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ABSTRACT Aneurysms pose a life-threatening risk due to weakened vessel walls, causing bulging or
ballooning in arterial blood vessels. The growth of an aneurysm increases the risk of rupture and consequent
bleeding in the brain, leading to a hemorrhagic stroke. Therefore, accurate detection and segmentation of
intracranial aneurysms are crucial for treatment planning in patients. Recently, the use of Time of Flight
Magnetic Resonance Angiography (TOF-MRA) for automated segmentation of intracranial aneurysms has
gained significant importance. This study comprehensively evaluates different automated segmentation
methods for unruptured intracranial aneurysms, using the publicly available Aneurysm Detection and
Segmentation (ADAM) challenge dataset. The performance and method scalability of these methods is
analyzed across state-of-the-art algorithms, and the experimental analysis shows that 3D U-Net architecture
outperforms in the segmentation tasks.

INDEX TERMS Aneurysm, computer-aided detection, time of flight-magnetic resonance angiography,
unruptured intracranial aneurysm, dice similarity coefficient.

I. INTRODUCTION
A cerebral aneurysm is a condition where an arterial vessel
bulges or balloons, which can gradually increase in size and
potentially lead to rupture. If a rupture does occur, it can
cause severe bleeding in the brain, resulting in a hemorrhagic
stroke. Unfortunately, studies have shown that approximately
one-third of those affected do not survive and survivors may
experience long-term movement disabilities [1]. Aneurysms
can vary in size and shape and may not cause any
symptoms initially. However, if an aneurysm ruptures or
leaks, it can lead to serious and potentially life-threatening
consequences [2]. Therefore, it is critical to prevent and detect
aneurysms before they rupture. Health professionals rely on
various imaging techniques to estimate the aneurysm’s size,
location and morphological characteristics to aid in early
detection and prevention [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

Digital Subtraction Angiography (DSA), Computer
Tomography Angiography (CTA) and Magnetic Resonance
Angiography (MRA) are the most commonly used imaging
techniques to examine aneurysms [4]. However, DSA and
CTA techniques are invasive in nature and require the use
of contrast agents during the diagnosis procedure. Thus,
a non-invasive and non-contrasting imaging technique is
recommended for earlier detection and aneurysm prediction
in routine clinical environments. MRA is the widely accepted
non-invasive technique for medical image analysis, which
can be used to identify Unruptured Intracranial Aneurysms
(UIAs). MRA utilizes the magnetic resonance property of
electromagnetic waves to generate imaging sequences and
represent them as two-dimensional or three-dimensional
structural images.

TimeOf Flight -MRA can detect aneurysms bymonitoring
the hemodynamic flow in the arterial vessel structure, which
captures the blood flow within the vessel structure. These
characteristics of TOF-MRA make it a suitable candidate
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for detecting aneurysms. However, clinicians face difficulties
in analyzing the TOF-MRA sequence for aneurysms due
to its complex morphological features. As a result, manual
processing of TOF-MRA is time-consuming and a hectic task
for radiologists in their busy schedules [5].

To reduce the reading time of the MRA sequence,
technicians have employed the Maximum Intensity Projec-
tion (MIP) representation of the sequence for the moni-
toring process, thereby reducing the overall time of the
diagnosis procedure. Unfortunately, this representation is
vulnerable to noise and may lead to the disappearance
of small-sized aneurysms. Therefore, there is a necessity
for computer-aided detection (CAD) of cerebral aneurysms
in clinical diagnosis to enhance the performance of an
aneurysm prevention system. CAD systems can assist
clinicians in reading the TOFMRA volume, thereby reducing
the workload and improving the efficiency of clinical
diagnosis.

Before the rapid growth of machine learning (ML) and
deep learning (DL) techniques, CAD systems for cerebral
aneurysm detection followed traditional approaches. These
traditional methods relied on domain-specific features for
the decision-making process. Specifically, CAD systems
extracted relevant aneurysm features from TOF-MRA using
various filtering approaches. However, with the rise of
ML and DL techniques, CAD systems can now uti-
lize advanced algorithms to extract features automati-
cally and accurately, improving the performance of the
system.

The management of intracranial aneurysms mainly rely
on artificial inteligence from 2015 onwards. Artificial
Inteligence (AI) can identify a likely diagnosis and select
a suitable treatment based on health records or imaging
information without any explicit programming [6], [7], [9].
Detecting brain aneurysms can be tricky and take a lot of time,
leading to potential misdiagnoses. Artificial intelligence (AI)
tools, specifically computer-assisted diagnosis (CAD), could
offer a solution. These AI-powered tools, fueled by machine
learning, are showing promise as diagnostic biomarkers,
meaning they can help identify aneurysms accurately and
efficiently [8], [10].
This article presents a comparative analysis of various

automated segmentation methods for unruptured intracranial
aneurysms using the publicly available Aneurysm Detec-
tion and Segmentation (ADAM) challenge dataset. The
study includes quantitative and qualitative experiments to
analyze the performance of these methods across TOF-
MRA modalities, providing valuable insights for guiding
the diagnostic and treatment processes of aneurysms. The
primary objective of this study is to evaluate the effectiveness
of different automated segmentation techniques for the
detection of cerebral aneurysms and to determine the most
accurate and reliable method for clinical diagnosis. This
research aims to contribute to the development of an
accurate, efficient and non-invasive CAD system that can

assist clinicians in the diagnosis and treatment of cerebral
aneurysms.

