IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 19 March 2024, accepted 1 April 2024, date of publication 11 April 2024, date of current version 29 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387489

== RESEARCH ARTICLE

An Efficient Hardware/Software Co-Design for
FALCON on Low-End Embedded Systems

YONGSEOK LEE “'2, JONGHEE YOUN""3, KEVIN NAM"“1-2, HEON HUI JUNG'?,
MYUNGHYUN CHO?%, JIMYUNG NA#, JONG-YEON PARK 4, SEUNGSU JEON?,
BO GYEONG KANG*, HYUNYOUNG OH""3, AND YUNHEUNG PAEK"“'2, (Member, IEEE)

! Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
2Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea
3Department of Computer Engineering, Yeungnam University, Gyeongsan-si 38541, South Korea
4Samsung Electronics System LSI, Hwaseong-si, Gyeonggi-do 16677, South Korea

SDepartment of Al-Software, Gachon University, Seongnam-si, Gyeonggi-do 13120, South Korea

Corresponding authors: Hyunyoung Oh (hyoh@gachon.ac.kr) and Yunheung Paek (ypack @snu.ac.kr)

This work was supported in part by Samsung Electronics Company Ltd., under Grant 10201208-07839-01; in part by the BK21 FOUR
Program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2023; in part by the Inter-University
Semiconductor Research Center (ISRC); in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by Korean Government (MSIT) (Development of open edge Al SoC hardware and software platform) under Grant
RS-2023-00277060; in part by IITP under the Artificial Intelligence Semiconductor Support Program to Nurture the Best Talents grant
funded by Korean Government (MSIT) under Grant IITP-2023-RS-2023-00256081; in part by the National Research Foundation of Korea
(NRF) grant funded by Korean Government (MSIT) under Grant RS-2022-00166529 and Grant RS-2023-00277326.

ABSTRACT We propose in this paper an efficient FALCON accelerator called EFX based on a HW/SW
co-design where FALCON is a post-quantum cryptographic (PQC) scheme tailored as a digital signature
algorithm (DSA). Our findings reveal that FALCON exhibits unique characteristics and structures which
distinguish it from other PQC-DSAs. A key finding is that, unlike its counterparts, FALCON doesn’t prioritize
a single, time-consuming task; instead, it processes a variety of tasks with comparable execution times.
Consequently, the conventional methods focusing on accelerating dominant few tasks, which are generally
effective for other algorithms, prove less efficient for FALCON, especially concerning the minimization of
the silicon area used. To overcome this, we strategically focus on the granular optimization of lower-level
operations rather than on broader functional segments, aiming to boost performance while conserving
hardware space. Moreover, to mitigate the potential degradation due to limitation of hardware resources,
we have implemented a pipelined execution strategy for the FALCON functions and refined the sampling
function—a critical task that is challenging to accelerate due to inherent sequential algorithm—enabling it to
run concurrently on both software and hardware, thus reducing latency. Our hardware design, synthesized
at 300MHz using Samsung’s 28nm and 45nm process technologies, demonstrates superior performance
in generating FALCON signatures, with a 3.58 x improvement in clock cycles over an existing hardware
accelerator. EFX occupies 38K um? and 74K um? for 28nm and 45nm processes, respectively, comparatively
small compared to other PQC accelerators.

INDEX TERMS Post quantum cryptography, digital signature algorithm, cryptography, SW/HW co-design,
FALCON, accelerator.

I. INTRODUCTION
Low-end embedded systems play an important role in emerg-
ing ubiquitous systems such as the Internet of Things (IoT)

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek

and automatized industrial systems, where numerous low-cost
devices need to be connected in a real-time manner while being
scattered all across systems, communicating data to and from
each other constantly. To keep such systems stable in terms of
security, the devices should be able to provide authentication
and integrity while being connected to each other. The

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

57947

https://orcid.org/0000-0002-9717-620X
https://orcid.org/0000-0001-7408-3804
https://orcid.org/0000-0002-4621-2434
https://orcid.org/0000-0002-1892-1698
https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0001-7005-6489

IEEE Access

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

challenge for this goal is to find security measurements
that are scalable for large systems, with the capability of
being implemented efficiently to resource-constrained devices.
These devices, however, are usually already overwhelmed with
the computation itself. Digital Signature Algorithms (DSA)
have been a great fit for the above requirements. The public-
key cryptosystems (e.g., RSA and ECC) were both secure and
lightweight enough to provide security for the low-end devices
in areal-time manner [1]. Until the current classical computing
era, they were widely adopted for various applications.

However, it has been shown that classical DSA algo-
rithms can be easily broken using quantum computing [2],
a prominent emerging field that has been driving significant
development, where lots of research has been conducted to
design new algorithms that are resistant to quantum computing,
called Post-Quantum Cryptography (PQC). Since 2016,
a standardization process was conducted by NIST, and three
candidates (SPHINCS+ [3], FALCON [4], and CRYSTALS-
Dilithium [5]) were selected as potential PQC-DSA standards
in 2022 [6]. All three offer a high degree of security against
attacks by both classical and quantum computers, making
them a viable option for secure communication in the future.

PQC-DSA algorithms generally require more storage space
and computation than classical-DSA, leading to difficulties in
being implemented efficiently in real-time systems with low-
end devices. To reduce the overhead caused by the increased
computation, several dedicated hardware (HW) implemen-
tation studies have been conducted [7], [8]. For instance,
previous studies on CRYSTALS-Dilithium and SPHINCS+
have mainly focused on improving performance through
parallelism of operations using HW design methods [9], [10],
[11], [12], [13], [14], [15], [16]. In CRYSTALS-Dilithium,
63% of the time during signature generation is consumed by
NTT/INTT operations, and efforts are focused on accelerating
these operations through highly parallel methods. Similarly,
in SPHINCS+, 94% of the time during signature generation
is consumed by the hash function execution, and efforts are
focused on designing accelerators that utilize the internal
slice parallelism of the hash function. As a result, much
of the research for PQC-DSA algorithms has aimed to
maximize overall performance by focusing on accelerating a
few dominantly large functions that consume most of the time
during the signature generation process.

Unlike other algorithms, FALCON is made up of
multiple middling functions that have similar execution
times. In our preliminary analysis, FFT/IFFT, SamplerZ and
Split/Merge/LDL functions account, respectively, for 26%,
24% and 28% of the total execution time. Thus, it is clear that
accelerating solely one function while neglecting the others
would not achieve a significant performance gain through HW
acceleration in the signature generation. Conclusively, to fully
utilize HW acceleration and enhance performance, it appears
essential to implement nearly all FALCON functions in HW.
However, this straightforward acceleration method may lead
to a significant increase in the total HW area because virtually

57948

all FALCON functions must be implemented as separate HW
modules. To make matters worse, unlike others, FALCON
performs double-precision floating-point (FP) operations. This
results in an increase in the area of each individual HW module,
which together further adds to the overall size of the HW,
unsuitable for low-end devices.

