM, CNR, and XSML of different algorithms.

TABLE 3. Foot PSNR, SSIM, CNR, and XSML of different algorithms.

From Tables 2 and 3, we can see that CNR of
network-based methods (LLCNN, UNet, StillGAN, SCI
and our proposed SMFA-Pyramid) is significantly higher
compared with traditional methods (AHE, CLAHE, and
GLP), which indicates that network-based methods have
better performance in denoising and contrast improve-
ment. At the same time, our method has the highest
in PSNR, SSIM, CNR and XSML values. Both visual
effects and objective evaluation show that our proposed
SMFA-Pyramid network has the best performance in
medical DR image enhancement among all comparison
algorithms.

In order to verify the generalization of the proposed
algorithm, we conduct tests on the raw images of human body
parts not included in the training data. We find that our pro-
posed network also performed well in enhancing DR image
of cervical vertebra, lumbar vertebra and some other parts
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FIGURE 8. The experimental results of different parts of human body
beyond the training set.

FIGURE 9. The experimental results of different parts of human body
beyond the training set.

difficult to enhance, as shown in Figs. 8 and 9. We can see
from Fig. 8 that the proposed SMFA-Pyramid model trained
with the limbs data can be partially used for the enhancement
of medical DR images of other body parts mainly composed
of bones and thick soft tissue. And the enhancement effect
is relatively better for the parts with more bones. As shown
in Fig. 9, our network still has certain shortcomings for the
chest cavity, such as the poor enhancement effect on the lung
textures. We believe that the performance can be improved by
enlarging the dataset and optimizing the network in the near
future.

FIGURE 10. Comparison of ablation results.

V. ABLATION EXPERIMENT AND RESULT ANALYSIS
In this section, to verify advantages of the addition of BN
module, the effectiveness of Pyramid module, the selection
of LeakyReLu activation function, the simple multi-scale
feature attention SMFA module and our designed pyramid
connection and loss function, we conduct the following
ablation experiments. We name our SMFA-Pyramid network
without BN asModel 1, without SMFA asModel 2, and name
LeakyReLu activation function in our model replaced by
ReLu activation function the as Model 3. Adding the SMFA
module to the first step and the second step downsampling
positions in Pyramid network encoder, we name them as
Model 4 and Model 5 respectively. Replacing the Laplacian
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TABLE 4. Model description.

TABLE 5. PSNR, SSIM, CNR, and XSML of the ablation experiments.

pyramid connection in the SMFA-Pyramid model by the
element-wise addition joint without residual, we name it as
Model 6. Using only L1 and only L2 loss function in our
SMFA-Pyramid network to update the parameters of the
model, we name them as Model 7 and Model 8 respectively.
Model 9 uses L1 and L2 loss functions and Model 10 only
uses side penalty loss function Ls. We summarize all the
models in the ablation experiment in Table 4 for the detailed
model description and objectives. We give the visual results
of the enhanced images by different models in Fig. 10 and the
objective evaluation in Table 5.
From Fig. 10, we can see that Model 1 has a certain

enhancement effect on the image, but there are still problems
of blur and low contrast, which shows the important role of
BN in our network. The enhanced image of Model 2 has
obvious detail loss and blurred edges, which validates the
important role of SMFA module in detail preservation. The
enhanced image of Model 3 has more image information,

but the contrast of the image is lower than our model
and some bone trabecula details are lost, which shows that
the LeakyReLu activation function plays an important role
in preserving the negative information of the image. The
enhanced image of Model 4 has too much noise and loses
details, which indicates that SMFA module cannot extract
more features in the shallow layer of the encoder. The details
of the enhanced image of Model 5 have been improved
than that of Model 4, but there are still some noises, poor
background and white spots in the enhanced image, which
leads to the loss of image information. The results of Models
4 and 5 show that the attention module SMFA should be
added in the deepest layer of the encoder. The contrast and
details of the image enhanced by Model 6 are obviously
improved, but it still is not as good as our method, which
shows that the Laplacian pyramid connection can enhance the
texture and the edge information of the image.

The image enhanced by Model 7 has a lot of noises, and
the image enhanced by Model 8 has the problem of blur
and has white spots or black spots. Model 9 uses the loss
function with L1 and L2, and the enhanced image is better
than Models 7 and 8, but there are still some problems of
details loss, the appearance of noise and many white or
black spots. The image of Model 10 has lost its original
visual effect, but it presents more information on the edges
and textures of the image, which reflects the role of side
penalty loss function in preserving details and edges. Our
proposed SMFA-Pyramid network enhanced images have
the best structure, details and contrast than the first ten
models, which fully shows that BN, LeakyReLu, SMFA
module and Laplacian pyramid connection can get better
multi-scale information in medical DR image enhancement.
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At the same time, it shows that our loss function can train the
network better than only L1 loss function, L2 loss function,
L1 and L2 loss function, and side penalty loss function, which
improves the effect of image enhancement. We can see from
Table 5 that our proposed SMFA-Pyramid network has the
highest PSNR, SSIM, CNR and XSML values, which further
demonstrates the effectiveness of our model in enhancing
network performance.

VI. DISCUSSION
Aiming at medical static DR image enhancement, we propose
a deep learning based model SMFA-Pyramid network. The
training data of the model are all limbs of the human body.
Though the generalization effect of the model is relatively
good, there are still some problems in the enhancement
of soft tissue details of medical DR images especially in
the chest. Therefore, we are expanding the dataset and
further optimizing the network structure. Furthermore, the
loss function and the layer number can be optimized. The
combination of deep learning based methods and traditional
methods needs an intensive study.

VII. CONCLUSION
In this paper, we propose a SMFA-Pyramid deep learning
model for medical static DR image enhancement. The
whole image can be enhanced through the training of
image blocks. Compared with U-Net network, the Pyramid
structure in this model has less convolution computation
and network size. And Laplacian pyramid connection can
preserve image boundary feature information better. Loss
function with side output information, batch normalization
operation, LeakyReLu, Sigmoid activation function, and
SMFA model make the model more effective and accurate
for multi-scale feature expression of medical DR images for
better enhancement effect. It also prove that the proposed
network has good generalization in images enhancement
beyond the training set. We are expanding the dataset, and
then the network structure will be further optimized to solve
the problem of medical DR image enhancement in thoracic,
lumbar and other parts.
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