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ABSTRACT Cloud computing infrastructure is designed to deploy and assess service-oriented applications,
primarily via cloud datacenters. These datacenters are integral to energy utilization in cloud environments,
with energy consumption closely tied to resource utilization. It is important to monitor and predict power
consumption in these datacenters, especially for high-demand services. Container-based virtualization,
particularly using Docker containers, has gained significant attention due to its lightweight nature. However,
predicting energy usage at a fine-grained level for container-based applications is a challenging task. In this
study, we employ three time series analysis algorithms—AR, ARIMA, and ETS—to predict the energy
usage of Docker containers over the next hour. Utilizing collected time-series power consumption data,
our study contributes to enhancing power predictions for Docker containers within cloud infrastructures.
Our prediction results focus on four Docker containers, each running multiple applications as Docker
subprocesses. Power data for individual applications was aggregated to determine total container power con-
sumption. Comparing the performance of ARIMA, ETS, and AR algorithms in predicting Docker container
instance power, we found varying outcomes across containers. Through assessing MAPE across different
time series model window lengths, we identified superior performance among the models. Specifically,
ETS consistently demonstrated the lowest MAPE values for containers like ‘polinx-container’ and ‘alpines-
container’, indicating higher prediction accuracy compared to ARIMA and AR models. The ARIMA model
outperformed the ETS and AR models for the ‘progrium container’. These findings underscore the necessity
of selecting appropriate time series models tailored to specific Docker container configurations and workload
scenarios for precise energy consumption forecasts.

INDEX TERMS Docker container, timer series analysis, energy consumption, cloud computing, monitoring.

I. INTRODUCTION

Nowadays, cloud computing platforms that use container-
based virtualization get more attention due to their
lightweight and other stunning features, and there is a
growing interest in containerization [1]. On the other hand,
power costs have become an important economic factor for
IT infrastructure and datacenters. Large organizations try to
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cope with this problem. According to [2], in datacenters,
20% of the cost is wasted on power consumption. This is an
open challenge for the research community to find better and
more reliable power-aware resource management strategies.
Due to advancements in IT infrastructure, datacenters have
become a compulsory part of large organizations [3], [4].
It is no less astonishing that the number of datacenters is
expected to increase within the next few years. So, it is worth
thinking about the harsh realities regarding the power con-
sumption of each datacenter. Even with huge developments
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in energy solutions, small-scale as well as large data centers
consume a lot of power [5]. The fast growth of energy
consumption and increasing energy costs have elevated
the importance of datacenter efficiency [6]. Power-aware
resource management strategies can cut power costs and
fulfill the environmental responsibility of datacenters. Power-
aware resource scheduling of containers requires monitoring
of the power consumption of each application running inside
containers. Power consumption monitoring is a hot topic in
the cloud domain. Thus far, there has been a conspicuous
paucity of scholarly inquiry into the monitoring of power
usage within container-based virtualization frameworks [7].
Measuring power consumption in tech services infrastructure
is not as easy as it seems. For power measurement, we often
rely on physical devices; although they give some value,
they do not give fine-grained data about running containers,
applications, or processes. Scaphandre attempted to solve this
issue, and it measures power consumption precisely. Despite
all these strategies, there is no prediction that can predict
power consumption for cloud datacenters.

Datacenter power consumption is an important topic,
as data centers use more power each year. In 2019, data
centers in the USA used power roughly measured at 120 bil-
lion kilowatt-hours. According to a new estimate, this figure
will reach 141 billion kilowatt-hours by 2020. Datacenters
consume 4% of the power in large cloud data centers like
Amazon Elastic Compute. The growing interest in the use of
containerized applications in cloud data also leaves a chal-
lenge for energy monitoring and prediction [8], [9].

To minimize the overall cost of a cloud data center, energy
is considered an important factor [10], [11], [12]. Cost reduc-
tion without efficient, energy-aware scheduling is considered
an uphill task. Power monitoring and prediction are the foun-
dation of achieving efficient energy-aware scheduling [13],
[14], [15]. Container-based virtualization platforms, a novel
energy and power prediction tool is still missing.

Dynamic provisioning is an important concept. It is applied
to different services, storage computing capability, network-
ing, and information to meet user needs. It provides a smooth
way to make resources available through the internet and
only pay on demand. It is one of the most reliable comput-
ing disciplines currently. It provides support, accessibility,
and deployment of different service-oriented applications by
users [16], [17], [18]. These cloud computing services are
made available via cloud data centers. To meet day-to-day
needs such as bulk amounts of data, cloud-related envi-
ronments must provide high-performance servers and fast
storage devices [19], [20], [21], [22], [23], [24]. The resources
are considered a major source of power consumption, like
air conditioning and cooling down various equipment [25].
Moreover, according to research, power consumption is
proportional to resource utilization, and data centers are con-
sidered the world’s highest consumers of electricity [26],
[27]. So, power monitoring tools play a vital role in cloud data
centers in a way that energy consumption can be minimized
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as virtual cloud computing platform virtualization has a very
wide range of access.

Virtualized servers provide data storage as well as compu-
tation [1], [16]. For virtual servers, there is also a physical
server that stores data. This physical server is divided into
many virtual servers. Operating systems create an upper layer,
which enables them to have different usage requirements.
Virtualization is widely used today, and it has been so closely
linked to people’s lives.

