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ABSTRACT The classification of skin lesions is crucial because it increases the likelihood that malignant
skin lesions will be discovered early on, allowing for more effective treatment. Due to the abundance of
lesion images and the possibility of human error, early detection can be difficult for dermatologists. This
work aims to classify skin lesions using two pipelines that were designed using support vector machine
(SVM) and AlexNet convolutional neural network (CNN) models. Pipeline-1 uses the AlexNet CNN, while
pipeline-2 proposes a bisectional feature extraction approach with an SVM model. The skin lesion images
are initially preprocessed and the lesion regions are segmented. The lesion regions are further subdivided
into four regions based on the intensity mapping function. The bisectional features are then extracted from
the subdivided regions and the extracted features are trained with the SVM model. The dataset used in the
experiment is the HAM-10000 dataset and the PAD-UFES-20 dataset, which consists of dermatoscopic skin
lesions images. Based on the models’ accuracy, sensitivity, DCI, specificity, and F1-score, the experiment’s
findings will be assessed for five different skin lesion conditions. By accurately and effectively classifying
skin lesions, the study’s findings will help in the diagnosis and treatment of skin disorders. The SVMpipeline
performs better than the AlexNet CNN pipeline where the SVM pipeline and AlexNet CNN pipeline result
in an accuracy of 98.66% and 97.68% respectively for the HAM-10000 dataset. The AlexNet CNN and SVM
pipeline structure results in an accuracy of 96.87% and 98.10% respectively for the PAD-UFES-20 dataset.

INDEX TERMS Skin lesions, support vector machine, deep learning, AlexNet, CNN.

I. INTRODUCTION
Skin lesions are abnormal growths or changes to the skin
that can be brought on by a number of things, such as
illnesses, traumas, allergies, and infections. They can take
on a variety of shapes and sizes, from little bumps, blisters,
and moles to bigger regions of discoloration and growths
with irregular shapes. Depending on the type and severity
of the skin lesions which can be benign or malignant it
may be necessary to seek medical assistance [1]. In order
to diagnose and treat skin problems as well as to avoid
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consequences like infections and skin cancer, it is essential to
understand the features of skin lesions. In reality, according
to various studies, skin diseases are among the most prevalent
human illnesses, affecting people of all ages, genders, and
cultures. The economic and health implications of skin cancer
are significant. For recognizing early skin disorders, it is
advised to be aware of new or altering skin growths. The
possibility of early-stage skin cancer detection and doing it
through automatic skin lesion classification systems having
performance at least or greater than traditional detection
methods is a rather promising challenge. Because the most
fatal type of skin lesion, Melanoma, can have a 5-year
survival rate of up to 99% with early identification. One of
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the most widely used approaches for analyzing skin lesions
is the ABCD analysis [2].

Traditional methodologies such as eye inspection and
dermoscopy, as well as more contemporary techniques
incorporating machine learning algorithms, were used to
classify skin lesions. The ability of these algorithms to
effectively categorize skin lesions as benign or malignant
has shown considerable potential. This will help doctors to
identify Melanoma in its early stages and potentially save
lives. Convolutional neural networks (CNNs) and Support
vector machines (SVMs), two of the most frequently used
methods, have been applied to numerous datasets with
promising results. To detect psoriasis with the help of traits
such as skin tone and texture, many used [3] feed-forward
neural networks. For a more accurate and reliable result,
the paper relied on both skin color and texture data. The
input images were classified as psoriasis or non-psoriasis
and implemented using feed-forward neural networks. The
system performed admirably during the generalization and
training phases of the neural network. They used psoriasis
disease as an example in this work to assess how well the
suggested skin texture recognition algorithm can distinguish
between healthy and sick skin. The difficulty of precisely
and automatically categorizing skin lesions was addressed
by the authors Khan et al. [4]. This is a significant concern
in the timely detection and avoidance of malignancies of
the skin. They contend that because of the great diversity
and intricate nature of skin diseases, conventional methods
for machine learning face shortcomings in this domain.
They took advantage of teledermatology, which ranks among
the most eminent telemedicine and digital health applica-
tions. Telecommunication methods are used in this industry
to transmit clinical data to other professionals. Limiting
unnecessary medical references and prioritizing dermatology
problems are additional benefits. A number of authors also
spoke regarding the prospective advantages of automated
diagnosis solutions leveraging deep learning (DL) based tech-
niques [5] like CNNs and EfficientNet architecture, including
increased certainty of diagnosis, decreased physician effort,
and happier patients [6]. Their work outlines potential paths
for subsequent studies, including the creation of sizable and
varied datasets, the analysis of multimodal strategies, and the
examination of explainable AI methods for categorization.

