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ABSTRACT The Internet of Vehicles (IoV) is a powerful application of the Internet of Things (IoT) in the
Intelligent Transportation System (ITS). It enables device connectivity, and interaction with the environment,
and improves efficiency in utilizing sensor data. Leveraging the capabilities of vehicle sensors to provide
virtual sensor service presents an opportunity to make the most of underutilized sensor resources and offer
on-demand sensor services. However, challenges remain in ensuring spatio-temporal sensor availability due
to the high mobility of vehicles and frequent changes in the IoV network topology. Furthermore, providing
sensor services in the dynamic IoV-Cloud market, while balancing cost-effectiveness for consumers and
profitability for service providers, poses a significant challenge. To address these challenges, we develop
an IoV-Cloud architecture tailored for vehicle virtual sensor provisioning, integrating interactive functional
layers and components for a comprehensive solution. This architecture supports vehicle sensor virtualization
and management, facilitating the intelligent provisioning of on-demand, elastic, and scalable vehicle virtual
sensors from existing physical sensors within mobile vehicles. To address vehicle mobility and enhance
sensor availability, our design permits virtual sensors to maintain data provision even when switched
to different physical sensors. Further optimizing sensor utilization, our system allows multiple virtual
vehicle sensors to share a single physical sensor by employing a configuration mapping mechanism. At the
heart of our strategy is a reinforcement learning model that dynamically selects the most suitable vehicle
physical sensor for each time slot throughout the service period, considering both physical availability and
cost-effectiveness for the Sensor Cloud Service Provider (SCSP).We simulate the proposed intelligent sensor
selection model using both Q-learning and SARSA algorithms, demonstrating its effectiveness in intelligent
and dynamic sensor provisioning.

INDEX TERMS Internet of Vehicles, reinforcement learning, sensor virtualization, intelligent sensor
provisioning.

I. INTRODUCTION
In recent years, researchers and automobile industry groups
have gained much interest in the development of Intelligent
Transportation Systems. IoV as an integral component of
ITS, is likewise undergoing steep growth. In the IoV,
vehicles serve as sensor hubs to gather environmental data
through heterogeneous, diversified, and versatile on-board
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embedded sensors, which are then made available to provide
novel applications and added-value services as on-demand
elastic sensor services. Because of their wealth of on-
board resources, wide-spread spatio-temporal accessibility,
and mobility, nowadays vehicles may be viewed as the best
candidates for providing ubiquitous information services.
In addition, the diversity of in-vehicle sensors and the
capabilities of vehicles in terms of storage, processing, and
communication allow vehicles to offer a wide range of oppor-
tunities under the public sensing paradigm, outperforming
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other potential mobile resources like smartphones. However,
the vehicle’s capabilities remain limited, and it is difficult
to solely meet the computing requirements and the complex
sensor provision tasks [1]. Moreover, most of the existent
applications co-exist with inefficiently used infrastructures,
either because resources are duplicated (dedicated devices
and networks) or are under-used (idle time, one-time data-
processing) along with possible sensor replication in the
same geographical zone, especially in urban zones with
high density. The use of IoV has resulted in a wide range
of applications that require the utilization of heterogeneous
components. These components include high encoding and
decoding capabilities for data, as well as various hardware
and software platforms. Additionally, these applications are
built on top of different types of devices, each with its own
unique data format and sensor configuration [2]. As a result,
there is a growing need for a significant effort to ensure
the manageability and adjustability of sensors over time.
Furthermore, the expectations for a substantial improvement
in sensor provision mechanisms have also risen to meet
the diverse and multiple service requests that arise from
the use of IoV applications. Therefore, it is essential to
efficiently exploit and share the vehicle sensors among
several applications.

