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ABSTRACT The traveling salesman problem (TSP) is a classic non-deterministic polynomial-hard
(NP-hard) problem. Currently, almost all the research works utilizing Transformers to solve TSP problems
employ supervised learning. However, it is extremely challenging to obtain accurate solution labels for the
model in large-scale instances, resulting in a severe lack of scale generalization capability. Recent research
combines knowledge distillation and Transformer to effectively address the distribution generalization issue.
Nonetheless, if the framework is directly applied to the problem of scale generalization, the solution is
not satisfactory. To address the aforementioned issues, we propose an adaptive soft probability distributed
distillation (ASPDD) framework to improve Transformer scale generalization capability. The ASPDD
framework uses a soft probability distributed distillation (SPDD) method to improve the knowledge
interaction between the student and teacher models. In particular, ASPDD introduces an adaptive selection
strategy, so that the student model can find weak points for improvement training in each training. This
framework is utilized for training a model for a small-scale instance (TSP20) and deploying it to a large-
scale instance. Extensive benchmarking (10000 instances) demonstrates that our ASPDD framework can
achieve competitive results as compared to other Transformer baseline models and knowledge distillation
frameworks. In addition, the ASPDD framework is applied to eleven publicly accessible benchmark datasets
(TSPLIB). On six benchmark datasets, the experimental results demonstrate that our ASPDD framework
outperforms previous knowledge distillation models.

INDEX TERMS Knowledge distillation, ASPDD, scale generalization, combinatorial optimization.

I. INTRODUCTION
The traveling salesman problem (TSP) has a wide range
of applications in the fields of transportation, logistics
distribution, etc. The research community has done a lot of
research on TSP [1], [2], [3], [4]. In the early days, researchers
used exact algorithms to solve the problem, but as the problem
became more complex, the time required for the exact solu-
tion became prohibitive. The non-deterministic polynomial-
hard (NP-hard) property of this problem makes its resolution
in the field of theoretical computer science extremely
challenging. As a result, researchers began employing
heuristic algorithms to solve the TSP. Concorde [5] and
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Gourbi [6] are two powerful exact solvers; the Concorde
solver can solve 85,900 city instances. In contrast, the current
robust heuristic algorithm [7] can achieve superior results
with millions of city nodes. Even though there are a large
number of precise methods and heuristic algorithms to solve
large-scale instances that can control error within a small
range, these traditional solving methods require the artificial
design of extremely complex constraint rules and have a
huge computation time. As a result, it is often very difficult
to directly extend the algorithm to practical application
scenarios.

In recent years, many studies have utilized deep learning
algorithms to solve TSP problems in order to address the
aforementioned issues [8], [9], [10], [11], [12]. Usually, the
deep learning algorithms do not require the design of complex
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constraint rules and can directly solve the problems in an
end-to-end manner. Consequently, this research direction
continues to attract more and more attention. The Trans-
former model is currently one of the most prominent deep
learning models, and its potential and application prospects
in the fields of computer vision, natural language processing,
etc. Some literature studies have been demonstrated [13],
[14], [15], [16]. Recently, in the field of combinatorial
optimization, there have been many studies on solving
the TSP problems based on the Transformer model, and
breakthrough results have been achieved. Kool et al. [17]
introduced the Transformer learning paradigm in solving
vehicle routing problem (VRP). Ma et al. [18] proposed
a novel learning model (DACT) based on Transformer,
which improves the Transformer’s learning ability for such
problems by combining the cyclic position coding method.
The knowledge distillation method, which is an interactive
learning paradigm of the teacher-student model, was first
proposed by Hinton et al. [19]. This method can effectively
transfer the knowledge representation of a large model to
a small model, thereby achieving the goals of reducing the
model’s capacity and enhancing its generalization capability.
Based on this, Bi et al. [20] introduced knowledge distillation
in the TSP problem for the first time. They proposed
adaptive multi-distribution knowledge distillation learning
framework by using knowledge distillation combined with
the Transformer model (AMDKD-AM). The experimental
results demonstrated that the Transformer model introduced
with knowledge distillation possessed a robust capacity for
distribution generalization. Although knowledge distillation
methods have achieved success in distribution generalization
problems, as the scale of TSP instances increases, the cost
of obtaining accurate labels for supervised learning (SL)
models and the time overhead of instance training becomes
unbearable in practical applications.