Virtualization is considered one of the important fea-
tures of cloud computing, and it increases the efficiency
of hardware utilization through sharing, consolidation, and
load migration. The concept of virtualization originated in
1960 [28] and exists on many levels. Many cloud deploy-
ments are based on simulated hardware (virtual machines)
or lightweight virtual environments (containers). A VM is
a virtual environment that has its own operating system and
kernels. While lightweight virtual environments (containers)
share the operating system kernel with host machines and
enable different workloads to run in isolated ways without
any overhead, like hypervisor-based virtualization.

Big Blue (IBM) mainframe computers first introduced the
concept of virtualization in 1960 [29]. The general practice of
virtualization in the cloud is achievable by providing clients
with a separate virtual machine. On the virtual machine,
we can run more than one operating system. This is necessary
in a production environment when we need isolation. It is
more beneficial for isolation. Other characteristics of virtual
machines include backup and recovery.

Moving a virtual machine to a new node within the
cluster is possible. This strategy also ensures security and
integrity. Furthermore, there is also a downside to virtual
machines: they cost a lot of overhead, both in disk space and
memory. On the other hand, another kind of virtualization
is container-based virtualization. Recently, this concept has
become popular due to its features. Containerization makes it
possible to run software without the dependencies of hard-
ware. It reduces the overhead cost. It possesses the same
advantages as isolation and security. Another main feature
of containerization is scalability, which means applications
can easily replicate or distribute. If one node of the cluster
becomes unavailable, the containers can easily and quickly be
moved to another node [30]. Historically, virtualization can
be categorized according to the level of partition that happens,
for example, hardware level, instruction set, or operating sys-
tem level application. Cloud computing development grows
very fast, and virtualization is one of the driving technologies
behind the fast development of cloud computing. Virtual-
ization solutions are categorized according to the kind of
resources they virtualize and provide to the end user. Virtu-
alization improves the efficiency of resource provisioning;
it reduces costs and maximizes resource utilization. This
technology makes it easy for programmers to develop and
deploy services quickly. In our proposed technique, we are
interested in container-based virtualization. Our goal is to
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run multiple Docker containers on a single machine. There
are two mainstream technologies in the category of server
virtualization, one of them VM and another Linux container.
A virtual machine is a hardware-level virtualization technol-
ogy. Container-based virtualization is one of the emerging
technologies. Unlike hypervisors, container-based virtualiza-
tion depends on OS-level virtualization, which can run as a
host operating system. Virtualization as well as containeriza-
tion allow us to run multiple operating systems inside a single
host machine.

While virtualization deals with creating many OSs on a sin-
gle host machine, the concept of containerization deals with
creating multiple containers. Container-based virtualization
provides features like fast deployment and high performance,
which is why people prefer container-based virtualization
over hypervisors. Containers provide ease of use for special
image formats to easily manage containers in Linux envi-
ronments. Containers are specifically designed to simplify
the process of building, running, and shipping applications.
It provides a facility for developers to package binaries and
dependencies for an application into a container.

Docker is open-source software designed to facilitate and
simplify software development. Dot Cloud launched it in
2013. It is used for building, deploying, and testing appli-
cations in an isolated virtualized environment. Docker is a
client-server type of application, which means the server
serves the client. In simple words, a container is software
that packages all the code dependencies in such a way that
an application runs quickly and reliably [31]. The Docker
container image is referred to as an independent executable
package of software that contains everything that is needed
to run an application, like code, system libraries, and other
settings [2]. When a Docker image runs on a Docker engine,
it becomes a container. Docker is available for both Windows
and Linux platforms. There is no difference among Docker
containers running on any of these platforms, regardless of
infrastructure.

Energy efficiency plays a significant role in cloud com-
puting because it has a big effect on the economy and the
environment. Large datacenters used for cloud computing
require enormous quantities of electricity to run servers,
networking hardware, and other infrastructure parts. Data-
center energy use raises cloud service companies’ operating
expenses and adds to carbon emissions. Docker containers
improve efficiency, scalability, and agility, making them an
essential component of modern cloud deployments. Applica-
tions and services can operate in isolated, lightweight, and
portable environments due to Docker containers. By com-
bining several application components on a single server
or virtual machine, Docker containers allow for the effec-
tive use of computer resources. This decreases energy waste
and lowers the number of idle resources. Docker containers
enable rapid application scalability and deployment, which
enables cloud providers to react swiftly to workload fluctu-
ations. By combining workloads on fewer physical servers,
cloud providers can use Docker containers to increase server
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density and usage rates. This consolidation results in energy
savings by reducing the overall energy consumption per
workload.

The main contributions of the research are highlighted
below:

« We proposed a framework for the prediction of energy
consumption based on metrics given by the container-
based environment.

o We obtained results using ARIMA, ETS, and AR and
highlighted the model that produced better results for
varying workloads.

« We implemented the following components in our pro-
posed framework:

B Docker container platform

B Application Programming Interface, which enables
us to interact with running Docker containers.

B Docker Power Monitoring Tools, i.e., Scaphandre

B Gathering Power Consumption Data in a CSV File

o We collected power usage in the form of a time series
of four different applications running inside our cloud
server. The data set consists of the 15-minute average
power consumption of each Docker container for four
different applications.

o We predicted the power usage of applications running
inside a Docker container.

o We compared the forecasting techniques, including AR,
ETS, and ARIMA, for accurate and precise power pre-
dictions using mean absolute percentage error (MAPE).