The contribution of the work is briefly summarized below.
In order to create a sophisticated system for classifying skin
lesions, this workwill focus on deploying deep learning along
with a few image processing approaches to images extracted
from the dataset. Images are processed using two different
pipelines after employing some pre-processing approaches
to refine contrast and remove hairs. The first one employs
the AlexNet convolutional neural network (CNN) for image
classification, while the second employs the support vector
machine classifier that is trained using features derived from
the lesion regions. In particular, the second pipeline uses
a segmentation technique to divide the image into regions
of interest (ROI) using the k-means clustering algorithm,

then establishes the ROI that best represents the lesion
among all of the ROIs, and subsequently performs feature
extraction based on ABCDT analysis to utilize the extracted
features for the training of the SVMmachine learning model.
Since the pipelines offer distinct approaches to categorizing
dermatoscopic images, it is a key objective of this work to
assess and compare the outcomes and performance of both
approaches in order to thoroughly compare shallow and deep
learning approaches.

The sections in thework are as follows. Section II discusses
a few of the related works in the classification of skin lesions.
Section III elaborates on the working of the two pipeline
structures in the classification of skin lesions, Section IV
analyzes the results obtained in the classification of the skin
lesions and finally, the conclusion of the proposed skin lesion
classification is provided in Section V.

II. RELATED WORKS
Artificial intelligence plays an ultimate role in the automatic
classification of medical images of different modalities [7],
[8]. The scheme [9] first divided the image through distinct
component analysis into pigment and blood elements before
segmenting the vascular architecture of the lesion. By doing
this, the influence of melanin on vessel permeability is
eliminated. The blood’s hemoglobin portion is subsequently
aggregated into regular, pigmented, and erythema zones.
The erythema cluster is then subjected to several levels of
shape filters. Consequently, the segmentation’s specificity
and sensitivity were outstanding. The author Arifin et al. [10]
proposed k-means clustering and color gradient technique
for employing color skin scans to diagnose dermatological
conditions. The approach has two interdependent steps the
first identifies diseases, while the second identifies the
skin anomalies. The approach depends on visual input,
such as patient medical history and high-resolution color
photographs. To identify the sick skin through machine
intervention, the approach employs color image processing
methods namely color gradient and k-means clustering.
The technique uses feed-forward back-propagation artificial
neural networks to categorize diseases. When tested on a
total of 2055 diseased spots in 704 skin lesion images for
6 illnesses, the approach showed a diseased skin detection
accuracy and disease identification accuracy of 95.99% and
94.016% respectively.

HAM10000 dataset is used to test the above-mentioned
approach for multi-class skin disease classification using
transfer learning and data augmentation techniques which
address the dataset’s significant class imbalances [11]. This
study suggests a transfer learning-based model that makes
use of an Xception model that has already been trained.
The addition of layers, including a pooling layer, two
thick layers, and one dropout layer, modifies the Xception
model. For seven groups of skin diseases, a new fully
connected (FC) layer has been added in place of the original
FC layer. According to the latest data, the scheme can
accurately classify skin conditions 96.40% of the time. With
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FIGURE 1. Proposed framework of skin lesion classification.

F1-score, sensitivity, and precision values of 98%, 97%,
and 99%, respectively, the model performs best on benign
keratosis. Few proposed a skin disease identification method
using machine learning for dataset training and SVM for
classification [12]. They used publicly available databases
such as DermWeb and Dermnet to collect images. The
scheme is based on vectors and pixel classification of the
images and it classifies the images into five categories
of diseases: Psoriasis, Melanoma, Rosacea, Vitiligo, and
Xanthelasma. The author Allugunti introduced a CNNmodel
for skin disease classification [13] with the dataset taken
from the website dermnetnz.org. This CNN method is a
two-stage learning platform that provides an overall accuracy
of 88.83% beats the other classification algorithms random
forest (RF) and decision tree (DT) which have an accuracy
in the 65%-75% range. It also significantly reduces the
computational effort required. Its drawback is that it is tested
only on a single dataset. For the classification of Nevus and
Melanoma from skin images the approach [14] implemented
an improved K-mean clustering approach after applying a
Gaussian filter to eliminate noise from images of skin lesions.
Textural and color features that were collected from the
lesion are combined to generate a hybrid feature vector, and
an SVM is then utilized to categorize the skin cancer as
Nevus or Melanoma. The DERMIS dataset is used to test the
suggested methodology, which yielded a 96% accuracy rate.
The purpose of the scheme is to evaluate the segmentation
method, extract pertinent characteristics, and evaluate the
classification outcomes.

CNNs have shown tremendous promise in assisting the
detection and treatment of skin illnesses, according to recent
research [15]. These customized deep-learning algorithms
can correctly categorize skin lesions into various groups,
enabling quicker and more precise diagnoses. Another
study [16] created a novel framework based on CNNs for
identifying various skin conditions in a clinical setting. This
method demonstrated a high accuracy rate of 90.5% in
detecting skin conditions, such as basal cell Carcinoma and
Melanoma. In order to increase the precision and efficiency
of diagnosis, automated image-based methods that leverage
machine learning categorization, such as CNNs, have also

been suggested [17]. The image classification performance
of AlexNet CNN is renowned for being exceptional [18].
Rectified linear units (ReLU), which train more quickly than
the common tanh function used in other CNNs [19], are one
of the benefits AlexNet has over other CNNs. Additionally,
AlexNet makes use of overlapping pooling, which can lower
errors by roughly 0.5% [19]. To lessen overfitting, AlexNet
also employs data augmentation and dropout techniques [19].
Due to these characteristics, AlexNet is a powerful model
for object recognition, including the classification of skin
lesions.

