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ABSTRACT Electric power steering (EPS) poses significant control challenges in autonomous vehicles due
to their inherent complexity and non-linearity. This study explores the application of artificial neural network
(ANN) to address these limitations. Two approaches are proposed: 1) an ANN-based identifier utilizing
the backpropagation (BP) algorithm to learn the system’s non-linear dynamics, and 2) an ANN-based
controller leveraging the Levenberg-Marquardt (LM) algorithm to improve control performance. Our
findings demonstrate the efficacy of the proposed ANN-based BP algorithm in EPS system identification
achieving over 99.6% accuracy in predicting EPS system dynamics compared to the traditional approach.
Additionally, the LM-learned ANN-based controller aiming a faster response and precise reference tracking
compared to the traditional controller method. These advancements underscore the potential of employing
ANN methodologies to optimize EPS performance in autonomous vehicles.

INDEX TERMS Artificial neural network, autonomous vehicles, backpropagation, electric power steering,
Levenberg-Marquardt, proportional integral derivative controller, system identification, transfer function
estimator.

I. INTRODUCTION
Electric Power Steering (EPS) is a vehicle steering system
that employs an electric motor to provide torque assistance
for steering. EPS systems are increasingly common in both
traditional power-assisted steering (PAS) vehicles, which
enhances the driver’s steering effort, and in autonomous
steering control units for self-driving cars. In PAS-equipped
vehicles, the system interprets the driver’s steering inputs
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to adjust torque and instantaneously align with the desired
steering angle. Furthermore, in autonomous vehicles, EPS
systems autonomously control steering by processing data
from various sensors i.e., cameras, radar, and lidar [1].

There are two primary steering control methods: hydraulic
steering control and electrical steering control. EPS oper-
ates through electrical steering control, and it offers superior
reliability, safety, efficiency, reduced emissions, and ease
of maintenance when compared to hydraulic steering con-
trol [2]. The electrical motor in EPS systems typically
employs a brushless direct current motor (BLDCM) or
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permanent magnet synchronous motor (PMSM) as the actu-
ator, which transmits power to the vehicle wheels through a
gearbox and mechanical steering rack [2], [3], [4].

Maintaining optimal performance and stability of the vehi-
cle’s EPS requires applying precise control inputs to the
system [5], [6], [7]. This control can be implemented using
a variety of methods, such as proportional integral derivative
(PID) control. This is a classical control method that has been
used for many years. PID controllers are simple to understand
and implement, and they are effective in controlling a wide
variety of systems. PID controller is typically a linear con-
troller, which means it operates effectively within a linear
control system [8], [9], [10], [11]. Due to the nonlinearity
of the EPS system, researchers have tried using machine
learning and AI to understand and predict this complicated,
non-linear behavior. One of these methods is using an arti-
ficial neural network (ANN). ANN is a powerful machine
learning technique that can be used for a variety of tasks,
including control and identification of EPS systems. ANN
is inspired by the structure and function of the human brain,
and they consist of a network of interconnected nodes, called
neurons. Each neuron is able to process information and send
signals to other neurons in the network. ANN is an adaptive
and data-driven technology that can effectively determine
relationships between input elements and process outputs.
Activation functions in ANN empower them to capture both
linear and nonlinear patterns in data, without requiring any
prior assumptions. [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31].

Unlocking the full potential of ANN as an identifier and
a controller, this study proposes two lines of research. The
first study is to design an EPS identifier by using ANN based
backpropagation (BP) algorithm to analyze the effectiveness
of ANN based BP algorithm in EPS system identification
and the second study is to use ANN based LM algo-
rithmto improve the EPS system controller for autonomous
vehicles.

This paper is organized as follows. Section II discussed
the analysis of the original EPS system and the concept of
ANN-based BP and LM. Section III discussed the identifica-
tion of the EPS system using an ANN-based BP algorithm.
Section IV presents the proposed ANN-based LM algorithm
for EPS control. Section V presents the experimental results
and discussion of system identification and EPS control
using ANN. Section VI presents the conclusion of this
research.