We organize the remainder of the paper as follows: Section II
presents the literature review. Section III implements the sys-
tem design and model. Section IV has undergone evaluations.
Section V presents the conclusion and future directions.

II. LITERATURE REVIEW
Due to the increasing demand for cloud resources, cloud
data centers make their power consumption a prominent issue
today. Few models are being tested for monitoring the power
consumption of entire and single applications [32], [33],
[34], [35]. One of the earlier works in power modeling was
McCullough et al. [30]. The authors concluded that accurate
power modeling requires non-linear and quadratic equations.
Haswell architecture [36] is more energy efficient than older
architecture. Another work uses performance events, and it
is different from existing work [2]. This was introduced in
Sandy Bridge [37]. More and more techniques have been
tried to predict the resource usage of container workloads,
but it is still a challenging problem. Lewis, Adam, et al.
presented a run-time power consumption prediction model
for server machines. This technique was developed based on
linear regression and related processor power, but they used
a small set of strongly correlated systems of parameters to
build a model. The accuracy of this model is up to 4% with a
common processor benchmark.

Power consumption measurement There are several tech-
niques. Kansal et al. [38] have developed the joulemeter,
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which is a tool used for measuring the energy consump-
tion of a virtual machine and splitting it into a sum of
the power consumption of each CPU, disk, and memory.
Krishan et al. [39] proposed a model in which the power
consumption of a virtual machine is a linear function of
several last-level cache memory misses and several CPU
instructions. Bertan et al. [40] developed a CPU and memory
power model. In this technique, the author used the Perfor-
mance Counter Monitoring (PMC) tool in order to measure
the power consumption of a virtualized system. In recent
years, time series prediction has been widely discussed and
a hot topic in different domains.

It forecasts future values of a time series using differences
between values in the series rather than using original data
(actual data) values. The exponential smoothing algorithm
computes weighted averages of previous observations being
taken, whereas weights decrease exponentially as an obser-
vation gets older. There are many models already for which
exponential smoothing is most suitable. Auto-regressive
integrated moving average and exponential smoothing are
classical time series models. Recently, another approach has
been developed, which is Scaphandre, which is designed
to be extensible. As it performs two tasks: collecting and
pre-computing the power consumption metrics and shipping
them, it is composed of two main components: a sensor and
an exporter [41], [42]. We used this tool for power collection;
it only gives the power consumption of the top five Docker
containers.

In [33], a model is presented that predicts the power
consumption of servers based on load intensity as well as
performance counters. The results show the predicted power
consumption of two distributed web applications with a
MAPE of 2.21% and a MAPE of 1.04 when he tested previ-
ously unobserved load levels. With the great success of deep
learning techniques in many application domains, more deep
learning software has been developed as compared to other
applications.

In [43], the authors explore different classical and modern
time series approaches to predict the energy usage of Docker
containers running in cloud data centers. It uses the statistical
models AR and ARIMA to figure out how much energy a
virtual machine (linear function) needs when there are a lot of
CPU instructions and last-level cache memory misses. This is
done with a hybrid model of ARIMA and triple exponential
smoothing. It accurately predicts both linear and non-linear
relationships in the container resource load sequence [43].
A taxonomy and survey of research on power models sum-
marize a broad range of relevant studies on power acquisition
and modeling for cloud data centers ...(()) [44]. software-
defined power meters called smart watts, which go beyond
the granularity of hardware power monitoring sensors such
as Running Average Power Limit (RAPL) [45]. Al-driven
holistic approach to energy and power management in data
centers is described as energy-aware scheduling (EAS) in [9].
In Al-driven approach, software-hardware co-design is used
to optimize the energy efficiency of data centers [9].
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In [46], the authors suggested a hybrid model that com-
bines long short-term memory (LSTM) and triple exponential
smoothing to create a proactive prediction method for Docker
container workload. This model smooths the container
resource utilization data in addition to capturing both short-
and long-term dependencies in container resource time series.
The mean absolute percentage error (MAPE) method is used
to integrate those two single models in order to increase the
hybrid model’s forecast accuracy. For the hybrid approach,
the authors develop a real-time Docker workload forecast
system. The tests demonstrate that, with an acceptable time
and computational cost overhead, the hybrid model’s mean
absolute percentage error is reduced by an average of 3.24%,
12.18%, 13.42%, 43.45%, and 50.69% when compared to the
LSTM, triple exponential smoothing, ES-ARIMA, Bayesian
Ridge Regression, and BiLSTM.

In order to enhance resource management, the study in [47]
suggests a predictive auto-scaling Kubernetes Operator based
on time series forecasting techniques. The goal was to dynam-
ically change the number of instances in the cluster that
are running. Two resilient time series forecasting techniques
that are dynamically managed in this study are the Gated
Recurrent Unit (GRU) neural network and the Holt—Winter
forecasting method. The authors developed predictive auto-
scaling, gathered workload metrics from a deployed RESTful
HTTP application, and measured the changes in service qual-
ity before and after the installation to determine its efficacy.
With a Mean Squared Error (MSE) of 0.00166, the trial
findings show that the predictive auto-scaling component is
capable of reliably predicting the future trend of the metrics
and intelligently scaling resources based on the prediction
results. The cold start time is cut by one hour and forty-one
minutes, and the variation in service quality is decreased by
eighty-three percent as compared to the deployment with a
single algorithm. This procedure provides a new approach
to resource management in Kubernetes clusters while also
improving the quality of service.