The objective of this paper is to design and develop an
efficient FALCON accelerator (which we call EFX) that can
attain superior performance while occupying a small area
to fit the requirements of low-end devices. We adhere to
the conventional approach of HW/SW co-design where both
HW and SW components carry out the desired functions and
collaborate in a joint-optimized manner. In this approach,
functions are normally partitioned into two groups: those
that can be efficiently accelerated by HW and those that
cannot. For efficiency in terms of both performance and
area cost, designers consider the amount of necessary HW
resources as well as the potential speedup that can be achieved
through HW acceleration. By carefully balancing these factors,
they aim to create a HW accelerator that provides significant
performance gains while keeping minimum costs. To this aim,
designers usually only choose a minimal set of functions that
consume a large portion of the execution time and exhibit
a high degree of potential parallelism. However, FALCON
does not have a dominantly time-consuming function. Hence,
implementing nearly all FALCON functions in HW may be
the only viable option to achieve dramatic improvement in
the overall performance through HW acceleration despite the
potentially high costs in terms of area and resource usage. We,
therefore, conclude that the conventional co-design approach,
which performs function-level partitioning to choose functions
for HW implementations selectively, is not an efficient way to
accelerate FALCON while achieving both high performance
and low HW cost.

Based on our observations, we seek to find an alternative
approach that can enable us to implement FALCON in
HW in a way to achieve both high performance and low
cost simultaneously. We first investigate operations within
a function, where an operation refers to the smallest unit of
computation, such as arithmetic or bit-wise operations, that are
executed sequentially during the function’s processing. Then,
we reveal a common set of operation blocks that are repeatedly
executed during the processing of each function. We named
these operation blocks as common operation blocks (COBs).
Finally, we perform operation-level partitioning, where each
function was partitioned into COBs and non-COBs, with
COBs being implemented in HW and non-COBs in SW. Our
approach was applied to FALCON and we found that COBs
accounted for a significant proportion of the overall execution
time, estimated at 90%, indicating its dominance in FALCON.
Through our approach, we achieved our goal of efficient
acceleration by minimizing the HW area and maximizing
the performance increase.

Additionally, we made the following three efforts to
maximize the performance of our accelerator.

VOLUME 12, 2024

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

IEEE Access

o Common Computing Unit (CCU) Development: We
introduced a hardware module named CCU, equipped
with multiple hardware units tasked with executing COB
operations. This singular CCU integration within our
accelerator was aimed at reducing hardware space while
enabling concurrent various COB executions to boost
performance.

« Pipelined Architecture for COBs: CCU was engineered
with a highly pipelined architecture, intended to
maximize the efficiency of executing COBs. To this
aim, we meticulously analyzed data dependencies and
resolved internal memory bottlenecks on a cycle-by-cycle
basis.

o Optimization of SamplerZ Function: Our focus
extended to refining the SamplerZ function, a critical
component noted for its high volume of non-COB
sequential operations relative to other functions. Rec-
ognizing the importance of hardware and software
synergy, we facilitated the parallel execution of COB
and non-COB pairs. This was achieved by ensuring
these pairs were free of data dependencies, allowing
for their simultaneous operation. This method leverages
the strengths of our hardware-software co-design
strategy, emphasizing efficient and collaborative function
execution.

To demonstrate the efficiency of EFX, we implemented
EFX using the Samsung 28nm and 45nm process technology,
respectively, with 300MHz of clock frequency. Compared to
the NIST reference implementation (i.e., SW running over
the low-end Cortex M4 ARM processor), EFX demonstrates
superior performance in terms of clock cycles by a factor
of 9.70x. EFX also outperforms the recent work on
SW/HW co-design of FALCON [17] in terms of clock
cycles by a factor of 3.58 x. Regarding area efficiency, EFX
occupied the utilization of HW area less than other PQC
works.

Il. BACKGROUND

A. LATTICE-BASED CRYPTOGRAPHY AND PQC
Lattice-based cryptography (LBC) is one of the most
promising PQC categories owing to its efficiency and
versatility. Aiming the four algorithms that NIST selected as
potential candidates for the PQC standard, three (CRYSTALS-
Kyber, CRYSTALS-Dilithium, and FALCON) belong to the
LBC category. Most LBCs are based on the well-known
learning with errors (LWE) [18] problem and the short integer
solution (SIS) [19]. LWE involves the identification of a vector
s when a vector b = As + e is given, where e is sampled
from an error distribution. SIS involves the identification of a
nonzero vector 7 € R" such that Az = 0. NTRU (N-th degree
Truncated polynomial Ring Units) involves the identification
of a polynomial short pair (f, g) € R when a polynomial
h=f/g € Ris given. FALCON uses SIS over NTRU lattices
as its underlying algorithm.

VOLUME 12, 2024

B. FALCON

FALCON [4] is a DSA (digital signature algorithm) that
utilizes the Gentry-Peikert-Vaikuntanathan (GPV) framework
to construct hash-and-sign LBC. FALCON relies on the
class of NTRU lattices and uses a trapdoor sampler [20]
that combines the quality of Klein’s algorithm with the
efficiency of Peikert’s algorithm. FALCON exhibits the
smallest sum of the public key and the signature size
among the NIST PQC algorithms. Sikeridis [21] argued
that FALCON is suitable for the web if FP (floating point)
HW module is available at the server, and Bindel [22]
demonstrated that it is suitable for secure vehicle-to-vehicle
(V2V) communication due to its small basic safety message
packet size. FALCON consists of three procedures—key
generation, signature generation, and signature verification.
When considering reusing a key multiple times, the frequency
of performing signature generation and verification is
relatively higher among these three procedures. Therefore,
focusing on accelerating signature generation and verification
can be the most effective. However, compared to signature
verification, which has a relatively simple algorithm structure
and has already been the subject of acceleration research
by many researchers [23], [24], research on accelerating
signature generation is relatively lacking. Thus, in this study,
we focused on signature generation. Algorithm 1 presents the
procedure for generating FALCON signatures. The message
m and a random salt value r are hashed to obtain ¢ using the
HashToPoint function, and then FFT functions are performed.
Next, the ffSampling function, which will be explained further
in the following subsection, is repeatedly executed, followed
by performing IFFT functions. Finally, the result is encoded
into the output string s using the compress function. Table 1
depicts the two standard parameter sets of FALCON, which
we target to accelerate.

Algorithm 1 FALCON Signature Generation Algorithm

Input: message m, secret key sk, bound | 52|
Output: signature sig of m

g —f

G —F

2. B < FFT(B)

3. G < B x B*

4 r < {0,120 uniformly

5. ¢ < HashToPoint(r||m, g, n)

1: B«

6: t < (— }IFFT(C) © FFT(F), }-]FFT(C) O FFI(f))
7: do

8 do

9: z < ffSampling_dyntree, (¢, G)

10: s=(—2)B

11: while |[s]|Z > |82]

12: (s1, s2) < invFFT (s)

13: s < Compress (s, 8 - sbytelen — 328)

14: while (s = 1)
15: return sig = (r, s)

57949

IEEE Access

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

TABLE 1. FALCON parameter sets.

Target Ring Max Signature
Parameters Security Degree Modulus Bound Bytelength
Level n q 152] sbytelen
FALCON-512 1 512 12,289 34,034,726 666
FALCON-1024 5 1,024 12,280 70,265,242 1,280

Algorithm 2 Fast Fourier Sampling (ffSampling)

Input: t= (19, 11) € FFT (Qx]/(x" + 1))?,
Gram Matrix G

Output: z = (29, z1) € FFT (Z[x]/(x" + 1))?
1: if n=1 then

2: o' <« Normalization(ggg)

3: zo < SamplerZ(ig, o)

4: 71 < SamplerZ(s;, o)

5 return z = (2o, z1)

6: end if

7

8

9

: (L, D) < LDL*(G)
< L
= doo, dor < split(Dgo)
10: dqg, d11 < split(Dq1)
doo doi
11: Gy < d(,;l dOO]’Gl <—[
12: t; < split(¢;)
13: z) < ffSampling_dyntree, > (t;,Gy)
14: 71 < merge(z;)
15: 1) < to+ (11 —21) O
16: tg < Split(t(/))
17: zg < ffSampling_dyntree, > (to, Go)
18: zo < merge(zg)
19: return z = (29, 21)

dio dn]

C. FAST FOURIER SAMPLING (FFSAMPLING)

Fast Fourier sampling (ffSampling) is a central procedure
in FALCON signature generation. As the name suggests,
ffSampling improves performance by splitting polynomials
like Fast Fourier transform (FFT). The ffSampling function
includes two recursive calls, and each recursive call performs
ffSampling recursively in half dimensions. Algorithm 2
illustrates the sampling procedure [4], [25]. Beginning with
the matrix G, LDL decomposition is performed to decompose
into a lower triangular L and a diagonal matrix D. The
internal calculation of LDL decomposition involves complex
FP operations.