II. ANALYSIS OF THE ORIGINAL EPS SYSTEM
A. CONFIGURATION OF EPS
EPS systems are crucial for improving the steering control of
autonomous vehicles. In contrast to conventional hydraulic
power steering systems, EPS systems in autonomous vehicles
employ electric motors to deliver accurate steering control.
The main components of an EPS system in an autonomous
vehicle are:

FIGURE 1. EPS system control and mechanism in autonomous vehicles.

• Electric motor: At the core of EPS systems is the
electric motor, responsible for generating torque that
facilitates steering control.

• Steering control unit (SCU): The steering control unit
serves as the brain of the EPS system. It receives the
angle command from the navigation unit. The navi-
gation unit measures the vehicle’s speed, acceleration,
and heading. This information is used by the vehicle
control unit to calculate required steering actions and
send them to SCU.

• Steering rack: The steering is responsible for convert-
ing the torque from the electric motor to the vehicle’s
wheels.

Refers to Fig. 1, the vehicle control unit integrates and
analyzes the sensor data, enabling the system to comprehend
the vehicle’s surroundings. Based on the analyzed data, the
computational unit takes actions or determines the optimal
steering adjustments required to navigate the vehicle. The
vehicle control unit generates precise steering commands,
which are transmitted to the SCU to calculate the required
torque for the electric motor to execute the necessary steering
actions.

For this study, a steering rack of a sedan car was
used. We can see the EPS mechanical actuator in Fig. 2.
This steering rack is a mechanical rack and pinion gear
type that can be lengthened and shortened by 85mm.
This gives a steering wheel a working angle of +46 to
−46 degrees from its centerline. A positive sign indicates
the steering direction in a clockwise direction and vice
versa.

This mechanical rack and pinion are connected to a
driven gear that has a ratio of 2.3:1 with the driving
gear and a ratio of 26:1 between the final vehicle’s wheel
with the driving gear. The driving gear and the driven
gear are connected by an HTD belt. Table 1 shows the
details of vehicle steering rack information used in this
research.
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FIGURE 2. The EPS system actuator used in this study.

TABLE 1. Vehicle steering rack information.

FIGURE 3. EPS scheme of SCU with PID controller.

B. REPRESENTATION OF EPS BEHAVIOUR WITH PID
CONTROL IMPLEMENTATION FOR ANN DATASET
To develop an accurate and robust ANN controller for an EPS
system control, a comprehensive dataset of input-output pairs
is first gathered. The dataset can be gathered from a simula-
tion or observation. For the EPS ANN controller dataset in
this research, we used an observation method using a PID
controller that makes the EPS follow the angle reference with
fast response time and minimum steady-state error. In Fig. 3
we can see the EPS PID controller scheme to provide a
controlled EPS.

In Fig. 3, the variable e(t) represents the error signal of
the difference between the angle reference and the actual
measured position of the EPS as read by the angular position
sensor at time t . Once the error e(t) signal is acquired, the PID
controller calculates its derivative and integral concerning
time. These calculations allow the controller to track how the

FIGURE 4. Output responses by PID parameter tuning: (a) EPS response
with a lower constant of K1 = 0.04, K2= 0.0095, and K3 = 0.0000025,
(b) EPS response with optimal constants of K1= 0.113, K2 = 2.016, and
K3 = 0.0000025.

angular position error signal is changing over time and how
to use this information to adjust the control signal u(t) to the
EPS movement. The PID controller produces an output that
is determined in the time domain based on the feedback error
using the following equation:

u(t) = K1e(t)+ K2

∫
e(t)dt + K3

de
dt

, (1)

where K1 is the proportional gain, K2 is the integral gain and
K3 is the derivative gain.
Testing of the angular position control system is carried

out by first determining the parameter values K1, K2, and K3
which are in accordance with the desired system response
design. Fig. 4 shows the EPS response results in two sets
different of parameter value sets of K1, K2, and K3. The input
angle reference is a sine wave with a frequency of 0.5 Hz and
amplitude of ±10◦.

