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ABSTRACT Lithium-ion batteries are currently one of the key technologies for a sustainable energy
transition. However, they have a limited calendar and cycle lifetime, which are directly affected by operating
conditions. Therefore, our goal is to maximize the benefits of a battery storage over its entire lifespan.
Stacking multiple services (multi-use) can increase the utilization of battery storage, whereas coupling
different storage technologies with complementary characteristics (hybrid energy storage systems) adds
a degree of freedom for efficient and degradation-aware operation. To exploit these technological and
economic advantages, we develop an energy management concept and demonstrate it in the application
example of a grid-connected photovoltaic plant with hybrid battery storage. The multi-use application
consists of capacity firming, participation in the electricity spot market, and peak shaving. To address the
different temporal scales of the battery storage tasks, we propose a hierarchical energy management with
two levels. The model predictive upper level energy management optimizes the grid power considering
the time-varying electricity prices and marginal costs of battery storage operation. This multi-objective
optimization problem is solved using a mixed-integer linear program with two-dimensional piecewise
linearization of conversion losses and battery degradation costs. The strategy-based lower level energy
management allocates power in real time to meet the grid power and ramp-rate requirements despite model
and forecast errors. Extensive simulations demonstrate the advantages of the proposed approach owing to a
better compliance with grid power requirements, lower conversion losses, and significantly higher benefits
of the battery storage system over its lifetime.

INDEX TERMS Capacity firming, degradation costs, energy arbitrage, hierarchical control, hybrid energy
storage system (HESS), lithium-ion battery aging, mixed-integer linear programming (MILP), multi-use,
piecewise affine (PWA) approximation, photovoltaic (PV) power integration.
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EM Energy management
HE-BS High-energy battery storage
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I. INTRODUCTION
To reduce the devastating consequences of the climate catas-
trophe for the Earth and the present and future generations
living on it, it is necessary to move away from fossil fuels
as quickly as possible [1], [2]. The use of renewable energy
makes a decisive contribution to providing decent living,
considering the planetary boundaries [2], [3]. A high share of
volatile power generation from photovoltaic (PV) and wind
plants necessitates flexibility in the energy system. Lithium-
ion batteries are well suited for the mitigation of power
fluctuations in the range of seconds to hours, and have seen
significant technical and economic improvements over the
past few years [4]. However, aging mechanisms occur in
battery cells both during cycling and idle time, which limits
their lifetime due to deteriorated technical performance and
an increasing safety risk [5], [6]. The operating conditions
of a battery energy storage system (BESS) directly affect
the aging process [7]. From an economic and ecological
point of view, it is therefore important to operate the BESS
in a way that allows for prolonged usage with the greatest
benefit possible. One concept for increasing the use of
an energy storage system over its lifetime is to combine
several suitable applications (multi-use), which also reduces
the dependence on individual revenue streams [8], [9],
[10], [11]. Furthermore, hybridization provides a way to
avoid unfavorable operating conditions while meeting the
same requirements. Hybrid energy storage systems (HESSs)
consist of different types of energy storage with comple-
mentary characteristics, which can be leveraged through
appropriate energy management (EM) to achieve higher
overall efficiency, longer lifetime, and lower investment
costs [10], [11], [12], [13], [14], [15]. In this study, the two
concepts of multi-use and hybridization are combined.

A PV plant operating in conjunction with an HESS serves
as an application example, as shown in Fig. 1. The HESS
is composed of two different lithium-ion battery storages:
a high-energy battery storage (HE-BS) and a high-power
battery storage (HP-BS). The multi-use application of the
HESS consists of three tasks:

1) Capacity firming to increase the reliability of the
feed-in power and to avoid adverse effects on grid
stability.

a. Ramp-rate control: Limit the gradient of the grid
power.

b. Increased reliability: The energy exchanged with
the grid should correspond to the previously
defined value in each interval.

2) Trading in the spot market to match power supply and
demand over time. The following two aspects can be
distinguished:

a. Energy time shift: Shifting the PV feed-in over
time to take advantage of price spreads.

b. Energy arbitrage: Temporary storage of grid
electricity to exploit price spreads.

3) Peak shaving to maximize PV utilization when the
grid connection capacity is limited. This can also be
considered as a form of energy time shift.

FIGURE 1. System overview.

A. LITERATURE REVIEW
PV plants are increasingly operated in conjunction with
energy storage systems to meet grid code requirements or
provide market-oriented services [16].
Capacity firming aims to reduce power fluctuations

owing to volatile generation. A distinction can be made
between smoothing or a pure ramp-rate limitation of the grid
power, and capacity firming to increase reliability. In the
latter case, the power of the variable renewable energy plant
is usually kept constant for defined intervals, similar to a
conventional generator.
Smoothing methods differ with respect to the achievable

ramp-rate limitation and required energy storage capac-
ity [17]. De La Parra et al. [18] proposed a control strategy
to limit the ramp-rate of a PV energy storage system
with minimum storage requirements, applying knowledge
of irradiation characteristics. Several studies have promoted
the use of HESSs for smoothing the feed-in power of PV
and wind plants [19], [20], [21]. Hintz et al. combined a
quick response and several slower response energy storage
systems. The power was divided according to the states
of charge (SOC) and permissible power gradients of the
individual energy storage systems [19]. Jiang et al. [20] and
Ma et al. [21] used an adaptive low-pass filter for smoothing.
The resulting power was divided between a lithium-ion
battery and a supercapacitor first via a low-pass filter and
then via multi-objective optimization, considering the charge
control of the supercapacitor and the total losses.

The requirement for constant power intervals is often
derived from the participation in the energy market. Studies
of HESSs have also been conducted in this regard [22], [23].
The feed-in power of a PV plant was kept constant for 15-min
intervals using a lithium-ion battery and a supercapacitor
in [22]. Wang et al. investigated an HESS consisting of a
vanadium redox flow battery and a supercapacitor bank for
dispatching a PV plant at 5-min intervals. The grid power and
power allocation are determined via rule-based control [23].

Although this form of capacity firming increases the
reliability of the energy exchanged with the grid, high
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power gradients can occur between consecutive intervals. The
conflict between a limited ramp-rate and intervals of constant
power becomes more relevant, the shorter the intervals and
the lower the permissible ramp-rate are. Both tendencies can
be observed in electricity spot markets and grid codes [17],
[24]. Therefore, we combine the two aspects of ramp-rate
limitation and increased reliability of the feed-in power in
our implementation of capacity firming. This approach is also
used for capacity firming in French insular grids [25].
Energy time shift is another typical task of energy storage

systems operated in conjunction with PV plants. Time-
variable prices provide an incentive to shift feed-in from
periods of low remuneration to periods of high remuneration.
For example, Saez-de-Ibarra et al. used model predictive
control to bid the power output of a PV plant with BESS in
the day-ahead market and compensated for forecast errors via
the intraday market [26]. A feed-in limit is another incentive
for temporarily storing generated electricity (peak shaving on
the generation side) [27].