The main observations of this research is outlined below:

• As per the review, we observe that detecting and
segmenting small aneurysms poses a significant chal-
lenge for current architectures, potentially resulting in
under-detection and impacting the effectiveness of CAD
systems in routine clinical settings.

• Based on our empirical analysis, it is evident that
while the current CAD system excels in detecting large
aneurysms, it occasionally faces challenges in precisely
determining the shape and morphological attributes of
identified aneurysms.

• The study highlights the crucial role of precise seg-
mentation in assessing the rupture risk of unruptured
intracranial aneurysms, emphasizing the intricate rela-
tionship between the shape and morphological attributes
of aneurysms and their risk estimation.

• It has been observed that the current 2D U-Net archi-
tectures sometimes fail to capture essential topological
information across slices in TOF-MRA volumes, treat-
ing slices independently for detection and segmentation
tasks. This limitation may compromise CAD model
efficiency and accuracy.

• Experimental results shows that the U-Net model’s
encoder-decoder structure may lead to overfitting,
requiring abundant training data or regularization tech-
niques. Yet, the medical domain faces a challenge in
acquiring sufficient training data for model generaliza-
tion. Addressing data scarcity is vital for developing an
effective CAD model.

• It has been observed that current segmentation models
are typically resource-intensive, imposing significant
computational demands. This highlights the necessity
for a lightweight model in the task of aneurysm detection
and segmentation.

II. METHODS
The detection and segmentation of UIAs can be classified
into two categories: traditional methods and deep learning-
based methods. This article focuses on the identification
and separation of aneurysms, specifically using TOF-MRA
images, without incorporating techniques from other imaging
modalities. Figure 1 presents a generic framework for auto-
mated unruptured intracranial segmentation from TOF-MRA
images based on existing methods. The framework comprises
three main steps: (1) pre-processing (2) aneurysm segmenta-
tion and (3) post-processing. Since TOF-MRA images have
varying intensities and shades, a pre-processing module is
included to enhance and equalize image quality. Additionally,
a post-processing step is implemented to reduce false
positive regions. This work standardizes existing automated
UIA segmentation methods using the workflow illustrated
in Figure 1.
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FIGURE 1. General framework for unruptured intracranial aneurysm segmentation system.

A. TRADITIONAL METHODS FOR ANEURYSM DETECTION
AND SEGMENTATION
This section discusses the traditional methods that have been
proposed for the segmentation of intracranial aneurysms prior
to the advent of deep learning techniques. These methods
include both fully automated and semi-automated approaches
which require some user interactions. Some of these methods
make use of machine learning techniques with handcrafted
features, while others involve pre-processing and filtering to
detect or segment aneurysms.

Several methods have been proposed for the segmen-
tation and detection of aneurysms in medical imaging.
Firouzian et al. [11] proposed a semi-automatic segmentation
method for the detection of aneurysms in CTA images.
The method utilizes Geodesic Active Contours (GAC)
implemented through the level-set framework, where a
surface is evolved to capture the aneurysm. The method starts
from a single user-defined seed point and grows from there.
Bogunović et al. [12] presented an automatic multimodal
segmentation technique that uses Geodesic Active Regions
and a deformable model within the level-set framework. This
method also combines region-based descriptors with gradient
ones to guide the evolution towards vascular boundaries.
Sen et al. [13] proposed a Threshold-Based Level Set (TLS)
method for segmenting aneurysms. TLS combines GAC and
the Chan and Vese model [14] within the level-set framework
and merges both region and boundary information. The
method uses a global threshold and gradient magnitude to
form the function that evolves the segmentation towards
the cerebral aneurysm. The Chan-Vese model computes
the initial threshold value, which is iteratively updated
throughout the segmentation process. Sunaiga et al. [15]
proposed an automatic detection and localization method
for aneurysms from the TOF-MRA dataset. The method
involves computing the 3D centerline from the extracted
cerebrovascular segmentation, followed by classification of

initial aneurysm candidates using Support Vector Machine
(SVM) based on extracted parameters like 3D Forstner filter.

In addition, Yang et al. [16] proposed an algorithm that
involves segmenting the cerebral vasculature in the first step
and then finding candidate regions of different kinds of
Points Of Interest (POI) using different techniques. A small
set of suspicious POIs is chosen from the whole POIs and
a probability score is assigned based on the likelihood of
representing the aneurysm. The suspicious POIs are then
ranked in descending order of probability score and clusters
of POIs are blended to eliminate overlapping detections.

B. DEEP LEARNING-BASED ANEURYSM DETECTION AND
SEGMENTATION
This section provides an overview of deep learning-based
methods used for aneurysm segmentation. Traditional meth-
ods require manual intervention to select handcrafted engi-
neering features. These features are then fed into the models
trained for classification, detection or aneurysm segmenta-
tion. However, deep learning algorithms can automatically
learn features from the data, leading to improved results
in radiology. In particular, deep learning algorithms have
become the most promising tool for intracranial aneurysm
management, as they are not only used for detecting UIAs but
also for estimating the rupture risk and predicting treatment
outcomes.

