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ABSTRACT In few-shot semantic segmentation (FSS), the key challenges are efficiently tuning the
interaction between the support set and the query set and distinguishing between context, background,
and interfering items. To address these challenges, we propose prototype comparison networks for
one-shot segmentation (OPCN) to capture the details required for FSS. Specifically, we offer the Fusion
Interaction Module (FIM) to improve the segmentation performance by capturing the correlation and
semantic information between the support set and query set features. Subsequently, we propose the Feature
Enhancement Module (FEM), which aims to enhance the information required in the support set and query
set features while increasing the focus on critical details by reducing the weight of the background regions to
provide a more targeted feature representation for subsequent query image segmentation. Then, we propose
the Feature RefinementModule (FRM) to filter irrelevant background information in the features and specify
the target location region. Finally, the Feature Matching Module (FM) generates the final segmentation
mask for the query image. Extensive experiments on the PASCAL-5i and COCO-20i datasets show that our
approach achieves excellent performance in the case of the one-shot setup.

INDEX TERMS Few-shot semantic segmentation, convolutional neural network, prototype network, feature
matching.

I. INTRODUCTION
Few-shot learning (FSL) is a challenging problem in
computer vision and machine learning, where the task is to
classify or segment objects with limited labeled examples
[1], [2], [3]. Traditional learning algorithms need help
generalizing well to unseen classes in such scenarios due
to the scarcity of training data. This limitation hinders
the applicability of machine learning models in real-world
settings where obtaining a large amount of labeled data for
every class is often impractical [4], [5]. Few-shot learning has
attracted considerable interest owing to its potential utility
across diverse domains such as robotics, natural language
processing, and computer vision [6], [7], [8]. By enabling
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machines to quickly adapt and learn from a few examples,
FSL opens up possibilities for more flexible and efficient
learning systems.

Among the different tasks in few-shot learning, the chal-
lenge is more prominent in several semantic segmentation
scenarios [9], [10], [11]. Because there is a restricted
quantity of labeled instances available for each category,
the model must be able to segment categories that have
yet to be previously observed accurately. This requires the
model to understand the spatial context, boundaries, and
appearance of objects despite the limited amount of labeled
data. Existing methods can be categorized into two main
groups: meta-learning and metric-based learning [12], [13],
[14], [15]. With meta-learning, the model can quickly adapt
to new categories in several sample contexts, thus better
handling unseen semantic categories. Metric learning-based
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methods, however, focus on learning similarity measures
between samples, enabling the model to better generalize
to unknown categories in small sample scenarios. Although
these methods have achieved significant success in handling
learning from few-shot samples, there is still potential for
further improving segmentation accuracy and generalization
to unseen categories.

Currently, state-of-the-art FSS methods mainly use
prototype-based strategies. These methods extract critical
information from the supporting features by masked average
pooling to form category-representative prototypes. These
prototypes are abstract representations of target objects and
fuse information with query features through interaction
mechanisms such as cosine similarity and feature splicing.
Accurate prediction of objects by the model is achievable in
the query image in few-shot scenarios through the prototype
learning and interaction process. However, these methods
often rely on a limited number of prototypes to mine more
information While sacrificing specific inherent details of
objects in query images.

In response to the abovementioned challenges, we present
a novel approach, the Prototype Comparison Network
(OPCN), designed to address the complexities inherent in
accurate Few-Shot Segmentation (FSS). First, we propose
the Fusion Interactive Module (FIM), facilitating improved
feature extraction by fostering joint attention between the
support set and query set features. Subsequently, the Feature
Enhancement Module (FEM) is proposed with the explicit
objective of enhancing pertinent information within the
support set and query set features. Themodel focusesmore on
critical data by reducing the weights assigned to background
regions. This weight adjustment empowers the model to com-
prehend better and exploit support set information, yielding
a more targeted feature representation for subsequent query
image segmentation, thereby enhancing overall performance.
Following this, the feature refinement module (FEM) is
employed to filter out extraneous background details from
the features and elucidate target location information. Lastly,
the feature matching module (FM) is deployed to generate
the final segmentation mask for the query image. Our main
contributions are as follows:

• We propose the Fusion Interaction Module (FIM),
which optimizes convolutional features by introducing
Non-local blocks and can enhance the feature dis-
tribution on the target input based on the reference
input.