Energy arbitrage [28], [29], [30], [31], [32], [33],
in contrast, means that electricity from the grid is temporarily
stored to take advantage of price differences in the electricity
market. Up to now, regulatory restrictions on the subsidiza-
tion of renewable energies have often stood in the way of
grid supply at the same meter, but in perspective, it is a
valuable addition to themulti-use portfolio. In this study, both
versions, with and without grid supply, are examined.

BESS representation in the EM. When price signals
determine the profitability of the BESS operation – which
is especially the case in energy arbitrage – optimal control
depends on marginal costs owing to power losses and
degradation [34]. The aging-aware operation of BESSs is
considered in an increasing number of publications, which
are reviewed in [35]. An overview of the modeling of
lithium-ion batteries for techno-economic analyses can be
found in [36]. The literature review shows that more detailed
battery models lead to a more accurate economic analysis,
longer lifetime, and better compliance with the safe operating
range. Gelleschus and Bocklisch demonstrated in [37] that
oversimplified models in the EM of an HESS may result in
drastically different system behaviors.

A conflict arises between the computational complexity
of the optimization problem and real-time capability of
the EM system. A common approach is to linearize the
equations of the optimization problem to apply mixed-integer
linear programming (MILP). Sakti et al. used piecewise
affine (PWA) linearization to model the dependence of
efficiency and performance constraints on battery power and
SOC [28]. Xu et al. proposed a method for incorporating
battery degradation costs into a MILP framework using a
PWA-linearized function of cycle depth [29]. Padmanab-
han et al. considered the discharge rate in addition to the cycle
depth to determine degradation costs. They used multi-linear
regression for linearization [30]. Hesse et al. included both
efficiency and battery aging as functions of AC power in
their MILP framework with PWA linearization [31]. In [29],

[30], and [31], calendar aging was neglected. However, the
underlying assumption that calendar aging is only negligibly
affected by BESS operation should be critically examined [7].
Moreover, [32] showed that a longer calendar lifetime may
be more beneficial than an extended cycle lifetime for
energy arbitrage, when rare, high price spreads contribute
to a significant part of the revenue. Kumtepeli et al. [33]
extended the approach of [31] with a multivariate PWA
linearization as a function of battery power, SOC, and
temperature to represent both calendar and cyclic aging.
The need for binary variables for the three-dimensional
interpolation was significantly reduced by using the efficient
logarithmic approach [38], [39], [40]. The authors of [33]
considered the single-use case of energy arbitrage with a
stand-alone BESS. In contrast, this paper investigates a BESS
operated in conjunction with a PV plant for a multi-use
application. Moreover, the HE-BS performance and lifetime
are enhanced by hybridizing it with a HP-BS.

Hierarchical EM concepts are well suited to address the
different time scales that may result from both the HESS
and multi-use application. In addition, dividing the problem
into several levels allows to employ the most suitable EM
approach for each sub-problem [41]. Ju et al. proposed a
two-level EM for a microgrid with an HESS, where the upper
level EMminimizes the operation cost and the lower level EM
compensates for the forecast errors [42]. A hierarchical EM
concept for a microgrid with an HESS was also investigated
in [43]. The EM consists of optimization-based hour-ahead
scheduling and strategy-based power sharing of the HESS
in one-minute resolution. Shi et al. used a two-level EM to
address the different time-scales of peak shaving and fast
frequency regulation [44]. This multi-use application was
extended in [45] to include energy arbitrage, for which a
three-level EM was developed. References [42], [43], [44],
and [45] included battery aging, but neglected the calendar
aging component.

B. CONTRIBUTION STATEMENT
• This article presents a robust and computationally
efficient EM that comprises the two concepts of
hybridization and multi-use. The HESS consists of two
different lithium-ion batteries. It is deployed for PV
capacity firming, energy time shift, and energy arbitrage.

• For this purpose, two levels of EM are introduced. The
upper level EM is based on a state-of-the-art MILP
framework with two-dimensional PWA linearization,
which contains a detailed formulation of losses as well
as calendar and cyclic battery aging.

• The strategy-based lower level EM draws upon the
pre-optimized values and incorporates knowledge of the
characteristics of solar irradiation and the two types of
lithium-ion batteries for power sharing within the HESS.

• The implementation of PV capacity firming combines
the aspects of ramp-rate control and increased reliability.

• Extensive simulations demonstrate the increased benefit
of the BESS over its lifetime owing to the developed
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FIGURE 2. Topology of the 1.2MW PV plant with modularized hybrid
BESS. Red arrows indicate power flow and gray-dashed arrows indicate
communications.

EM concept and multi-use application, as well as the
advantages of HESSs from a technical and economic
perspective.

The remainder of this paper is structured as follows. Section II
presents the model of the PV plant with HESS and addresses
battery aging. Section III delves into the hierarchical EM
concept. The goals and results of the simulations are
discussed in Section IV. Finally, Section V summarizes the
main results and contributions of the article and provides an
outlook on further investigations.

II. SYSTEM DESCRIPTION
We investigate a system consisting of a PV plant, a lithium
iron phosphate (LFP) battery as the HE-BS, a lithium
titanate (LTO) battery as the HP-BS, DC/DC converters, and
AC/DC inverters. An overview of the system configuration
is presented in Fig. 2. The PV plant has an installed
power of 1.2MW, but the maximum grid power PPCC,max
is limited to 75%, that is, 900 kW. To maximize the use
of PV power, a DC-side coupling of the PV plant with the
HESS was chosen. Each battery module is connected to
the common DC bus via a bidirectional DC/DC converter.
The AC/DC inverters connect the DC bus to the grid coupling
point.

A. TIME SERIES
1) PV POWER PROFILE
The PV power profile was obtained from solar radiation
data in one-minute resolution and the ambient temperature
profile of a site in eastern Germany (Lindenberg) in 2018
[46]. For an optimal annual solar energy yield at this site, the
PV modules are oriented to the south with an inclination of
38◦. The power of the PV modules, PPVm results from the
solar radiation in the tilted plane Etilt, PV module area APVm,
a temperature-dependent conversion efficiency (considering
the PV module efficiency ηMPP, temperature coefficient
αPV,T, and PV module temperature TPVm), and auxiliary
efficiency ηaux, which aggregates the losses from cables,
imbalances, and PV module degradation:

PPVm = Etilt · APVm · ηMPP

· (1 + αPV,T · (TPVm − 25 ◦C)) · ηPV,aux. (1)

The modeling parameters are given in Table 4.
The solar radiation Etilt is composed of direct and diffuse

radiation in the tilted plane, as well as an additional part
reflected from the ground. The direct radiation on the
module plane was calculated according to [47] and the
diffuse radiation was modeled using the anisotropic approach
according to Perez et al. [48]. A constant standard albedo of
0.2 was assumed for the reflected radiation.

The spatial extent of a PV plant influences the short-term
fluctuations in its power output. Marcos et al. [49] proposed a
low-pass filterF(s) as a function of plant areaAPV in hectares.
The filter has the following transfer function:

F(s) =
1

( APV
2π ·0.02 )s+ 1

. (2)

After accounting for the DC/DC conversion losses (see II-B),
the theoretical annual solar energy yield is 1544MWh.