Stember et al. [17] introduced a deep learning approach
based on the U-Net [18] architecture for detecting and
segmenting cerebral aneurysms on TOF-MRA images.
The proposed method consists of two main steps. Firstly,
aneurysm images with a resolution of 256 × 256 are
fed into a 20-layer U-Net model, which is specifically
designed for medical image segmentation. The U-Net is
a convolutional neural network architecture that includes
contracting and expanding paths as well as a connection path
that merges features from both paths. This combination of
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paths enables the model to effectively capture and utilize
information from multiple scales of the input image. The
training process involves iteratively performing forward and
backward propagation. During forward propagation, input
images are fed into the network, resulting in perpixel like-
lihood predictions as output. The backpropagation process
uses the steepest gradient descent method and the Adam
optimization algorithm to update parameter values and is run
iteratively for up to 60 epochs. The initial weight is randomly
chosen with a mean of zero and the learning parameters
are automatically tuned. By adjusting the threshold value,
a predicted pixel group or cluster can be created.

Sichtermann et al. [19] proposed a deep learning-based
approach for detecting intracranial aneurysms in 3D TOF-
MRA images. The authors used their own dataset of patients
with a history of one untreated intracranial aneurysm, which
was collected between 2015 and 2017. Before feeding the
images into the deep learning model, the authors performed
several pre-processing steps including voxel size resampling
(0.5 × 0.5 × 0.5), intensity normalization to a zero mean
unit variance space, skull stripping using BET2 [20] and
N4 bias field correction [21]. The authors then utilized the
Deep Medic framework to segment the aneurysms. The Deep
Medic network consists of two identical pathways, with the
input to the second pathway being a subsampled version of
the first. They uses three dimensional convolution operations
followed by max pooling layers. The convolutional layers
extract features from the input image, while the max
pooling layers reduce the dimensionality of the output. The
architecture also includes a number of skip connections,
which allow information to flow directly from the earlier
layers of the network to the later layers. This helps to preserve
fine-grained details in the segmentation. The authors used a
learning rate of 0.001, which was gradually reduced and set
a Nesterov Momentum of 0.6 for optimization. In order to
enhance regularization, the researchers incorporated dropout
and applied L1 regularization with a value of 0.000001 and
L2 regularization with a value of 0.0001. Additionally,
the authors used ReLU activation functions and batch
normalizations as implemented in theDeepMedic framework
to accelerate the convergence of the model.

Claux et al. [22] presented a two-stage regularized U-
Net approach for the detection of intracranial aneurysms
in TOF-MRA images using deep learning. The authors
used a dataset from the radiology department, consisting
of confirmed cases of unruptured saccular aneurysms. The
U-Net [18] network model was employed with two folds.
In the first network, vessel segmentation was performed and
the output was fed into the second network, which detected
aneurysms using only the topological information of the
binary data produced. The Adam optimizer was used for
the training process. The segmentation stage of the model
uses a regularized U-Net model to segment the intracranial
arteries in the TOF-MRA image, which helps to improve the
robustness of the model to noise and artifacts. The detection
stage of the model uses a two-stage U-Net model to detect

aneurysms in the segmented intracranial arteries, which helps
to improve the accuracy of themodel. This architecture is also
complex and requiremore computational resources and needs
much time for training.

Di Noto et al. [23] introduced a deep-learning model
for segmenting UIAs. The method involves various
pre-processing steps such as skull stripping using the
FSL Brain Extraction tool (v 6.0.1) [20], N4 Bias field
correction with SimpleITK (v 1.2.0) [21] and resampling
all volumes to a median voxel spacing with SimpleITK to
normalize non-uniform voxel sizes. Moreover, they utilized a
probabilistic vessel atlas constructed frommulti-center MRA
datasets. In this method the authors utilized the weak labels,
which are faster and much more easier to generate than the
voxel-wise labels. This method also integrates anatomical
knowledge into the model, which helps to focus on the
most likely locations for aneurysms. This can remarkably
improve the model’s accuracy and reduce the number of false
positives. During training procedure, this method combines
the weak and voxel-wise labels which also helps to improve
the model’s performance.

Yunqiao et al. [24] put forth a segmentation technique for
UIAs that relies on deep learning. Specifically, they utilized a
3DU-Net model that underwent minor modifications, such as
substituting Batch Normalization with Group Normalization
and replacing ReLU with Leaky ReLU. Additionally, they
integrated Dice ranking to enhance the accuracy of small
lesion segmentation. It utlizes 3D U-Net ensemble method
for aneurysm segmentation, inorder to avoid overfitting and
adversarial effects of noise, here ensembles multiple 3D U-
Net models are trained with a different data augmentation
strategy. This method is not prone to overfitting since various
data augmentation techniques applied and improves the
robustness of the model.

C. POPULAR DEEP LEARNING ARCHITECTURES FOR
SEGMENTATION
This section describe some of the popular deep learning
architectures for segmentation task.

1) ATTENTION U-Net
Attention U-Net [25] used attention mechanism to the
underlying U-Net architecture that allows the U-Net to focus
on the target structures of varying size and shape. The
attentionmechanism in Attention U-Net is implemented as an
attention gate. The attention gate takes two inputs: the feature
map from the current layer and the feature map from the
previous layer. The attention gate then computes a weight for
each pixel in the feature map from the current layer, based on
howwell that pixel matches the featuremap from the previous
layer. The weighted feature map is then used as input to the
next layer of the network.