To facilitate the EPS ANN system identification and con-
trol datasets, we execute the chosen commutation code and
its associated sequence algorithm on a microcontroller. This
microcontroller is linked to an upper computer through serial
communication, enabling the recording of EPS responses
based on input signals. MATLAB/Simulink, integrated with
the NXPmodel-based design toolbox (MBDT), is utilized for
code generation. Motor speed control is achieved through a
PWM technique, with a maximum input voltage of 12VDC
provided to rotate the motor, selected to meet the vehicle
power environment. The actual motor angle position, serving
as feedback, is measured using a magnetic position sensor
(AS5247U) through the ABI interface. The experimental
setup is described in Fig. 5.
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FIGURE 5. Experimental setup.

In Fig. 4(b), the EPS system accurately follows the speci-
fied tracking line. Conversely, Fig. 4(a) illustrates the subpar
performance of the EPS system, characterized by slow
response times and significant steady-state errors. By con-
ducting a cross-correlation analysis between the two sine
waves depicted in Fig. 4(b), we determine a phase differ-
ence and time delay of 0.0425 seconds. For this research,
we choose the parameter configuration depicted in Fig. 4(b)
as the dataset for designing the ANN angular controller.

C. ANN BASED BP AND LM CONCEPT
ANN is a fundamental component of machine learning algo-
rithms designed to mimic the functioning of the human
brain. ANN learns from data by iteratively adjusting their
parameters (weights and biases) based on observed exam-
ples to minimize the discrepancy between their predictions
and the actual target values. This learning process, often
referred to as training, involves feeding input data through
the network, computing predictions, comparing them to
the actual targets, and updating the network’s parameters
accordingly. Through this iterative process, ANN gradually
improves their ability to make accurate predictions on unseen
data.

When designing ANN, it’s essential to consider various
factors such as the network architecture, activation functions,
and optimization algorithms. The network architecture deter-
mines how input data is transformed through interconnected
layers of neurons to produce output predictions. Activation
functions introduce non-linearities to the network, enabling it
to capture complex patterns and relationships within the data.
Optimization algorithms, such as the BP and LM algorithm
play a crucial role in adjusting the network’s parameters
during the training process to minimize prediction errors
effectively.

In this research, we were using ANN-based BP to design
EPS identifiers and ANN-based LM to improve the EPS sys-
tem controller. The ANN-based BP is a multi-layered ANN
model. The primary principle involves forward propagating
the results, which generates an error that is then mini-
mized. To achieve optimal performance, the network relies
on Equation (2) to propagate errors backward, meticulously

adjusting its internal weights for enhanced predictions

Wa+1 = Wa − η
∂E
∂Wa

. (2)

Equation (2) defines the weight update rule for the ANN
during training. It uses the difference between predictions
and true values across whole data points to adjust the current
weight Wa by a factor of the learning rate η. This iterative
process, known as BP, guides the ANN towards a model
that minimizes the mean absolute error (MAE), fulfilling the
desired accuracy requirements.

The LM algorithm is an optimization method commonly
used in training ANN. It combines aspects of both gradi-
ent descent and Gauss-Newton methods to efficiently find
the minimum of a cost function, which represents the error
between the network’s predictions and the actual target
values.

Mathematically, the LM algorithm involves updating the
parameters of the ANN, denoted as δ. The update rule can be
expressed as:

δk+1 = δk −
(
JT J + λI

)−1
JT e, (3)

where δk represents the parameters of the ANN at iteration k ,
J is the Jacobian matrix, representing the first-order deriva-
tives of the network’s outputs with respect to its parameters,
e is the error vector, representing the difference between
the network’s predictions and the actual target values, and λ

represents the damping factor, controlling the step size of the
update to adjusts dynamically based on the progress of the
optimization process.