2) PV FORECAST
The PV power profile is forecasted in 15-min mean values
with a horizon of up to 24 h, and is updated every 15min.
For this purpose, we adopted the model proposed in [50].
It is based on a persistence forecast of the clear-sky
factor, which describes the fracture of the actual PV energy
to the theoretical PV energy under clear-sky conditions
in the preceding time window. In this study, clear-sky
radiation was calculated using the Metereological Radiation
Model [51]. Besides the position of the sun, it requires
temperature, relative humidity, atmospheric pressure and
Ångström turbidity as input parameters. The former two
were modeled using a simple persistence approach based
on historical measurements, whereas the latter two were
assumed to be constant (Table 4). A comparison of the
actual PV power profile and the theoretical generation under
forecasted clear-sky conditions on an example day is shown in
Fig. 3. The envelopes have nearly the same shape. Exceedings
of the clear-sky power profile can be explained by cloud
reflections, which lead to locally increased radiation.
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FIGURE 3. Actual PV power and theoretical power under forecasted
clear-sky conditions on an example day.

FIGURE 4. Comparison of volume-weighted average, last and high/low
prices of 15-min continuous intraday market in Germany 2018 for an
example day.

3) TIME-VARIABLE ENERGY PRICES AND BALANCING
ENERGY
The time-varying price signal consists of historical data on
intraday continuous 15-min trading in Germany in 2018 [52].
In the intraday continuous market, bid prices apply; therefore
there are different prices for the same product at one trading
time. This is illustrated in Fig. 4 for an example day. However,
because this paper focuses on the technical investigation,
the following simplifications were made: prices are fixed
and known a priori, and the discretization of tradable power
into 100-kW-steps is neglected. These simplifications are
common in the literature on spot market trading with BESSs,
where mostly the volume-weighted average price or the last
price is used [28], [29], [31], [33].

A deviation of the average grid power from its setpoint
within a quarter-hourly time interval is penalized with the
payment of balancing energy. Historical data on balancing
energy in Germany are publicly available [53]. In practice,
revenue can be generated with the balancing energy if the
individual deviation is contrary to the total deviation of
the balancing group. However, this is not the point of our
investigation, so all revenues due to non-fulfillment of the
specified grid power are set to zero.

B. POWER ELECTRONICS
The DC/DC converters and AC/DC inverters were designed
by Fraunhofer ISE within the joint research project
HYBAT [54]. They have a rated power of 150 kW per module

and voltage ranges of 200V to 1500V and 979V to 1500V,
respectively. The loss characteristics are modeled using
lookup tables. For the DC/DC converters, the dependencies of
the losses on power and voltage are considered (Fig. 5a). The
losses of the AC/DC inverters are assumed to be depending
only on the input power (Fig. 5b). To minimize losses, the
six AC/DC inverters are employed in cascades. The resulting
AC/DC conversion efficiency is nearly constant.

FIGURE 5. Losses of one DC/DC converter (a) and AC/DC inverter (b).

C. LITHIUM-ION BATTERIES
1) CHARGE AND LOSS CHARACTERISTICS
The HESS is composed of two different lithium-ion battery
storages: an LFP battery as the HE-BS, and an LTO battery
as the HP-BS. An overview of the battery module parameters
is presented in Table 1. Clearly, the LFP battery has a very
favorable energy-specific cost, while the LTO battery has a
particularly low power-specific cost and an outstanding cycle
life.

The battery modules are composed of serial and parallel
connections of multiple cells, and the single-cell parameters
are scaled up linearly to the module level. The basic equiva-
lent circuit model consists of an open-circuit voltage UOCVm
and DC-resistance Rim. Both are modeled as functions of
the SOC. A comparison of the open-circuit voltages and
internal resistances at the module level is shown in Fig. 6.
The terminal voltage Um of the battery modules is calculated
as a function of the battery module power Pm, open-circuit
voltage, and DC-resistance:

Um =
UOCVm

2
+

√
U2
OCVm

4
− Rim · Pm. (3)

2) LITHIUM-ION BATTERY AGING
The aging of lithium-ion batteries appears as a decrease
in the usable capacity and an increase in impedance. The
underlying battery aging effects can be divided into the loss
of cyclable lithium, loss of active mass at both electrodes,
and reduced ion mobility and electrical conductivity. These
effects are based on complex aging mechanisms, including
the growth of the solid electrolyte interface, lithium plating,
particle cracking at both electrodes, dissolution of transition
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TABLE 1. Overview of the battery module parameters.

FIGURE 6. Comparison of open-circuit voltages (a) and DC-resistances
(b) of the HE-BS and HP-BS modules.

metals from the positive electrode, and their structural
rearrangement [5], [6]. Aging mechanisms strongly depend
on the cell chemistry. A solid electrolyte interface is formed
because the potential of graphite anodes lies outside the
stability range of common electrolytes. Because this does not
apply to LTO anodes, they do not form a solid electrolyte
interface. Similarly, the high potential of LTO anodes versus
Li/Li+ largely prevents lithium plating. Volume changes
in electrode materials during charge and discharge lead to
particle cracking due to mechanical stress, whereas LTO
anodes are a ‘‘zero strain’’ material that exhibits hardly any
volume change [57]. This leads to an outstanding lifetime of
LTO cells.

Various approaches exist for modeling battery aging,
which can be categorized between the poles of purely
theory-based and purely data-based models, and according to
their accuracy and computational complexity. Semi-empirical
models are typically based on small datasets obtained from
accelerated aging tests. To enable a reasonable extrapolation,
the models are fitted using physically informed equations.
Semi-empirical models may provide acceptable accuracy
with low computational effort, whichmakes them particularly
suitable for techno-economic assessments and consideration
in EM. However, the (semi-)empirically derived equations
require careful statistical validation [58].

We use the semi-empirical model of an LFP cell from
Naumann et al. [59], [60] to model the aging of the HE-BS.
The calendar aging depends on time t , Arrhenius-law α as
a function of battery temperature THE, and cubic function β

of SOCHE. The cyclic aging depends on the full equivalent
cycles FECHE, linear function γ of C-rate CRHE, and cubic
function δ of the depth of cycle DOCHE. The total aging
in terms of capacity loss Qloss(%) and increase in internal
resistance Rinc(%) results from the superposition of calendar
and cyclic aging:

Qloss = Qloss,cal + Qloss,cyc (4)

Rinc = Rinc,cal + Rinc,cyc (5)

with

Qloss,cal = αQ(THE) · βQ(SOCHE) ·
√
t (6)

Rinc,cal = αR(THE) · βR(SOCHE) · t (7)

and

Qloss,cyc = γQ(CRHE) · δQ(DOCHE) ·

√
FECHE (8)

Rinc,cyc = γR(CRHE) · δR(DOCHE) · FECHE. (9)

Dynamic stress can be evaluated using the concept of ‘‘virtual
time’’ and ‘‘virtual full equivalent cycles’’; the battery aging
model has been verified for dynamic profiles. The model
parameters can be found in [59] and [60]. In this study,
we linearly scaled the cyclic aging model to match the
datasheet specifications of the LFP cell (Table 1).