• We propose both the Feature Enhancement Module
(FEM) and the Feature Refinement Module (FRM) to
augment the feature representation, filter out extraneous
background information and clarify the target location
information.

• Extensive experiments on PASCAL-5i and COCO-
20i show that our proposed prototype compari-
son networks for one-shot segmentation achieve
significant performance improvement over other
methods.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Recently, semantic segmentation has experienced remark-
able advancements. Deep Convolutional Neural Networks
(CNNs) such as U-Net [16], SegNet [17], and DeepLab [18]
have propelled the domain forward by harnessing robust
feature extraction capabilities and incorporating architectural
components like skip connections and atrous spatial pyramid
pooling. The adoption of encoder-decoder architectures,
exemplified by Fully Convolutional Networks (FCN) [19],
has become widespread. These architectures employ an
encoder to capture high-level features and a decoder for
making dense pixel-wise predictions.

Attention mechanisms, represented by models like
Non-local Neural Networks [20] and SAGAN (Self-Attention
Generative Adversarial Networks) [21], have been introduced
to model long-range dependencies and enhance contextual
understanding in semantic segmentation tasks. This allows
the networks to focus on relevant image regions and improve
the overall segmentation accuracy.

Efforts have also been directed towards designing efficient
networks, such as EfficientNet [22] and MobileNet [23],
which balance accuracy and computational efficiency. This
is especially vital in resource-constrained scenarios where
computational resources are restricted. These efficient archi-
tectures contribute to achieving satisfactory performance
without compromising computational efficiency [24], [25].
However, a notable challenge persists in semantic segmen-

tation - the reliance on large amounts of accurately labeled
data for training [26], [27], [28], [29]. Acquiring such data is
often a time-consuming, costly, and labor-intensive process.
The scarcity of labeled data presents a significant hurdle,
especially when data collection or labeling is inherently
challenging. Addressing this issue is crucial for the continued
progress of semantic segmentation methods, particularly in
real-world scenarios with limited labeled data availability.

B. FEW-SHOT SEMANTIC SEGMENTATION
Few-shot semantic segmentation aims at segmenting invisible
object classes in a query image using only a small number
of annotated samples. Most existing FSS methods use a
prototype-based approach, where a meta-learning architec-
ture is used to meta-train the base class and then meta-test
new disjoint classes [30], [31], [32]. The learned prototypes
represent the average features of each class. In recent years,
various prototype-based FSS methodologies have surfaced in
the research domain, such as CANet [33]adaptively knows
the importance of features by introducing a global attention
mechanism and applying it to the interaction between the
support set and the query set to improve the segmentation
accuracy.SG-One [34] employs a masked average pooling
strategy to obtain robust bootstrap features from the sup-
ported image and uses cosine similarity to establish the
relationship between bootstrap features and query image
features.PANet [9] uses a metric learning approach to
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FIGURE 1. The overall architecture of our proposed Prototype Comparison Convolutional Networks for One-Shot Segmentation (OPCN). After extracting
the features of the support and query images through a pre-trained backbone network, a fusion interaction module (FIM) is introduced to capture the
association and semantic information between the features of the support and query sets and generate the co-attention features F s and F q. Meanwhile,
the Feature Enhancement Module (FEM) is utilized to enhance the necessary information in the support and query set features and obtain the enhanced
features As and Aq by residualizing them with F s and F q. The third part is to obtain the Feature Refinement Module (FRM), which filters irrelevant
contextual information from the features and specifies the target location information to get the refinement features X s and Xq. Finally, the feature
matching module ( FM) is utilized for final target prediction.