The Attention U-Net applies attention to the feature maps
extracted from the contracting path to focus on specific
regions of interest. This helps to address the limitation
of U-Net, which can miss local details, and achieve more
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accurate segmentation results. The attention mechanism
pays attention to the features extracted from contracting
path,which assigns weights to specific regions of interest,
allowing the model to focus on those regions.

2) ResUNet
ResUNet [26] is a fully convolutional neural network (FCN)
architecture that combines the advantages of U-Net and
residual neural networks (ResNets). It is one of the efficient
method for medical image segmentation. Residual blocks
allow the network to learn more complex features without
the problem of vanishing gradients. The ResUNet [26]
architecture consists of an encoder and a decoder, just
like the U-Net architecture. The encoder is responsible for
extracting features from the input image and the decoder is
responsible for reconstructing the image from the extracted
features. The residual connections are added between the
encoder and decoder, which helps to improve the flow of
information between the two parts of the network. ResUNet
incorporates residual blocks into contracting and expanding
paths. Residual blocks allow the network to learn more
complex relationships between features at different layers,
without the problem of vanishing gradients. ResUNet also
uses skip connection in this architecture, which makes it
access features from all layers of the network, which allows
the network to learn the context of each pixel in the image.
This architecture takes the advantage of both the U-Net
architecture and deep residual learning. Residual connections
are a way of bypassing some of the layers in a neural network,
which can help to prevent the network from overfitting and to
improve its performance.

3) ResUNet++

ResUNet++ [27] is an extension of ResU-Net architecture,
designed to address some of its limitations while improving
the accuracy of image segmentation tasks. ResUNet++

incorporating several additional modules to enhance it’s per-
formance. These modules include residual blocks, squeeze
and excitation blocks, atrous spatial pyramid pooling (ASPP)
and attention blocks. Residual block is used to mitigate
the vanishing gradient problem by introducing shortcut
connections that skip over the intermediate layers. The
squeeze and excitation block dynamically adjust the feature
weights based on their channel-wise significance, which help
the network to focus on the most relevant features leading
to an optimal feature extraction and representation. The
ASPP module captures multi-scale contextual information
by applying convolutions with different dilation rates to
the feature maps. This enables the network to capture both
fine-grained and global contextual information, which is
crucial for accurate semantic segmentation. And, the attention
blocks are used to emphasize on the most relevant parts of the
image to extract the relevant features.

ResUNet++ also includes dense bridge connections and
multi-scale outputs. Dense bridge connections connect the
corresponding encoder and decoder blocks at different scales.

This allows the network to learn long-range dependencies
between features at different scales.Multi-scale outputs allow
the network to produce segmentation masks at different
scales, which can be useful for improving the accuracy of
segmentation for small objects. ResUNet++ also requires
less computing resources than the 3D U-Net architectures.

4) SegAN
SegAN [28] make use of the concepts Generative adversarial
training Networks [41]. SegAN (Segmenting Generative
Adversarial Network) is a deep learning architecture for
image segmentation that combines the benefits of genera-
tive adversarial networks (GANs) and convolutional neural
networks (CNNs). The SegAN architecture consists of
a Generator and a Discriminator. The generator network
is responsible for producing segmentation masks, while
the discriminator network is responsible for distinguishing
between real segmentation masks and fake segmentation
masks generated by the generator network [41]. Both these
components trained in an adversarial manner. SegAN is more
robust to noise and occlusion than traditional CNN-based
segmentation methods. This is because the generator network
in SegAN is trained to learn the distribution of real
segmentation masks, which includes a variety of noise and
occlusion patterns. This method requires more computtional
power and time for training. It is particularly well-suited
for image segmentation tasks where the images are noisy or
occluded.

5) nnU-Net
The nnU-Net [29] is a versatile deep learning model designed
for biomedical image segmentation. It automatically adjusts
pre-processing, network architecture selection, training and
post-processing steps and selects between 3D U-Net, 2D
U-Net, or a hybrid of both based on dataset properties.
Its self-configuring mechanism eliminates the need for
manual hyperparameter tuning, making it more user-friendly
and efficient. Despite its name suggesting a new neural
network architecture, nnU-Net stands for ‘‘No New Net,’’
emphasizing its focus on automating the segmentation
framework rather than introducing a novel network design.
Its hierarchical architecture, featuring U-Net structures at
multiple levels, integrates multi-scale information for precise
segmentation of biomedical images with diverse structures
and scales.

The nnU-Net employs a comprehensive training and
evaluation approach, integrated techniques like data augmen-
tation, model ensembling, and cross-validation to enhance
performance and generalization across various datasets. Its
automatic design framework encompasses fixed, rule-based,
and empirical parameters. Initially, constant decisions are
optimized collectively, such as selecting an architecture
template. Then, heuristic principles establish relationships
between design and dataset attributes, with remaining choices
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determined empirically from training data, forming the basis
of nnU-Net’s development.

III. EXPERIMENTS
A. DATASET
Thework comparatively analyzes the performance of existing
deep learning models on the publicly available Aneurysm
Detection And segMentation (ADAM) dataset [30]. The
dataset used in this study includes 3D TOF-MRA images,
which consist of 113 training cases. These cases are
composed of 93 volumes that contain at least one untreated
and unruptured aneurysm, consisting of 35 baselines and
35 follow-up volumes of the same subject and 23 volumes
from unique subjects. Additionally, the dataset includes
20 volumes without intracranial aneurysms.