Support Vector Machines (SVMs) have demonstrated
significant promise in the classification of skin lesions and the
treatment of skin illnesses [20]. Machine learning algorithms
called SVMs can be applied to categorization jobs. SVMs
operate by locating the ideal hyperplane that divides various
data classes. When dealing with high-dimensional data, such
as medical imaging, they are especially useful. SVMs have
been used to categorize skin lesions as either benign or
Melanoma lesions in conjunction with deep learning-based
automatic skin lesion segmentation [20]. In another study,
three different types of skin lesions were classified with a
higher accuracy rate using SVM and GLCM [21]. In a com-
puterized procedure for detecting skin diseases using long
short-term memory (LSTM) and MobileNet V2 based on
deep learning, SVM has also been utilized as a classifier [22].
SVMs have demonstrated considerable promise for assisting
in the diagnosis and treatment of skin ailments.

The work proposes two pipeline structures for the clas-
sification of the skin lesion. Pipeline-1 uses an AlexNet
CNN where the skin lesion features are extracted by the
model itself. Pipeline 2 uses the ABCDT features to classify
the skin lesion categories. More specifically the pipeline-2
structure proposes a Bisectional texture feature that highly
differentiates the skin lesion image categories.

III. PROPOSED METHOD
The diagrammatic representation of the proposed skin
lesion classification that uses the two pipeline structures
is illustrated in Fig. 1. The proposed approach can
classify the skin lesion images into five classes namely
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FIGURE 2. Architecture of AlexNet CNN for skin lesion classification.

basal cell carcinoma (BCC), Actinic Keratoses (ACK),
Melanoma (MEL), Melanocytic nevi (NEV), and Benign
Keratosis (BKL). The different stages included in the
proposed skin lesion classification include (a) Pre-processing
(b) Pipeline-1: Classification using AlexNet convolutional
neural network, and (c) Pipeline-2: Classification of features
using support vector machine.

A. PREPROCESSING
Preprocessing the dataset entails scaling and normalizing the
lesion images as the first step. Preprocessing comprises three
different steps such as contrast-limited adaptive histogram
equalization (CLAHE), morphological closing, and median
filtering. An image processing method that improves contrast
is called CLAHE. To enhance the visual quality of images,
it is a modified version of the conventional histogram equal-
ization technique that is widely utilized in medical imaging,
remote sensing, and computer vision applications [23]. Mor-
phological closing is a common image-processing technique
that has also been used to classify skin lesions. Several
approaches for classifying skin lesions were examined and
discovered that morphological closing is useful for enhancing
classification model accuracy [24]. In applications involving
medical imaging, the method has also been used with
CLAHE [25]. A structuring element is used in morphological
closing, which can be used to fill in gaps and remove small
items from an image by first applying a dilation operation
to it. Better feature extraction as a result can raise the
precision of classification models. The median filter is a
commonly used technique in image processing, including
skin lesion classification. It works by replacing each pixel’s
value with the median of its neighboring pixels, effectively
removing noise and smoothing the image. This technique
has been found to improve classification accuracy, making
it an essential tool in the medical imaging field. In this
work, we use CLAHE to improve the contrast and brightness
of the images, and we use morphological closure to clean
up stains and hairs from equalized images using a disk of
radius 7. The median filter is used to filter the image after

morphological closing to quickly and accurately perform
linear interpolation.

B. PIPELINE 1: CLASSIFICATION USING ALEXNET CNN
There are various phases involved in classifying skin lesions
using the AlexNet convolutional neural network. AlexNet is
a Convolutional neural network (CNN) architecture that has
5 convolutional layers and 3 FC layers [26]. Local response
normalization, dropout regularization, and ReLU activation
functions are all included in the architecture of AlexNet.
While the fully connected layers of AlexNet learn high-level
features like object recognition, the convolutional layers of
the network learn to detect low-level features like edges
and corners. With approximately 60 million parameters,
AlexNet has a much bigger number of parameters than
earlier models [26]. The AlexNet CNN, which has been
demonstrated to perform better in the categorization of skin
lesions, is used in the second stage to develop the model
architecture. The model is trained and validated with the
use of preprocessed images in the third stage. The model’s
accuracy is tested using a different test dataset in the fourth
stage. The model will then be used in a clinical setting
to diagnose and treat skin conditions. Fig. 2 illustrates the
architecture of AlexNet CNN used in the proposed work for
skin lesion classification.

C. PIPELINE 2: CLASSIFICATION USING THE SVM MODEL
BASED ON ABCDT FEATURES
The pipeline-2 includes three stages for classifying the
skin lesions which include stages such as segmentation and
extraction of ABCDT features followed by a multi-class
SVM classifier.