FIGURE 2. Detailed process and structure of non-local block.

learn category-specific prototypical representations from a
small number of support images in the embedding space
and segment the query image by matching each pixel to
the learned prototype.PMMs [35], estimated through an
expectation-maximization algorithm, amalgamate abundant
channel and spatial semantics from a restricted set of

supported images.PFENet [36] addresses the challenges of
generalizability and spatial inconsistency in less-sample
segmentation with a priori mask generation and feature
enhancement modules that require no training. The Dynamic
Prototype Convolutional Network (DPCN) [37] focuses on
learning dynamic prototypes to adapt to new categories and
improve segmentation performance.

However, the inherent limitation of prototypes in existing
prototype learning methods leads to inevitable information
loss. In contrast to prior methodologies, we employ the
Fusion Interactive Module (FIM) to execute a co-attention
mechanism between support and query features. This allows
us to extract the maximum complementary target information
from the support and query features. In addition, we use Fea-
ture Enhancement Module (FEM) and Feature Refinement
Module (FEM) to clarify the query set target location and
use Feature Matching Module (FM) to generate the final
segmentation mask for the query image.

III. PROPOSED METHOD
A. PROBLEM DEFINITION
Few-shot semantic segmentation is an image segmentation
task involving a limited set of annotated instances. Its
problem definition involves training a model to learn from
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FIGURE 3. The specific structure diagram of Feature Enhancement Module (FEM).

several annotated samples and generalize to unseen target
categories. The few-shot semantic segmentation dataset
consists of two main parts: the training set (Dbase) and the
test set (Dnovel). The training set is used for the meta-training
of the model, while the test set is used to evaluate the model’s
generalization

performance. The set of categories in the dataset is
categorized into training categories (Cbase) and test categories
(Cnovel). Where Cbase ∩ Cnovel = ∅, i.e., there is no
intersection between training and testing categories. For the
k-shot setup, each plot is denoted as (S, Q), where S contains
a support set marked as S =

{(
I is,M

i
s
)}k
i=1, where I

i
s denotes

the supported image andM i
s denotes the corresponding binary

mask. The query set Q contains the query images and the
related masks, denoted as Q = (Iq, Mq). During the meta-
training phase, themodel takes the support set S and the query
set image Iq as input in a specific category c, generating a
prediction mask yq for the query image. The goal of the task
is tomake the predictionmask as close as possible to themask
Mq. During the testing phase, themodel undergoes evaluation
by randomly sampling the test set to assess its ability to
generalize to categories not encountered during training.

B. OVERVIEW
Our Prototype Comparison Convolutional Networks for
One-Shot Segmentation (OPCN) consists of four key mod-
ules: Fusion Interactive Module (FIM), Feature Enhance-
ment Module (FEM), Feature Refinement Module (FRM),
and Feature Matching Module (FM)(Illustrated in Fig 1).
Specifically, when provided with support and query images,
Is and Iq, we employ a backbone networkwith sharedweights
to extract fundamental features. By using the interaction
module (FIM), the association and semantic information
between the support and query set features are captured.
Following this, the Feature Enhancement Module (FEM)
is introduced, specifically designed to explicitly amplify
crucial information within the features of both the support
and query sets. After FEM comes to Feature Refinement
Module (FRM), which aims at filtering irrelevant contextual

information from features and specifying target location
information. Lastly, the Feature matching Module (FM) is
applied to produce the ultimate segmentation mask for the
query image. Subsequently, we provide a detailed description
of each of the modules above.