Given the aforementioned research and challenges,
we pose the following question: Can the existing knowledge
distillation combined with the Transformer learning frame-
work train a small-scale instance model and deploy it in
a large-scale TSP instance while maintaining a lower level
of gap (i.e., scale generalization)? To accomplish this (as
shown in Figure 1, we utilize the existing AMDKD-AM
framework for experimental verification. The research
results show that this framework cannot be used directly
to complete the task of scale generalization (as shown
in Table 1). Then, we asked how knowledge distillation
and the Transformer model could be combined for scale
generalization. In light of this, we propose a soft probability
distributed distillation (SPDD) method for training a student
model and scaling it to large-scale instances smoothly.
In addition, we propose an adaptive selection strategy,
specifically for the scale generalization problem to improve
student model training. Finally, by combining the SPDD
method with an adaptive selection strategy, we propose an
adaptive soft probability distributed distillation (ASPDD)
learning framework, based on which the student model

FIGURE 1. Generalization reasoning is performed on the TSP problem by
means of knowledge distillation, where θT and θS represent the teacher
and student models, respectively, and m > m′ , deploy small models to
larger instances through interactive learning.

can continuously approximate the geometric distribution
in the teacher model space, and train a generalist student
with strong academic ability. The following part of the
article is structured as follows: Section II provides a brief
review of related work on the study of supervised learning,
deep reinforcement learning, and knowledge distillation.
Section III introduces the background and motivation of
ASPDD. Section IV presents the ASPDD method. Section V
reports the experimental results and analyzes the reasons from
different perspectives. The conclusion and future work are
provided in Section VI. The code of this work is available at
https://github.com/oooo111/ASPDD.

In summary, the main contributions of this paper are as
follows:
• We propose a method of knowledge distillation to
soften the probability distribution. The consistency of
the geometric shape distribution of the student and
teacher models in space is used as the learning objective,
and the student model’s learning ability is enhanced by
modifying the learning function. This method ensures
that the student model can interact more effectively with
the teacher model and facilitate the expansion of the
model, i.e., from a small-scale instance to a large-scale
instance.

• We propose an adaptive selection strategy, which
enables the student model to make adaptive adjustments
based on the experimental results of different instances.
In addition, it also enables us to make adjustments
corresponding to the model’s own weaknesses.

• We assess the proposed framework on a benchmark
dataset and compare it with four baselines including
LCP [21], DACT [18], AM [17], and AMDKD-AM
[20]. The experimental results demonstrate that the
proposed framework effectively improves the gener-
alization ability of small-scale models, and achieves
the state-of-the-art performance as compared to four
baselines.
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FIGURE 2. The training process of the ASPDD framework. Among them, circles and triangles represent pairs of samples. Small, middle, and large
represent TSP20 TSP50, and TSP100, respectively.

II. RELATED WORKS
In this section, we present a brief literature review regarding
the application of machine learning algorithms for addressing
combinatorial optimization issues.

A. SUPERVISED LEARNING
Vinyals et al. [22] introduced a recurrent neural network
(RNN) based on an encoder-decoder architecture to learn the
conditional probability of output sequences, using attention
as a pointer to select the input sequence, thereby resolving
the issue of variable size output dictionaries. Their proposed
pointer network (Ptr-Net) can solve the entire class of TSP
instances offline; however, they only focused on small-scale
TSP instances and did not generalize.

In recent years, scholars have started applying the attention
mechanism to TSP issues. Kool et al. [17] improved the
attention model [13] and used the deep learning training
model of the simple greedy rollout baseline based on the
Transformer method. This method yielded remarkable results
on a number of VRPs and introduced a paradigm for
Transformer training on route planning issues. The model is
generalizable to TSP instances with 100 cities, but it does
not generalize well to larger scales. Ma et al. [18] introduced
a cyclic coding training method based on the Transformer
model, which significantly enhanced the model’s general-
ization capability. Xing and Tu [23] trained a graph neural
network to capture graph motifs and vertex interactions, and
combined Monte Carlo tree search (MCTS) to solve the
classical TSP problem. Fu et al. [24] noted that the existing
algorithms for solving TSP problems using SL severely
lack generalization capability. Therefore, the authors first
developed the graph sampling, graph converting, and heat
maps merging techniques for TSP, and then combined deep

learning and MCTS for searching for high-quality solutions,
which significantly enhanced the training model’s scale
generalization capability. Due to MCTS, the computational
cost was relatively large.