III. IDENTIFICATION OF EPS SYSTEM USING
ANN-BASED BP ALGORITHM
In the domain of system identification, an ANN is employed
to approximate the inherent dynamics or connection between
input and output variables within a system, utilizing observed
data. It acts as a versatile and adaptable model capable of
capturing non-linearities and complex interactions within
the system’s behavior. The input variables are fed into the
neurons of the ANN, where they endure processing across
multiple interconnected layers. Each neuron employs an
activation function to transform its input and transmit the
outcome to the subsequent layer. Throughout the training
phase, the network’s parameters, such as the weights and
biases of the neurons, are fine-tuned to enhance performance
and reduce the disparity between predicted and observed
outputs.

The learning process involves iteratively adjusting the
weights of the network’s connections. An iteration is spec-
ified as a comprehensive round of calculations, including
both forward and backward passes. The goal is to mini-
mize the error criterion ek (z) by reducing a cost function.
When all the data, presented collectively with a size of N
is processed, the final weight updates occur. The normalized
sum of squared error for the networks, with respect to the size
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FIGURE 6. Proposed ANN structure for EPS identification.

N , is then expressed as part of this iterative learning process.
We thus have

Ek (z) =
1
N

N∑
k=1

e2k (z). (4)

The proposed architecture of the ANN for system iden-
tification in this study is shown in Fig. 6. The network’s
output is a function of both past inputs and outputs. In Fig. 6,
multiple inputs, denoted as r(z), r(z − 1), . . . , r(z − n)
and y(z − 1), y(z − 2), . . . , y(z − m) are depicted. Here
r(z), r(z−1), . . . , r(z−n) serves as the primary input for the
main neurons, and y(z−1), y(z−2), . . . , y(z−m) represents
inputs from the feedback output plant. The desired output
for the ANN identifier output, denoted as yk (z) is expressed
as ỳk (z). In the notation W 1

ji , W
1
jl and W 2

oj,the indices i, j,
and o represent different weights within the network. The
signal flow within the network progresses from left to right.
In particular, neuron j corresponds to a neuron within the
hidden layer, whereas neuron o represents the singular neuron
in the output layer.

The feedforward process in the network initiates by multi-
plying the input of each neuron i and l with their respective
weights, denoted as W 1

ji and W
1
jl . Subsequently, the products

are transmitted to each neuron j situated in the hidden layer.
Within each neuron j, the computed values from all inputs
go through summation, where each input is multiplied by
its corresponding weight. The summation outcome in each
neuron j is then processed through an activation function,
represented as f . The output of f from each neuron j is further
multiplied by its corresponding weight W 2

oj. The summation
of all resulting products ultimately yields the network’s out-
put ỳk(z). The output ỳk(z) can be written as

ỳk(z) =

 J∑
j=1

W 2
ojhj(z)

 , (5)

where

hj(z) = f

(
n∑
i=0

W 1
ji r(z− i)+

m∑
l=1

W 1
jl y(z− l)

)
, (6)

In a typical ANN setup, every neuron is linked to weights
and biases. However, in this study, biases are not employed
for data modeling, as the data inherently centers around zero.
The exclusion of biases offers the advantage of diminishing
the number of parameters in the model, resulting in a simpler
network with fewer computations.

The BP algorithm is employed to iteratively adjust the
weights and biases of the ANN. This iterative process contin-
ues until the model attains the desired level of performance
on the training data. Mathematically, the sum of squared error
Ek (z) is defined by measuring the discrepancy between yk (z)
and ỳk(z). Subsequently, the partial derivatives of Ek (z) with
respect toW 1

ji , W
1
jl , and W

2
oj are:

∂Ek (z)

∂W 2
oj(z)
=

∂Ek (z)
∂ ỳk (z)

∂ ỳk (z)

∂W 2
oj(z)

, (7)

∂Ek (z)

∂W 1
ji (z)
=

∂Ek (z)
∂ ỳk (z)

∂ ỳk (z)
∂hj(z)

∂hj(z)

∂W 1
ji (z)

, (8)

∂Ek (z)

∂W 1
jl (z)
=

∂Ek (z)
∂ ỳk (z)

∂ ỳk (z)
∂hj(z)

∂hj(z)

∂W 1
jl (z)

, (9)

and the procedure for updating the weights is outlined as:

W 2
oj(z+ 1) = w2

oj(z) − η
∂Ek (z)