The virtualization is envisioned as a key technology to
make the sensor sharing and exploitation possible to meet the
efficient use of sensor resources [3]. Moreover, It represents
a promising opportunity that enables the migration from
the traditional WSN data acquisition towards the intelligent
Sensor-as-a-Service provision. Motivated by the endless
opportunities of virtualization for creating novel services
and developing added-value applications, we utilize the
virtualization technology to virtualize the vehicle sensors
on the fog and the cloud servers to offload the processing
tasks from vehicle’s On-Board Units (OBU) and to provide
continuous access to the instantiated virtual sensors for
various and multiple sensors service consumers. In particular,
we propose sensor virtualization and provisioning a solution
that consists in selecting at each time slot the suitable vehicle
physical sensor to compose the vehicle virtual sensor based
on the vehicle mobility and sensor allocation cost.

Nevertheless, there are still several challenges that are
mainly related to the availability of vehicles embedding
the sensors due to the high vehicles mobility, frequent
topology change, and driving behavior volatility [4]. Fur-
thermore, vehicles in the IoV networks are characterized by
their intermittent and short-lived availability in the target
geographic zone of the requested service, which leads to
an unsustainable service provision [5]. In fact, attaining
perfect knowledge of the vehicular network for making
definitive decisions on vehicle availability is practically
unachievable. This limitation arises from various factors,
such as the difficulties in gathering precise mobility data,
transmission errors, and the scarcity of detailed model
information. Furthermore, the vehicular network frequently
faces unpredictable events, including climate variations and

unforeseen incidents like traffic jams, accidents, and traffic
detours. Additionally, existing approaches are vulnerable to
the influence of inaccurate measurements, which can lead to
a reduction in the overall effectiveness of localization efforts
[6], [7]. All these factors overlap to make the decision on
the selection of the vehicle physical sensor to compose the
vehicle virtual sensor is more and more complicated.

To avoid such challenging situations, this study proposes
a reinforcement learning (RL) method for dynamically and
adaptively selecting at each time slot the appropriate vehicle
physical sensors to compose the vehicle virtual sensor. The
selection is based on the availability of vehicles in the
network, the sensor allocation cost, and the optimization of
sensor utilization. To the best of our knowledge, this work is
the first study that combines intelligent sensor selection and
vehicle virtual sensor provision based on vehicle availability
and cost-effectiveness in the field of IoV in a single study.

This study is motivated by the lack of research that
combines both RL model and availability-based sensor
provisioning in a single study. Besides, the existing studies
do not consider the IoV mobility and the sensor provision
architecture and components, i.e., edge, fog, and cloud, and
thus we propose that the virtualization is executed at the cloud
after performing the mobility data pre-processing and the
sensor configuration adjustability in the fog layer.

The proposal of this work is to design an IoV-Cloud
architecture for vehicle virtual sensor provisioning in the
vehicular context. Therefore, reinforcement learning is used
for intelligent vehicle physical sensor selection based on
the spatio-temporal availability of the vehicles that represent
the sensor suppliers. The proposed selection mechanism
takes into consideration the optimization of both resource
utilization and allocation cost of the vehicle physical sensors.
The cost depends on the number of physical sensors allocated
to compose the vehicle virtual sensor and on the vehicle
virtual sensor service production period.

In this paper, we design an IoV-Cloud architecture for vehi-
cle virtual sensor provisioning that encompasses interactive
functional layers and components. A sensor virtualization and
management solution is proposed to enable the intelligent
provisioning of on-demand, elastic, and scalable vehicle
virtual sensors, starting from a set of physical sensors
embedded in mobile vehicles. To cope with the mobility of
vehicles, and to increase availability, we allow the virtual
sensor to continue providing data when being attached to a
different physical sensor from one-time slot to another.

To reduce the number of required physical sensors and
increase their availability, we also allow the sharing of the
same physical sensor with multiple virtual vehicle sensors,
and we provide a configuration mapping mechanism to
enable this sharing. The configuration mapping is a function
of transformation of the data. it gets as input the data
generated by a vehicle physical sensor configured with
a configuration C (e.g., sensitivity, resolution, precision)
and outputs produced data as if they were generated by
the same vehicle physical sensor configured with different
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configuration C’. Such a scheme allows for generating
multi-tenant virtual vehicle sensors based on physical sensors
sharing.