Since little aging is expected for the LTO cell at moderate
temperatures and a continuous C-rate of CRHP ≤ 10 h−1

[56], the degradation of the HP-BS is not modeled explicitly.
Instead, the HP-BS is modeled at a constant state of health
(SOH) of SOHHP = 90%.
With the advanced degradation of lithium-ion batteries,

a so-called aging knee can occur, from which aging accel-
erates. The use of the battery should usually be terminated
by then, as the aging knee is not only associated with a rapid
loss of capacity but also poses a safety risk. If an aging knee
occurs, it often takes place around an SOH of 80% [61],
which is a typical value for the end-of-life criterion in the
literature and is also used in this work.

III. ENERGY MANAGEMENT CONCEPT
The EM plays an essential role in maximizing the benefits
of the HESS over its service life: The advantages of using
the HESS are assessed against the disadvantages caused by
battery degradation. From the plant operator’s perspective,
ramp-rate control and the compensation of forecast errors are
mandatory, whereas monetary profit reflects the benefits of
energy time shift, energy arbitrage and peak shaving. The
cost of the prorated battery degradation per optimization
interval is expressed monetarily as well, which is explained
in III-A1. Therefore, the task of the EM is to ensure that
the requirements of the applications are met, and to use the
degrees of freedom to optimize the benefit-cost ratio.

52674 VOLUME 12, 2024



M. Wicke, T. Bocklisch: Hierarchical Energy Management of Hybrid Battery Storage Systems

FIGURE 7. Schematic of the proposed hierarchical EM consisting of a model predictive upper level and a strategy-based lower level.

The tasks of the HESS can be located on different time
scales, covering unpredicted fluctuations in the short term
(up to a few minutes), to feed-in management in the medium
term, to consideration of long-term battery aging phenomena.
We employ a hierarchical two-level model predictive EM to
address these requirements in a robust and computationally
efficient manner. The EM scheme is illustrated in Fig. 7. The
plant model and EM are implemented in MATLAB, and the
solver Gurobi [62] is used for the optimization problem of
the upper level EM.

The aim of the upper level EM is to optimize the revenues
of the BESS considering degradation costs. Based on a
linearized electric and battery aging model, PV forecasts,
and spot market prices, the upper level EM schedules the
grid power in quarter-hour intervals. Because the typical
discharge time of the HP-BS is lower than the time interval
1tUL = 15min at the upper level EM, it is sufficient to
consider the HE-BS at this level. The aim of the lower level
EM is to meet the grid power and ramp-rate requirements
despite forecast and model errors, while considering the
overall efficiency and battery lifetimes. Therefore, the lower
level EM first determines a grid power trajectory based on
the scheduled average grid power. It then calculates the
HESS power sharing using a strategy-based approach, which
allows very fast response times. The model resolution and

the time step of the lower level EM 1tLL equal 1min, so the
subordinate control of the power converters is not within the
scope of this work. An overview of how the multi-use tasks
are treated at the two levels of EM is given in Table 2 and is
explained in the following subsections.

A. UPPER LEVEL ENERGY MANAGEMENT
A highly nonlinear optimization problem results from the
objectives of the upper level EM. However, the model pre-
dictive hierarchical EM concept allows for simplification and
linearization of the optimization problem so that established
and computationally efficient solvers for MILP can be used.
We approximate the nonlinearities of battery aging, losses of
the battery modules, and losses of the DC/DC converters with
a two-dimensional PWA linearization as a function of battery
power and SOC.

1) OBJECTIVE FUNCTION
The objective function (10) is composed of the spot
market revenues or expenses and battery degradation costs.
It includes all discrete time steps k until the end of the
optimization horizon KMPC. In the following, k ∈ Z and
1 ≤ k ≤ KMPC.
Spot market revenues and expenses are calculated from the

spot market price cspot and the power fed into the grid Pgf
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TABLE 2. Overview of the multi-use tasks and their handling in the two-level EM.

or supplied by the grid Pgs. Grid feed-in is positive and grid
supply is negative.

J = min
KMPC∑
k=1

1tUL ·
[
−cspot(k) ·

(
Pgf(k) + Pgs(k)

)
+ f̃degr(k) · Cb

]
. (10)

The battery degradation cost corresponds to the linearized
prorated battery degradation per time step f̃degr, which is
multiplied by the battery cost factorCb. The derivation of f̃degr
is explained in subsection III-A2 and detailed in appendix B.

When determining the battery cost factor Cb, two cost
components can be distinguished. First, the battery storage
may generate less profit at reduced capacity and increased
resistance, resulting in an opportunity cost compared to a
less degraded battery storage. Second, the battery storage
retires at a certain capacity loss Qloss,EOL = 20%. This
leads to reinvestment costs (or opportunity costs compared
to the system with battery storage). Accordingly, different
approaches to determine Cb can be found in the literature.
In most cases, constant reinvestment costs are used [35].
Other approaches are simulation-based [63], [64] or based on
the past added value of the battery storage for the system [65].
Collath et al. found that a simulation-based determination
of the battery cost factor Cb provides a clear advantage if
replacement of the degraded batteries is not intended [66].
Aswe can assume that in our use case, the batterymodules are
replaced when they reach their end-of-life and that this cost
component dominates the degradation costs, we use constant
reinvestment costs for the sake of simplicity. According to
Table 1, a number of nHE HE-BS modules results in

Cb = 230 EUR/kWh · 128 kWh · nHE. (11)

2) APPROXIMATION OF NONLINEARITIES
The control of the battery storage at the upper level EM
is defined by the HE-BS power PHE, the average SOCHE
between two time steps, and the average temperature THE.
Because the HE-BS is located in a temperature-controlled
container and operated at low C-rates, it is assumed to have
a constant temperature of THE = 25 ◦C. The optimization
problem contains three nonlinear functions that are dependent
on both remaining variables: losses and degradation of the
HE-BS modules, and DC/DC converter losses.

The HE-BS losses are represented by the overvoltage
component in (3), where the open-circuit voltage is derived
from the SOC. The calculation of the HE-BS current IHE from
PHE and SOCHE thus implicitly maps the HE-BS losses:

IHE(PHE,SOCHE) =
PHE

UHE(PHE,SOCHE)
. (12)

The C-rate CRHE represents the ratio of the HE-BS current
IHE to the nominal HE-BS capacity QHE,nom:

CRHE =
pHE · PDC,nom

UHE · QHE,nom
, (13)

where pHE is the HE-BS power normalized to the rated power
of the DC/DC converters PDC,nom.

To determine the prorated battery degradation per time
step, the aging model from (4) is rearranged according to
the battery lifetime t = tHE,EOL that would result under
specific, constant conditions and a maximum capacity loss
of Qloss,EOL = 20%. Note that the global exponent in the
battery aging model causes the modeled capacity loss to
be independent of the order of aging stress sequences [67].
Therefore, the same degradation costs should be applied for
the same aging stress regardless of the SOH.