∂W 2
oj(z)

, (10)

W 1
ji (z+ 1) = w1

ji(z) − η
∂Ek (z)

∂W 1
ji (z)

, (11)

W 1
jl (z+ 1) = w1

jl(z ) − η
∂Ek (z)

∂W 1
jl (z)

, (12)

where, η represents the learning rate.
To investigate diverse possibilities and determine the opti-

mal ANN structure for EPS system identification, several
tests were conducted. Step signals were employed for both
data learning and validation, while sine, square, and triangu-
lar wave signals served as the test datasets. These datasets
were extracted from EPS, as depicted in Fig. 5. The upper
computer recorded all data, involving input reference signal
data and corresponding EPS response output for each input.
We systematically varied parameters such as the number and
types of samples, the order of input variables (nth and mth
order), and the number of neurons in the hidden layer. The
number of hidden layers was restricted to one, and the tanh
activation function was utilized. Details of the test configura-
tions and results can be found in Table 2, while Algorithm 1
explains the training process for EPS system identification in
this research.

IV. THE PROPOSED ANN-BASED LM ALGORITHM
FOR EPS CONTROL
The ANN control system is a control system that the ANN
algorithm to control a system. ANN is a type of machine
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Algorithm 1 The Training Process of the System Identifica-
tion
Initialize: weightsW 1

ji ,W
1
jl ,W

2
oj

Select: η

Input: pattern-k , enter training dataset of r(z), r(z −
1), . . . , r(z− n), y(z− 1), y(z− 2), . . . , y(z− m)
Output: `yk(z)
for i←1 to maximum_iteration do
Calculation for neuron outputs:
for z steps do
Feedforward Calculation of first layer:
feedforward first layer calculation hj (z)
utilize the tanh activation function
Feedforward Calculation of second layer:
feedforward second layer calculation ỳk(z)
Square Error calculation:Ek
Backward Calculation of:
Calculate the derivatives: ∂Ek(z)

∂W 2
oj(z)

, ∂Ek(z)
∂W 1

ji (z)
, ∂Ek(z)

∂W 1
jl (z)

Update the weights:W 2
oj(z+ 1), W 1

ji (z+ 1), W 1
jl (z+ 1)

end
end

TABLE 2. Performance evaluation of predicted outputs of the EPS ANN
system identification under various configurations.

learning algorithm that can learn from data and make predic-
tions. In designing the ANN for training the ANN controller,
this study gathers data from the EPS system with a given
sine wave signal at a frequency of 0.5 Hz as an angle input
reference. The output response results with its corresponding
input signal as depicted in Fig. 4(b). All data are shown in
Fig. 4 recorded with a time sampling of 400 Hz. We used
only one full sine wave of the data with its corresponding
compensated control signals, totaling 800 data points. The

FIGURE 7. Proposed ANN Controller Training Model for EPS.

dataset was divided into training, validation, and testing sets
with a ratio of 70%, 15%, and 15%, respectively. The training
set is used to train the ANN, the validation set is used to tune
the hyperparameter, and the testing set is used to evaluate the
model’s parameters. This model is then used as an EPS ANN
controller in this study.

As depicted in Fig. 7, the ANN controller ANNa training
topology is 6-10-1. Which consists of 6 neurons in the input
layer, 10 neurons in the hidden layer, and 1 neuron in the
output layer. The input vectors of ANNa are [r(z-1), r(z-2),
u(z-1), u(z-2), y(z-1), y(z-2)]T and the output of ANNa is
ùk (z).
We thus have

ùk (z) =

 10∑
j=1

Wa2ojhaj(z)

 , (13)

where

haj (z) = gk

(
2∑
i=1

Wl
ajir(z− i)+

2∑
l=1

Wl
ajlu(z− l)

+

2∑
s=1

Wl
ajsy(z− s)

)
(14)

The Wl
aji and Wl

ajl are the weight vectors in between input
and hidden layer and Waoj

2 are the weight vector in between
hidden and output layer. Fig. 7 is the proposed ANN angular
controller training architecture scheme for the pre-trained
model before being used as an EPS ANN controller.