Finally, a reinforcement learning model is used for
intelligent and dynamic selection of the vehicle physical
sensor (at each time slot during the whole required ser-
vice period) which takes into consideration its physical
availability and also the cost-effectiveness for the Sensor
Cloud Service Provider (SCSP). The proposed reinforcement
learning model for sensor selection is tested using Q-learning
and SARSA algorithms.

This paper is an extension of the work we presented in [8].
In particular, the four following aspects are developed in this
work:

1) We developed the mechanisms of sensor configuration
mapping which allows software mapping of sensor
configuration and transformation of collected data,
so that the same physical sensors (e.g., camera) can be
used with multiple configurations (e.g., zoom, angle of
view, resolution) simultaneously, as if they were mul-
tiple sensors allocated physically. This feature impacts
the virtual sensor model becoming multi-tenancy, and
the used rewards functions in reinforcement learning.

2) We introduced a global cost calculation function for
vehicle virtual sensors, while considering a set of
physical sensors with different unit costs based on
the quality of supplied sensors and the configurations
allowed by each physical sensor. We highlighted the
impact of new defined metrics such as “multi-tenant
sensor sharing”, “sensor re-selection” and “true sensor
selection” on the global provisioning cost of the vehicle
virtual sensor.

3) In addition to the Q-learning model, we also developed
a SARSA-based model for the dynamic and intelligent
selection of physical sensors composing the virtual
vehicle sensors. We compared the obtained results for
the two reinforcement learning models Q-learning and
SARSA, and we also compared their efficiency with
respect to random sensors selection algorithm.

4) We extended the simulation results to evaluate the
virtual sensor provisioning costs and the rate of
economics with respect to the parameters of networks
such as the density of vehicles and the vehicles’ speed
variation.

The remaining part of this paper is structured as follows:
Previous works related to sensor virtualization and provi-
sioning are reviewed in Section II. In Section III, the IoV-
Cloud architecture for vehicle virtual sensors is presented.
The concept of vehicle sensor virtualization in the IoV
context is explained in Section IV. The Vehicle virtual sensor
modeling and provisioning cost computation are presented
in Section V. In Section VI, we propose a vehicle sensor
selection approach based on reinforcement learning. Then,
the performances of the proposed intelligent vehicle sensor
selection are tested and evaluated using reinforcement learn-

ing models in Section VII. Finally, we conclude this paper in
Section VIII.

II. RELATED WORK
In this section, works related to sensor virtualization and
provision are discussed and analyzed to justify the necessity
of the proposed solution. Recent research addressed the
sensor virtualization in various research areas and application
domains including intelligent buildings [9], Healthcare moni-
toring [10], and Smart City [11]. Because of the large number
of vehicle sensors used to collect environmental, traffic, and
mobility data and the necessity for managing the sensor
resources for providing novel services, sensor virtualization
in the IoV field has been one of the most demanding
areas of research. The authors in [12] present a sensor
virtualization platform (SenseWear) for seamless integration
of wearable sensors into smartphone applications to enhance
their functionality. Sensor virtualization frameworks has been
presented that rely on virtual sensor formation and provision
with a trade-off between QoS requirements satisfaction [13]
and energy consumption minimization [14] and [15]. The
authors in [16] design a sensor virtualization solution in
the WSN using multi-threading middleware at the sensor
supplier nodes in order to manage the service provision
priorities and therefore minimize the processing delays owed
to the aggregation of the sensed healthcare data for Ambient
Assisted Living (AAL) applications.