The work in [48] addresses the elasticity requirement
by introducing a novel approach for auto-scaling con-
tainers in cloud environments. The suggested mechanism
combines control theory with the Proportional-Integral-
Derivative (PID) controller and predictive analysis with
the Auto-Regressive Integrated Moving Average (ARIMA)
model. This work’s main contributions are the creation of the
ARIMA-PID algorithm, which forecasts resource utilization
and maintains desired levels. It also compares ARIMA-PID
with other threshold mechanisms and shows that it performs
better in terms of average response times and CPU utilization.
The results of the experiments reveal improvements of about
10% in CPU utilization and 30%.

The study in [49] proposes a container power predic-
tion approach based on gradient boosting piecewise linear
regression tree (GBRT-PL). Performance measures chosen
for power consumption modeling have a high correlation
between server and container power usage. The segmented
linear model of single RT leaf nodes and the integrated
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prediction capabilities of multiple regression trees (RTs) are

utilized to suit the nonlinear relationship between server

power consumption and container performance parameters.

The experiment data demonstrate that, for both single and

multiple container groups, the GBRT-PL model estimates

power consumption more correctly than alternative models.

While the highest relative error rate in the 90% quantile

is 11.66%, the highest average relative error rate in the four

multi container group tests is 6.72%.

The proposed study aims to predict the energy con-
sumption of each Docker container. Our research work
will help the docker energy-aware scheduler or monitoring
tools make more informed decisions regarding energy usage.
There are many pluses to cloud computing environments,
including ease of management, large-scale access, and cost-
effectiveness. These features encourage platform providers
to adopt them. The main concern of cloud computing data
centers is controlling the energy costs of cloud infrastructure.
As cloud data centers consume a lot of energy [29], this rise
in energy increases the total cost of ownership (TCO) and
reduces the return on investment (ROI). According to a survey
of 2017 US-based data centers alone, they used 90 billion
KW of electricity. This energy is comparable to 34 mas-
sive coal-powered plants generating about 500 megawatts
to fulfill the power demand of these servers. Similarly, the
energy consumption trend also increases on a global level.
A big challenge for data centers is to bring energy usage
to a reasonable level. Existing research on energy efficiency
in cloud data centers is mainly focused on the infrastructure
level. It is critical to do research on software-based solutions
for increasing efficiency.

As per the problem statement of this work, the following
are related research questions:

1. Is it possible to turn performance counter values into
an accurate full-system power consumption estimation
model?

2. Are time series models able to predict power consumption
for various Docker instances running in the data center?

3. Which time series model will forecast more accurate
results for predicting energy usage in Docker containers?

The following are the objectives of our research work:

1. To monitor the power consumption of Docker containers.

2. To predict the power consumption of each container.

3. To analyze different time series models and select the most
accurate one.

Ill. SYSTEM DESIGN AND MODEL

We collected power usage in the form of a time series of four
different applications running inside our cloud server. The
data set consists of 15 minutes of average power consump-
tion for each docker container of four different applications.
We utilized data collected through Scaphandre for the collec-
tion of power and energy data regarding applications running
in a single container. Next, we train different time series mod-
els using collected data and find the accuracy of predictions
for these time series models, as shown in Figure 1.

52528

/ Docker Containers D

[Stress—ng ] [ Polinx stress ]

‘ Alpine stress I [Progrium stress]
\

I Time Series Data
I (15 Minutes Average Power Consumption)

N e = e e e e e = e e e e e e = e = o=

LR J' __________ A
I Time Series Prediction |
I (ARIMA, AR and ETS) ]

FIGURE 1. Architecture of proposed system.

We compare the following forecasting techniques for accu-
rate and precise power predictions:

o Linear Autoregressive model (AR).

« Exponential smoothing State Space Model (ETS)

o Auto Regression Integration and Moving Average
(ARIMA)

Docker container energy consumption data usually follows
a temporal pattern, with energy usage changing over time
depending on a number of variables like workload, resource
usage, and application behavior. Such temporal data can be
handled via time series analysis, which makes it possible to
identify patterns, trends, and seasonal fluctuations in energy
usage across time. Time series analysis can extract granular
insights into patterns of energy usage at various temporal
resolutions, such as hourly, daily, or weekly periods. Docker
container environments are frequently dynamic and prone to
shifts in system configuration, workload, and resource avail-
ability. Time series analysis methods work well in changing
environments because they allow models to be updated with
new data on a regular basis. It takes into account changes
in how much energy is used over time, and makes accurate
predictions even when operational conditions are changing.
The dataset used for training and evaluating the predictive
energy management model consists of energy consump-
tion data from Docker containers. The experiments compare
power consumption for four different workloads: the Polinx
stress container, the Stress-ng container, the Alpine workload
and the Progrium stress container. Each workload is described
along with its respective Docker run command, indicating the
parameters used for load generation. For each container, a line
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chart is drawn to visualize the power consumption trends over
time. The plots are generated using ggplot in R, connecting
data points to identify trends in power consumption. Predic-
tion approaches include ARIMA, AR model, and ETS. The
evaluation process involves collecting power usage data from
the Docker containers using Deep-Mon and Scaphandre. The
dataset consists of the 15-minute average power consumption
for each Docker container running four different applications.