In this research, The LM algorithm is used to adjust the
weights of the networks such that the error eak between
the desired output uk (z) and the estimated output ùk (z)
approaches a very small value. Utilizing the LM algorithm,
the error performance function Eak is expressed in the form
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of a sum of squares error as

Eak (z) =
1
2

(
uk (z)− ùk (z)

)2
=

1
2
ea2k (z). (15)

The current gradient function ∇Eak (z) as

∇Eak (z) =
∂Eak (z)
∂W (z)

= eak (z)
∂ek (z)
∂W (z)

= JTc (z)ek (z),

(16)

where Jc is the Jacobian matrix. The Jacobian matrix Jc
contains the first-order partial derivatives of the error function
concerning the threshold and weight values. When the error
function is minimized, the elements of the Jacobian matrix
can be ignored, thus we have

∇
2Eak (z) = JTc (z)Jc(z). (17)

The Hessian matrix is the second derivative of the error
function with respect to the weight values. It contains infor-
mation about how the error function changes as the weight
values are changed. The Hessian matrix is used in the LM
algorithm to compute the update step for the weight values
WaakN (z + 1). If the Hessian matrix is invertible, then the
LM algorithm can be used to compute the exact update step
that will minimize the error function. However, the Hessian
matrix is not always invertible, especially when the weight
values are close to the minimum of the error function. To use
the LM algorithm even when the Hessian matrix is not invert-
ible, a coefficient λ is introduced. This coefficient controls
how much the LM algorithm relies on the Hessian matrix.
When λ is large, the LM algorithm relies more on the Hessian
matrix and behaves like the Gauss-Newton method. When λ

is small, the LM algorithm relies less on the Hessian matrix
and behaves like the gradient descent method [32], we thus
have

WakN (z+ 1) =WaakN (z)−
[
JTc (z)Jc(z)+ λI

]−1
JTc (z)ek (z),

(18)

where WakN (z) represents the parameters of the ANN at iter-
ation z, Jc is the Jacobian matrix, representing the firstorder
derivatives of the network’s outputs with respect to its param-
eter, and ek (z) is the error vector, representing the difference
between the network’s predictions and the actual target
values.

Once the ANN is trained, it is then used to predict the
system’s output for a given input. This information can then
be used to generate a control signal that will cause the system
to achieve its desired state. In Fig. 8, we can see the proposed
EPS ANN controller system block diagram. The ANN takes
inputs from the angle command rk (z), the measured angle
of yk (z) with time delays p−1 of two order system, and the
control signal uk (z) as feedback also to the input. The ANN
processes these input data and produces the control signal
output uk (z), serving as a voltage reference for the BLDCM
switching device.

FIGURE 8. Overall EPS block diagram with Proposed ANN controller.

FIGURE 9. EPS testbed setup for Proposed ANN controller reviews.

V. EXPERIMENTAL RESULT AND DISCUSSION
A. H/W CONFIGURATION FOR EXPERIMENTAL SETUP
In this comprehensive experimental study, we investigated
the effectiveness of EPS system identification using an
ANN and the performance of EPS using an ANN con-
troller. In the investigation of the ANN works in EPS
system identification, we used five observed data taken
from the EPS. For EPS system identification comparison,
we use a linear transfer function estimator (TFE). For
EPS control, the experiment was designed to assess the
steering system’s response in distinct scenarios of angular
control.