To account for the superposition of calendar and cyclic
aging, the number of full equivalent cycles must be converted
into a time-dependent quantity. Under constant conditions
during a sequence 1τ , we can write

FECHE =
1
2

· CRHE · 1τ. (14)

The influence of the cycle depth on the degradation is
comparatively small for LFP batteries. In particular, in the
middle range of the cycle depth, the employed battery aging
model exhibits low sensitivity. Therefore, the cycle depth
is assumed to be constant in the optimization to reduce
complexity. By substituting the C-rate with (13), we obtain
the bivariate degradation per time step as a function of the
normalized HE-BS power and SOC:

fdegr =
1tUL

tHE,EOL(SOCHE, pHE)

=

[
f1(SOCHE) + f2(pHE)

]2
(Qloss,EOL)2

· 1tUL. (15)
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FIGURE 8. Triangulation of prorated calendar and cycle degradation of
HE-BS per time interval with optimized vertices.

The losses of the DC/DC converters depend on the input
power and voltage; therefore, they can also be modeled as a
function of pHE and SOCHE.

All three bivariate functions (C-rate, prorated degradation
per time step, and losses of the DC/DC converters) are PWA
linearized in two dimensions. For this, the domain of the
functions is divided along the two axes into Np and NSOC
segments. To express any point on the functions uniquely by
interpolation of the vertices, the resulting rectangles must be
subdivided into two triangles each [68]. For each rectangle,
there are two possible subdivisions.

We used the logarithmic approach for the mathematical
formulation of the PWA linearization. It is particularly suited
for many segments and multidimensional functions [38],
[39], [40]. A binary code, in which adjacent codewords differ
by exactly one bit (Gray code) [69], is assigned to each
triangle. The binary reflected Gray code is generated with
a simple algorithm that can be used directly in a symmetric
triangulation, such as the union-jack triangulation, in which
adjacent rectangles are divided into triangles with alternating
orientations (as illustrated in Fig. 13). A detailed explanation
of the logarithmic formulation in the context of the EM of a
BESS can be found in [33].
To minimize the computational effort of the optimization

problem, we use the same vertices for all the three functions.
The HE-BS power pHE is divided into eight segments and
the SOCHE into four segments. This results in 64 triangles,
which corresponds to six binary variables per time step in
the formulation of the optimization problem. We adapted
the h-hop-constrained shortest path method from [70] to
multicriterially optimize the positions of the vertices for
all three functions. The linearization errors of the C-rate,
prorated degradation per time step, and losses of the DC/DC
converters were weighted with 0.3, 0.4 and 0.3, respectively,
using the sum of squared deviations as the error metric. The
algorithm additionally returns the orientation of the union-
jack triangulation. The resulting triangulation of the prorated
battery degradation per time step is shown in Fig. 8. The
vertices around pHE = 0 are close to each other, because here

the curvatures of the battery degradation costs and DC/DC
converter losses are particularly high.

Appendix B illustrates the workflow for two-dimensional
PWA linearization using the logarithmic approach with
union-jack triangulation, and provides the equations for the
MILP formulation.

3) FURTHER OPTIMIZATION PROBLEM CONSTRAINTS
This subsection introduces further constraints on the opti-
mization problem. The power balance is established at the
common DC bus. A constant efficiency ηDCAC is assumed
for the AC/DC inverters. Therefore, a distinction is made
between the grid feed-in power Pgf and grid supply power
Pgs. The losses of the DC/DC converters are denoted by
PDC,L. The power balance is:

1
ηDCAC

· Pgf(k) + ηDCAC · Pgs(k) − PHE(k)

+ PDC,L(k) + Pct(k) = P̂PV(k). (16)

P̂PV is the forecasted PV power and Pct is the PV power
curtailment. The power balance variables are limited as
follows:

PHE,ch,max ≤ PHE(k) ≤ PHE,dch,max (17)

0 ≤ Pct(k) ≤ P̂PV(k) (18)

0 ≤ PDC,L(k) ≤ PDC,L,max, (19)

where battery charging power is negative. PHE,ch,max and
PHE,dch,max are the maximum charging and discharging
powers of the HE-BS, respectively. The binary variable u ∈

{0, 1} prevents simultaneous grid feed-in and supply:

0 ≤ Pgf(k) ≤ PPCC,max · u(k) (20)

0 ≤ −Pgs(k) ≤ PPCC,max · (1 − u(k)). (21)

When charging the BESS from the grid is not allowed, the
grid supply power Pgs and the binary variable u are omitted.
The SOC balance is

SOCHE(k + 1) = SOCHE(k) − 1tUL ·
CRHE(k)
SOHHE

, (22)

where SOHHE represents battery aging as a function of
capacity loss:

SOHHE = 1 −
QHE,loss

QHE,nom
. (23)

The SOH is updated every two days and therefore remains
constant within the optimization horizon. The C-rate and
SOC range of the HE-BS are given by:

CRHE,min ≤ CRHE(k) ≤ CRHE,max (24)

SOCHE,min,UL(k) ≤ SOCHE(k) ≤ SOCHE,max. (25)

The time-dependent parameter SOCHE,min,UL(k) is higher
than the actual SOCHE,min during daytime. This allows the
HE-BS to contribute to the compensation of PV power
forecast errors when the available energy of the HP-BS is
insufficient. A hard limit on the SOC range is implemented in
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the lower level EM. If the SOC falls below SOCHE,min,UL(k),
a constraint to recharge is activated in the upper level EM.

Furthermore, the difference between consecutive grid
power reference values is limited to ensure that capacity
firming requirements can be met. This is explained in the
following subsection.

FIGURE 9. Calculation of the grid power trajectory for an average
reference power Pg,UL and a constrained ramp-rate 1pg.

B. LOWER LEVEL ENERGY MANAGEMENT
1) DETERMINATION OF THE GRID POWER TRAJECTORY
The first task of the lower level EM is to determine a grid
power trajectory Pg from the reference power Pg,UL which
was settled by the upper level EM. Since only the average
power values per quarter-hour interval are evaluated in the
spot market, the grid power trajectory is designed to equal
the reference power in its mean value and to be bounded in
its gradient. This approach links the two aspects of capacity
firming: increased reliability of renewable power generation
and ramp-rate limitation. The trajectory consists of two parts,
as shown in Fig. 9 for a power increase. Here, the initial
grid power is Pg0 and the average reference power for the
next time interval is Pg,UL. In the first segment of the
trajectory, the grid power increases or decreases linearly with
gradient 1pg, which is relative to the maximum grid power
PPCC,max. In this study, the grid power gradient is limited to
1pg,max = 20%/min. The first segment of the trajectory
has a duration of 1t1, which is calculated according to (26).
This results in the first constraint of the power difference
in (27).

1t1 = 1tUL ·

(
1 −

√
1 −

2
1pg · 1tUL

· |(Pg,UL − Pg0)|

)
(26)

|(Pgf + Pgs − Pg0)| ≤
1pg · 1tUL

2
(27)

The second segment of the trajectory has a constant power
value with an overshoot 1POS over the average reference
power. It must be ensured that the overshoot does not violate
any constraints such as the maximum allowable battery or
grid power. For the configuration considered in this study,

this concerns the maximum battery charging power Pch,max
at negative gradients in (28) and the maximum grid feed-in
power PPCC,max at positive gradients in (29):

Pgf + Pgs ≥ Pch,max +
(Pch,max − P0)2

2 · prr · 1t
(28)

Pgf + Pgs ≤ PPCC,max −
(PPCC,max − P0)2

2 · prr · 1t
. (29)

Constraints (27) – (29) are implemented in the upper level
EM. Because they are convex, they can easily be replaced by
several linear constraints.