1) SEGMENTATION
The segmentation aims to segment the lesion region of
interest (RoI) by eliminating other skin regions. The work
uses the segmentation presented in the scheme [27]. The
proposed approach uses the k-means clustering approach
followed by the thresholding [27] to segment the lesion
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FIGURE 3. Estimation of the region in extracting the bisectional texture features.

FIGURE 4. Sample skin lesion images used for analysis (a) HAM10000 dataset (b) PAD-UFES-20 dataset.

region. The k-means clustering algorithm is applied after
converting the Pre-processed RGB skin lesion image to
grayscale. The proposed scheme uses the number of clusters
as 2 to segment the lesion region into foreground and
background. The foreground region is then thresholded and
dilated by morphological processing to obtain the segmented
lesion region.

2) ABCDT FEATURE EXTRACTION
The proposed work uses the ABCDT features relating to
asymmetry (A), border irregularity (B), color variation (C),
the diameter of the lesion (D) [2], and texture (T) will be
extracted using the ABCDT approach, which is based on
the ABCD analysis. The features such as asymmetry, border
irregularity, color variation, and diameter are estimated for
the single lesion region. Two features are extracted to obtain
the asymmetry of the lesion region which includes the
lengthening and asymmetry index. The border irregularity

feature is estimated using the features namely density index,
pigmentation transition, edge abruptness, fractal dimension,
and compactness index. The color variation feature is
estimated using the correlation between photometry and
geometry. The color homogeneity feature also plays an
important role in estimating the color variation. The average
diameter is estimated after calculating different chord that
passes through the midpoint of the lesion region. Let FA, FB,
FC , and FD represent the ABCD features that are estimated.
However, the texture feature is estimated as provided in the
following section.

3) BI-SECTIONAL TEXTURE FEATURES
For estimating the bi-sectional texture features, the maximum
diameter is initially estimated on the lesion region R(x, y).
Let the two boundary points that correspond to the maximum
diameter be represented as P(x1, y1) and Q(x2, y2) as illus-
trated in Fig. 3(a). Let the maximum diameter be represented
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FIGURE 5. Experimental results obtained for the lesion image record
ISIC0030501 (a) Original image (b) Histogram equalized output with
CLAHE (c) Histogram of the original image (d) Histogram of Histogram
equalized image (e) Result obtained after morphological closing (f) Result
obtained after median filtering.

as Rmax . The midpoint O(x0, y0) is then estimated from the
extreme points P(x1, y1) and Q(x2, y2) using the relation

(x0, y0) =

(x1 + x2
2

,
y1 + y2

2

)
(1)

An perpendicular line is constructed with respect to
P(x1, y1) and Q(x2, y2) on the centre point O(x0, y0) as
illustrated in Fig. 3(b). The newly formed perpendicular
line constructs two regions R1(x, y) and R2(x, y). From the
R1(x, y) and R2(x, y) a high-intense and low-intense region
were detected. Let the mean threshold intensity of the two
regions R1(x, y) and R2(x, y) be TR1 and TR2 respectively
which can be estimated using the relations,

TR1 =
1
NR1

∑
x=i1,y=j1

R1(x, y) (2)

TR2 =
1
NR2

∑
x=i2,y=j2

R2(x, y) (3)

where (i1, j1) represents the index of the pixels in the region
R1(x, y) and (i2, j2) represents the index of the pixels in the
region R2(x, y). NR1 and NR2 represents the number of pixels
in the region R1(x, y) and R2(x, y) respectively as illustrated
in Fig. 3(c). A region R1(x, y) is considered a highly intense
region, and R2(x, y) is considered as a low intense region
if the region satisfies the condition TR1 ≥ TR2 . Similarly,
the region R1(x, y) is considered as a low intense region,

FIGURE 6. Experimental results obtained for the lesion image record
ISIC0024870 (a) Original image (b) Histogram equalized output with
CLAHE (c) Histogram of the original image (d) Histogram of histogram
equalized image (e) Result obtained after morphological closing (f) Result
obtained after median filtering.

and R2(x, y) is considered as a high intense region if the
region satisfies the condition TR1 < TR2 . Let the high intense
region be represented as RH , while the low intense region
be represented as RL . The high intense region RH is again
partitioned in to two region namely RH1 and RH2 using the
mean intensity values TRH1 and TRH2 respectively estimated
as,

TRH1 =
1

NH1

∑
x=i3,y=j3

RH1(x, y) (4)

TRH2 =
1

NH2

∑
x=i4,y=j4

RH2(x, y) (5)

where (i3, j3) represents the index of the pixels in the region
RH1(x, y) and (i4, j4) represents the index of the pixels in
the region RH2(x, y). NH1 and NH2 represents the number
of pixels in the region RH1(x, y) and RH2(x, y) respectively.
A region in RH1 is said to be a high intense region of RH ,
if TRH1 ≥ TRH2 , else the region is considered as low intense
region of RH . Let the high and low intense regions of RH be
represented as RHH and RHL respectively.