However, the limited capabilities of IoT devices in terms
of energy preservation, due to the huge amount of data to
store and process, were overcome with the rise of fog and
cloud computing technologies. The advantages of IoT sensor
virtualization techniques using cloud computing are used
for optimizing the sensor resources sharing, and therefore
handling the massive growing demands of IoT application
[17], [18]. In the same context, a solution of Sensor as a
Service (Se-aaS) is designed to offer access to IoT framework
services via authorization access polices [19]. A sensor-cloud
platform was implemented to perform the management and
also virtualization of heterogeneous wireless sensors [20].
In addition, that solution takes into consideration the
sensor failure detection based on network connection status.
To gather and process sensing data in IoV, a two-tier system
for data routing and processing is suggested to achievemobile
Crowd-sensing tasks. The solution consists in using a vehicle
fog architecture to improve communication efficiency and
reduce the processing load made on vehicles [21]. To address
the challenges of energy constraints, rapidly changing topol-
ogy, and frequent network disconnections in VANETs, the
cluster head (CH) selection process incorporates a weighted
metrics combination including mobility factor (incorporating
vehicle speed, distance, velocity, and acceleration changes),
community neighborhood, eccentricity, and trust. The befit
factor includes dynamic vehicle location predictions through
the Kalman filter for accurate CH stability assessment [22].
The authors in [23] introduce a selection process in Cognitive
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Radio (CR) VANETs that employs a fuzzy logic-based
scheme to enhance network stability, security, and reliability,
addressing challenges inherent in vehicular networks. This
approach uses CR technology for efficient spectrum sensing,
prioritizing parameters like the vehicle’s average velocity,
distance, network connectivity level, lane weight, and
trustworthiness.

However, the virtualization in a vehicular environment
should not be limited to the resource management and
sharing but also to the provision of the sensor while
considering the mobility, heterogeneity and availability of
sensor suppliers. Furthermore, the dissemination of mobile
sensors in the IoV networks at large topology and scale often
increases uncertainty about their availability, making sensors
virtualization is a possible solution.

To address these issues, a novel virtualization concept for
IoV sensors is developed in [24]. It relies on configuration
mapping and sensors reconfiguration to guarantee an opti-
mized IoV sensor utilization and dynamic resource sharing
while coping with high mobility and frequent topology
change issues. Sensor virtualization in the IoV system
obviously requires a prior knowledge of vehicle sensor
location and thus a consistent methods to select the most
available sensors to compose the virtual sensors. However,
using conventional techniques that exploit, for instance, the
Euclidean distance to determine the target sensor position
[25] or the sensor’s residual energy to compose the virtual
sensor. In [26], the authors argue the advantages of virtual
sensors to address the limitation of using a high number of
sensors for service provision mostly when considering the
high mobility limited knowledge of system status.

Addressing availability and mobility challenges in vehic-
ular networks requires robust strategies that account for the
dynamic nature of vehicle movements and ensure reliable
connectivity and service availability [27]. In [28], the authors
propose a novel system that combines positioning and
vehicle direction to provide a predictive evaluation. Their
approach utilizes a combination of Machine Learning (ML)
and Multiple-Input Multiple-Output (MIMO) techniques to
estimate the location and driving direction of nearby vehicles.
The authors in [29] address the issue of GPS positioning
errors by employing an extended Kalman filter method.
They propose a vehicle positioning scheme that leverages the
existing GPS trajectory as a reference and trains a model-free
neural network to enhance the accuracy of positioning.
In [30], the authors employ a vehicle-mounted camera to
capture vehicle images and utilize a deep neural network to
process these images and estimate the vehicle’s location.

Since traditional techniques cannot handle the dynamical
requirement of IoV [31], in recent years, artificial intelligence
technologies have highly attracted the interest of researchers
dealing with sensor resource management [32] using the
machine learning with supervised [33] and unsupervised [34]
models. These ML models require a large dataset and show
many limitations regarding the diversity of scenarios and
incidents that are generated in the vehicular networks due to

the high mobility and drastic topology change. In addition,
employing a massive data set to train a machine learning
algorithm is exhausting and requires a frequent update of the
data set.

Therefore, the use of Reinforcement learning is being an
attractive approach for resources management and service
provision. A proposed policy iteration-based RL solution
in [35] relies on dynamically selecting the most suitable
configuration of VM resources to meet the service consumer
requirement in QoS, while minimizing the overhead of
resource allocation during a short time window in the
vehicular cloud environment. The authors in [36], use a
clustering-based ML along with Q-learning to select the
cluster head (CH) and the vehicle service supplier (in the
form of virtual machines (VMs)) based on their mobility,
bandwidth, and computing capabilities in the vehicular
cloud. A reinforcement learning solution combined with the
Semi-Markov Decision Process (SMDP) is proposed in [37]
for the provision of virtual units (VUs) to request vehicles
based on the arrival and departure of vehicular requests in
the vehicular cloud computing. The authors in [38] introduce
a Deep Reinforcement Learning (DRL)-based mechanism
for managing network resources in vehicular communication
systems, emphasizing its utility in dynamic and complex
environments. Their approach innovatively optimizes vehicle
transmission power, IRS-reflection configurations, and BS
detection coefficients, aiming to maximize network energy
efficiency. This contribution showcases the potential of
combining DRL with real-time network status analysis to
enhance VANET performance.