Finally, the required power of the HESS PHESS,ref results
from the grid power trajectory and the actual PV power.

2) CALCULATION OF HESS POWER SHARING
The second task of the lower level EM is to share the required
power PHESS,ref between the HE-BS and HP-BS. The aim
of HESS power sharing is to leverage the advantageous
properties of each storage technology. For real-time power
sharing, mainly rule-based and filter-based methods are
used [10]. As presented in II-C, the LTO HP-BS has a high
power capability, low losses, and a particularly long cycle
life. The LFP HE-BS has a high energy density and low
investment cost. This corresponds to typical complementary
properties of HESSs. On the other hand, the differences in
the absolute maximum power of the HE-BS and HP-BS
and the losses that occur are comparatively small. Another
typical property of the high-energy storage in an HESS
is that a reduction in its power dynamics leads to an
extended lifetime, which is not per se the case for lithium-
ion batteries [7], [72]. Therefore, the combination of two
different lithium-ion batteries can be considered as a special
case of an HESS, and the advantages of a filter-based method
only apply to a limited extent. For this reason, we developed
a distinct strategy for the lower level EM, as illustrated in
Fig. 10.

In the first step, the HE-BS is allocated no more than
the pre-optimized power PHE,UL (blue block in Fig. 10).
The resulting power P∗

HE,ref can be further reduced to
adjust the SOC of the HP-BS (yellow block). This means
that the charge control of the HP-BS is only applied to
the extent that it does not result in greater stress on the
HE-BS. Only if the HP-BS cannot cover the residual power
PHP,ref, the HE-BS takes over a higher power than pre-
optimized (red block in Fig. 10). It is further important to
consider the possible curtailment of PV power because the
storage of excess PV power is already optimized considering
degradation in the upper level EM – yet based on an
error-prone PV power forecast. This error is circumvented by
limiting the charging power of the HE-BS to the optimized
value PHE,UL in the case of a predicted curtailment of PV
power (Pct,UL > 0).
Charge control of the high-power energy storage is a

central task in the EM of HESSs. The first step is to determine
the reference SOC SOCHP,ref. Usually, a constant value is
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FIGURE 10. Control scheme of lower level EM for power sharing within the HESS.

chosen. For example, a reference SOC of 50% might be set
to be able to absorb power peaks in both directions. However,
by predictively determining the SOCHP,ref, the required
capacity of the HP-BS can theoretically be halved. For this
purpose, we adopted the approach of De La Parra et al. [18].
They used the clear-sky envelope of the PV plant power
PPV,max (derived from the clear-sky irradiance, see Fig. 3)
and 10% of it as an empirical lower envelope PPV,min. From
these envelopes, it can be estimated how high the power
fluctuations can be in the upward and downward directions.
For example, if the current PV power is close to the power
output under clear-sky conditions, passing clouds may cause
deep power dips, but theremay only be small power increases.
Consequently, the HP-BS should have a high SOC. At a PV
power near the lower envelope, a low SOC is advantageous.
Since a multi-use application is considered in this study,
SOCHP,ref is not calculated from the forecasted PV power,
but from the scheduled grid power in the next interval
Pg,UL(k + 1). The reserves SOCHP,dch and SOCHP,ch to be
held for discharging and charging are:

SOCHP,dch = (Pg,UL(k + 1) − αs · PPV,min(k + 1)) (30)

SOCHP,ch = SOCHP,max − αs

· (PPV,max(k + 1) − Pg,UL(k + 1)). (31)

The factor αs depends on the size of the system; here,
αs = 9 × 10−7 1

W was chosen. The reserves SOCHP,dch and
SOCHP,ch are further limited to the minimum and maximum
SOC of the HP-BS. Then, SOCHP,ref is determined from the
two SOC reserves with the following prioritization:

1. The discharge reserve should be available to compen-
sate for drops in power output.

2. The charge reserve should be available to avoid
curtailment of PV power.

3. The current SOCHP should be kept to avoid unneces-
sary energy throughput.

A proportional controller with αp = 0.15 is used to calculate
the charge control power PHP,SOC:

PHP,SOC = (SOCHP − SOCHP,ref) ·
EHP,nom

1tLL
· αp. (32)

Simple lower level EM. We also implemented a simple
version of the lower level EM to differentiate between the
technical advantages of the HESS (lower total losses and a
higher power capability compared to a HE-BS of the same
capacity) and the advantages of the developed strategy-based
lower level EM.As given in (33) – (35), the simple lower level
EM allocates power according to the respective available
capacities Qx,ch or Qx,dch in the charging or discharging
direction, with x ∈ {HE,HP}. This keeps the SOCs of both
the BESSs close to each other.

Qx,ch = (SOCx − SOCx,min) · Qx,nom · SOHx (33)

Qx,dch = (SOCx,max − SOCx) · Qx,nom · SOHx (34)
PHE

PHESS,ch/dch
=

QHE,ch/dch

QHE,ch/dch + QHP,ch/dch
(35)

Additionally, the HP-BS covers power peaks that exceed the
power capability of the HE-BS.

This approach has been found to be advantageous for
BESSs with heterogeneous battery modules, whose differing
properties are not to be explicitly exploited [71].

IV. PERFORMANCE EVALUATION
The performance of the proposed EM was investigated
through comprehensive simulations. We addressed the con-
figuration of the multi-use tasks and hybridization, as well
as the contribution of both levels of the EM to maximize the
benefit of the battery storage over its lifetime.

A. REDUCING THE SIMULATION TIME
A simulation over the entire lifetime would be very
time-consuming for the upper level EMwith two-dimensional
PWA linearization (2D-MILP). Therefore, we estimate the
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FIGURE 11. Simulation results on a cloudy summer day for Case 1. Deviations between PMPP and PPV indicate curtailment of PV power,
whereas deviations between the reference power and the 15-min mean value indicate noncompliance with the settled grid power.

expected lifetimes of the HE-BS from one-year simulations
with an initial SOHHE of 90%. To this end, the resulting time
series of the aging stress are repeatedly fed to the battery
degradation model until a capacity loss of 20% is reached.

To assess the error caused by this extrapolation, we com-
pared the HE-BS lifetime resulting from a full-life simulation
and the one-year estimate for a less computationally expen-
sive upper level EM, where the PWA linearization is only a
function of the battery power (1D-MILP). The extrapolation
underestimated the HE-BS lifetime by 1.55%when using the
last price, and by 1.09% when using the weighted average
price.

B. CASE STUDIES
Six cases were designed to investigate the different impacts of
the BESS and EM configurations. In Case 1 (base scenario),
the HESS consists of two HE-BS modules and two HP-BS
modules. The grid power gradient is limited to 1pg =

20%/min of the maximum grid power of PPCC,max =

900 kW, and charging the HESS from the grid is allowed.

For spot market trading, the last price is used because it has
stronger price spreads than the weighted average price (see
Fig. 4).

Case 2 and Case 3 address the impact of hybridization.
To investigate the improvements owing to intelligent power
sharing within the HESS, the simple lower level EM is used
in Case 2. In Case 3, both LTO HP-BS modules are replaced
with one more LFP HE-BS module, so that the technical
differences between the HESS and the single BESS are also
represented.