The angular control scenario focused on the system’s reac-
tion to varying steering wheel angles using sine wave input
as an angular position reference. Sine wave angle refer-
ence input, for this purpose, is used to simulate the act of
the steering vehicle in real steering activity. We examined
the controllers’ capability to accurately translate the angle
command input into wheel movements. Both EPS system
identification and controller code were programmed in a
microcontroller and the data of angle reference input and
EPS response output were recorded by the upper computer
via UART line. Fig. 9 shows the testbed setup for this
purpose.
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B. RESULTS OF EPS MODELLING
A common technique employed in system identification
is the TFE. This method is utilized to characterize and esti-
mate the dynamics of a linear time-invariant (LTI) system,
where the connection between inputs and outputs remains
constant over time and is unaffected by variations in the
system’s operating conditions. The transfer function acts as
a mathematical representation of how the system’s input and
output are related in the frequency domain. It is defined as the
ratio of the system’s output to its input in the Laplace domain
(s-domain). The general expression for the transfer function
of an LTI system is:

H (s) =
Y (s)
U (s)

=
ω2
n

s2 + 2ζωns+ ω2
n
, (19)

where H(s) denotes the transfer function, Y(s) represents the
Laplace transform of the system’s output y(t), U(s) corre-
sponds to the Laplace transform of the system’s input u(t),
and ’s’ characterizes the complex frequency variable.

LTI systems comprise a subset of dynamic systems, but
many real-world systems exhibit nonlinear behavior due to
factors such as the nonlinear friction of the motor in our
case, acting as an EPS actuator, and external uncertainties.
In such scenarios, the Transfer TFE may struggle to accu-
rately capture the system’s dynamics, resulting in deficient
model performance and limited predictive capabilities. The
estimation results of the TFE model are depicted in Fig. 10.

Examining Fig. 10 reveals that this TFE yielded best-fit
input-output models of 87.6%, 92.1%, and 87.3% for sine
wave, square wave, and triangular wave test datasets, respec-
tively. These outcomes highlight the effectiveness of ANN in
system identification when compared to the TFE algorithm.

C. RESULTS OF EPS SYSTEM IDENTIFICATION USING ANN
When choosing an ANN architecture, it is crucial to carefully
consider factors like task complexity, data characteristics,
overfitting, computational resources, training time, and gen-
eralization capabilities. All the options detailed in Table 2
feature a rapid training process, but architecture number 11
stands out as an optimal choice. This selection strikes a
balance between model complexity and the specific require-
ments of the problem. With a fast-training time, it can
achieve excellent generalization performance. The results of
the best-fit test model estimation in this study are presented
in Fig. 11.

The optimal model for system identification in this
research, as illustrated in Fig. 11, is obtained based on the
test results using ANN with the design scenario specified
as number 11. The network topology is set to 5-5-1, and a
learning rate of 0.1 is applied. The error converges to the
desired goal of 0.0167 after 100 iterations. Notably, at both
learning rates of 0.1 and 0.01, design configuration number
11 achieves an optimal fit, expressing a match of over 99.6%
between the model’s predictions and the actual measured data
across all testing dataset.

FIGURE 10. The time response outcomes for original EPS and the
simplified 2nd order TFE model (a) Response to the sine wave,
(b) Response to the square wave, (c) Response to the triangular wave.

D. TIME RESPONSE RESULTS OF DESIGNED
EPS ANN CONTROLLER
In this research, we design two types of EPS controllers:
PID and ANN controllers to see the performance of each
controller in controlling the EPS system. The 10%-90% rise-
time type, settling time response, steady-state analysis, and
overshoot analysis was performed to analyze the performance
of the EPS with respect to the step input reference.

The results of the EPS system responses using the proposed
ANN controller with a given step input command of ±10◦

and with the given sine wave at frequencies of 0.25 Hz,
0.5 Hz, and 1 Hz in the±10◦ and±5◦ of reference angle with
the compensated signal in this study are shown in Figs. 12
to 15, respectively. The system with some given sine wave
frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz as input references
to know the performance of the EPS PID and EPS controller.
These selected frequencies are based on the normal range of
steering frequency of a car [33].

The experimental results reveal a notable difference in
compensation signals when the EPS target angle varies
between ±10◦ and ±5◦. This suggests a strong correlation
between the compensation signal and the specific target
angle required for EPS performance in autonomous vehicles.
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FIGURE 11. The time response outcomes for both the original EPS and
the identified ANN model with network topology of 5-5-1, 100 learning
iterations, and LR = 0.1. The responses to: (a) Sine wave, (b) Square wave,
(c) Triangular wave.