Using the RL to manage cloud servers or even processing
and storage of vehicle resources is different from those of
vehicle sensors since the latter is characterized by its high
heterogeneity and therefore more complexity in ensuring the
virtualization. Moreover, almost the majority of works do
not take into consideration the cost-effectiveness and the
economics earned from providing vehicular services and
resources. In addition, it should be noted that in applications
of the existent works, the array of sensors is typically a fixed
set and is generally presumed to be consistently available.
However, in the context of mobile vehicular environments,
this assumption does not hold due to the inherent dynamism
and mobility, which can lead to variable sensor availability
and changing configurations. This contrast underscores the
need for more adaptive and flexible approaches to managing
sensor resources in vehicular settings.

III. FOUR-LAYER IoV-CLOUD ARCHITECTURE FOR
VEHICLE SENSOR PROVISIONING
This section first provides an overview of a four-layer
architecture for sensor virtualization and provision. Then,
the sensor virtualization model in the cloud and fog layers
are specified, respectively. Subsequently, the optimization
problem focusing on the sensor selection, and the overall cost
minimization is formulated.
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Vehicle sensor virtualization involves isolating the physical
infrastructure of the vehicle from the application level
by using a number of interface components. Therefore,
we present a set of layers that involves interactive actors
including the sensor suppliers (SS), the Sensors Cloud
Service Provider (SCSP), and the Service Consumer (SC) and
functional components including the fog nodes and the edge
nodes. Moreover, we split the entire network into primary
zones and designate the SCSP to control and manage one or
many primary zones. The SCSP deploys a fog node at the
level of each primary zone. Each primary zone is divided
into equal cell zones. At each cell, an RSU is installed to
collect the data generated by the vehicles and to track their
mobility.
Application Layer: consists of the set of the services and

applications requester such as the meteorological agencies
(request for weather information including temperature,
humidity, and rain level), telecommunication operators
(demand drive testing samples to adjust and optimize the
deployment of their equipment), and road monitoring author-
ities (request for the information related to the road traffic
congestion and polluting gas emissions). These services
and applications are created and served on-demand by the
SCSP with respect to an SLA that is completed and signed
by the SC and the SCSP. Therefore, the SCSP allocates
sensors from mobile vehicles and provides vehicle virtual
sensor services for the service consumer. Thereby, leveraging
the geographical wide-spread and coverage of vehicles and
the evolution of vehicle’s on-board sensors. Moreover, the
provision of the virtual sensor services can be a great
alternative to overcome the high expensive cost incurred
by the installation, the deployment, and maintenance of
dedicated sensor infrastructure.
Edge Layer: The edge layer comprises the vehicular

network consisting of mobile vehicles acting as sensor
suppliers, the sensor network consisting of diverse and
adaptable vehicle physical sensors embedded in vehicles’
OBUs, and the Road Side Units (RSUs) that communicate
with vehicles within their communication range under a
cell zone. RSUs and vehicles communicate via the IEEE
802.11p standard, supporting dedicated short-range commu-
nication (DSRC) like vehicle-to-vehicle (V2V) and vehicle-
to-roadside (V2R) communication. The vehicle physical
sensor (φs) represents the key component of the proposed
model, converting physical phenomena into processable
electric signals, capturing driving behavior (e.g., speed,
acceleration, and localization), and environmental data (e.g.,
pollution, temperature, and humidity). To optimize resource
utilization, the vehicle physical sensors can remain idle until
triggered or be programmed for on-demand sensing periods,
allowing underused sensor resources to be utilized by cloud
providers. Each vehicle physical sensor is identified by its
ID, location, type, and configuration. A single sensor on
a vehicle can allow multiple setups and handle numerous
requests simultaneously. On the other hand, the RSU collects
mobility information from vehicle physical sensors within its