Similarly, the low intense region RL is again partitioned in
to region namely RL1 and RL2 using the mean intensity values

TRL1 =
1
NL1

∑
x=i5,y=j5

RL1(x, y) (6)
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FIGURE 7. Experimental results obtained for the lesion image record
ISIC0024894 (a) Original image (b) Histogram equalized output with
CLAHE (c) Histogram of the original image (d) Histogram of histogram
equalized image (e) Result obtained after morphological closing (f) Result
obtained after median filtering.

TRL2 =
1
NL2

∑
x=i6,y=j6

RL2(x, y) (7)

where (i5, j5) represents the index of the pixels in the region
RL1(x, y) and (i6, j6) represents the index of the pixels in the
region RL2(x, y).NL1 andNL2 represents the number of pixels
in the region RL1(x, y) and RL2(x, y) respectively. A region in
RL1 is said to be a highly intense region of RL if TRL1 ≥ TRL2 ,
else the region is considered an as low intense region of RL .
Let the high and low intense regions of RH be represented as
RLH and RLL respectively.
The texture feature [28] is estimated from the four regions

RHH , RHL , RLH and RLL as illustrated in Fig. 3(d). Let
the number of features obtained from the highly intense
region RH be Ns. The proposed approach extracts a greater
number of features from the high-intense region RH , while it
extracts a lesser number of features from the lower intense
RL region. Let Ns and Ng represent the number of texture
features extracted from the high-intense and low-intense
regions respectively. The number of features Ns and Ng are
related using the feature strength index β as

Ng = βNs (8)

where 0 < β ≤ 1. Let the texture features extracted
from the region RHH and RHL be represented as fHH ,k and
fHL,k respectively, where k = 1, 2 . . . .Ns. Similary the

texture features extracted from the region RLH and RLL
be represented as fLH ,l and fLL,l respectively, where l =

1, 2 . . . .Ng. The feature that represent the texture variation
between fHH ,k and fHL,k is represented as

FH = f̂H ,k = fHH ,k − fHL,k (9)

Similarly, the feature that represent the texture variation
between fLH ,k and fLL,k is represented as

FL = f̂L,k = fLH ,l − fLL,l (10)

The features FH and FL represent the bisectional texture
features. Thus the features extracted from a single lesion
image are represented as

F = [FA,FB,FC ,FD,FT ] = [FA,FB,FC ,FD,FH ,FL]

(11)

4) MULTI-CLASS SVM CLASSIFIER
SVM is a well-liked machine learning scheme used for
regression analysis and classification purposes. The concept
of supervised learning can be applied to categorizing both
linear and non-linear data. Finding the hyperplane that
best categorizes the data into distinct classes is how SVM
operates [20]. To reduce its sensitivity to noisy data, the
hyperplane is chosen to maximize the margin between the
two classes. SVMs are frequently employed across a broad
spectrum of applications, including bio-informatics, text
classification, and picture classification. The SVM models
are renowned for their great accuracy and ability to handle
huge datasets with ease. The lesion identification technique is
then used to identify the area where the lesion is located. The
SVM classifier is then employed and the ideal setting for each
of its hyperparameters is discovered. For the selection of Ns
number of A, B, C, D, and T features, the covariance between
the extracted features is initially estimated. The features that
have the top Ns number of covariance values are used for
training or classifying the SVMmodel. The features obtained
from the skin lesion images are trained using the multi-class
SVM classifier with 5 classes. In the testing phase, the test
image undergoes all processes involved in the training phase
to obtain the features. The feature obtained from the test
image is fed to the trained SVMmodel to obtain the classified
lesion category. Performance evaluation over the test set
would be the last step in this pipeline. Metrics obtained from
both pipelines are compared and evaluated.

IV. EXPERIMENTAL RESULTS
The evaluation of proposed skin lesion classification
algorithm was evaluated using the HAM 10000 dataset [29]
and the PAD-UFES-20 dataset [30]. The HAM10000 dataset
is composed of 11,527 dermatoscopic images of skin
lesions exhibiting pigment, including benign and malignant
lesions. The International Skin Imaging Collaboration (ISIC)
generated the collection, which features images of common
skin lesions. The images were collected from different
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TABLE 1. Number of images used for analysis in each class before and after augmentation.

TABLE 2. Number of images used in the training and testing phases.

sources and were labeled by experts in dermatology. The
HAM10000 dataset is widely used in research to develop and
evaluate algorithms for automated skin lesion classification.
The PAD-UFES-20 dataset contains 2298 skin lesion images
collected from 1,373 patients. A few of the sample images
obtained from the HAM10000 dataset and PAD-UFES-20 are
presented in Fig. 4.

We have used the skin lesion classes namely basal cell
carcinoma (BCC), Actinic Keratoses (ACK), Melanoma
(MEL), Melanocytic nevi (NEV), and Benign Keratosis
(BKL). To fit the model, image augmentation such as Image
rotation by 90◦, Image rotation by 270◦, vertical flipping, and
horizontal flipping. The number of images used in each class
from the two datasets before and after image augmentation is
depicted in Table 1.