However, it was not possible to generalize the learned
strategies to a larger instance on a real scale. Although
these models utilized machine learning techniques, SL was
still utilized. It was easy to obtain samples, but difficult
to obtain labels for SL, which severely constrained the
problem-solving scale and application degree. It became
the bottleneck for the spread of machine learning-based
combinatorial optimization problems.

B. DEEP REINFORCEMENT LEARNING
Aiming at the difficulty of label acquisition in SL, some
researchers adopt deep reinforcement learning (DRL) meth-
ods and argue that DRL training may result in greater
generalization than SL. Drawing from the studies of Vinyals
et al. [22] and Bello et al. [25], a neural network and an
actor-critic algorithm trained through reinforcement learning
were proposed. Using the negative tour length as the reward
signal, the strategy gradient method is used to optimize
the parameters of the RNN. Finally, the Ptr-Net of TSP
is trained. To solve NP-hard combinatorial optimization
problems, Khalil et al. [26] proposed a framework based
on reinforcement learning and structure2vec (S2V) graph
embedding networks.

C. KNOWLEDGE DISTILLATION
Hinton et al. [19] formally proposed and promoted the
knowledge distillation method. The main idea behind this
method is to use a pre-trained teacher neural network to
guide and supervise the training of a student neural network.
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How to transfer knowledge from a large teacher model to a
small student model is the central concept of this method.
Bi et al. [20] noted that the current method for resolving VRP
problems using machine learning is fundamentally based on
the same distribution of instances for training and testing.
Therefore, knowledge distillation was incorporated in the
neural combinatorial optimization in order to enhance the
cross-distribution generalization capability of solving VRP.
It was proposed to use AMDKD to train lightweight models
with good cross-distribution generalization performance, and
it was applied to two representative deep models, i.e.,
AM [17] and POMO [27].

III. BACKGROUND
A. TSP PROBLEMS
This paper focuses on two-dimensional TSP problem, the
TSP problem is defined as: G = {ν, ξ} is a directed
graph with weights, νi ∈ ν represents the location of each
specific city, e(vi, vj) ∈ ξ represents the edge connecting
every two vertices, C(e(vi, vj)) represents the Euclidean
distance between every two vertices, where all vertices are
assumed to be uniformly distributed in two dimensions. The
objective function of the TSP problem can be expressed as
finding the shortest path starting from any vertex νi, passing
through all other vertices in the graph only once, and finally
returning to the starting point νi. That is, find the route θ∗

(Equation (1)) with the smallest total cost among all the
possible paths in the limited search space S.

θ∗ = argminL
(
θ ′ | G

)
= argmin

∑
C(e(vi, vj)) (1)

B. KNOWLEDGE DISTILLATION
Knowledge distillation is a training paradigm based on
interactive learning between a teacher model and a student
model. Recent research indicates that knowledge distillation
can enhance the model’s ability to generalize distributions
and reduce the model capacity for TSP problems [20]. The
mathematical expression of the loss function combined with
the knowledge distillation method is given as follows:

L = βLTask + (1− β)LKD (2)

where, β is a hyperparameter, LTask represents the task loss
of the student model, and LKD is the distillation loss between
the student and teacher models.