C. FUSION INTERACTIVE MODULE
Inspired by previous work [38], to extract the features
standard to the support and query sets and efficiently tune the
interaction between them, we enhance the feature distribution
on the target input based on the reference input. As shown in
Fig 2, Specifically when the output of the support set is Z s ∈

RC×Hs×Ws . The output of the query set is Zq ∈ RC×Hq×Wq ,
whereC , is the channel dimension, andHs,Ws,Hq,Wq are the
height and width of support and query features, respectively.
Taking Zq as the reference input, the output of the non-local
block [20] of Z s is ϕ(s; q) ∈ RC×Hs×Ws . Similarly, using Z s

as the reference input, one can obtain ϕ(q; s) ∈ RC×Hq×Wq

for Zq, and the interaction between support and query feature
can be thought of as carrying out the co-attention

F s = Z s ⊕ ψ(s; q) (1)

Fq = Zq ⊕ ψ(q; s) (2)

The two extended feature maps are Eq. 1 and Eq. 2, which
⊕ are element-wise sum. Since Fq contains not only the
features of the query set image but also the support and query
weighted features, more information about the support set
images can be found on this layer of features, which makes it
easier to capture the critical features of the target object.

D. FEATURE ENHANCEMENT MODULE
FSS models [39], [40] typically utilize a priori masks to
represent the approximate location of the target object in
the query image. However, since these a priori masks are
usually obtained by pairing elements between feature maps or
region-based matching, they often neglect the overall context.
We introduce the FEM module to accentuate pertinent
features while suppressing irrelevant ones (Illustrated in
Fig 3). This enhancement improves the model’s capacity
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to concentrate on informative regions within the image.
Taking inspiration from DPCN [37], we use co-attention
support features F s ∈ RC×Hs×Ws and co-attention query
features Fq ∈ RC×Hq×Wq as input. To achieve comprehensive
matching, the generated regional features Rs and Rq are
expressed as follows:

Rs = W
(
F s

)
∈ Rdhdw×Ch×HsWs (3)

Rq = W
(
Fq

)
∈ Rdhdw×Ch×HqWq (4)

whereW is the sliding window operation,W (F s) andW (Fq)
are the sliding fixed window operations used independently
on the support and query features, dh and dw is the
window height and width. In our experiments, we choose
symmetric windows, (dh, dw) ∈ (5, 5). However, the above
approach only represents the approximate location of the
target object lacking the corresponding features of the
channel dimensions; for this reason, unlike before, instead of
generating a region-matching map, we merge the dimensions
of dh, dw to get a new channel Ci and recover the number
of channels as C by two convolutional blocks and take
the maximum value of the channel dimension feature and
residualized it with the common feature F to get the final
augmented feature As and Aq.

as = F1×1
(
Rs

)
∈ RCi×Hs×Ws (5)

bs = F1×1 (as) ∈ RC×Hs×Ws (6)

As = F s + max
(
bs

)
(7)

where F1×1 denotes a 1×1 convolutional layer, Ci = C ×

dh × dw.Similarly, we can get the final augmented feature as
Aq, which localizes the target object more accurately.

E. FEATURE REFINEMENT MODULE
In the preceding stage, we refined the features of the
query and the support set, yielding a preliminary estimation
of the target object’s location. Nevertheless, achieving
precise segmentation requires finer pixel-level predictions.
We propose a feature refinement module when the dataset
is limited. The channel grouping approach is employed to
heighten the model’s sensitivity to information within the
feature channels, thereby amplifying the spatial semantic
distribution of features.

As illustrated in Fig 4, the initial step involves grouping
feature channels. For the input feature vector matrix, denoted
as A ∈ RC×H×W , the input vectors are organized into G
groups (G set to 4 ). This grouping operation yields the group
eigenvector matrix Ag ∈ RC ′

×H×W , where C ′
= C/4, and

Ag represents the eigenvector matrix of the g-th group. The
group feature vector matrix Ag undergoes a global average
pooling along the H and W dimensions. This process results
in semantic vectors Ihg ∈ RC ′

×1×W along the H dimension
and Iwg ∈ RC ′

×H×1 along the W dimension. To introduce
spatially localized contextual information and enhance the
model’s perceptual and expressive capabilities. Unlike before
[41], we performed the convolution operation on the H and

W dimensions with the semantic vectors, respectively. The
semantic vectors Ihg , I

w
g after the convolution operation are

defined by the following equation:

Ih(g,c)(h) = F3×3(
1
W

∑
0≤i<W≺

A(g,c)(h, I )) (8)