D. CORTEX-M4 ARM MICROCONTROLLER

Cortex-M4 ARM Microcontroller is a small yet powerful
microcontroller developed by ARM, widely used in embedded
IoT devices and industrial automation systems. Unlike
several other microcontrollers as MSP430 which only offers
short integer datatypes, Cortex-M4 includes a Floating-Point
Arithmetic Unit, offering the fast and precise computation
required for PQC-DSA. It also offers an extensive range
of peripherals, making it suitable for data-demanding
applications. Our HW/SW co-design targets a platform using

57950

Cortex-M4 for two major reasons. First, it is one of the HW
platforms that NIST designated as the primary microcontroller
to be used for PQC standard benchmarks. Accordingly,
numerous prior works on PQC implementations of low-end
HW considered the Cortex-M4 as the target platform or
baseline [26]. The other reason is that we aim to provide
a fair SW baseline to compare with our HW accelerator.
Generally, running the SW baseline using a weak platform
makes the effect of an accelerator more distinguished in
terms of diverse performance metrics. We therefore sought
for a high-performance chip among microcontrollers to
be used as our SW baseline, to evaluate our accelerator
conservatively. Cortex-M4 is regarded as a premium and
high-performance chip among microcontrollers, equipped
with comparatively powerful resources that satisfy our
needs.

1Il. DESIGN OVERVIEW OF EFX

This section describes the overall design of EFX. We first
explain how we identify the target sub-functions to be
implemented as HW part, while the rest will be computed
as SW on Cortex-M4. We then explain how we map those
parts efficiently as a dedicated HW.

TABLE 2. Latency breakdown of FALCON signature generation. - Listing in
order of the most execution time.

COBs Non-COBs
Exec.
Function name time
(%) Opl Op2 Op3 Op4 Op5 Others
SamplerZ 243 v v v v v
FFT 215 v v
poly_split 12.0 v v
poly_LDL 114 v v v
complete_private 53 v
IFFT 4.9 v v
poly_merge 49 v v
poly_mul 4.8 v v
poly_add/sub 35 v
smallints_to_fpr 0.8 v
poly_mulselfadj 0.7 v v
poly_muladj 0.7 v v
fpr_sqrt 0.5 v
fpr_rint 0.5 v
poly_mulconst 0.2 v
fpr_of 0.1 v
etc 3.8

Op is the operation type. (Op1: Type Converter. Op2: FP Addition.
Op3: FP Multiplication. Op4: FP Division. Op5: Sampling.)

A. PROFILING FALCON SIGNATURE GENERATION

We performed a profiling of the FALCON signature algorithm
on the SW baseline to identify the target operations to
offload to our HW component. Table 2 shows the analysis
results of running the algorithm on Cortex-M4. As described
before, our partitioning is handled at operation-level, not
at function-level, to increase efficiency. Specifically, note
that SamplerZ and FFT account for 45.8% of the overall
execution time, which is less than half. Nevertheless,
we could target them to accelerate using HW, but this
would necessitate the HW to provide 5 types of operations

VOLUME 12, 2024

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

IEEE Access

(described as Opl, Op2, ..., Op5 in the table), requiring
a large area. Analyzing at an operation scale, we could
find out that the computation of 4 operations (Opl:Type_
converter, Op2:FP_ADD, Op3:FP_MUL, and Op4:FP_
DIV) takes account for approximately 90% of the execution
time. Therefore, offloading the 4 operations would lead to
more efficiency than the former function-level approach,
in terms of both HW area and acceleration. Note that
these 4 operations are repeatedly executed across various
functions. We hereafter note these 4 operation blocks as
common operation blocks (COBs), which are mapped and
implemented in HW, whereas non-COBs are run on the SW

side.
Host Interface

Common Computing Unit

Type-

Function Units

==

;AQSI FP_ADD M Poly_operations Control Registers
t FFT/IFFT operations
General Purpose _ SamplerZ Instruction
Registers Decoder

e —— ‘

FIGURE 1. Overview of the HW part of EFX.

B. ARCHITECTURE OVERVIEW OF EFX

Figure 1 depicts the overview of the HW part of EFX.
Connected with the host processor via the Host Interface, the
Control Signals are configured to initialize the HW. Then, the
functions are offloaded from the host to the HW, decoded by
the Instruction Decoder (ID), and then sent to the Function
Unit (FU). FU plays the role of finite state machine, where
each state represents a function that is computed by the HW.
The micro-commands from FU are sent to the Common
Computing Unit (CCU), General Purpose Registers (GPR),
and also to Memory Interface (MI). The CCU contains COBs,
and GPR is used to store the intermediate values. Once the
HW finishes its task, it sends an interrupt signal to the host
and waits for the next operations to be offloaded from the
host.

C. RESOURCE ALLOCATION FOR EFFICIENT DESIGN

To fulfill our goal of designing an efficient HW component, we
used a single-port SRAM as PQC RAM (data buffer), which
stores the inputs, outputs, and intermediate data during the
computation. We use 64 bits as the bus width to compactly
match our main data type, double-precision FP. Additionally,
we implement registers that can each store the intermediate
data during COB operations. To assess the minimum amount
of registers to be used, we analyzed the cases where each COB
operations within the CCU are performed simultaneously.
As a result, we determined that we need to hold at least
12 64-bit values during the computation of the functions that
are to be offloaded to our HW component — for which reason,
we allocated 12 registers.

VOLUME 12, 2024

FUNC_CTRL_REG | Unused |Dimension|Function ID| Reserved | Runl
20bit 4bit 4bit 3bit 1bit

START_ADDR_REG | Memory Start Address (Input / Output) |

32bit

Number of Random Values |
32bit

STATUS_REG | Unused [Phase | Fail [Random] Reser]
7T T 2R TR TR

RANDOM_REG |

FIGURE 2. Control registers.

D. HOST TO/FROM EFX INTERFACE

The interaction between the host CPU and our hardware
accelerator, EFX, is designed for flexibility through the use of
a control register via an AHB host interface. The configuration
of this interface, as illustrated in Figure 2, allows for the
setting of polynomial dimensions and the specific functions
to be executed by EFX through the FUNC_CTRL_REG. This
versatility enables the host to handle both FALCON-512 and
FALCON-1024 parameters seamlessly with FUNC_CTRL_
REG, as well as to facilitate key generation operations that
mirror those of signature generations The memory address
for input/output data is specified in START_ADDR_REG,
ensuring proper data storage and retrieval. For the specialized
coordination of SamplerZ function’s execution between
software and hardware, RANDOM_REG and STATUS_
REG are employed. RAMDON_REG is tasked with holding
the count of available random values, while STATUS
REG monitors the essential state for SamplerZ function’s
operation. Through STATUS_REG, the host can identify
issues such as sampling errors and shortages of random
numbers, which will be detailed later in section V.