C. MOTIVATION
Classic NP-hard combinatorial optimization problems, such
as TSP, have attracted the attention of many industry
and academic researchers. On small-scale instances, the
performance of the most advanced solution models is
currently very close to that of conventional programming
solvers. As the size of the instance increases, training
typically requires more time and computing resources.
However, the greater challenge is to pre-specify the label
of the accurate solution, which is often difficult to achieve
in practical application scenarios. Therefore, if the model

trained on a small-scale instance is deployed on a large-scale
instance while maintaining a certain level of performance,
the applicability of the model in real-world scenarios can be
significantly enhanced. Therefore, we require a method that
can effectively transfer knowledge to enhance the model’s
generalizability. Knowledge distillation can effectively
enhance the model’s capacity for generalization and reduce
its parameter capacity. Moreover, the Transformer model
has great potential for solving combinatorial optimization
problems such as TSP (see recent studies [17], [18]). On this
basis, few researchers have recently combined Transformer
with a knowledge distillation method, proposed a Trans-
former combined with a knowledge distillation framework,
and discussed the generalization ability of the model under
different distributions [20], which represents a significant
advance. Unfortunately, if the framework is directly extended
to scale generalization problems, it often results in large
model prediction deviations. To overcome this technical
obstacle, we propose an ASPDD framework to solve the
model’s scale generalization problem (see Section IV).

IV. METHODS
A. OVERALL FRAMEWORK OF ASPDD
First, we consider a practical teaching scenario. In a class-
room, the students must first complete basic ability training.
When students have attained a certain level of foundational
knowledge, teachers will arrange tests to evaluate their
abilities. These quizzes cover knowledge that students have
not encountered in their studies. When the assessment is
complete, the teacher will make corrections based on student
errors and conduct targeted improvement training. Thus, after
long-term training by teachers, students can develop strong
learning abilities and eventually become generalists capable
of solving a variety of problems. Inspired by this scenario,
we propose an adaptive selection training strategy (see
equation (Equation (12)) for details). In the TSP problem,
the existing Transformer combined knowledge distillation
framework is to measure the consistency between the teacher
distribution and the student distribution by calculating the
KL divergence. The specific calculation procedure is outlined
below:

LKD =
1
NT

∑
x∈X

NT∑
i=1

KL
[
pθTi (x), pθS (x)

]
(3)

where, x represents the training sample. pθS (x), pθT (x)
represent the spatial probability function distribution of the
student model and the teacher model, respectively. The KL
divergence function is defined as follows:

KL(pθT (x)∥pθS (x)) = pθT (x)(logpθT (x)− logpθS (x)) (4)

The above formula shows that the student model is directly
matched with the teacher model during the training process
using the KL divergence function. However, the student
model cannot learn the teacher model’s deep semantic space
distribution. Due to the difficulty of zero-shot generalization
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problems, we need to train a model with strong knowledge
reasoning and expansion capabilities. Therefore, we need
a training method that can learn the latent information
of the teacher model. Existing studies have demonstrated
that training the interaction between data sample pairs can
describe the geometric distribution rules of the feature space
of the model [28]. Modeling the joint probability density
function between sample pairs enables a more accurate
description of the model’s geometric space [29], [30]. The
geometric distribution rules of the model contain important
model distribution information [31]. We propose a soft
probability distributed distillation (SPDD) method, which
is influenced by the aforementioned techniques. Finally,
we hope that the student model is able to think critically
throughout the training process, and the student model cannot
fully trust the answers given by the teacher model. Therefore,
we soften the trained function obtained. When the model
trained on small-scale instances is extended to larger-scale
instances, the SPDDmethod can effectively address the issue
of poor accuracy.

The overall diagram of the proposed ASPDD framework
training is shown in Figure 2. Initially, the corresponding
pre-trained teacher models are trained on three TSP20,
TSP50, and TSP100 instance samples. After obtaining the
pre-trained model, we sample and generate TSP20 instance
samples for student model training. The student model is
set to a standard AM model. Then, execute the adaptive
selection strategy. In stage E < E ′, students are trained using
the teacher model pre-trained on TSP20 instances. In the
E > E ′ stage, the gap between the model solution and
the standard solution is calculated on three verification sets
(1000 instances) of TSP20, TSP50, and TSP100, respectively.
The softmax value represents the probability of selecting
the corresponding pre-trained teacher model during the next
epoch.