Iw(g,c)(w) = F3×3(
1
H

∑
0≤j<H≺

)A(g,c)(j,w)) (9)

where F3×3 represents a 3×3 convolutional layer,g signifies
the g-th group of the feature vector matrix, and c denotes
the feature matrix of the c-th channel in the set of vector
matrices. Furthermore, (h, i) denotes the i-th point in the h-th
row of the feature matrix, and (j,w) denotes the j-th point
in the w-th row of the feature matrix. Then, the semantic
vectors are multiplied with the group feature vector matrix
to orient the spatial association strength matrix Eg between
the semantic features. The following equation defines the
association strength matrix Eg.

Eg = Ag ⊗ Ihg ⊗ Iwg (10)

After obtaining the association strength matrix Eg, it is
normalized to the spatial dimension. The sigmoid function
is then applied to derive the final attention mapping map Êg.
The formulation for Êg is as follows.

Êg = f
(
Norm

(
Eg

))
(11)

where f () is the sigmoid function, and Norm denotes
regularization. Finally, the matrix multiplication of the
enhanced features A using the attention mapping map Êg

results in the final refined features X s and Xq:

X s = reshape
(
As ⊗ Êg

)
(12)

Xq = reshape
(
Aq ⊗ Êg

)
(13)

X s and Xq represent the final refined feature that
discards irrelevant background and specifies the target’s
location.

F. FEATURE MATCHING MODULE
Inspired by previous work [44], we extend the application
of dense feature matching to activate the target object region
on Xq. To elaborate, the support prototype Ps ∈ R1×1×C is
initially obtained through mask average pooling (MAP) on
the support feature map X s. This prototype is then expanded
to P̂

s
∈ RH×W×C and connected to the refined query feature

Xq. Additionally, we incorporate an a priori confidence map
Cq

∈ RH×W×1 by determining the maximum similarity
score at the pixel level, following the approach outlined
in [44]. Subsequently, we derive the activated query feature
Xqact ∈ RH×W×C through the initial target object prediction
yq ∈ RH×W×1.

Xq
act = F1×1

(
Xq

⊕ P̂
s
⊕ Cq

)
(14)

yq = F3×3
(
Xq
act

)
(15)
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FIGURE 4. The specific structure diagram of Feature Refinement Module (FRM).

where yq ∈ RH×W×1 represents the ultimate segmentation
outcome for the target object as produced by our entire model.

G. TRAINING LOSS
We binarize the final target prediction yq as a prediction mask
for the query image [37]. Subsequently, we employ training
with Binary Cross-Entropy loss (BCE), utilizing the BCE loss
between the prediction mask and the actual mask of the query
image as our primary loss function.

Ls→q
seg =

1
hw

h∑
i=1

w∑
j=1

BCE
(
yq(i, j),Mq(i, j)

)
(16)

Parallel to Equation (16), we obtain the predicted support
mask by calculating the Binary Cross-Entropy (BCE) loss
between Ps andMS , and an additional loss is obtained:

Lq→s
seg =

1
hw

h∑
i=1

w∑
j=1

BCE
(
Ps(i, j),Ms(i, j)

)
(17)

Predicting the query and support masks share identical
structures and parameters. To summarize, the ultimate loss
is expressed as:

L = Ls→q
seg + λLq→s

seg (18)

where λ represents the weight that balances the contribution
of each branch and is consistently set to 1.0 in all
experimental settings.

IV. EXPERIMENTAL RESULTS
A. DATASET
In our research, we employ two widely recognized bench-
marks for evaluation purposes: PASCAL-5i [42] and COCO-
20i [52]. The PASCAL-5i benchmark is derived from the
combination of VOC2012 [55] and SBD [56] annotations.
It focuses on 20 object classes divided into four folds for a
robust 4-fold cross-validation. Five classes are designated for
testing during this evaluation process, while the remaining

15 classes are utilized for training. On the other hand, the
COCO-20i benchmark is more challenging and originates
from MSCOCO [57]. It encompasses a broader range of
80 object classes. Like the PASCAL benchmark, we divide
the COCO-20i classes into four folds, each consisting of
20 classes. In this case, 20 classes are reserved for testing
purposes, while 60 classes are employed for training our
models.