The median age of subjects with UIAs (53 subjects) was
55 years, with 75% of the subjects being female. The images
have undergone bias field correction to address any intensity
non-uniformities. The N4 bias correction algorithm has been
utilized for this purpose, effectively correcting low-frequency
intensity variations in the MRA images [21]. The aneurysm
label image is labeled as follows: background is represented
by 0, the untreated and unruptured aneurysm is represented
by 1 and the treated aneurysms or artifacts resulting from
treated aneurysms are represented by 2. As the primary
objective of this study is to automatically detect or segment
untreated, unruptured aneurysms, label 2 is not necessary and
is excluded from the evaluation process.

Fig. 2 and Fig. 3 shows the 2D slice andMIP representation
of TOF-MRA samples from the dataset that contains normal
TOF-MRA of the brain, a normal TOF-MRA pre-processed
image, TOF-MRA with aneurysm and a TOF-MRA image
with untreated and treated aneurysms. The brighter region
shows the presence of an aneurysm.

B. EVALUATION METRICS
In this study, the performance of automated methods
for segmenting and predicting aneurysms is quantitatively
analyzed by comparing them with manually annotated
ground truth (GT) region images. In this work, we perform
segmentation of unruptured intracranial aneurysms followed
by the evaluation of the number of True Positives (TP),
False Positive (FP) and False Negative (FN ) regions [31].
To evaluate the automated segmentation, the algorithm’s
output is compared with the ground truth data. True positives
refer to the aneurysm regions that are correctly identified by
the algorithm, while false positives are non-aneurysm regions
that are incorrectly detected as aneurysms. False negatives
are actual aneurysms that are not detected by the automated
algorithm. The performance of the algorithm is measured in
terms of precision and recall. Precision and Recall can be
computed as in equation 1 and equation 2, respectively.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

The Dice Similarity Coefficient (DSC) and Intersection
over Union (IoU) are used to analyze the correlation of
automated segmentation vs Ground Truth per each patient
volume. The Dice Similarity Coefficient (DSC) is a statistical
measure that quantifies the similarity between two sets of
data. The DSC value ranges from 0 to 1, where a value
of 1 indicates a perfect match between the two sets of data.
The DSC can be computed as in equation 3,

DSC =
2 ∗ TP

2 ∗ TP+ FP+ FN
(3)

The Intersection Over Union(IoU) is a measure of
similarity between two sets of data. The value of the IoU
ranges from 0 to 1, with 1 representing a perfect match
and 0 representing no similarity between them. IoU can be
computed as in equation 4,

IoU =
TP

TP+ FP+ FN
(4)

We have also used the metrics such as Volumetric
Similarity (VS) [32] and the Modified Hausdroff Distance
(MHD) 95th percentile to analyze the shape and structure
of the aneurysms. VS is a metric used in 3D medical
image segmentation tasks to assess the similarity between the
segmented volume and ground truth volume. The value lies
in between 0 and 1, 0 represents no similarity and 1 indicated
the perfect similarity. VS can be computed as in equation 5,

VS = 1 −
|FN − FP|

2TP+ FP+ FN
(5)

The modified Hausdorff distance (MHD) is a metric
commonly used in medical image to measure the shape of
segmentation. This is crucial because the shape can be used
to gauge the risk of rupture when segmenting UIAs. MHD
is used in segmentation to quantify the similarity between
two sets of points or regions in 3D space. It measures the
maximum distance of a point in one set to the closest point
in the other set, and vice versa, providing a measure of the
dissimilarity between the two sets. MHD provides a measure
of the maximum distance between the points in two sets,
capturing the spatial dissimilarity between them [42]. MHD
can be computed as in equation 6, where A and B represents
segmented volume and ground truth volume and d(a, b)
represents distance between points a and b.

MHD(A,B) =
1

|A|

∑
a∈A

min
b∈B

d(a, b) +
1

|B|

∑
b∈B

min
a∈A

d(a, b)

(6)

C. EXPERIMENTAL SETUP
Experimental analysis of the existing methods described
in the previous section is performed on the TOF-MRA
images from ADAM dataset. For each method described
in Section II, the automated segmentation model follows a
thresholding mechanism. The deep learning-based segmen-
tation methods are implemented in TensorFlow 2 on a GPU
server installed in Lenovo ThinkSystem SR670 with the
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FIGURE 2. TOF-MRA images of ADAM dataset: (a) Normal TOF-MRA original (b) Normal
TOF-MRA preprocessed (c) TOF-MRA with aneurysm (d) TOF-MRA with untreated aneurysm &
treated aneurysm. (Yellow-colored arrow shows treated aneurysms and the red-colored arrow
shows untreated aneurysms.)

following specifications: GPU card: 2* NVDIA A100 4OGB
PCIe 4.0 CUDA Core 2*6912, Tensor core 2 *432. The
Lenovo ThinkSystem sr670 has a processor 2* Intel Xeon
Gold 6226R 16C 150W2.9GHz and is composed ofMemory
12*64GBDDR4 2933MHz RDIMMwith OS Ubuntu 20.04.