Let the true negatives, true positives, false negatives
and false positives obtained in the lesion classification be
CTN , CTP, CFN and CFP respectively. The classification
performance of the proposed skin lesion classification was
evaluated with the performance measures namely F1-score,
sensitivity (Sen), specificity (Spe), accuracy (Acc), and dice
coefficient index (DCI) with the relations

F1 − score =
CTP

CTP + 0.5 × (CFN + CFP)
(12)

Sensitivity =
CTP

CTP + CFN
(13)

Specificity =
CTN

CTN + CFP
(14)

Accuracy =
CTN + CTP

CTN + CFP + CFN + CFP
(15)

DCI =
2 × CTP

2 × CTP + CFP + CFN
(16)

Table 2 depicts the number of skin lesion images used in
the training and testing of the proposed skin lesion algorithm.
From the augmented images 70% of the images are used for
training, and the rest 30% of lesion images are used for testing
the proposed model.

Fig. 5 illustrates the experimental result obtained for the
lesion record ISIC0030501. This includes the result after the

contrast enhancement, followed by morphological operation,
andmedian filtering. The histogram of the original image gets
broadened as a result of histogram equalization. The result
of morphological operation followed by median filtering
eliminates the artifacts caused due to the presence of hair.
Fig. 6, and Fig. 7 illustrate the experimental result obtained
for the lesion image record ISIC0024870 and ISIC0024894
respectively. Fig. 7 (f) shows the absence of hair artifacts
present in the lesion image shown in Fig. 7 (a). Fig. 8
shows the experimental results obtained in the segmentation
of skin lesions by the pipeline-2 section. This shows the
k-means clustering results followed by the morphological
and thresholding operations. The proposed segmentation can
segment the weak boundaries of the lesion region. The
extraction of features on the complete lesion region improves
the performance in lesion classification. The procedures to
improve segmentation include filling in small holes, deleting
small objects with an area smaller than 80 pixels, and,
if applicable, removing regions connected to the picture
contours. The lesion identification method completes the
segmentation process by identifying the region that represents
the lesion. The findings show that the segmentation technique
adopted in this work was effective at locating the regions of
interest and determining which one corresponds to the lesion.
The outcomes show that the segmentation technique utilized
in this study was reliable at locating the regions of interest
and determining which one corresponds to the lesion.

The performance of the proposed skin lesion classifica-
tion algorithm was compared with the recent skin lesion
classification schemes namely multi-features [31], multi-
scale attention [32], feature fusion [33], soft attention [34],
fusionM4Net [35], and contractive learning [36].

For the HAM-10000 dataset, the proposed pipeline-1
results in an F1-score, specificity, sensitivity, accuracy, and
DCI of 94.38%, 93.21%, 94.63%, 97.21%, and 95.82%
respectively. The performance of the proposed pipeline-2
which uses the bi-sectional features with the SVM classifier
has a higher performance than the pipeline-1 approach in the
case of the HAM-10000 dataset. The pipeline-2 approach
results in an F1-score, specificity, sensitivity, accuracy, and
DCI of 95.96%, 96.58%, 95.82%, 98.66%, and 95.12%
respectively.

In the case of the HAM-10000 dataset, the accuracy of
the pipeline-2 approach is 0.98% higher than the pipeline-1
approach. With the recent lesion classification schemes, the
pipeline-1 approach provides higher accuracy than all the
schemes other than the feature fusion approach. However,
the pipeline-2 approach has higher accuracy than the recent
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FIGURE 8. Experimental results obtained in the segmentation of skin lesion (a) Results obtained by k-means clustering (b) Thresholding of k-means
output (c) Result of morphological operation (d)-(e) Isolation of lesion region (row1) Record-ISIC0030501 (row2) Record-ISIC24870 (row3)
Record-ISIC0024894.

FIGURE 9. Graphical comparison of performance for the proposed skin disease classification
system with the recent skin disease classification schemes for the HAM-10000 dataset.

TABLE 3. Performance (%) comparison of proposed skin disease classification system with the recent skin disease classification schemes.

algorithms used in lesion classification as illustrated in
Table 3. The graphical comparison of F1-score, specificity,
sensitivity, accuracy, and DCI between the proposed two
pipeline approaches and other recent schemes for the HAM-
10000 dataset is illustrated in Fig. 9.

Table 3 also shows the performance comparison of
the proposed pipeline-1 and pipeline-2 approaches when
evaluated in the PAD-UEFS-20 dataset. For the PAD-UEFS-
20 dataset, the proposed pipeline-1 approach results in an
F1-score, Specificity, Sensitivity, Accuracy, and DCI of
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FIGURE 10. Graphical comparison of performance for the proposed skin disease classification system with the recent skin
disease classification schemes for the PAD-UFES-20 dataset.

FIGURE 11. Accuracy comparison for different values of Ns and β (a) HAM-10000 dataset (b) PAD-UFES-20 dataset.