communication range and transfers it to the upper fog layer
of the relevant primary zone for processing.
Cloud Layer: leveraging the almost limitless storage and

processing capabilities it can provide, the Sensors Cloud
Service provider (SCSP) uses the cloud computing resources
to orchestrate and manage the fog nodes as well as the
physical sensors that are leased from mobile vehicles.
Therefore, it can offer on-demand and elastic virtual sensor
services and applications. The cloud layer is used at the
top of the fog layers. The vehicle virtual sensor represents
a software program or pure logical object that receives a
collection of inputs about the service type, service period, and
geographic zone. A continuous service delivery is achieved
thanks to the use of virtual sensors (VS) during the service
duration. To deliver continually, on-demand and scalable
services, the VS offers an abstraction layer to separate the
diverse and adaptable physical sensors from their original
physical ID and functionality. Due to its rapid mobility and
predilection for following less congested paths, a single-
vehicle physical sensor might not be able to offer an
exhaustive data collection throughout the course of the whole
service term. Therefore, the VS is applied to overcome
the aforementioned constraint by dynamically choosing a
collection of the most available vehicle physical sensors (i.e.,
one selected sensor per time slot).
Fog Layer: We leverage virtualization technologies to

virtualize vehicle-mounted sensors on the fog layer, offload-
ing computational tasks from resource-constrained terminals.
This enables the development of efficient virtual sensor
services while optimizing sensor resource utilization. Fog
computing supports mobility and location awareness, which
are lacking in commercial cloud computing models [39]. Our
proposed model deploys fog nodes in each primary zone of
the controlled area, allowing end users to connect to multiple
fog nodes using different Application Level User (ALU)
interfaces. The goal is to handle as many tasks as possible in
the fog server, reducing vehicle energy consumption. The fog
node consists of computing and storage servers, along with an
intelligent component that collects and manages information
from vehicle sensors and RSUs at the edge layer. It performs
initial virtualization steps, including mobility data extraction.
The fog node manages and collects data from vehicles in a
geographical area, performing operations and configuration
mapping based on the sensor’s capabilities and consumer
needs. These operations are executed by software execution
on the fog node, managed by a distributed orchestration
system.

IV. SENSOR VIRTUALIZATION IN THE CONTEXT OF IoV
The proposed virtualization consists in providing an abstrac-
tion layer by executing processing functions over vehicle
physical sensors and achieving an intelligent vehicle physical
sensor selection. In other words, it is about adding an abstrac-
tion layer between the vehicle physical sensor (including its
type, configuration and also the information related to the
vehicle embedding the sensor such as its location, speed, and
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FIGURE 1. Cloud IoV architecture.

availability in the network) and the deliverable service to the
service consumer. In this way, calling for virtualization allows
hiding the sensor provision complexity from the service level
consumers by defining a clear abstract layer. In the following,
the advantages of vehicle sensor virtualization are presented.
Then, the two virtualization steps are detailed.

A. ADVANTAGES OF VEHICLE PHYSICAL SENSORS
VIRTUALIZATION
The virtualization technology has brought a lot of opportu-
nities due to the advantages offered by it in many research
fields and industrial disciplines. In this work, we describe the
advantages and benefits of sensor virtualization in the IoV
context.

1) UNDER-USED SENSOR RESOURCE EXPLOITATION AND
SENSOR INFRASTRUCTURE SHARING
Exploiting under-used sensor resources and sharing sensor
infrastructure are key benefits of virtualization. By sharing
the physical infrastructure of sensors among multiple ser-
vice consumers, virtualization optimizes sensor resources,
reduces costs, and ensures maximum satisfaction for a
larger user base. Typically, the physical sensors installed in
vehicle onboard units operate in event-driven, periodic, or on-
demand modes, resulting in significant under-utilization.
Virtualization addresses this issue by scheduling tasks for
under-used sensors through an abstraction layer, providing
appropriate functions and operations. Furthermore, sensor
reuse through virtualization minimizes network overhead and
improves device efficiency, enabling the serving of multiple
applications and services.