IV. COMMON COMPUTING UNIT (CCU)

The Common Computing Unit (CCU), as illustrated in
Figure 1, is a HW component equipped with a series of
common operation blocks (COBs) used for both FP operations
and single data type operations such as type conversions.
The 64-bit FP operations of COBs, which are integral
to the generation of FALCON signatures and known for
their extensive processing time, are accelerated through a
specifically designed FP Unit (FPU). This FPU is engineered
to function at a 300MHz frequency, optimizing the execution
of COBs.

A. FP ADDER, MULTIPLIER, AND DIVIDER

In our pursuit of designing an area-efficient hardware compo-
nent for EFX, we opted to create separate modules for each
FP operation after determining that a unified module handling
addition, multiplication and division would significantly
degrade performance. This decision was informed by the
recognition that FP division is inherently more complex
and involves many more processing stages than FP addition,
as depicted in Figure 3. A combined module, operating in
a pipelined manner, would force FP addition operations to
unnecessarily traverse multiple stages, causing delays without
justifiable cause. Moreover, FP division is utilized in only two

57951

lEEEACC@SS Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

(a) Complex floating-point addi- (b) Complex floating-point mul-
tion (FPC_ADD) tiplication (FPC_MUL)

(c) Complex floating-point division (FPC_DIV)
FIGURE 3. Complex number calculations using floating-point operations.

specific functions within the FALCON algorithm, whereas
addition and multiplication are fundamental to the majority
of operations. Given these considerations, we resolved to
design the three modules—FP addition, FP multiplication and
FP division.—independently, this streaming the processes for
addition and multiplication. Our design includes a 64-bit FP
adder configured with two pipeline stages and a multiplier set
up with five stages, employing a classical 4-digit schoolbook
multiplication technique.

For the FP division module, a non-pipelined architecture
was deemed most suitable due to its infrequent invocation
during the FALCON algorithm’s execution. We implemented
a series of three 53-bit signed subtractors that met our desired
frequency (i.e., 300MHz), reusing these across 55 iterations
to complete the division process within 19 cycles. In a FP
division operation, the subtraction of FP exponents and the
XOR manipulation of the sign bit are performed in parallel.
The final steps involve normalization, clamping and rounding,
which are executed over two cycles to ensure precision and
efficiency.

>>
1—»
—>{ concat :) —>outl
0> E
MUX N
Controller L = N

<

in —
opt —

8

bit

> out2

] -

Stage 1 Stage 2
FIGURE 4. Pipeline of the type-converter (FP to integer).

B. TYPE-CONVERTER MODULE

The type-converter COB facilitates the transition between
integer and FP data types. When converting integer to FP
numbers,a two-stage pipeline architecture is employed. This

57952

structure first normalizes the data before rounding it to achieve
the desired FP representation. Conversely, the conversion from
FP numbers to integers involves processes such as truncation,
rounding and flooring, all of which depend on shifts in the
mantissa guided by FP exponents. Given the nature of these
operations, our approach prioritizes HW efficiency over direct
performance enhancement through pipelining. We achieve
this by employing a single, to-be-reused component capable
of handling all three stages of the FP-to-integer conversion
process. An additional component is integrated exclusively
for the rounding stage, which necessitates a 63-bit addition,
extending the operation by an additional cycle. As depicted
in Figure 4, while the rounding process is structured as a two-
stage pipeline, both truncation and flooring are designed to
be completed within a single cycle to adhere to clock speed
constraints.

TABLE 3. List of the functions which are implemented in HW.

ID Function Name Description

0 smallints_to_fpr ~ Type-conversion (8bit Integer to 64bit FP)

1 N_fpr_of Type-conversion (64bit Integer to 64bit FP)

2 N_fpr_rint Type-conversion (64bit FP to 64bit Integer)

3 poly_add Polynomial addition

4 poly_sub Polynomial subtraction

5 poly_mul Polynomial multiplication

6 poly_muladj Polynomial multiplication with the adjoint of the polynomial
7 poly_mulconst Polynomial multiplication with a real constant
8 poly_mulselfadj ~ Polynomial multiplication with its own adjoint
9 poly_LDL LDL Decomposition

10 FFT Fast Fourier Transform

11 FFT_neg Fast Fourier Transform with negative output
12 poly_merge Merge two polynomials into one

13 IFFT Inverse Fast Fourier Transform

14 poly_split Split a polynomial to two polynomials

15 SamplerZ Discrete Gaussian sampling

V. FUNCTION UNIT (FU)

The Function Unit (FU) within the hardware part of EFX
is responsible for coordinating the execution of operations
offloaded from the software. Upon receiving these operations,
the FU allocates them across the hardware modules of EFX
for processing. The scope of functions managed by the FU,
as detailed in Table 3, inlcudes a range of tasks that leverage
shared resources within the EFX hardware, including CCU.
Key resources such as GPRs, which hold both input/output
and intermediate data, along with finite-state machines
(FSMs) for resource management, are utilized collectively
among the hardware functions. This subsection describes
the strategy employed by FU to orchestrate the module
operations described in section IV, facilitating the execution
of advanced operations like polynomial computations and
FFT/IFFTs.

A. POLYNOMIAL OPERATIONS

In the context of FALCON signature generation, operations
on polynomials, with the exception of multiplications, are
conducted in a coefficient-wise fashion. This approach
allows for sequential computation without the need for
addressing data dependencies or specific access patterns
across polynomial coefficients’ indices. Operations such as
type conversion, addition and subtraction among polynomial

VOLUME 12, 2024

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

IEEE Access

Load ‘b ‘ & ‘ o ‘

el ‘amz

store s i

FP_MUL

f

/

nla
FP_ADD

FIGURE 5. Scheduling of polynomial multiplication operation.

coefficients are thus scheduled sequentially by FU, resulting
in each polynomial operation of degree N averaging N FP
operations. It is critical to note, however, that the execution
of such polynomial operations does not strictly translate
to N cycles, given the non-pipelined nature of our FP
operation implementations which may introduce additional
latency.

On the other hand, polynomial multiplication presents a
more complex challenge due to the intricate data access
patterns required, where every coefficient interacts with every
other in a comprehensive manner. To address this complexity,
we have implemented a specialized pipeline to efficiently man-
age FP operations for polynomial multiplications, as illustrated
in Figure 5.

This setup allows for the sequential reception of four input
data sets, with the FP_MUL operation processing these inputs
in a pipelined fashion before forwarding the results to the
FP_ADD operation, which similarly employs a pipelined
computation process. During this computation, periods of
inactivity are observed for both FP_MUL and FP_ADD COBs,
alongside instances of idle memory bus time. To enhance
optimization, we have strategized the overlapping of multiple
input sets to ensure maximal utilization of COBs and the
memory bus, effectively reducing idle times. The variation
in data and operation colors within Figure 5 signifies the
engagement of different input sets, depicting our approach
to optimizing polynomial multiplication execution within the
FALCON algorithm.

Are > Upe
Aim tre + Uim
tim <FPC_ADD>
lljre X - L Vye
im o Vim
<FPC_MUL> <FPC_SUB>
(a) Cooley-Tukey Algorithm
ure
>
tre m
tim
%
: » re
X Vim

<FPC_SUB>
(b) Gentlman-Sande Algorithm
FIGURE 6. Butterfly operations in FFT/IFFT.

<FPC_MUL>

VOLUME 12, 2024

B. FFT/IFFT OPERATIONS

The FALCON algorithm implementation submitted to NIST,
the computation of Fast Fourier Transform (FFT) and its
inverse (IFFT) employs the Cooley-Tukey method [27] and
Gentleman-Sande method [28], respectively. Our hardware
implementation adheres to these established methodologies
for FFT and IFFT, with a focused optimization on their
operational processes.