Case 4 investigates the influence of the detailed repre-
sentation of losses and battery degradation in the 2D-MILP
framework by replacing it with a constant conversion
efficiency of 95% and constant average battery degradation
costs in the upper level EM.

The purchase of power from the grid is prohibited in
Case 5. This eliminates the use case of energy arbitrage,
whereas the price differences in the spot market can still be
exploited by the energy time shift. Thus, Case 5 illustrates the
relevance of multi-use.
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To investigate the influence of the price spread at the spot
market, we applied the weighted average price instead of the
last price in Case 6.

C. QUALITATIVE SIMULATION RESULTS
First, the functionality of the EM is demonstrated for
Case 1 on an example day. As can be seen from the PV power
profile in Fig. 11a, it is a summer day with highly variable
cloud cover and a typical price pattern, with negative prices in
two intervals. A deviation of the theoretically possible power
PMPP and the actual power output PPV indicates curtailment
of the PV power. When prices are negative, there is always
full curtailment. If the PV power exceeds the maximum
allowed or planned feed-in power, the excess power is either
stored or curtailed depending on the battery degradation
costs, spot market prices, and technical constraints of the
HESS. The 15-min mean grid power values are shown in
Fig. 11b. They always match the reference power, except
for one interval at midday when the forecast error exceeds
the maximum power of the HESS. From the curves of the
battery power in Fig. 11c, the desired HESS power sharing
can be recognized: The HE-BS covers the energy throughput
at moderate power, and the HP-BS covers the power peaks
and strong fluctuations resulting from the PV power profile.
This characteristic is also reflected in the SOC profiles in
Fig. 11d.

To illustrate the long-term influence of both EM levels
on the battery aging stress, Fig. 12 shows the frequency of
the normalized power and SOC of the HE-BS for Case 1,
Case 2 and Case 4. The bins correspond to the segments of the
PWA linearization. The influence of the prorated degradation
per time step from Fig. 8 can be directly recognized in
the histogram of Case 1. High charging and discharging
powers, which are associated with high battery losses and
degradation costs, are avoided. In addition to that, the SOC
shifts downward in the idle state, which minimizes calendar
aging.

Fig. 12b shows the results for Case 2, where the simple
lower level EM is applied. It is apparent that the HE-BS is
significantly less relieved by the HP-BS than in Case 1. First,
many rest periods shift to the low power range. In addition
to cyclic aging, this is associated with the poor efficiency of
the DC/DC converter in the low partial load range. Second,
the HE-BS must charge and discharge at a high power more
frequently.

At a constant efficiency and battery degradation cost
(Case 4 in Fig. 12c), an average SOC is prevalent, and the
power is mostly either in the range of the maximum charging
or discharging power, or zero. This is to be expected because
the battery preferably operates at full power as soon as the
revenue exceeds the threshold of the degradation cost and
conversion losses.

D. QUANTITATIVE SIMULATION RESULTS
Table 3 presents the results of the techno-economic simula-
tions for the six cases. The upper part of Table 3 shows the

results of the one-year simulations with an initial SOHHE
of 90%, whereas the lower part of Table 3 contains the
extrapolated values for the entire HE-BS lifetime. The
performance criteria in Table 3 are explained in the following
subsection and the results are discussed in IV-D2.

1) PERFORMANCE CRITERIA
We define the BESS profit as the opportunity profit compared
to a reference system. This allows for an approximate distinc-
tion between the revenue of the PV plant and the additional
revenue of each BESS configuration. The reference system
consists of the same PV plant, which is equipped with three
modules of the HP-BS to limit the gradient of grid power
to 1pg = 20%/min. For this purpose, the control strategy
proposed in [18] is applied. The grid feed-in of the reference
system is remunerated at 94% of the intraday market price,
and no forecast values need to be met. Assuming the last
price and the volume-weighted average price, the average
annual revenues of the reference system are 62 650 EUR and
62 200EUR, respectively.

The deviations of the energy exchanged with the grid are
given relative to the total exchanged energy, whereas the
violations of the grid power gradient are given as absolute
incidences, that is, in minutes per year.

After taking these last two criteria into account, the
benefit-cost ratio BCR can serve as a metric for the benefit
of the BESS over its lifetime and is therefore the central
performance criterion. To calculate the benefit-cost ratio,
we assume the lifetimes tDC,EOL of the DC/DC converters
and tHP,EOL of the HP-BS modules to be 15 years. The
HE-BS modules are replaced once they have reached their
end-of-life, and the reinvestment costs are scaled linearly.
The discount factor is set to zero. Perspectively, the battery
replacement cost Cb could be dynamically adjusted in the
EM to reflect the discount factor and integer nature of
replacements. However, it would bias the results if they were
considered only in the evaluation. The benefit-cost ratio is
calculated from the average profit difference per year 1Cy,
relative to the total (re)investment costs over the respective
lifetimes:

BCR =
1Cy

1nHE·CHEm
tHE,EOL

+
(1nHE+1nHP)·CDCm

tDC,EOL
+

1nHP·CHPm
tHP,EOL

. (36)

The parameters CHEm and CHPm are the costs of the HE-BS
modules and HP-BS modules, respectively. CDCm is the cost
of a DC/DC converter, and 1nHE/HP is the difference in the
number of the respective battery modules compared to the
reference system.

Again, the EM with 1D-MILP was used to estimate the
deviation between the extrapolated benefit-cost ratio from
the one-year simulation and the benefit-cost ratio resulting
from the full-life simulation. When using the last price
for spot market trading, the extrapolation overestimated the
benefit-cost ratio by 1.09%, whereas the extrapolation errors
of lifetime and profit difference compensated each other
when using the weighted average price.
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FIGURE 12. Distribution of normalized HE-BS power pHE and SOCHE in one year over the segments of two-dimensional PWA
linearization: (a) base scenario (Case 1), (b) 2D-MILP with simple lower level EM (Case 2), and (c) with constant efficiency and
battery degradation cost (Case 4).

TABLE 3. Techno-economic results of one-year simulation with an initial SOH of 90%, and extrapolated values for the entire HE battery lifetime.

2) DISCUSSION
The slightly higher revenues with lower energy throughput
in Case 2 at first seem to speak in favor of the simple lower
level EM. However, the throughput has shifted significantly
to the detriment of the HE-BS, which shortens its lifetime by
more than one year and hence reduces the benefit-cost ratio
by more than 13%. Furthermore, the proposed lower level
EM demonstrates advantages in terms of lower total losses
and a 30% lower violation of the grid power gradient. This
confirms the effectiveness of the developed charging strategy
for the HP-BS. The results for Case 3 illustrate the advantages
of hybridization for the configuration in this study; although
the larger size of the HE-BS is beneficial for both lifetime
and battery losses, the single BESS performs worse than the
HESS in both criteria. Lacking the high-power capability of
the LTO battery in Case 3, the number of ramp-rate violations
increases by 46% compared to Case 2 and by 90% compared
to Case 1. The benefit-cost ratio is more than 15% lower
than in Case 1. Moreover, the comparison of Case 2 and
Case 3 highlights the importance of a smart EM to exploit
the technical benefits of HESSs.