B. ADAPTIVE SOFT PROBABILITY DISTRIBUTED
DISTILLATION
In this paper, to address the aforementioned technical chal-
lenges, we propose anASPDD framework. In this framework,
the student model can learn more important and effective
information by learning the geometric space distribution
of the teacher model and combining adaptive selection
strategies. The pseudo-code of the specific algorithm is
shown in Algorithm 1.
(xi, xj) and (yi, yj) are the outputs of the teacher model

and the student model, respectively. i ∈ {1, . . . ,N }, N is
the size of the data, xi ∈ Rb×n×n, b is the batch size, and
n is the size of the instance (e.g., the n of TSP50 is 50).
The joint probability density function can be estimated in the
function space through the kernel function [32]. The specific
estimation method is as follows:

pij = pi|jpj = δ
(
xi, xj

)
(5)

qij = qi|jqj = δ
(
yi, yj

)
(6)

Algorithm 1 Adaptive Soft Probability Distribution
Distillation(ASPDD)
Input: 1. Backbone modelM, train data

X (Uniform). 2. Pre-trained model(MT ) and
initialize model(MS ).

Output: Update Student Model(MS ′ ).
for epoch=1:E do

SelectingMT based on adaptive select strategy;
for step=1:T do

Sampling the data of TSP20 from X ;
Calculate ∇LTask (##L(π ) is total cost, b(s)
is standard solution);
∇LTask = Epθ (π |s)(L(π )− b(s))∇logpθ (π |s).
Calculate ∇LKD;
∇LKD = τ 2ψ(φ(pi|j/τ ), φ(qi|j/τ )). Calculate
global loss ∇LSPDD;
∇LSPDD = β∇LTask + (1− β)∇LKD.
update the model parameter;
MS

t ←MS
t−1 + η∇LSPDD.

end
end

where, qij and pij represent the joint probability density
function of the student model and the teacher model in the
space, respectively. (xi, xj) and (yi, yj) represent the output
vectors of the teacher model and student model data sample
pairs. δ(x, y) represents the kernel function. We transform
the joint probability density function into a conditional
probability density function using a Bayesian transformation.
Among them, the conditional probability density functions of
the teacher model and the student model are respectively as
follows:

pi|j =
δ
(
xi, xj

)∑N
n=1,n̸=j δ

(
xn, xj

) (7)

qi|j =
δ
(
yi, yj

)∑N
n=1,n̸=j δ

(
yn, yj

) (8)

where, pi|j, qi|j ∈ [0, 1]. The cosine kernel function can
estimate the function accurately without adjustment [28].
Therefore, we use the cosine kernel function as the kernel
density function, and the specific calculation is as follows:

δcosine(x, y) =
1
2
(

xT y
∥x∥2∥y∥2

+ 1) (9)

where, δcosine(x, y) ∈ [0, 1]. The objective of model
training is tominimize the conditional probability distribution
difference between the teacher model and the student model
so that transferred samples have a high degree of consistency
in the space of the teacher and student models. Finally,
we soften the conditional probability density function tomake
the student model not fully trust the solution provided by the
teacher model. The specific global loss function is defined as
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TABLE 1. A comparison of the proposed ASPDD model with Transformer-derived models and AMDKD model.

follows:

∇LKD = τ 2ψ
(
φ

(pi|j
τ

)
, φ

(qi|j
τ

))
φ (zi) = log

(
ezi∑
k e

zk

)
(10)

where, τ represents the temperature variable during the
distillation process. ψ represents the KL divergence function
that measures the consistency of the teacher-student model.
The∇LTask uses the reinforce function rollout [17] as the task
loss. The specific algorithm is presented as follows:

∇LTask = Epθ (π |s)(L(π )− b(s))∇ logpθ (π |s) (11)

Among them, pθ (π |s) represents the probability distribu-
tion. L(π ) represents the solution predicted by the model, and
b(s) represents the standard solution.
The Adaptive Select Strategy: During training, we use

the pre-trained TSP20 teacher model for basic training of
students when E < E ′, and the adaptive select strategy
is turned off at this time. When E ≥ E ′, the probability
of selecting each pre-trained teacher model is adaptively
adjusted based on the performance of the student model on
the TSP20, TSP50, and TSP100 validation sets. The gap
value is solved by a powerful Gurobi solver, AvgGap(S,M )
represents the average gap between the solution πtspm(solver)
of the solver at scale m and the solution πtspm(model) of the
model at scale m and the specific adjustment strategy is as
follows:

P =

{
softmax (AvgGap (S,M)) if E ≥ E ′

[1, 0, 0] else
(12)

where,πtspm(solver) represents the standard solution on three
instances of {20,50,100} by the Gurobi solver. P represents
the adaptive probability. πtspm(model) represents the solution
of the student model on three instances of {20,50,100}. The
adaptive selection strategy is turned off when E < E ′ (i.e.,
select pre-trained TSP20 as the teacher model). In this study,

our adaptive approach involves dynamically selecting teacher
models with varying instance scales, which differs from the
approach outlined in [20]. In [20], an adaptive method is
used to select teacher models from different distributions.
The adaptive technique applied in our paper represents a
modification of the approach introduced in [20], specifically
tailored to address the challenge of scale generalization.
Although there might be similarities in the mathematical
expressions, the intended applications are distinct. It’s
essential to underscore that this method primarily serves
as a training technique in our work and isn’t the primary
innovation of this study.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
We experimentally compare the proposed ASPDD frame-
work with four transformer variants: 1) DACT [18]: a
transformer model based on cyclic coding; 2) LCP [21]:
a learning collaborative policies model; 3) AM [17]: a
basic transformer model for the VRP problem; 4) AMDKD-
AM [20]: a knowledge distillation framework combined with
Transformer model. Specific model details can be found
in the original literature. The main focus in this work is
to enhance the scale generalization ability of Transformer.
Therefore, we specifically compare the Transformer-based
models only. The task loss adopts the commonly used
rollout method [17], and the hyperparameters are consistent
with the AMDKD-AM network fundamental architecture.
The training strategy uses greedy approach. We propose
an adaptive strategy for addressing the scale generaliza-
tion problem, i.e., the selection of different pre-trained
teacher models of varying scale only, while maintaining
the training configuration of the student model similar
to other comparison methods. This approach is similar
to AMDKD-AM, which utilizes auxiliary teacher models
pre-trained on different distributions. When using the teacher
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TABLE 2. Effectiveness of ASPDD extensions in TSPLIB instances.

model for multi-scale training, it is essential to note that this
approach is only feasible under the framework of knowledge
distillation. Therefore, we solve the scale generalization
problem of TSP under the knowledge distillation framework.

The model trained on the TSP20 instance is then applied
to five datasets of TSP20, TSP50, TSP100, TSP200, and
TSP1000. Among them, we use the standard baseline data
set (10000 instances) [17] for the three scale instances,
i.e., 20, 50, and 100, for testing. For instances of 200 and
1000 scales, we use Kool et al. [17] to generate 2000 instance
nodes for testing. The gap is calculated using conventional
programming solvers Concorde [5] and Gurobi [6]. All
experiments are implemented on a signal GPU NVIDIA
RTX 3090. The proposed ASPDD framework is implemented
in Pytorch [33].

B. EFFECTIVENESS ANALYSIS OF ASPDD
In this experiment, we first compare the proposed ASPDD
framework with the mainstream Transformer series models.
In Table 1, the model trained on the TSP20 instance is
deployed to five scale instances, and the model’s index
evaluation uses three indexes, including computational cost,
gap, and computation time.

The performances of other existing models exhibit the
following characteristics, as shown in Table 1: First, the
performance of the DACT model in the scale generalization
problem is nearly inferior to that of other models in terms of
gap and time, and on a single-card GPU, memory overflow
occurs when the test node exceeds 50. Second, the gap
of the LCP model is as low as 0.00% on the TSP20
instance, but the time overhead is huge, i.e., the model
requires time in exchange for gap optimization, and when
the number of nodes exceeds 20, the model performance
begins to decrease. Third, as the scale of the instance
increases, the performance of the AM(64) model declines
and AMDKD-AM(64) model becomes larger. Compared
to the AMDKD-AM model, the proposed ASPDD frame-
work has the following performance characteristics: First,
it can improve the model performance while maintaining