In the literature, it is evident that certain methods are
tailored for application on 2D images, while others are
designed for 3D volumes. Following this trend, we adopted
a similar approach. We extracted 2D Maximum Intensity
Projection (MIP) images from the volume and applied the
models accordingly. Conversely, for methods designed for
volume application, we directly input the volume without
further manipulation.

D. PRE-PROCESSING
The study implemented a pre-processing technique for all
TOF-MRA images to address the subjectivity of noise in
Maximum Intensity Projection (MIP). Specifically, we uti-
lized the N4 bias field correction algorithm, a widely
used technique for correcting low-frequency intensity non-
uniformity in MRI image data [21]. To reduce the size and
complexity of the image, we applied a shrink factor. The

N4 algorithm employs a multi-scale optimization technique
to compute the bias field. We also used the ‘‘Set Maximum
Number Of Iterations’’ [21] method, which limits the number
of iterations per resolution level, effectively determining the
number of scales and iterations. It’s important to note that this
filter requires a single input image that has been impacted by
the bias field that we intend to rectify. After pre-processing,
inorder to standardize every method we have extracted the
non overlapping patches of size 64 × 64 × 64 from the TOF-
MRA volume. Then normalize each patches using Z-score
normalization techniques [31].

IV. RESULTS AND ANALYSIS
In this section, we compare various automated deep
learning-based UIA segmentation methods using quantitative
metrics. Based on our study, the ideal method for segmenting
unruptured intracranial aneurysms is one that demonstrates
high precision and recall values. A low precision value
suggests over-detection, while a low recall value suggests
under-detection. Therefore, we emphasize the importance
of achieving a balance between precision and recall when
evaluating these segmentation methods.
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FIGURE 3. TOF-MRA Images of ADAM dataset with MIP representation: (a) Normal TOF-MRA original
(b) Normal TOF-MRA preprocessed (c) TOF-MRA with aneurysm (d) TOF-MRA with untreated
aneurysm & treated aneurysm. (Yellow-colored arrow shows treated aneurysms and the red-colored
arrow shows untreated aneurysms.)

In the methods described, the authors have employed data
augmentation techniques to expand the dataset by applying
various operations to the input data. These operations include
contrast enhancement, rotation, scaling and flipping. This is
done to improve the model’s ability to generalize and perform
well on a wider range of inputs. The dice loss [39], which is
used as the loss function in the above-mentioned methods,
is a quantitative metric that assesses the similarity between
predicted and actual data [42]. The dice loss quantifies the
overlap between predicted and ground truth data.

Table 1 depicts the precision, recall, Dice Similarity
Coefficient (DSC) and Intersection over Union (IoU) for the
methods under analysis against the ADAM dataset. In terms
of recall, the Di Noto et al. [23] method has exhibited superior
performance compared to other automated methods, as per
our study. Figure 6 represents the comparative analysis of
existing deep learning methods based on precision and recall,
and Figure 7 represents the comparative analysis of precision
and recall of existing deep learning methods based with MIP
representation of TOF-MRA volume.

Table 2 presents the performance analysis of existing
models with MIP representation of TOF-MRA volume.
It is evident from Table 2 that the method suggested by
Stember et al. [17] outperforms all other 2D methods in
terms of every metric. Qualitative evaluation of aneurysm

segmentation on a sample TOF-MRA is presented in Fig. 4
and the corresponding MIP representation is in Fig. 5. From
the qualitative analysis given in Fig. 4 and Fig. 5, it is evident
that the 2D method proposed by Stember et al [17] and the
3D architecture proposed by Di Noto et al almost preserve
the accurate size and shape during segmentation. From the
analysis, it has been observed that U-Net based architectures
perform better in identifying the exact shape of aneurysms
compared to other methods.

In our experiments, we observe that the automated
UIA segmentation methods such as Yunqiao et al. [21],
Attention U-Net [23] and ResUNet [24] are effective only in
detecting the aneurysm locations but not at the delineation
of the actual boundary, while the other methods such as
Di Noto et al. [20], and Stember et al, [17] are sensitive to the
method parameters, thus lacking generalizability. One of the
important goals of UIA segmentation is to accurately segment
the aneurysm for further follow-up treatment protocols.
Our analysis demonstrates that for clinical applications,
the most significant metrics for selecting an automated
segmentation method are: high recall rate and DSC,
followed by high precision. The nnU-Net [29] architecture
exhibits better performance in 3D U-Net training and it
outperforms Di Noto et al [23] in terms of DSC and
volumetric similarity.
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TABLE 1. Precision, recall, DSC, IoU, VS and MHD of SOTA methods of SOTA methods.

TABLE 2. Precision, recall, DSC, IoU, VS and MHD of SOTA methods (of MIP representation).

FIGURE 4. Results of different automated unruptured intracranial aneurysm segmentation methods on TOF-MRA scans
(a) Original TOF-MRA scan (b) Ground Truth (c) U-Net [18] (d) Stember [17] (e) Sichterrmann [19] (f) Yunqiao [24]
(g) Dinoto [23] (h) Claux [22] (i) Attention U-Net [25] (j) ResUNet [26] (k) ResUNet++ [27] (l) SegAN [28] (m) nnU-Net [29].