TABLE 4. Performance (in %) comparison for the proposed Pipeline-2 structure with different usage of bisectional features.

93.29%, 92.40%, 94.25%, 96.87% and 95.73% respectively.
The accuracy of the pipeline-1 approach is 0.67% less
than the feature fusion approach. However, the accuracy
of the pipeline-2 approach is 0.58% more than the feature
fusion approach. In the case of the PAD-UFES-20 dataset,
the pipeline-2 approach results in an F1 score, Specificity,
Sensitivity, Accuracy, and DCI of 94.52%, 95.68%, 95.54%,
98.10%, and 93.61% respectively. Fig. 10 shows the graph-
ical comparison of performance metrics obtained on the
PAD-UEFS-20 dataset.

Fig. 11 shows the variation of accuracy obtained on the
pipeline-2 approach for various values of Ns, and β for the
datasets HAM-10000 and PAD-UFES-20 dataset. For this
analysis, the feature number Ns was varied between 4 to
24 i.e. Ns = 4, 6, 8, 10, 12, 14, 16, 18,20, and 24. The
parameter β is varied between 0.5 to 1. i.e. β = 0.5, 0.6,
0.7, 0.8, 0.9, and 1. The pipeline-2 approach results in a
maximum accuracy of 98.66% and 98.10% for the HAM-
10000 and PAD-UFES-20 with Ns = 20, and β = 0.6.
As the Ns value is increased, the accuracy gradually increases
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FIGURE 12. ROC analysis in the classification of skin lesion using the
pipeline-1 model and pipeline-2 model using two different dataset.

till Ns = 20. For further increase in Ns, the accuracy starts
to reduce. Also, as the value of β is reduced from 1 to 0.6,
the accuracy increases. The maximum accuracy is attained
for β = 0.6. For further reducing the value of β to 0.5, the
accuracy reduces.

Fig. 12 illustrates the ROC for the proposed Pipeline-1
and pipeline-2 approach obtained for the HAM-10000 and
PAD-UFES-20 dataset. From the graph, it is clear that the
proposed pipeline-2 has a higher AUC than the AUC of
the proposed pipeline-1 approach. The proposed pipeline-1
approach results in an AUC of 0.961 and 0.953 for the HAM-
10000 dataset and PAD-UFES-20 dataset respectively. The
proposed pipeline-2 approach results in an AUC of 0.982 and
0.976 for the HAM-10000 dataset and PAD-UFES-20 dataset
respectively. The AUC of the pipeline-2 approach is higher
than the pipeline-1 approach in both datasets.

Fig. 13 (a), Fig. 13 (b) show the confusion matrices
obtained in the classification of skin lesions with the test data
using the pipeline-1 and pipeline-2 approach for the HAM-
10000 dataset. Fig. 13 (c), Fig. 13 (d) show the confusion
matrices obtained in the classification of skin lesions with
the test data using the pipeline-1 and pipeline-2 approach
for the PAD-UFES-20 dataset. The pipeline-2 approach has
a better classification result than the pipeline-1 approach
in both the HAM-10000 and PAD-UFES-20 datasets. The
Pipeline-1 and Pipeline-2 approach was also evaluated using
independent test data. i.e. the model was trained using the
HAM-10000 dataset and tested using the PAD-UFES-20
dataset and vice-versa. While training the pipeline-1 and
pipeline-2 models using the PAD-UFES-20 dataset training
data, the testing was done with the HAM-10000 test data.
Pipeline-1 and pipeline-2 results in an accuracy of 94.86%
and 95.98% respectively when training using the train data
from PAD-UEFS-20 and testing using the test data from
the HAM-10000 dataset. While training the pipeline-1 and
pipeline-2 models using the HAM-10000 dataset training
data, the testing was done with the PAD-UEFS-20 test data.
Pipeline-1 and pipeline-2 resulted in an accuracy of 95.12%
and 96.04% respectively when training using the train data
from HAM-10000 dataset and testing using the test data from

the PAD-UEFS-20 dataset. The confusion matrices obtained
during the independent test data are provided in Fig. 14.

The pipeline-2 model was evaluated with different
combinations of features namely only ABCD features
(FA,FB,FC ,FD), ABCD features with low intense Bisec-
tional features (FA,FB,FC ,FD,FL), ABCD features with
High intense Bisectional features (FA,FB,FC ,FD,FH ) and
ABCD features with Low and High Bisectional features
(FA,FB,FC ,FD,FH ,FL). The evaluation result is provided
in Table 4. The usage of only ABCD features results in
lower accuracy, while the usage of ABCD features with
either low or High intense Bisectional features improves the
performance. However, usage of both High and low-intense
Bisectional features highly improves the performance in
both datasets. With the use of ABCD features, ABCD with
low intense Bisectional features, ABCD with High intense
Bisectional features, and ABCD with both low and high
intense Bisectional features results in an accuracy of 92.53%,
95.12%, 95.39%, and 98.66% respectively in HAM-10000.
The accuracy obtained by the pipeline-2 structure using the
PAD-UFES-20 dataset is also illustrated in Table 4.