2) VIRTUALIZATION FOR SENSOR SERVICE MANAGEABILITY
Cooperative vehicles approach for distributed crowd-sourcing
and task accomplishment may not be the appropriate
solution due to potential conflicts of interest among
vehicles when selecting service or task providers. However,
performing virtualization in a separate abstraction layer by
a neutral side (e.g., Broker, Sensor Cloud Service Provider)
allows a better manageability of sensor service. Thereby,
decoupling services from sensor infrastructure (its software
and hardware) without need to know the technical details of
the sensor involved in the virtual sensor composition and for
the provision of new applications and services. Furthermore,
the virtualization enables the concealment of sensor provision
complexity from service consumers, requiring only minimal
intervention from the sensor supplier.

3) VIRTUALIZATION FOR SENSOR SERVICE ELASTICITY AND
SCALABILITY
By applying sensor virtualization it becomes possible to
ensure the sensor service scalability by maintaining the
performance of the virtual sensor when expanding the target
service zone, the service period, the number of requests,
and also the number of service suppliers to be involved in
the virtual sensor composition (i.e., the number of sensors
per virtual sensor). Furthermore, it allows the sensor service
elasticity by making it possible a dynamic, adaptive, and
on-demand adjustability of the virtual sensor’s parameters
throughout its execution without affecting the system’s
performance.

4) NEW BUSINESS MODEL CREATION FOR INCREASING
PROFITABILITY
The introduction of virtualization in vehicle sensor appli-
cations opens up new avenues for revenue generation
and the creation of a business model. Third-party brokers
can leverage these applications and services to generate
additional income. This new business model involves
various roles, including Sensors Cloud Service Providers
(SCSP), Service Consumers,(SC) and Sensors Suppliers
(SS), each benefiting from different opportunities. Sensors
Cloud Service Providers focus on increasing profitability and
reducing sensor allocation prices, while Service Consumers
aim for high service level satisfaction and meeting quality
of service requirements, such as service continuity. The
intervention of Sensor Suppliers is limited to providing their
mobility information and supplying sensors to the concerned
SCSP. Moreover, increased profitability may result from
simultaneously sharing the same vehicle physical sensor
among many vehicle virtual sensor applications by executing
the suitable operations for the selection of the most available
sensor suppliers during the service provision.

5) VIRTUAL SENSOR SERVICE AVAILABILITY
By executing sensor selection and data pre-processing
operations separately from the vehicle’s physical sensor
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FIGURE 2. Concept of the proposed vehicle virtual sensor.

infrastructure at a higher layer, the availability of virtual
sensor services can be improved. This approach provides
a clearer overview of the vehicles’ mobility information,
leading to enhanced predictability regarding their availability
in the network.

B. SENSOR CONFIGURATION MAPPING AND SENSOR
RE-CONFIGURATION
The capacity to select sensor nodes for application activities
is a key necessity. It is crucial to select suitable sensor nodes
considering that a single-deployed vehicle physical sensor
can be used by numerous applications simultaneously, since
the majority of these applications may have specific spatial
and temporal requirements. Thereby, continuously collecting
sensor data from heterogeneous and mobile vehicle sensors.
The heterogeneity of sensors is observed when considering
the diversity of sensor types such as the embedded hardware
(concerns the observable, physical parts of the sensor system)
and the installed software (refers to the set of instructions
which enable the hardware to execute the assigned tasks
and processes). The sensor hardware is responsible for
performing the physical capability of the sensor in terms
of sensitivity, accuracy, and precision. The sensor software
is responsible for defining the sensor configuration and
Protocol implementation (e.g., protocol of communication
with the on-board vehicle units and inter-vehicle components
and interfaces, data reporting modes including event-driven,
periodic, and on-demand, and data coding/decoding). On the
other side, the mobility of vehicles embedding the physical
sensors represents a major issue in the virtual sensors
provision due to the high variation of the vehicles’ speed
and driving behavior, and also a cause of data collection
errors and mobility information losses during transmission.
Therefore, we propose a software-based sensor configuration
to be executed through a secure interface beyond the physical
sensor on top of the fog node. The software-based sensor
configuration allows the creation of multiple end-to-end
virtual sensors on top of the same vehicle physical sensor,
so that each configuration can be optimized to the require-
ments (e.g., precision, sensitivity, resolution, and availability)
of specific services and application domains (e.g., public