As shown in Figure 6, FFT and IFFT functions involve
critical butterfly operations. To enhance efficiency and reduce
latency, we have overlapped these butterfly operations across
both functions, leveraging the pipelined architecture of CCU
for optimal utilization. Similar to the FFT/IFF T operations,
the execution of fast Fourier sampling operations, including the
splitting and merging of polynomials, adopts a methodology
paralleling the FFT/IFFT’s initial stage. The functions
poly_merge_fft and poly_split_fft mimic the
dataflow of FF'T and IFF T’s butterfly operations, respectively,
albeit being executed in a singular stage. The difference is
the number of stages required to get the final result. The
poly_merge_fft and poly_split_fft functions are
performed only in a one-stage operation, but FFT and IFEFT
functions are performed in 9 or 10 stages according to
FALCON-512 and FALCON-1024 parameters.

To efficiently integrate these operations, FU combines the
stage operations of FFT and IFFT with those of poly_
merge_fft and poly_split_fft. This integration is
facilitated by a dedicated module designed for calculating
memory addresses, effectively halving the value by multiplex-
ing the output signals of FP_ADD. This approach enables the
seamless unification of poly_merge_fft with FFT and
poly_split_fft with IFFT, streamlining the process
and optimizing performance.

Algorithm 3 SamplerZ

Input: Floating point values j1,
o’ € R such that 6" € [0min, Omax]
Output: An integer z € Z sampled from a distribution very
close to Dz, o/
r<n—lp]
ccs < Opin/o’
while frue do
z0 < GaussianSampler() > Gaussian sampling
b < UniformBits(8) & 0x1
z<—b+(22 b— 1)zo
x «— (22 2 Z_o
if(BerExp(x, ccs) = 1)
return z + 1]

> Rejection sampling

R e T

C. SAMPLERZ
Sampler?Z isidentified as the most time-consuming function
in the signature generation process, accounting for 24.3% of

57953

IEEE Access

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

the total execution time, as detailed in the breakdown (see
Table 2). This function is distinct from others in that it involves
specialized operations for Gaussian and rejection sampling,
as outlined in Algorithm 3. To enhance its efficiency, we have
implemented a series of optimization techniques, as depicted
in Figure7. As both Gaussian sampling and uniformly
random generation can be executed independently of other
operations, they are initially handled by the software and
then dispatched their results to PQC RAM for simultaneous
hardware usage (@). Specifically, the outcomes of Gaussian
sampling (zp) and uniformly random generation (b) are
pre-calculated and then fed into SamplerZ on HW part.
Simultaneously, a dedicated buffer in the PQC RAM is
allocated for random value storage, with STATUS_REG
ensuring synchronization of these available random values
(zo, b) between the host and the HW accelerator.

Algorithm 3 shows the operation flow of the entire
SamplerZz function, aiming to find a random integer z
derived from two random values, ensuring it passes a specified
test (line 8), where z¢ is sampled from a discrete Gaussian
distribution centered on u with standard deviation o’ and bis a
uniformly sampled bit. On the procedure, u is divided into the
integer part | | and the fractional remainder r. If passed the
test calculated by the rejection sampling function (line 8), the
final sampled result z is made by adding the integer part | u |
(line 9). Given the iterative nature of finding z in lines 3-9 in
Algorithm 3, failures in the testing phase can extend latency.
To mitigate the penalty due to this failure, we designed the HW
part of Sampler?Z to parallelize the evaluation of multiple
z0 and b candidate pairs (@).

To be specific, SamplerZ is processed somewhat
speculatively in the sense that SW generates abundant random
zo and b pairs in idle time, assuming that the test would
fail. Asynchronously to SW generation, HW part finds z by
multiple tests on these pre-generated pairs (€). Our empirical
analysis revealed that the SamplerZ function was invoked
102,400 times during signature generation process, with
approximately 42.4% of operations failing more than once and
an average number of failure equal to 0.74 (Table 4). By testing
four candidate pairs in parallel based on this analysis, the
likelihood of requiring more than one iteration drops to 1.31%,
insignificantly affecting performance.

The integration of the Bernoulli approximate exponential
function within rejection sampling test is accomplished using
our FP multiplier (@). The primitive operation of the Bernoulli
approximation exponential function is 64-bit multiplications
that typically demand substantial HW space. By assigning
these multiplications to the shared COB, specifically the FP
multiplier, we significantly reduce the hardware footprint.
Upon completion of the sampling process, STATUS_REG is
utilized to send an interrupt signal to the host (@), prompting
the SW to verify the process status. In the case of lacking
random values on PQC RAM, as indicated by RANDOM_
REG, HW part awaits SW’s replenishment of random
values.

57954

Hardware s
¢ SamplerZ Procedure

:\ CTRL ‘ RANDOM ‘ ‘ STATUS ‘
¢) | REG REG REG ||
Interrupt
ARM Sy
Processor POC ¢
R§1\1 O |59 @69 (.07 [t
Random i Rando samp samp samp samp
Value | 9 1 2 3 4
v v v v
2 & Sampled Rejection Sampling
Ganssian g Integer Zo ’e (Pipelined) Fail
Sampler
% Success +
< ampled Sample || Sample |[Sample || Sample
1 | 2 3 4
[V v v v
Srls 1 Integer to Float l
(Float)
FIGURE 7. Sampler function optimization.
TABLE 4. SamplerZ execution failure statistics.
of failures 0 1 2 3 4 5 6> Total

of SamplerZ

. 58957 24978
executions

10725 4465 1931 742 602 102400

ratio (%) 5758 2439 1047 436 1.89 0.72 059 100.00

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance, HW area and
power requirements of EFX. We compare EFX against the
other papers to show the efficiency of our work. We assess the
execution time using a cycle-accurate simulator and determine
the required HW area by physically synthesizing the proposed
design using Samsung’s 28nm and 45nm process technology at
300 MHz. We implement SW baseline (SWB) of FALCON on
the Cortex-M4 board (STM32F407VG) [29] that operates at a
frequency of 168 MHz. This SW board setting is considered
as the standard environment for the performance evaluation of
PQC, recommended by NIST. To count the cycles and measure
the time, we used Data Watchpoint and Trace (DWT) [30]
which is implemented within ARM Cortex M series providing
some additional debug information including clock cycle
counts.

TABLE 5. Performance comparison of EFX with SWB [31].

FALCON-512 FALCON-1024
Function SWB EFX SWB EFX

name (ms) (ms) speed-up (ms) (ms) speed-up
smallints_to_fpr 3.3 0.005 702.3 6.6 0.009 707.7
N_fpr_of 0.4 0.001 406.8 0.8 0.002 407.7
N_fpr_rint 2.3 0.002 1093.7 4.5 0.004 1096.9
FFT 48.5 0.059 8234 109.1 0.133 822.8
FFT_neg 39.8 0.047 843.9 89.2 0.106 841.1
iFFT 203 0.024 834.8 454 0.054 836.9
poly_add 7.8 0.026 305.8 16.8 0.054 309.0
poly_sub 6.5 0.018 363.4 144 0.039 370.7
poly_mul 199 0.032 613.8 423 0.068 625.5
poly_muladj 2.7 0.003 882.2 55 0.006 887.1
poly_mulconst 0.8 0.002 396.2 1.6 0.004 396.6
poly_mulselfadj 29 0.004 697.5 58 0.008 699.2
poly_LDL 469 0.093 503.3 104.1 0.200 521.5
poly_merge 203 0.032 631.4 454 0.070 647.9
poly_split 492 0.061 808.9 1105 0.133 830.3
SamplerZ 100.0 0.102 9782 1956 0.212 923.1

VOLUME 12, 2024

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

IEEE Access

TABLE 6. Performance comparison with other papers in the signature generation.