Case 4 demonstrates the advantages of the PWA lineariza-
tion. As already discussed in subsection IV-C, the upper level
EM of Case 4 shows an uncompromising behavior, which is
reflected quantitatively by higher revenues, but also higher
losses and a significantly shorter HE-BS lifetime. Moreover,
the poorer representation of battery limitations results inmore
than twice the deviation from the desired grid power. The
benefit-cost ratio is approximately 23% lower than that of
the 2D-MILP.

On the other hand, there are significant differences in the
computational complexity. The average computation time per
time step of the model predictive control for the 2D-MILP
is less than 2 s (on an Intel Core i7-6950X) owing to the
efficient implementation, whereas the upper limit for the use
case is in the range of a few minutes. Thus, the real-time
capability of the developed EM should be guaranteed even
at lower computational speeds. When shorter computation
times are required, for example for HESS sizing, a tradeoff
between accuracy and computational effort can be achieved
with the 1D-MILP (one-dimensional PWA linearization of
battery degradation costs and conversion efficiency).
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In Case 5, prohibiting the grid supply eliminates the
possibility of energy arbitrage. Apparently, energy arbitrage
contributes approximately half of the revenue in Case 1.
Despite the significantly extended lifetime, the benefit-cost
ratio of Case 5 is 16% below that of Case 1 – one advantage
of multi-use is that the share of calendar aging is reduced, and
therefore, the BESS can be better utilized over its lifetime.
Similarly, in Case 6, the lower price spreads of the weighted
average price mean that there are fewer opportunities to
generate revenue through energy time shift and energy
arbitrage. The EM responds to this with more cautious use
of the HE-BS, which, as in Case 5, leads to lower losses
and a significantly longer lifetime. The HP-BS covers half
of the total energy throughput, and the annual throughput of
the HE-BS is nearly half that of Case 1. Nevertheless, the
benefit-cost ratio in this case is the lowest. The low cyclic
aging fraction of less than 40% indicates that the benefit
of the HE-BS in Case 6 could be increased by an expanded
multi-use portfolio.

V. CONCLUSION AND OUTLOOK
In a future sustainable energy system, the sufficient and
efficient use of energy storage systems will play a central
role. Multi-use applications and HESSs with suitable EM
concepts contribute to this challenge. This article presents
an EM for a hybrid battery storage system deployed for the
multi-use application of PV capacity firming, spot market
trading, and peak shaving. Therefore, the HESS supports the
integration of renewable energies into the grid locally by
limiting the grid power ramp-rate and the maximum feed-in,
and transregionally by responding to electricity price signals.
This is enabled by our implementation of capacity firming,
which offers a compromise between limiting the dynamics
and providing flexibility. The hierarchical EM approach
allows for a combination of different temporal scales and
levels of modeling detail. The proposed EM considers the
short-term grid power requirements and long-term benefits
of the HESS over its lifetime in a robust and computationally
efficient manner. The results of extensive simulation-based
investigations have demonstrated how both EM levels
contribute to these goals. The more accurate representation
of nonlinear losses and battery aging in the optimization
through two-dimensional PWA linearization is of particular
importance. This is because the upper level EM sets the
reference grid power and the lower level EM draws upon its
pre-optimized power values. It was further shown that the
hybridization of two different types of lithium-ion batteries
has technical and economic advantages in this configuration
– but also that well-designed HESS power sharing is required
to exploit them.

Although the benefit-cost ratio defined in (36) is well
suited as a performance criterion for comparing the cases
examined, it should not be misunderstood as profitability in
the economic sense. Due to the simplifying assumptions, the
benefit-cost ratio is subject to strong economic uncertainties.
This can be improved by a more realistic intraday market

model, and by dynamically adjusting the battery replacement
costs in the EM to include a discount factor and the integer
nature of replacements. Another limitation of this study is
the strong reliance on uncertain semi-empirical battery aging
models with poor data availability. For practical implemen-
tation, a self-learning aging model can be incorporated, and
the prorated degradation per time step should be adjusted
accordingly. Furthermore, the battery model will be extended
by a thermal model and thermal management in order to
investigate the interactions between electrical, thermal and
aging behavior.

The proposed EM concept can be transferred to other
HESSs and multi-use portfolios. Future work will investigate
a battery-hydrogen HESS, as well as a large-scale BESS
with multiple different strings. To investigate other multi-
use portfolios, the hierarchical EM can be easily extended to
include additional levels, such as another superordinate level
for trading on the day-aheadmarket, or a subordinate level for
considering grid connection requirements at a finer temporal
resolution. At each level, alternative EM approaches can be
developed and compared. The comparison with methods that
differ in their handling of nonlinearities (dynamic program-
ming) and uncertainties (stochastic dynamic programming,
reinforcement learning [73]) is particularly interesting.

APPENDIX A
MODELING PARAMETERS
Additional modeling parameters are given in Table 4.

TABLE 4. Modeling parameters.

APPENDIX B
TWO-DIMENSIONAL PWA LINEARIZATION
Fig. 13 shows an overview of the workflow described in
section III-A2. The two-dimensional PWA linearization is
expressed by (37) – (45). To implement these equations, the
positions of the vertices vp(i, j) and vSOC(i, j), their values
vcdegr(i, j), vCR(i, j) and vDC,L(i, j), and the indicator matrices
I0 and I1 have to be calculated in advance. The indicator
matrices are required for logarithmic indexing, which reduces
the number of binary variables to B = ⌈log2(2 ·NP ·NSOC)⌉ =

6 per time step ((44) – (45)). The indicator function returns
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FIGURE 13. Overview of the workflow for two-dimensional PWA linearization using the logarithmic approach with union-jack triangulation.

the value 1 if and only if at a vertex, the Gray codes of
all adjacent segments at bit position b take the value 0 (I0),
or take the value 1 (I1). The resulting indicator matrices are
of size RB

× R(NP+1)
× R(NSOC+1).

The PWA linearized variables aremarkedwith a tilde. They
are calculated as the sum of their vertices v(i, j) weighted with
λ(i, j, k):

p̃HE(k) =

NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) · vp(i, j) (37)

S̃OCHE(k) =

NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) · vSOC(i, j) (38)

f̃degr(k) =

NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) · vcdegr(i, j) (39)

C̃RHE(k) =

NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) · vCR(i, j) (40)

P̃DC,L(k) =

NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) · vDC,L(i, j). (41)

The weights are continuous variables in the range of 0 to 1,
and add up to 1:

0 ≤ λ(i, j, k) ≤ 1 (42)
NP+1∑
i=1

NSOC+1∑
j=1

λ(i, j, k) = 1 (43)

To ensure that only one segment is active at a time, the binary
variables δ(b, k) ∈ {0, 1} are required, where b is the bit
position of the Gray code b ∈ Z and 1 ≤ b ≤ B:

I0(b, i, j) · λ(i, j, k) + δ(b, k) ≤ 1 ∀ b (44)

I1(b, i, j) · λ(i, j, k) − δ(b, k) ≤ 0 ∀ b. (45)

For further information, please refer to [33], [38], [39], [40],
[68], [69], and [70].
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