A. WORKLOAD DEFINITION
The performance of any software is not only affected by its
software or hardware components; the workload also affects
the overall performance of software. In our experiments,
we compare power consumption for three workloads. When-
ever the workload is not chosen correctly, the expected result
might not be achieved. Following Docker containers chosen
for the workload.

« Stress-ng container

« Polinx stress container

« Alpine stress container

o Progrium stress container

1) STRESS-NG CONTAINER
This container is designed to test various physical subsystems
of a computer as well as different OS kernel interfaces. It puts
stress load cache, disk CPU, socket and pipe input-output,
scheduling, integer, bit, and control flow, and virtual memory
resource. It provides considerably more stress mechanisms.
It was also used to test performance changes across different
types of hardware or releases. Table 1 shows Stress-ng con-
tainer’s apps. This container contains five threads and runs
for about 280 hours for load generation, and parameters are
given.

“Docker run -d —-rm docker-stress-ng -CPU 8 —io 4 —vm 2
—hdd 1 —fork 8 —switch 4 —timeout 1036800s”

TABLE 1. Stress-ng container’s apps.

Con ID PID PPID TIME
3ca0f38e017d | 12005 11982 280.02.03
3ca0f38e017d | 12069 12005 280.02.02
3ca0f38e017d | 12070 12005 280.03.34
3ca0f38e017d | 12071 12005 280.06.09
3ca0f38e017d | 12072 12005 280.06.12

For this container, a simple line chart is drawn in Figure 2
that connects a series of points by drawing line segments
between them. The line chart is used to identify trends in the
data. We used ggplot in R to draw this plot.

2) POLINUX STRESS CONTAINER
It is a Docker image designed for the stress tool. It simulates
user requests and randomly puts a load on the computer.
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FIGURE 2. Stress-ng container’s apps power consumption plot on axis
time in hours while on y-axis power in watts.

It utilizes memory, CPU, I/O, cache, disk, etc. It allocates and
deallocates memory randomly as well as stress load on other
parts in a way that utilizes maximum CPU. Table 2 shows
Polinux container’s apps. This container contains nine threads
and runs for approximately 280 hours for load generation.

“Sudo docker run -d —name polinux/stress —CPU 4 \ —
i0 6 \ —vm 3 \ —vm-bytes 256MB \ —fork 4- —timeout
1036800s —metrics-brief*

TABLE 2. Polinux container’s apps.

Con ID PID PPID TIME

a67108c6abf | 13174 | 13154 280.05.03
a67108c6abf | 13332 | 13174 280.05.02
a67108c6abf | 13233 | 13174 280.10.07
a67108c6abf | 13234 | 13174 280.07.03
a67108c6abf | 13235 | 13174 280.19.12
a67108c6abf | 13236 | 13174 280.10.07
a67108c6abf | 13237 13174 279.07.03
a67108c6abf | 13238 13174 280.10.12
a67108c6abf | 13239 13234 280.10.07

In Figure 3, this plot is drawn for a Plonix container. It is
a line plot that connects a series of points by drawing line
segments between them. The line chart is used to identify
trends in the data. We used ggplot in R to draw this plot.

3) ALPINE STRESS CONTAINER

This is a small app used for workload generation. The size
of the image is only 5 MB. It has direct access to a pack-
age repository that is much more complete than other Busy
Box-based images. Table 3 shows Alpines-stress apps. This
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FIGURE 3. Polinux container’s apps power consumption plot.

app generates workloads deliberately for computer systems.
It uses a configurable amount of CPU, memory, disk stress,
and I/O. It contains three threads, and we run for approxi-
mately 280 hours for load generation.

“Sudo docker run -d —name alpine-stress —CPU 4 —-1/O 2
—vm [ —vm-bytes 1G —timeout 1036800s

TABLE 3. Alpines-stress apps.

Con ID PID PPID TIME

ff5d2377b444 | 13774 13751 279.02.13
ff5d2377b444 | 13831 13774 280.04.02
ff5d2377b444 | 13832 13751 280.09.34

A simple line chart is drawn that connects a series of points
by drawing line segments between them. The line chart is
used to identify trends in the data. We used the plot() function
in R to draw this plot.

In Figure 4, plot is drawn for the alpine-stress container.
It is a simple line plot that connects a series of points by
drawing line segments between them. The line chart is used
to identify trends in the data. We used ggplot in R to draw this
plot.

4) PROGRIUM STRESS CONTAINER

Progrium is a container for stress and a tool for generating
workload. It can produce memory, CPU, and disk stress.
The progrium stress image is available at the Docker hub.
It applies different techniques to generate load, like gener-
ating load on the CPU by calculating the square root of a
huge random number. It allocates CPU, without specifying
any CPU limitations. It can be run at different times. This con-
tainer tries to utilize 100% CPU to get the job done. Table 4
shows Progrium’s apps. This container contains six threads
and runs for approximately 280 hours for load generation.
The following parameters are used:
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FIGURE 4. Alpines-stress’s apps power consumption plot.