Clock

Works Parameters Clock Cycle g eéigze Speed Time

PeedUP MHz) (ms)
M4(C-opt) [26] FALCON-512 Total(SW) 62,225,400 x9.44 168 370.39
FALCON-1024 Total(SW) 136,596,407 %x9.70 168 813.07
Ma(Asm-opt) [26] FALCON-512 Total(SW) 38,090,446 x5.78 168 226.73
FALCON-1024 Total(SW) 83,482,883 %x5.93 168 496.92

FALCON-512 - - - - -

ARM+FPGA [17] Total(HW+SW) 50,406,717 %x3.58 144.37
FALCON-1024 HW 10,074,112 121 83.26

SW 40,332,605 660 61.11
Total HW+SW) 6,590,698 % 1.00 37.82
HW 540,204 300 1.80

FALCON-512 SW 6,050,494 168 36.01
Ours (M4+ASIC) Total HW+SW) 14,078,075 % 1.00 80.86
HW 1,120,125 300 3.73
FALCON-1024 SW 12,957,950 168 77.13

A. PERFORMANCE

The performance evaluation of our EFX, as compared to a
purely software-based implementation (SWB) on a Cortex-M4
board, is presented in Table 5. The SWB represents the perfor-
mance metrics of FALCON when executed entirely in software
on a resource-constrained device, which lacks high precision
arithmetic units, including the double-precision FPU essential
for FALCON computations. To optimize performance within
these constraints, emulated FP operations were executed using
optimized ARM assembly code in the NIST submitted version.
The EFX design achieved acceleration factors between
305.8 to 1093.7x for FALCON-512 and 309 to 1096.9x for
FALCON-1024, in comparison to SWB. Further comparisons
with prior studies on the signature generation function of the
FALCON algorithm are detailed in Table 6. The study by
Kannwischer et al. [26], which also targeted the Cortex-M4
board, proposed two versions of design, C optimization and
assembly optimization. Our design significantly outperforms
their results, reducing clock cycles by at least 5.78x for
FALCON-512 and up to 9.7x for FALCON-1024. In terms
of HW implementations, previous efforts [32], [33] have
focused on accelerating specific functions of the FALCON
algorithm without supporting the entire algorithm. The only
accelerator (named by ARM+FPGA in the table) for the full
signature generation function, by Karabulut and Aysu [17],
are compared. Karabulut et al.’s study, which also employs
a SW/HW co-design approach focusing on the SamplerZ
function for FALCON-1024, demonstrates that our EFX
design requires 3.58 x fewer clock cycles in comparison.

B. AREA AND POWER

Table 7 shows the comparison of HW area and power
consumption with previous studies that implemented HW
accelerator for PQC algorithms. To the best of our knowledge,
there has been no previous research focused on the compre-

VOLUME 12, 2024

hensive hardware implementation of the FALCON signature
generation, which the primary objective of our work. Given
this context, making direct comparisons with prior studies is
not straightforwad. Nontheless, we seek to indirectly assess
the area and power efficiency of our EFX design by apposing
it with other PQC research efforts that execute functions
analogous to those performed by FALCON. As indicated in
Table 7, our EFX design demonstrates a notably compact
hardware footprint relative to other HW implementations in
the field. To facilitate a fair evaluation of area and power
consumption across varying silicon processes, we utilized both
the 28nm and 45nm processes for synthesis. Our design was
synthesized to occupy areas of 38Kum? and 74K pm? using
Samsung 28nm and 45nm technology at 300 MHz, respectively.
Our design strategy emphasized the efficient reuse of
resources, such as CCU, GPRs, FU across multiple hardware-
accelerated functions. Moreover, we integrated the Bernoulli
approximate exponential function used in SamplerZ with a
FP multiplier to further optimize resource utilization.

In terms of power consumption, our results indicate lower
or comparable levels relative to those reported in existing
DSA studies. Although there are differences in the algorithms
and security levels supported between our work and that of
Soni et al. [34], which also utilized the FALCON algorithm
but focused on signature verification, our signature generation
implementation demonstrates somewhat higher power use.
This can be attributed to the greater computational complexity
involved in signature generation as opposed to verification.
Indeed, signature generation has been shown to require
between 150x to 160x more clock cycles than verification
on the Cortex M4 board [37], validating our design’s power
efficiency for such a complex task. While the lack of
directly comparable studies on FALCON signature generation
poses challenges for hardware comparisons, our investigation
underscores the EFX design’s advantages in terms of both

57955

IEEE Access

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

TABLE 7. Area and power comparison of EFX with other papers.

. . Security . Freq. Area Power (mW)
Works Categories Algorithms Level Funtions nm (MHz) (um?) HW SW
Soni ez al. [34] DSA qTesla Signing 65 200 840,169 6.1689 -
(HW) Dilithium 1 Signing 65 200 790,495 4.9968 -
Soni et al. [35] DSA FALCON 1 Verifying 65 123 387,027 2.4400 -
(HW) FALCON 5 Verifying 65 173 380,350 3.2700 -
Imran et al. [36] SABER 3 Keygen/Encap/Decap 65 936 1,026,000 860.9000 -
(HW)‘ KEM SABER 3 Keygen/Encap/Decap 40 1095 767,000 137.0000 -
SABER 3 Keygen/Encap/Decap 28 2500 255,000 608.4000 -
Karl et al. [24] Dilithium 1,35 Keygen/Signing/Verifying 8.1030 -
(HW/SW) DSA FALCON 1.5 Verifying 22 800 166,991 3.4500 -
Ours DSA FALCON 1,5 Signing 45 300 74,639 9.0487 229
(HW/SW) FALCON 1,5 Signing 28 300 38,085 57972 229

reduced area and power consumption within the area of PQC
hardware accelerators.

VII. RELATED WORK
Various PQC-DSA HW accelerator implementations were

reported during the standardization of NIST PQC-DSA.

Different design goals were considered, e.g. high performance
or compactness. It is hard to compare between the algorithms
as they are very distinct from each other. We note that
FALCON uses less amount of data (up to 1793 bytes for public
key and 1280 bytes for signature key) compared to Dilithium,
another PQC-DSA algorithm (up to 2595 bytes and 4595 bytes
for public key and signature key, respectively). As embedded
devices cannot hold huge amounts of data, we deduced that the
algorithm with less data involved would be more efficient. The
main difference in terms of computation was the bottleneck
for FALCON as it is more sequential than Dilithium, but we
successfully reduced its overhead as described throughout
our work. For Dilithium, a lattice-based PQC-DSA, several
HW accelerators have been proposed [9], [10], [11], [12],
[38]. In [9] and [11], high-performance HW accelerators were
developed using parallelism. In [10], compact HW accelerators
were designed using a SW-HW co-design method. An efficient
HW implementation for Dilithium was presented in [38]
by reusing digital signal processors. In [12], an efficient
implementation of Dilithium was reported using a segmented
pipelined processing method reducing memory resources and
latency. Several works also targeted to accelerate multiple
PQC-DSA algorithms at the same time [35], [39] using
HLS-based HW designs. A high-performance HW accelerator
was proposed for the multivariate algorithm, Rainbow, in [40].