From the analysis, it is clear that the 3D U-Net generally
performs better than the 2D U-Net for image segmentation
tasks, especially for tasks that require capturing long-range

contextual dependencies. The 3D U-Net architecture is
capable of learning spatial relationships between voxels in
all three dimensions, while 2D U-Net can only learn spatial
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FIGURE 5. Results of different automated unruptured intracranial aneurysm segmentation methods on TOF-MRA scans
(a) Original TOF-MRA scan (b) Ground Truth (c) U-Net [18] (d) Stember [17] (e) Sichterrmann [19] (f) Yunqiao [24] (g) Di
Noto [23] (h) Claux [22] (i) Attention U-Net [25] (j) ResUNet [26] (k) ResUNet++ [27] (l) SegAN [28] (m) nnunet [29].

relationships between pixels in two dimensions. But the
3D architecture demands high computational and memory
requirements to train the model. It also require large amount
of data to converge the model without overfitting. Table 3
represents the computational parameters of the existing
segmentation methods described in the study. From Table 3,
it has been observed that the 2D models such as U-Net [18],
Stember et al [17], Attention U-Net [25], ResUNet [26]
and ResUNet++ [27] have less computational requirements
compared to the 3D models like Sichtermann et al. [19],
Di Noto et al. [23], Claux et al. [22] and Yunqiao et al [24].
Overall, 3D U-Net is a good choice for medical image

segmentation tasks where accuracy is more important than
speed and computational cost.

Some of the reasons behind why 3D U-Net requires more
computational resources than 2D U-Net is listed below:

• More Parameters.
• More Computations per pixel.
• Larger input images.

The choice between 2D and 3D approaches depends on fac-
tors like the available computational resources and the level of
segmentation accuracy required. Additionally, training deep
learning models, irrespective of their dimensionality, can be

resource-intensive due to the nature of deep learning and the
need for ample data and computational power.

In terms of UIA segmentation from TOF-MRA images, the
existing methods are subject to certain qualitative constraints.
Addressing these limitations in future research has the
potential to significantly enhance the precision of UIA
segmentation and improve diagnostic capabilities for brain
aneurysms. Therefore, it is essential to identify and overcome
these constraints in order to further advance the field of UIA
segmentation and ultimately improve patient outcomes.

The codes are available at https://github.com/Animaarjun/
UIA-segmentation

V. OBSERVATIONS
After comparing various methods, it has been observed that
deep neural network architectures exhibit good performance
in biomedical segmentation tasks. Out of these architectures,
the U-Net based architecture stands out as the most suitable
option for aneurysm segmentation tasks, owing to its
encoder-decoder structure. However, while existing U-Net
architectures are proficient at segmenting aneurysms from
TOF-MRA sequences, they do have some shortcomings that
can impact the overall efficiency of CAD systems. Therefore,
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FIGURE 6. Precision and recall plot of the existing UIA and deep learning segmentation methods.

TABLE 3. Hyper parameters of the existing methods.

there is a need for the development of new models for
aneurysm detection that ensure the performance efficiency
and accuracy of CAD systems in the clinical domain.
Based on the comparative analysis, some research gaps have
been identified in existing CAD systems. The following
observations have been articulated from the comparative
analysis.

1) The detection and segmentation of small-sized
aneurysms pose a challenge for current architectures,
potentially resulting in under detection that can
impact the effectiveness of CAD systems in routine
clinical settings. The detection and segmentation of
small-sized aneurysms can be enhanced by integrating
attention mechanisms, such as spatial attention, into
deep learning models. These mechanisms enable the
model to explicitly focus on the feature descriptors
of small-sized aneurysms. Additionally, employing 3D
U-Nets with varying patch sizes or multi-resolution
convolutional neural networks can further improve the
model’s capability to learn weak signals from small
aneurysms.

2) While the existing CAD system can effectively
identify large-sized aneurysms, they occasionally
stumble to accurately determining the precise shape
and morphological characteristics of the identified
aneurysm. While this information is vital in establish-
ing the appropriate treatment plan for those affected.
To precisely determine the shape and morphological
attributes of aneurysms, the model should integrate
shape-related information such as aneurysm volume,
neck diameter, sacculation ratio, and wall thickness
into the learning process. By doing so, objective
measurements can be obtained for characterizing the
morphology of aneurysms, thereby aiding in treatment
decisions.

3) From this study, we understand that accurately seg-
menting aneurysms of various sizes and shapes is
imperative for assessing the rupture risk of unruptured
intracranial aneurysms. The shape and morphological
characteristics of the aneurysm structure are closely
related to rupture risk estimation, underscoring the
importance of precision in segmentation.
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FIGURE 7. Precision and recall plot of the existing UIA and deep learning segmentation methods of MIP representation.

4) Existing 2D U-Net architectures sometimes fail to ade-
quately capture the topological information between
different slices of TOF-MRA volume and indepen-
dently consider the individual slices for detection and
segmentation tasks. It may also affect the efficiency and
accuracy of CAD models. It demands a CAD model
that combines topological and spatial information of
the TOF-MRA sequence to develop a model. The
current 2D architectures suffer from a lack of 3D
context, resulting in the neglect of vital information
regarding the overall shape of aneurysms and their
relationship with surrounding vessels. By employing
3D convolutions instead of 2D convolutions, the 2D
U-Net model can directly capture spatial relationships
between slices, addressing this limitation. Additionally,
multi-resolution architectures can efficiently capture
both fine details within slices and large-scale anatomi-
cal relationships across slices. Incorporating attention
mechanisms can further enhance segmentation accu-
racy by highlighting relevant features and suppressing
irrelevant ones, thus improving the focus on the
aneurysm.