B. EXPERIMENTAL DETAILS
For our few-shot segmentation experiments, we employed
VGG16 [58] and ResNet-50 [59] as the backbone networks,
following established experimental setups. These backbone
networks were pre-trained on the ImageNet classification
task, and their weights remained fixed during training.
We implemented our network using PyTorch and performed
the experiments on NVIDIA RTX 3090 GPUs. During
training, we cropped all images to 473 × 473, randomizing
the crop size.

The optimization process employed Stochastic Gradient
Descent (SGD) as the optimizer, with an initial learning
rate of 0.05, a batch size of 8, weight decay set to 0.0001,
and momentum set to 0.9. The training was conducted
on the few-shot datasets PASCAL-5i and COCO-20i for
200 and 50 epochs, respectively. The learning rate underwent
attenuation using a polynomial annealing strategy, with the
power set to 0.1. During the evaluation phase, we followed the
methodology outlined in previous work, randomly selecting
1000 pairs of support queries for the PASCAL-5i dataset and
4000 pairs for the COCO-20i dataset for evaluation.

C. EVALUATION METRICS
Few-shot segmentation refers to the image segmentation
task with limited data. Two standard evaluation criteria
are mIoU (Mean Intersection over Union) and FB-IoU
(Foreground-Background Intersection over Union). mIoU: is
the standard metric for semantic segmentation. It calculates
the average of the intersection ratio between the predicted
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TABLE 1. Comparison with state-of-the-arts on PASCAL-5i dataset under 1-shot.

segmentation results and the accurate segmentationmask. For
each category, the intersection area of its predicted area and
the actual area are calculated, divided by the union area, and
then averaged across all categories. The specific formula is
as follows:

mIoU =
1
N

N∑
i=1

|Pi ∩ Gi|
|Pi ∪ Gi|

(19)

N represents the number of samples; Pi represents the
predicted segmentation area of the ith sample; Gi represents
the actual segmentation area of the ith sample; |·| represents
the region’s area. FB-IoU refers to calculating the IoU of
the foreground and background separately to evaluate the
segmentation performance between foreground objects and

background. The formula is as follows:

FB-IoU =

∣∣Pfg ∩ Gfg
∣∣∣∣Pfg ∪ Gfg
∣∣ +

∣∣Pbg ∩ Gbg
∣∣∣∣Pbg ∪ Gbg
∣∣ (20)

where Pfg and Pbg respectively represent the foreground and
background areas of predicted segmentation; Gfg and Gbg
represents the real segmented foreground and background
areas respectively.

D. COMPARISON WITH OTHER METHODS
1) PASCAL-5I

The performance of our method was rigorously evaluated
against several state-of-the-art models in a 1-shot setting
on the PASCAL-5i dataset. The comprehensive results
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TABLE 2. Comparison with state-of-the-arts on COCO-20i dataset under 1-shot.

TABLE 3. Ablation experiments for main modules on PASCAL-5i and COCO-20i dataset.

are summarized in Table 1. Utilizing both VGG16 and
ResNet50 as backbone networks, our method consistently
demonstrates superior performance across various cross-
validation folds. For the VGG16 backbone, our approach
exhibits a notable advantage across all folds (Fold-0 to Fold-
3), showcasing substantial improvements compared to other
methods. The mIoU and FB-IoU metrics attain impressive
average values of 61.8% and 73.1%, respectively.When using

ResNet50 as the backbone network, our method performs
exceptionally well across all folds, particularly achieving
an outstanding 72.5% IoU on Fold-1, surpassing competing
models. Specific metrics indicate that our method surpasses
the latest SiGCN by 1.8% in mIoU and exceeds 0.7% in
FB-IoU. Compared to the newest QCLNet, our method
demonstrates competitive performance and slightly outper-
forms mIoU. Table 1 provides a comprehensive summary of
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TABLE 4. Effect of different window values on a PASCAL-5i dataset.

these results, showcasing the outstanding performance of our
method across different backbone networks and folds, further
enhancing its effectiveness in challenging 1-shot scenarios.