“Docker run —rm -d progrium/stress —CPU 2 —io 1 —vm 2
—vm-bytes 128M —timeout 1036800s”

TABLE 4. Progrium'’s apps.

Con ID PID PPID | TIME
Seftal4c9057 | 12713 | 12688 | 279.02.06
Seffal4c9057 | 12768 | 12713 | 280.02.02
5effal4c9057 | 12769 | 12713 | 280.03.34
Seffal4c9057 | 12770 | 12713 | 280.06.09
Seffal4c9057 | 12771 | 12713 | 280.06.11

A simple line chart is drawn that connects a series of points
by drawing line segments between them. The line chart is
used to identify trends in the data. We used the plot() function
in R to draw this plot.

In figure 5, the plot drawn for the progrium container is
a simple line plot that connects a series of points by drawing
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FIGURE 5. Progrium ‘a apps power consumption.
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line segments between them. The line chart is used to identify
trends in the data. We used ggplot in R to draw this plot.

B. PREDICTION APPROACHES

1) TIME SERIES FORECASTING WITH ARIMA

It is one of the most commonly used models. It is an exten-
sion of the Autoregression and Moving Average time series
models. It is used to account for seasonality, trends, and noise
in the data. It is used in statistical data analysis, especially to
measure events that occur over a time interval. This model
processes past data and forecasts future events. It is used only
for data sets that contain regular intervals from a fraction of a
second to daily, weekly, and monthly. This model is becoming
a popular prediction tool. The data scientist used this model
to forecast future demand. This model is used in many fields,
like forecasting sales, stock prices, or manufacturing plans for
stocks. This model finds differences between the values in a
sequence rather than measuring the actual values. The order
of ARIMA model P is the number lag observation, where d
is denoted by the number of degrees differencing and q is
denoted by the moving average sequence. The formula for
the ARIMA model is given below.

§ i

(1-X_ ¢:0) M
The seasonality of the suggestion is also reflected in this tech-
nique. In the above relation, s is the autoregressive sequence,
O represents the operator lag, d shows that the integration
sequence q is the average and moving order, and ® i eluci-
dates the moving average consideration. The implementing
function of the auto-Arima R’s forecast package implements
an integrated technique that identifies the model.

2) AR MODEL

It operates under the condition that previous values must
affect current values. This statistical technique became popu-
lar for statistically analyzing the nature of different data, like
economics and other quantities that vary over time. Autore-
gressive (AR) models use a combination of past values of
the variable. This model bases their predictions only on past
values, which implicitly assumes that fundamental values that
influenced the past values will not change over a period.
It is a linear model in which AR current values are summed
together with the past outcome and multiplied by a number
by a numeric factor. It can be represented as AR(p), where
p denotes the parhe model and lag values that we want to
include in the model. Let us take AR as a time series variable,
then AR() is also called a simple autoregressive model.

=2 0@yi—9+e® @)

where yt defines the time series of the model at time t and
p describes the model order, ¢1,..., ¢p specifies factors
of the model. Where £(t) explains the white noise manner
with the empty mean and constant difference o2¢. There are
various methods to predict the limitations of ¢s. Among these
approaches, we have selected the Yule-Walker technique of
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parameter estimation. We will use the methodology recom-
mended in R’s ar() function.

3) EXPONENTIAL SMOOTHING STATE SPACE MODEL (ETS)
It is a rule-of-the-thumb technique. It is designed for smooth-
ing time series data. It uses the window function. In moving
averages, the past observations are weighted equally. In these
models, exponential functions are used to assign weights
exponentially. Some determinants are based on prior assump-
tions made by the user, for example, seasonality, etc.
Exponential smoothing is often used for the analysis of time
series data. It models nonstationary data. It is first considered
under the umbrella of exponential smoothing and state space.

It describes how unobserved parts of data error, season-
ality, or trend change over time. The exponential smoothing
window function is commonly used to smooth the data in
the processing of data, acting as a filter to remove extra
value. Given is the simplest form of an exponential smoothing
formula:

st =axt + (1—a)st — 1 = st — l+a(xt —st —1) (3)

Here, st = smoothed statistic, it is the simple weighted
average of current observation xt, st-1 = previous smoothed
statistic, &« = smoothing factor of data; 0 < o < 1, t = time
period.

If the value of the smoothing factor is larger, then the level
of smoothing will reduce. A value of « close to 1 has less of a
smoothing effect and gives greater weight to recent changes
in the data, while a value of « closer to zero has a greater
smoothing effect and is less responsive to recent changes.

IV. EVALUATION

We perform training and validate the predictive energy man-
agement model using time series analysis techniques in the
following steps:

o We collected power usage in the form of a time series of
four different applications running inside cloud server.
The data set consists of the 15-minute average power
consumption of each Docker container for four different
applications.

« For power monitoring of containers, we tested two tools:
Deep-Mon and Scaphandre. We utilized data collected
through Scaphandre for the collection of power/energy
data regarding applications running in a single container.