VIil. CONCLUSION

This paper presented an efficient FALCON accelerator,
EFX designed for superior performance with minimal HW
area usage. By implementing a shared resource strategy
within FALCON’s HW and designing a highly pipelined
CCU, we achieved significant performance optimization
with reduced hardware footprint. In addition, we optimized
SamplerZz, which has a relatively large proportion of
non-COBs in entire operations, by overlapping COB and

57956

DSA: digital signature algorithm. KEM: key encapsulation mechanism.

non-COB pairs that can be executed concurrently, given no
data dependencies.

Performance comparisons with recent SW/HW co-design
paper for FALCON revealed that our EFX significantly
outperforms the previous work in signature generation,
achieving lower cycles of 3.58 x for FALCON-1024 parameter,
while occupying lower area than other hardware-only and
SW/HW co-design PQC papers. In addition, our EFX included
a significant proportion of the overall execution of signature
generation. When implemented in different embedded systems,
our EFX is expected to have a similar performance. Given
FALCON’s recognition by NIST as one of the standards
for PQC-DSA, this work’s insights into hardware-efficient
FALCON implementations are poised to advance further
research and development in secure cryptographic practices
for the post-quantum era.

ACKNOWLEDGMENT

(Yongseok Lee and Jonghee Youn contributed equally to
this work.) The EDA tool was supported by the IC Design
Education Center (IDEC), South Korea.

REFERENCES

[1] N.J. G. Saho and E. C. Ezin, “Survey on asymmetric cryptographic
algorithms in embedded systems,” IJISRT, vol. 5, pp. 544-554, Dec. 2020.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp- 303-332, Jan. 1999.

[3] D.J. Bernstein, A. Hiilsing, S. Kolbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS + signature framework,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 2129-2146.

[4] P. A.Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, Falcon: Fast-Fourier
Lattice-based Compact Signatures Over NTRU, document Specification
Version 1. 2, NIST Post-Quantum Cryptography Standardization Round,
Mar. 2020, p. 67.

[5] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, Crystals-dilithium Algorithm Specifications and
Supporting Documentation, document Version 3.1, NIST Post-Quantum
Cryptography Standardization Round, Mar. 2021.

[6] NIST. (2016). Announcing Request for Nominations for Public-
Key Post-Quantum Cryptographic Algorithms. [Online]. Available:
https://www.federalregister.gov/documents/2016/12/20/2016-30615/anno
uncing-request-for-nominations-for-public-key-post-quantum-
cryptographic-algorithms

VOLUME 12, 2024

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

IEEE Access

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. He, T. Bao, Y. Tu, and J. Xie, “HPMA-Saber: High-performance
polynomial multiplication accelerator for KEM saber,” in Proc. IEEE 40th
Int. Conf. Comput. Design (ICCD), Oct. 2022, pp. 525-528.

J. Xie, P. He, and C.-Y. Lee, “CROP: FPGA implementation of high-
performance polynomial multiplication in saber KEM based on novel
cyclic-row oriented processing strategy,” in Proc. IEEE 39th Int. Conf.
Comput. Design (ICCD), Oct. 2021, pp. 130-137.

S. Ricci, L. Malina, P. Jedlicka, D. Smékal, J. Hajny, P. Cibik, P. Dzurenda,
and P. Dobias, “Implementing CRYSTALS-Dilithium signature scheme
on FPGASs,” in Proc. 16th Int. Conf. Availability, Rel. Secur., Aug. 2021,
pp. 1-11.

Z.Zhou, D. He, Z. Liu, M. Luo, and K.-K.-R. Choo, “A software/hardware
co-design of CRYSTALS-Dilithium signature scheme,” ACM Trans.
Reconfigurable Technol. Syst., vol. 14, no. 2, pp. 1-21, Jun. 2021.

L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware
implementation of CRYSTALS-Dilithium,” in Proc. Int. Conf. Field-
Programmable Technol. (ICFPT), Dec. 2021, pp. 1-10.

C.Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei,
and L. Liu, “A compact and high-performance hardware architecture for
CRYSTALS-Dilithium,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., pp. 270-295, Nov. 2021.

D. Amiet, A. Curiger, and P. Zbinden, “FPGA-based accelerator for post-
quantum signature scheme SPHINCS-256,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., pp. 18-39, Feb. 2018.

D. Amiet, L. Leuenberger, A. Curiger, and P. Zbinden, “FPGA-based
SPHINCS+ implementations: Mind the glitch,” in Proc. 23rd Euromicro
Conf. Digit. Syst. Design (DSD), Aug. 2020, pp. 229-237.

Q. Berthet, A. Upegui, L. Gantel, A. Duc, and G. Traverso, “‘An area-
efficient SPHINCS+- post-quantum signature coprocessor,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), Jun. 2021,
pp. 180-187.

P. Mohan, W. Wang, B. Jungk, R. Niederhagen, J. Szefer, and K. Mai,
“ASIC accelerator in 28 nm for the post-quantum digital signature scheme
XMSS,” in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), Oct. 2020,
pp. 656-662.

E. Karabulut and A. Aysu, “A hardware—software co-design for the discrete
Gaussian sampling of falcon digital signature,” Cryptol. ePrint Arch.,
vol. 2023/908, p. 9, Jun. 2023. [Online]. Available: https://ia.ct/2023/908
O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1-40, Sep. 2009.

M. Ajtai, “Generating hard instances of lattice problems,” in Proc. 28th
ACM Symp. Theory Comput., 1996, pp. 99-108.

L. Ducas and T. Prest, “Fast Fourier orthogonalization,” in Proc. ACM Int.
Symp. Symbolic Algebr. Comput., Jul. 2016, pp. 191-198.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, ‘‘Post-quantum
authentication in TLS 1.3: A performance study,” Cryptol. ePrint Arch.,
vol. 2020/071, p. 16, Feb. 2020. [Online]. Available: https://ia.cr/2020/071
N. Bindel, S. McCarthy, H. Rahbari, and G. Twardokus. (Jun. 2021).
Suitability of 3rd Round Signature Candidates for Vehicle-to-Vehicle
Communication. [Online]. Available: https://csrc.nist.gov/Presentations/
2021/suitability-of-3rd-round-signature-candidates-for

L. Beckwith, D. T. Nguyen, and K. Gaj, ““Hardware accelerators for digital
signature algorithms Dilithium and FALCON,” IEEE Design Test, p. 7,
Aug. 2023, doi: 10.1109/MDAT.2023.3305156.

P. Karl, J. Schupp, T. Fritzmann, and G. Sigl, “Post-quantum signatures
on RISC-V with hardware acceleration,” ACM Trans. Embedded Comput.
Syst., vol. 23, no. 2, pp. 1-23, Mar. 2024.

T. Pornin, “New efficient, constant-time implementations of falcon,”
Cryptol. ePrint Arch., Tech. Rep. 2019/893, 2019. [Online]. Available:
https://ia.cr/2019/893

M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, ‘“pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4,” in Proc.
2nd PQC Standardization Conf., 2019, p. 22. [Online]. Available:
https://hdl.handle.net/2066/210214

J. W. Cooley and J. W. Tukey, ““An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, p. 297,
Apr. 1965.

‘W. M. Gentleman and G. Sande, “Fast Fourier transforms: For fun and
profit,” in Proc. Fall Joint Comput. Conf., 1966, pp. 563-578.
STM32F4DISCOVERY Board. Accessed: Mar. 13, 2022. [Online].
Available: https://www.st.com/en/evaluation-tools/stm32f4discovery.html

VOLUME 12, 2024

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

ARM Ltd. Data Watchpoint and Trace Unit. [Online]. Available:
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-
and-Trace-Unit

P. A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, ‘‘Falcon-software,” NIST,
Tech. Rep. FALCON, 2020. [Online]. Available: https:/csrc.nist.gov/
projects/post-quantum-cryptography/selected-algorithms-2022

A. Sarker, M. Mozaffari Kermani, and R. Azarderakhsh, “Efficient error
detection architectures for postquantum signature Falcon’s sampler and
KEM SABER,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30,
no. 6, pp. 794-802, Jun. 2022.