2) COCO-20I

The COCO-20i dataset encompasses a diverse range of
objects with significant variations, posing a more challenging
segmentation task than PASCAL-5i. Despite these com-
plexities, our method’s performance in the 1-shot setting
on the COCO-20i dataset has been thoroughly evaluated
against several state-of-the-art models, with the results
presented in Table 2. When employing the VGG16 backbone
network, our method exhibits competitive performance
across all four cross-validation folds (Fold-0 to Fold-3).
The mIoU and FB-IoU are particularly noteworthy, where
our method significantly outperforms other cutting-edge
models. This underscores the robustness and effectiveness
of our approach in addressing the challenges posed by the
diverse nature of the COCO-20i dataset.Our method has
achieved remarkable results under the scenario of employing
ResNet50 as the backbone network. Specifically, in the
1-shot setting of the COCO-20i dataset, we attained a
performance of mIoU 43.4% and FB-IoU 64.5%. This
performance represents a notable improvement compared to
the latest SiGCN and IMR-HSNet, with enhancements of
1.7% and 0.7%, respectively, in terms of mIoU. Table 2
provides a comprehensive overview of the performance
comparison, illustrating the superiority of our method in
achieving accurate and robust segmentation results under the
challenging 1-shot setting on the COCO-20i dataset. These
findings contribute to positioning our approach as a leading
solution for segmentation tasks in datasets with diverse and
complex object categories.

E. ABLATION STUDIES
To assess the efficacy of our proposed main modules–FIM
(Feature Integration Module), FEM (Feature Enhancement
Module), and FRM (Feature Refinement Module)–we con-
ducted a comprehensive ablation study on the PASCAL-5i

and COCO-20i dataset, using OPCN as our experimental
framework. The ablation study involved removing thesemod-
ules individually and in combinations to analyze their impact
on model performance, and the results are summarized in
Table 3. In terms of singlemodule introduction, FIM achieved

FIGURE 5. Impact of adding contingent substitution cross-attention on
network performance.

the most significant improvement. Compared to the baseline
model, FIM increased the averagemIoU by 2.6% and FB-IoU
by 3.4% on PASCAL-5i. On COCO-20i, FIM increased the
average mIoU by 1.3% and FB-IoU by 1.5%. In contrast,
FEM showed slightly inferior performance when introduced
alone. Introducing FIM and FRM modules in configuration
(f) significantly improved the model’s performance, with an
increase of 5.2% in average mIoU and 5.4% in FB-IoU on
PASCAL-5i. On COCO-20i, the average mIoU increased by
3.2%, and FB-IoU increased by 3.3%. This indicates that
thesemodules have significantly enhanced feature integration
and refinement, demonstrating clear superiority compared
to the baseline without the main modules. In configuration
(e), merging the FEM and FRM modules without using the
FIM module resulted in a slight performance improvement.
Similarly, in configuration (g) using both FIM and FEM
modules, the model’s performance was better than (e),
achieving an average mIoU of 65.2% on PASCAL-5i and
41.6% on COCO-20i. However, the best model configuration
was completed in (h) when all three main modules (FIM,
FEM, and FRM) were used. The model excelled in all aspects
of this scenario, with an average mIoU of 67.1% and FB-IoU
of 78.2% on PASCAL-5i, and an average mIoU of 43.4% and
FB-IoU of 64.5% on COCO-20i. Compared to the baseline,
this represents a significant improvement of 5.8% and 7.0%
in average mIoU and 4.1% and 4.7% in FB-IoU, respectively.