FIGURE 12. EPS response on step input of ±10◦: (a) EPS response using
ANN controller in clockwise rotation, (b) EPS response using ANN
controller in counterclockwise rotation.

In essence, varying target angles in autonomous vehicles
influence the dynamics of the steering mechanism and

FIGURE 13. Time response results of EPS using ANN controller with sine
wave input at a frequency of 0.25 Hz: (a) Responses on EPS angle target
of ±10◦ and ±5◦, (b) The compensated signals.

FIGURE 14. Time response results of EPS using ANN controller with sine
wave input at a frequency of 0.5 Hz: (a) Responses on EPS angle target of
±10◦ and ±5◦, (b) The compensated signals.

the vehicle’s response characteristics. Larger target angles,
necessitate more pronounced adjustments to the steering sys-
tem to ensure the vehicle follows the desired trajectory.

E. RESULTS COMPARISON AND ANALYSIS OF ORIGINAL
EPS WITH PID CONTROLLER AND PROPOSED
ANN CONTROLLER
This section shows the comparison of EPS system response
using both PID and ANN controllers. The comparison of PID
and ANN controller EPS output performance corresponds to
the provided step input of ±10◦ and input sine wave with
angle peak target of ±10◦ using frequencies of 0.25 Hz,
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FIGURE 15. Time response results of EPS using ANN controller with sine
wave input at a frequency of 1 Hz: (a) Responses on EPS angle target of
±10◦ and ±5◦, (b) The compensated signals.

FIGURE 16. EPS response results on step input of ±10◦: (a) EPS response
using PID and ANN controllers in clockwise rotation, (b) EPS response
using PID and ANN controllers in counterclockwise rotation.

TABLE 3. Results of EPS PID in time response analysis on input
commands of ±10◦.

0.5 Hz, and 1 Hz. These comparison graphs can be seen in
Fig. 16 and Fig. 17, respectively. Next, Table 3 and Table 4
show the results detail of EPS PID and EPS ANN controller
response time with a given step input commands of ±10◦.

FIGURE 17. EPS PID and EPS ANN controllers output performance
comparison corresponding to the provided input sine wave with angle
target peak to peak of ±10◦: (a) At a frequency of 0.25 Hz, (b) At a
frequency of 0.5 Hz, (c) At a frequency of 1 Hz.

TABLE 4. Results of EPS ANN in time response analysis on input
commands of ±10◦.

As we can see from the results in Table 3 and Table 4, the
ANN controller has a faster response time compared with
the PID controller. ANN controller has a 10-90% rise-time
response of 0.07 seconds and settling time of 0.177 sec-
onds in order to reach the +10◦ angle target and has a
10-90% rise-time response of 0.07 seconds and settling time
of 0.182 seconds in order to reach -10◦ angle target. The signs
(+) and (-) indicate the turning rotation of the right and left of
the EPS system, respectively.

As illustrated in Fig. 17, a comparative study between
PID and ANN controllers for an EPS system was conducted.
Both controllers were implemented on identical testbed con-
figurations detailed in Fig. 9. The results revealed that the
ANN controller achieved a significantly faster response time
compared to the PID controller, despite independent data
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recording. This advantage stems from the inherent ability of
ANN controllers to learn and adapt from data.

VI. CONCLUSION
This study investigated the application of ANN to enhance
the identification and control of EPS systems for autonomous
vehicles. Two approaches were developed:

• ANN-based identifier: This method, utilizing the BP
algorithm, achieved a significant improvement in
accuracy compared to the TFE method. Experiments
demonstrated an achievement of over than 99.6% accu-
racy in predicting EPS system dynamics across various
input signals.

• ANN-based controller: This approach, leveraging the
LM algorithm, surpassed the PID controller. The ANN
controller achieved a rise time of 0.07 seconds and
settling times of 0.177 seconds (for a +10◦ target)
and 0.182 seconds (for a −10◦ target), demonstrating
faster response and improved reference tracking. Addi-
tionally, the controller consistently outperformed the
traditional method when tested with varying sine wave
inputs.
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