Fig. 15(a) and Fig. 15(b) depicts the time complexity
(classification time) comparison of the pipeline-2 approach
for different values of Ns, and β in both the HAM-10000
dataset and PAD-UFES-20 dataset respectively. As the
value Ns is increased from 2 to 24, for all values of β,
the computational complexity increases. The increase in
classification time is due to the increase in the number of
features used to train and test the SVM classifier. Table 5
illustrates the computation time comparison of the proposed
work for Ns = 18, 20, 22, and 24. The pipeline-1 approach
is independent of the Ns, hence it remains constant. The
training time of the AlexNet CNN in training the images
using the HAM-10000 and PAD-UFES-20 is estimated as
7632.21s and 3748.5s respectively. The time for testing a
single image using the AlexNet CNN is 1.632s and 1.614s
for the HAM-10000 and PAD-UFES-20 datasets respectively.
Let Ttrain represent the time of training the model. Ttest , Tseg,
and Tfea represent the time of testing, segmenting, and feature
extraction respectively. In the pipeline-2 model, the average
time of segmenting the lesion region is 0.34s and 0.321s
for the HAM-10000 datasets and PAD-UFES-20 dataset
respectively. With Ns = 20, the time of training is 921.46s,
and the time of extraction of feature, and classification is
0.426s, and 0.346s respectively in HAM-10000 dataset. With
Ns = 20, the time of training is 468.57s, and the time of
extraction of feature, and classification is 0.451s, and 0.339s
respectively in the PAD-UFES-20 dataset. As the value of
Ns increases the training time, feature extraction time, and
classification time increases. This is due to the increase in
number of features used in classification.

We intend to further this work in the future utilizing other
state-of-the-art CNN models, such as ResNet-152, DeepLab-
v3, or Inception-v4, which have demonstrated good results in
the classification and segmentation of medical pictures [37].
Additionally, transfer learning and ensembling are other
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FIGURE 13. Confusion matrices obtained in the classification of skin lesions using the two pipeline structures (a) Pipeline-1 for
HAM-10000 (b) Pipeline-2 for HAM-10000 (c) Pipeline-1 for PAD-UFES-20 (d) Pipeline-2 for PAD-UFES-20.

TABLE 5. Time complexity (in seconds) comparison of proposed Pipeline-1 and Pipeline-2 model for different values of Ns.

strategies for enhancing generalization performance. Transfer
learning is the process of administering the knowledge gained
from one problem-solving experience to address another [6].
In the field of CNNs, transfer learning frequently involves
either fine-tuning potent pre-trained deep learning models
for the intended job or employing a CNN as a fixed
feature extractor. The main benefits of transfer learning
include the ability to overcome some significant CNN-
related challenges, such as the need for powerful hardware

to support their computational complexity, an appropriate
weights initialization, and careful network architecture
design, in addition to typically allowing for better results.
In ensemble learning, many CNN models are used to achieve
superior predictive performance compared to any one of
the individual models. Diagnosis of skin lesions at its early
stage is essential for effective treatment and better patient
outcomes, especially for Melanoma. To sum up, the goal of
this work is to serve as a solid foundation for the creation
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FIGURE 14. Confusion matrices obtained in the classification of skin lesions using the two pipeline structures (a) Pipeline-2 (Trained in
PAD-UFES-20 train data and tested in HAM-10000 test data) (b) Pipeline-2 (Trained in HAM-10000 train data and tested in PAD-UFES-20 test data)
(c) Pipeline-1 (Trained in PAD-UFES-20 train data and tested in HAM-10000 test data) (d) Pipeline-1 (Trained in HAM-10000 train data and tested in
PAD-UFES-20 test data).

FIGURE 15. Time complexity comparison for different values of Ns and β (a) HAM-10000 dataset (b) PAD-UFES-20 dataset.

of sophisticated systems for classifying skin lesions that are
capable of democratizing and spreading access to medical
care to dramatically lower medical expenditures and save
many lives through early identification.

V. CONCLUSION
In this work, the pipelines for classification were constructed
and an automatic classification system of dermatoscopic
images from the HAM10000 dataset and PAD-UFES-20
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was reported. The system in this work is built with two
distinct pipelines: one utilizes the AlexNet CNN for image
classification, and the other one employs the SVM machine
learning model to classify images after segmenting them
and collecting some features from the lesion region using
the ABCDT analysis. The pipeline-1 and pipeline-2 results
in an accuracy of 97.68% and 98.66% respectively for
the HAM-10000 dataset. In the case of the PAD-UFES-20
dataset, the pipeline-1 and pipeline-2 structure results in
an accuracy of 96.87% and 98.10% respectively. Based on
these findings, it can be concluded that performance levels
that resemble those attained using deep learning approaches
can be attained by combining an improved classifier with
cutting-edge segmentation techniques and feature extraction
strategy.
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