To comprehensively assess the influence of sliding window
size within the Feature Enhancement Module (FEM) on
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FIGURE 6. Results of our approach OPCN and other model on PASCAL-5i and COCO-20i datasets.

FIGURE 7. Visualization of feature map weights for different layers in OPCN (a)Backbone
network(ResNet-50) Output(b)Feature map after FIM (c)Feature map after FEM (d)Feature map
after FRM.

network performance, we conducted experiments using
varying window sizes, specifically (3, 3), (5, 5), (7, 7), and

(9, 9), on the PASCAL-5i dataset. The results are summarized
in Table 4. The network’s performance exhibits variations
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across different window sizes, demonstrating the model’s
sensitivity to the spatial context captured by the sliding
window. Notably, the best performance is achieved on Fold-
0 and Fold-3 when using window sizes of (7, 7) and (9, 9).
While there is some variability in performance across folds,
the overall optimal configuration for OPCN is found with a
window size of (5, 5). This configuration yields the highest
mean mIoU of 67.1% and FB-IoU of 78.2%.

Additionally, we investigated the impact of Cross-Attention
on our model by designing four sets of contrasting
experiments. Given that ‘Cross-Attention’ operates as a co-
attention mechanism, we introduced it before FIM (A), after
FIM (B), replaced FIM (C), and kept the original method
unchanged (D). The results are illustrated in Fig 5; Group
D achieved the best results on both PASCAL-5i and COCO-
20i datasets. From Groups A, B, and C, we observed varying
degrees of performance decline when cross-attention was
introduced either before or after FIM or when replacing
the FIM module. This occurrence may be attributed to
the inherently better compatibility of cross-attention with
Transformer architectures. Additionally, the FIM module
proved more effective in extracting co-attention for One-Shot
Segmentation.

F. QUALITATIVE RESULTS
In Fig 6, we present the segmentation results of our proposed
OPCNmethod compared to the other model on the PASCAL-
5i and COCO-20i datasets. OPCN demonstrates superior
performance in accurately segmenting target objects within
complex environments. Specifically, in the second row of
Figure 6, our proposed OPCN method accurately segments
cars in a crowd. In contrast, other methods incorrectly include
irrelevant background elements, such as crowds and traffic
lights, while segmenting cars. In the third row of Figure 6,
OPCN can accurately segment horses and people, whereas
the latest QCLNet incorrectly includes people’s feet while
segmenting horses. In addition,in the first and fourth rows of
Figure 6, the OPCN can preserve finer segmentation details,
especially for the more complex information of bicycles.

In addition, we conducted a visualization of the fea-
ture map weights within OPCN across various modules.
As depicted in the second column of Fig 7, the feature map
weights derived from the backbone network appear relatively
dispersed. Following enhancement by the Fusion Interactive
Module (FIM) and Feature Enhancement Module (FEM), the
feature map weights progressively intensify, becoming more
concentrated. Ultimately, through the Feature Refinement
Module (FRM) filtering process, the feature map weights
become effectively localized within the target area.

V. CONCLUSION
We propose a One-Shot Segmentation Prototype Compar-
ison Network (OPCN) with four main components (FIM,
FEM, FRM, and FM) to address the challenges in the
FSS task. We use the FIM module to capture standard
features between support and query set features to achieve

the entire interaction between support and query features.
In addition, we specify the target location details in the
features through FEM and FRM and finally generate the
final segmentation mask through FM. Through extensive
experimentation on the PASCAL-5i and COCO-20i datasets,
our OPCN demonstrates outstanding performance in the
single-shot setting, effectively addressing the challenges
inherent in Few-Shot Segmentation tasks. However, when
facing scenes with K-shot data characteristics, our method
is the same as the currently commonly adopted method:
average the extracted prototypes. However, this method
assumes that the distribution of each sample is different,
which may not produce optimal results because images from
other scenes cannot provide targeted guidance, so the model
will underperform in the k-shot setting. Our future efforts will
focus on generalizing our approach to any k-shot (where k ≥

1) few-shot segmentation task.
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