M. Imran, Z. Ul Abideen, and S. Pagliarini, “A systematic study of lattice-
based NIST PQC algorithms: From reference implementations to hardware
accelerators,” 2020, arXiv:2009.07091.

D. Soni, M. Nabeel, K. Basu, and R. Karri, “Power, area, speed, and
security (PASS) trade-offs of NIST PQC signature candidates using a C to
ASIC design flow,” in Proc. IEEE 37th Int. Conf. Comput. Design (ICCD),
Nov. 2019, pp. 337-340.

D. Soni, K. Basu, M. Nabeel, N. Aaraj, M. Manzano, and R. Karri,
Hardware Architectures for Post-Quantum Digital Signature Schemes.
Cham, Switzerland: Springer, 2021, doi: 10.1007/978-3-030-57682-0.

M. Imran, A. Aikata, and S. S. Roy, ‘“Towards high-speed asic
implementations of post-quantum cryptography,” Cryptol. ePrint Arch.,
vol. 2023/716, p. 5, May 2023. [Online]. Available: https://ia.cr/2023/716
T. Oder, J. Speith, K. Holtgen, and T. Giineysu, “Towards practical
microcontroller implementation of the signature scheme falcon,” in Post-
Quantum Cryptography (Lecture Notes in Computer Science), vol. 11505,
J. Ding and R. Steinwandt, Eds. Cham, Switzerland: Springer, 2019, doi:
10.1007/978-3-030-25510-7_4.

G. Land, P. Sasdrich, and T. Giineysu, “A hard crystal-implementing
Dilithium on reconfigurable hardware,” Cryptol. ePrint Arch., Sep. 2021.
K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography—A hardware evaluation study,” Cryptol. ePrint Arch.,
Tech. Rep. 2019/047, 2019. [Online]. Available: https://ia.cr/2019/047

A. Ferozpuri and K. Gaj, “High-speed FPGA implementation of the NIST
round 1 rainbow signature scheme,” in Proc. Int. Conf. ReConFigurable
Comput. FPGAs (ReConFig), Dec. 2018, pp. 1-8.

YONGSEOK LEE received the B.S. and M.S.
degrees in electronic materials engineering from
Kwangwoon University, South Korea, in 2015 and
2017, respectively. He was a SoC Designer
with Korea Electronics Technology Institute,
South Korea, from 2017 to 2021. He is cur-
rently pursuing the Ph.D. degree in electrical
and computer engineering with Seoul National
University, South Korea. His research inter-
ests include privacy-preserving computation and
hardware acceleration solutions.

JONGHEE YOUN received the Ph.D. degree in
EECS from Seoul National University, South Korea,
in 2011. He is currently an Associate Professor
of computer science and engineering with Yeung-
nam University. His research interests include
compiler, software optimization, security, malware
analysis, system software, and embedded systems
(architecture/software).

KEVIN NAM received the B.S. degree in electrical
and computer engineering from Seoul National
University, South Korea, in 2020, where he is
currently pursuing the Ph.D. degree in electrical
and computing engineering. His research inter-
ests include privacy-preserving computation and
hardware-backed system security against various
types of threats.

57957

http://dx.doi.org/10.1109/MDAT.2023.3305156
http://dx.doi.org/10.1007/978-3-030-57682-0
http://dx.doi.org/10.1007/978-3-030-25510-7_4

IEEE Access

Y. Lee et al.: Efficient Hardware/Software Co-Design for FALCON on Low-End Embedded Systems

HEON HUI JUNG received the B.S. degree
from the Department of Electrical and Computer
Engineering, University of Seoul, South Korea,
in 2022. He is currently pursuing the M.S.
degree in electrical and computing engineering
with Seoul National University, South Korea.
His research interests include privacy-preserving
computation and hardware acceleration solutions
and architectures.

MYUNGHYUN CHO received the B.S. degree
from the Department of Electronic and Electrical
Engineering, Hongik University, South Korea,
in 2020, and the M.S. degree in electrical
and computer engineering from Seoul National
University, South Korea, in 2022. He is currently
an Engineer with Samsung Electronics System LSI.
His research interests include crypto IP and secure
algorithms.

JIMYUNG NA received the B.S. and M.S.
degrees from the Department of Electronics
and Electrical Engineering, Chonnam National
University, Gwangju, South Korea, in 1998 and
2000, respectively. In 2001, he joined Samsung
Electronics System LSI, Hwaseong-si, South Korea,
where he is currently a Principle Engineer with
the Security Group, IP Development Team. His
research interests include post-quantum cryptogra-
phy, hardware security, high-performance crypto
IP, and security systems.

JONG-YEON PARK received the master’s degree
in mathematics from Kookmin University, in 2012.
He was a Researcher with the Electronics and
Telecommunications Research Institute (ETRI),
Daejeon, South Korea, from 2012 to 2014. He was
also a Research Engineer with Korea Telecom
(KT) Convergence Laboratory, Seoul, South Korea,
from 2015 to 2017. He is currently a Staff Engineer
with Samsung Electronics System LSI. His research
interests include most of the cryptographer’s topics,

especially mathematical structures related to secure algorithms and SCA.

57958

SEUNGSU JEON received the B.S. and M.S.
degrees from the Department of Electronics and
Electrical Engineering, Sungkyunkwan University,
Suwon-si, South Korea, in 2015 and 2017, respec-
tively. In 2017, he joined Samsung Electronics
System LSI, Hwaseong-si, South Korea, where he
is currently an Engineer with the Security Group,
IP Development Team. His research interests
include post-quantum cryptography, hardware
security, high-performance crypto IP, and security
systems.

BO GYEONG KANG received the B.S. degree
in mathematics education from Seoul National
University, South Korea, in 1999, and the M.S.
and Ph.D. degrees in mathematics from Korea
Advanced Institute of Science and Technology,
KAIST, in 2001 and 2005, respectively. She is
currently the Security Group Leader of the IP
Development Team, Samsung Electronics System
LSI. Her research interests include device security
systems with software and hardware, secure
processor design integrated in SoC which satisfies security certification
common criteria (CC), and new algorithm implementation.

HYUNYOUNG OH received the B.S. and M.S.
degrees in electrical and electronic engineering
from Yonsei University, South Korea, in 2005 and
2007, respectively, and the Ph.D. degree in electri-
cal and computing engineering from Seoul National
University. He was a SoC Designer with Samsung
Electronics, South Korea, from 2007 to 2017.
He is currently a Professor with the Department
of Al Software, Gachon University. His research
interests include privacy-preserving computation
and hardware-backed system security against various types of threats.

YUNHEUNG PAEK (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
from Seoul National University, South Korea, in
1988 and 1990, respectively, and the Ph.D. degree
in computer science from the University of Illinois
at Urbana—Champaign, in 1997. Currently, he is
a Professor with the Department of Electrical and
Computer Engineering, Seoul National University.
His research interests include system security with
hardware, secure processor design against various
types of threats, and machine learning-based security solutions.

VOLUME 12, 2024