a relatively constant time consumption. After conducting
experiments, we have observed an intriguing phenomenon
where various AMDKD-AM training modes exhibit unique
strengths and weaknesses across different scale instances.
For the purpose of convenient discussion, this paper will
primarily focus on the basic mode of AMDKD-AM. Second,
on the scale of TSP20, the proposed 64-dimensional model
achieves a 0.02% improvement in terms of gap as compared
to the AMDKD-AM⋄ framework; on the scale of TSP50,
it achieves a 0.51% improvement in terms of gap; on
the scale of TSP100, it achieves a 2.34% improvement in
terms of gap, and on the scale of TSP1000, it achieves a
9.3% improvement in terms of gap. Third, when the model
node embedding dimension is 64, the proposed method
significantly outperforms the AMDKD-AM and AM models
of the same embedding dimension. However, as compared
to other models with a node embedding dimension of 128,
the proposed ASPDD (128) shows limited improvement.
The powerful learning ability of the large model itself is
primarily responsible for the limited improvement in model’s
performance. Fourth, as the model capacity of ASPDD
increases, the gap only improves on the TSP1000 instance.
This demonstrates that in the proposed ASPDD framework,
the bigger model may not have a better effect. The aforemen-
tioned experimental results validate the effectiveness of the
proposed ASPDD framework.

C. BENCHMARK DATASET EXTENSION
Next, in order to effectively validate the effectiveness of our
ASPDD framework, we randomly select eleven benchmark
datasets from TSPLIB. We train on data instances with a size
of 20 and test with the trained model.

The experimental results are presented in Table 2. The AM
model performs extremely poorly when faced with unknown
distribution and scale-up instances. Relatively speaking, the
performance of the AMDKD-AM model introduced with
knowledge distillation and interactive learning has been
greatly improved. For six benchmark datasets, the proposed
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TABLE 3. The results of ablation experiments.

TABLE 4. The results of ablation experiments(Epoch represents E’).

ASPDD framework performs better than the AMDKD-AM
framework.

D. ABLATION EXPERIMENTS
Finally, we conduct ablation experiments on ASPDD to
effectively evaluate the performance of the proposed ASPDD
framework. In particular, we select two scale data of TSP20
and TSP50 to conduct ablation experiments for validating
the effectiveness of adaptive selection strategy and SPDD
method. The experimental results are presented in Table 3.
The model that employs the adaptive strategy and the SPDD
method achieves the highest level of precision. The increase
in the TSP20 instance scale is 0.02% when compared
with no adaptive strategy. In the TSP50 instance scale, the
improvement is 0.04% compared to the non-adaptive strategy
and 0.74% compared to the non-SPDD method. In addition,
with regard to the adaptive strategy, we conducted exper-
imental analyses on the selection of different epochs.The
experimental results are presented in Table 4.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we propose an ASPDD framework for the
TSP problem to address the lack of scalability of existing
Transformer series models and knowledge distillation frame-
works. Unlike the existing AMDKD-AM framework that
solves the distribution generalization problem, our goal is
to deploy the model trained on a small-scale instance to
a larger-scale instance in order to solve the issues of long
training time and difficulty in obtaining solution labels for
the Transformer model in a large-scale instance. In order
to achieve this, we propose the SPDD loss function and
an adaptive adjustment strategy. In particular, we train a
generalist student on small-scale instances by learning the
geometric distribution of the teacher model combined with an
adaptive selection strategy. In five instance scales, the quan-
titative experimental results demonstrate that the proposed
ASPDD framework is significantly more competitive than

themainstreamTransformer seriesmodels andAMDKD-AM
framework. Moreover, in the largest TSP1000 instance, the
proposed ASPDD (64) achieves a 9.3% improvement in
terms of gap as compared to the AMDKD-AM(64). Overall,
the proposed ASPDD framework improves model perfor-
mance, while maintaining a roughly constant time overhead.
Extended baseline experiments (TSPLIB) demonstrate that
the proposed ASPDD framework outperforms AMDKD-AM
on six baseline data and has a substantial gap optimization
compared to the AM model without knowledge distillation.
We will conduct the following research in future work:

• Integrate additional model types in the proposed
ASPDD framework and extend them to a variety of
combinatorial optimization problems.

• Introduce a reward mechanism to effectively train the
student-teacher model using reinforcement strategies.
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