5) The encoder-decoder structure of the U-Net model may
lead to overfitting of the models. Thus, it demands
either huge training samples or some regularization
techniques. But in the medical domain, one major
issue is the availability of appropriate training data
that helps to generalize the models. So to develop an
efficient CAD model, the data scarcity problem needs
to be addressed. The scarcity of medical data can be
addressed by implementing patch-based augmentation
strategies that focus on extracting and augmenting
patches containing aneurysms. Additionally, the uti-
lization of Generative Adversarial Networks (GANs)

can facilitate the generation of synthetic medical
images, effectively augmenting the training datasets
and mitigating overfitting within the encoder-decoder
structure of U-Net. Employing weakly supervised
learning approaches offers another avenue to tackle
overfitting issues associated with the U-Net archi-
tecture. Furthermore, leveraging pre-trained models
on large image datasets with similar features can
serve to initialize the deep learning model effec-
tively. Incorporating regularization techniques such as
dropout, data augmentation, weight decay, and L1 or
L2 regularization can also play a significant role in
reducing overfitting.

6) The existing segmentation models are heavily
weighted, always demanding high computational
requirements. This indicates the requirement for a
lightweight model in the aneurysm detection and
segmentation task. We can develop a lightweight
model by minimizing the number of layers neces-
sary to extract relevant features for segmentation.
Additionally, employing techniques such as parameter
pruning and quantization can effectively remove
redundant features, thereby reducing computational
costs. Furthermore, incorporating factored convo-
lutions can be beneficial in further reducing the
computational burden.The performance of heavily
weighted segmentation models highly depend on large
amounts of labelled data. This may lead to bias, and
overfitting of the trained model which may pose sig-
nificant challenges in cerebral aneurysm segmentation
task. In order to overcome this, we can use data
scarcity methods like semi-supervised learning, data
augmentation and the pre-trained models for effective
learning.
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Based on the identified research gaps in unruptured
intracranial aneurysm (UIA) segmentation using deep learn-
ing models, researchers can explore semi-supervised learning
approaches such as graph-based methods or Generative
Adversarial Networks (GANs) to generate synthetic UIA
images with diverse shapes and sizes. Additionally, lever-
aging techniques like deep image prior augmentation and
transfer learning can enhance model development. Integra-
tion of multi-modal approaches and clinical information,
such as patient history and risk markers, into deep learning
models can further improve training effectiveness. Through
the exploration of these techniques and algorithms, future
research aims to construct robust, data-efficient, and inter-
pretable UIA segmentation systems, with the ultimate goal
of advancing diagnosis, treatment planning, and patient care
for individuals with UIAs.

Before implementing a UIA segmentation system in
real-world clinical environments, it is imperative to eval-
uate its generalizability and effectiveness. This evaluation
necessitates preparing the data to mirror real-world scenarios
accurately. For 3D data, we create patches sized 64×64× 64,
yielding 7,000 samples. Meanwhile, for 2D data, we produce
Maximum Intensity Projection (MIP) representations of the
volume, resulting in patches of size 64×64 and yielding 4,000
samples. Through assessing state-of-the-art (SOTA) models
on these meticulously prepared datasets, we can ascertain the
system’s adaptability to real-world clinical data.

In addition to UIA segmentation, the system has the
capability to analyze cerebral aneurysms by assessing factors
such as size, shape, and neck characteristics, along with ana-
lyzing hemodynamic flow patterns. It can extend its utility to
vascular segmentation and analysis, encompassing structures
like carotid arteries and the circle of Willis. Furthermore,
the system is adept at segmenting and characterizing brain
conditions. Its seamless integration into existing radiological
and clinical workflows can be facilitated through either
plugin integration or a cloud-based platform. By providing
quantitative measurements of parameters like lesion size,
volume, and location, the system can contribute valuable data
for treatment planning and monitoring disease progression.

VI. CONCLUSION
In our article, we conducted a comprehensive analysis of
different automated methods for segmenting unruptured
intracranial aneurysms (UIAs) in TOF-MRA scans. Our
study employed standardized methodological components
and segmentation experiments to highlight the impact of
factors like pixel intensity variations, blood vessel shadows,
and noise on the accuracy of UIA segmentation.

For an effective UIA segmentation technique, it is essential
to be resilient against the aforementioned factors while
achieving precise identification and delineation of aneurysms
with minimal errors. In our research, we compared the
performance of various automated deep learning approaches
using TOF-MRA images from the ADAM dataset. We con-
ducted a thorough quantitative and qualitative assessment of

the results of UIA segmentation. Our findings revealed that
deep neural network architectures outperformed traditional
methods. From the quantitative and qualitative analysis,
we observed that the 3DU-Net inspired architecture proposed
by Di Noto et al [23] and the nnU-Net [29] framework
outperforms other methods in terms of the evaluation metrics
discussed.

Our future research endeavors will concentrate on refining
these algorithms and leveraging deep learning techniques to
construct a robust supervised UIA segmentation system. This
system will efficiently distinguish between aneurysm and
non-aneurysm pixels, thereby enhancing the accuracy of UIA
segmentation.
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