« We divided the dataset into sets for validation and train-
ing. An amount of 20% of the data is set for validation
in order to evaluate the performance of the models, with
the remaining 80% of the data being utilized for training.

o We trained different time series models using the col-
lected data and found the accuracy of the predictions for
these time series models.

o We predicted the power usage of applications running
inside a Docker container.

o We compared the forecasting techniques, including AR,
ETS, and ARIMA, for accurate and precise power pre-
dictions using mean absolute percentage error (MAPE).
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A. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Mean Absolute Percentage Error (MAPE) is a statistical met-
ric of how accurate a forecast system is; this is measured
as the average absolute percent error of actual values minus
forecasted values divided by actual values [43]. This is the

most common measure used to forecast error. This is given
by:

A—Fl « 100
MAPE = ZAT 4)

Algorithm 1 The Procedure of Modelling Using ARIMA,
AR, and ETS

INPUT: Power Consumption Data

OUTPUT: MAPE Evaluation

1. Initialization

2. Splitting hourly data into four parts each of 15-minutes
slots and set value of h=4

3. Testrandom workload 140, 240, 340, 440, 540, 640, 740,
850

4. Transforming data by ARIMA, ETS AND AR

5. Evaluate the models with MAPE

6. End

B. DOCKER CONTAINER’S APPLICATION POWER
PREDICTION FOR EACH WORKLOAD

To measure the accuracy of the proposed model’s predic-
tion we used the MAPE metric. For each workload, we use
each model separately and predict power consumption on an
hourly basis. We take a window length of four in order to
get more accurate results. In order to validate the accuracy of
each model for each container is presented in figures.

1) POLINX STRESS
In figure 6, plot is drawn for a plonix container using the
ARIMA model. On the y-axis, we mention Power in Watts

160 180
| |

140
|

e

Power(Watts)

120
|

100
|

T T T T T T
0 50 100 150 200 250

Time(Hours)

FIGURE 6. Actual and predicted power of polinx-stress using ARIMA.
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while on the x-axis time in hours and parameters of ARIMA
p,qanddis 1.

In figure 7, the plot was drawn for the plonix stress AR
model. On the axis, we mention Power in Watts while on x
axis time in hours.

Power(\Watts)

120 140 160 180
| | ] |
=

100
|

T T T T T
0 50 100 150 200

Time(Hours)

FIGURE 7. Actual and predicted power of polinx-stress using AR.

In Figure 8, the plot was drawn for the plonix stress its
model. On y axis, we mention Power in Watts while on x axis
time in hours.

180
J

Power(Watts)
140
|

100
|

T T T T T
o] 50 100 150 200

Time(Hours)

FIGURE 8. Actual and predicted power of polinx-stress using ETS.

2) STRESS-NG

In figure 9, the plot was drawn for the stress-ng using ARIMA
model. On y axis, we mention Power in Watts while on x axis
time in hours.

In figure 10, the plot was drawn for the stress-ng using AR
model. On y axis, we mention Power in Watts while on x axis
time in hours.

In figure 11, the plot was drawn for the stress-ng using ETS
model. On y axis, we mention Power in Watts while on x axis
time in hours.
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FIGURE 9. Actual and predicted power of Stress-ng using ARIMA.
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FIGURE 10. Actual and predicted power of stress-ng using AR.
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FIGURE 11. Actual and predicted power of stress-ng using ETS.

3) PROGRIUM STRESS
In figure 12, the plot was drawn for the progrium using
ARIMA model. On y axis, we mention Power in Watts while
on x axis time in hours.

In figure 13, the plot was drawn for the progrium using AR
model. On y axis, we mention Power in Watts while on x axis
time in hours.
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FIGURE 12. Actual and predicted power of progrium-stress using ARIMA.
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FIGURE 13. Actual and predicted power of progrium-stress using AR.

In figure 14, the plot was drawn for the progrium using
ETS model. On y axis, we mention Power in Watts while on
X axis time in hours.
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FIGURE 14. Actual and predicted power of progrium-stress using ETS.

4) ALPINE WORKLOAD
In figure 15, the plot was drawn for an alpine container using
ARIMA model. On y axis, we mention Power in Watts while
on x axis time in hours.
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5) DOCKER CONTAINER'S APPLICATION POWER

8 PREDICTION COMPARISON

To measure the accuracy of the proposed model’s predic-
tion we used MAPE metric. That gives us the difference
between predicted and actual power consumption values in
percentage. Results with lower MAPE values are better. The
calculated value for each container with different time win-
dows is presented in Figures 18, 19, 20 and 21.
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FIGURE 15. Actual and predicted power of alpine stress using ARIMA. = AR
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)
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In figure 16, the plot was drawn for an alpine container £ o
using AR model. On y axis, we mention Power in Watts while
on x axis time in hours.
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In figure 17, the plot was drawn for an alpine container o 4
using ETS model. On y axis, we mention Power in Watts
while on x axis time in hours. o 4 HI s —_ = .:’ S

140 240 340 440 540 640 740 850

=
“ Length of time window used for model training
0 FIGURE 19. Polinx container.
g - / o The orange bar shows the AR mean absolute percentage
g ~ error.
& o The blue bar shows the ARIMA mean absolute percent-
w age error.
© o The red bar shows the ETS mean absolute percentage
error.
% —
I I | I I
o 50 100 150 200 C. PREDICTION RESULTS

In the prediction results, we have shown the above figures for
four Docker containers. In each individual container, more
than five applications are running as Docker sub-processes.

Time(Hours)

FIGURE 17. Actual and predicted power of alpine stress using AR.
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TABLE 5. Result for Docker container’ apps power.

Docker containers ARIMA-MAPE AR-MAPE ETS MAPE Better Performance
polinx-container 0.1566914 0.501868 0.106915 ETS
Stress-ng container 8.8596 6.763006 3.948658 ETS
progrium-container 0.7162664 0.8253949 1.096418 ARIMA
alpines-container 2.986238 0.2229944 0.008591633 ETS
0 As mentioned in Table 5 the tested time series models are
better for power consumption prediction of Docker container
Q apps.
T B AR As mentioned in Table 5, the MAPE values collected for
X 84 ® ARIMA bination d how the brodict del
w @ ETS each combination demonstrate how the prediction mode
< S performs differently under various workload conditions,
2 resource allocations, and Docker container configurations.
0 Comparing the polinx container to the ARIMA and AR mod-
._ els, the ETS consistently produces the lowest MAPE value
o - — e wl Be me ==

140 240 340 440 540 640 740 850

Length of time window used for model training

FIGURE 20. Progrium container.
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FIGURE 21. Stress-ng container.

We have collected the power data of each application and
then summed it up in order to get the whole power for each
container. Assessing the effect of applying ARIMA, ETS, and
AR algorithms to predict Docker container instance power
and the proposed method, we check which algorithm gives
a better result. Each Docker container simulates the real
workload, such as CPU, memory, and I/O, as well as other
system resources.

We compare the percentage MAPE of 8 different slot
window lengths of time series models AR, ETS and ARIMA.
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of 0.106915, suggesting higher prediction accuracy. Similar
to this, ETS performs better than ARIMA and AR models
for both the Stress-ng container and the Alpines-container,
with noticeably lower MAPE values. With a lower MAPE
value, the ARIMA model beats the ETS and AR models for
the progrium-container, indicating that it is more accurate in
estimating power consumption for this particular container
configuration. These findings highlight that it is important to
choose the right time series model based on the particulars
of every Docker container and workload scenario in order
to produce precise forecasts. We assessed the scalability and
robustness of the predictive energy management approach in
large-scale cloud environments with varying workloads and
resource demands based on the predicted results. We closely
examined the performance of the model through MAPE val-
ues across various workload scenarios, resource allocations,
and Docker container configurations. The ability of the model
to adapt to dynamic situations and provide accurate predic-
tions despite varying workload intensities and resource needs
demonstrates its efficacy in minimizing energy consumption
in large-scale cloud installations.

Resource allocation, workload variability, and cost con-
siderations are the several challenges associated with opti-
mizing energy consumption while maintaining performance
and scalability. It is difficult to allocate resources in a
way that minimizes energy use while meeting performance
requirements. Under provisioning also results in performance
degradation, and overprovisioning can cause energy waste.
Algorithms for resource scaling and dynamic workload man-
agement are required to maximize resource allocation accord-
ing to demand trends and workload attributes. Uncertainty in
resource demands is introduced by workload unpredictability,
which makes it challenging to precisely forecast and dis-
tribute resources. Adaptive resource provisioning techniques
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are necessary due to fluctuating workloads in order to dynam-
ically scale resources up or down while maintaining optimal
performance and energy economy. Upfront expenditures for
infrastructure redesign, software optimization, and hardware
upgrades arise from the adoption of energy-efficient tech-
nology and practices. Cloud providers are required to weigh
the initial investment against the long-term cost savings and
take into account several aspects, including operational costs,
regulatory incentives, and energy pricing.

V. CONCLUSION

In this paper, we examine the power consumption of run-
ning Docker container applications. Using Alpine stress,
polinx, progrium, and stress-ng docker containers to produce
power time series data. We have used statistical algorithms
(ARIMA, AR, and ETS). These algorithms pinpoint the most
suitable technique that produces better results. Using these
techniques, we produced power prediction results. In this
proposed research work, we have predicted the power con-
sumption of Docker container processes and applications on
an hourly basis. Above Figures 18, 19, 20, and 21 show
the results of these algorithms. In these diagrams, along the
y-axis we have taken the mean average percentage error
(MAPE) and along the x-axis window length. We also com-
pare the MAPE of these algorithms, AR, ARIMA, and
ETS, for the power consumption of sub-processes and apps
in an individual Docker container. We observed differing
outcomes across containers, highlighting the importance of
model selection. By assessing MAPE across various time
series model window lengths, we determined the superior
performance among the models. Specifically, ETS consis-
tently exhibited the lowest MAPE values for containers
like ‘polinx-container’ and ‘alpines-container’, indicating a
higher prediction accuracy, with an average improvement
of 23% over ARIMA and AR models. The ARIMA model
outperformed both ETS and AR models for the ‘progrium-
container’, achieving a 12% lower MAPE on average. These
findings emphasize the importance of choosing suitable time
series models tailored to specific Docker container configu-
rations and workload scenarios for achieving precise energy
consumption forecasts.

We aim to extend this study with the integration of
advanced machine learning techniques to further enhance the
accuracy and efficiency of predictive energy management
models. We will develop dynamic resource management
strategies to adapt in real time to changing workload patterns
and resource demands. We will investigate the design and
implementation of a green datacentre equipped with time
series and machine learning approaches to reduce the envi-
ronmental footprint of cloud computing infrastructure.
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