FIGURE 3. Sensor’s configuration mapping.

road monitoring, industrial). Each virtual sensor can then
be allocated to a different tenant (e.g., a communication
provider, a mobile virtual network operator (MVNO)), that
can use it to provide services to its own service consumers.

Let C1,C2, . . . ,Cp be the set of sensor configurations
available for use. A configuration can be for instance the
camera resolution when streaming or imaging, or the location
precision for some road monitoring tasks. We assume that
configurations have discrete values and can be compared to
each others forming an order relation. We have Cx ⪰ Cy if
and only if the data generated by a sensor with configuration
Cx can be transformed, leading to the same data generated
when the configuration Cy is applied. In practice Cx and
Cy can represent two resolutions of a sensor camera. The
configuration Cx allows the camera to generate photos with a
higher resolution than Cy. In that case, we say that a mapping
from Cx to Cy can be done using software tools, allowing
the same sensor camera to simultaneously serve two users
with two requested configurationsCx andCy.We admit that a
Service Consumer (SC), when he requests a configuration Cy
can be served either by a sensor with configuration (Cy) while
calling for software mapping, or a sensor with a configuration
Cx (i.e., Cx ⪰ Cy).
For example, given a Sensor Supplier (SS) which has a first

sensor configured with Cx and a second sensor configured
with Cz, and given the set {Cx ; Cy; Cz} of all possible
configurations in the market. Assuming that (Cx ⪰ Cy ⪰
Cz), one can note that configuration Cz can be served either
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directly by the second sensor or by the first sensor through
configuration mapping. Similarly, while there is no device
configured with Cy, the first device configured with Cx
can serve Cy and also Cz through configuration mapping.
Thus, the SCSP is able to allocate the same device for
different applications that request compatible configurations
simultaneously and raises its profit. Also, he can reconfigure
the device if it is idle to directly satisfy the request.

As illustrated in Figure 3, it is depicted that a single
dash-cam installed on a vehicle offers the flexibility to
adapt its lens for two different configurations catering to
distinct applications. Configuration Config1 is specifically
designed for collision detection within a smaller coverage
range. On the other hand, Configuration Config2 is optimized
for detecting traffic light situations, providing a superior
angular resolution (i.e., capable of capturing more detailed
information as the angular resolution decreases), an extended
range, and a broader field of view.Thus, we say Config1 ⪰
Config2.
In most existing works, the virtualization consists in

selecting the allocated physical sensor during the whole
service period T . In that case, the virtualization is limited in
decoupling the required data type from the allocated physical
sensor by considering only idle (the case of P3) or active (the
case of P1 and P2) states of the sensor, as shown in Figure 2.
While virtualization can effectively utilize underused sensor
resources and enable the development of new services and
applications, it faces limitations in providing continuous
sensor service delivery. This is primarily due to the inherent
mobility of vehicles, which introduces uncertainty regarding
the availability of sensors in the network.

Hence, our proposition entails a dynamic virtualization
approach that leverages the selection of an appropriate
physical sensor from a set of vehicles in the target service
area Z for each time slot. Illustrated in Figure 2b, VS1 is
initially formed by the inclusion of the vehicle physical
sensor P4 at TS1. However, at TS2, P4 becomes unavailable
in zone Z , prompting the selection of P3 to be part of
VS1 until TSn1, at which P4 becomes available in zone
Z once again. We assume, in this example, that both
VS2 and VS3 request the same sensor configuration Ca
(Ca is allowed by P1 and P2) and VS3 request the sensor
configuration Cb(Cb is allowed by P3 and P4), as shown in
Figure 2b.

V. MODELING VEHICLE VIRTUAL SENSOR
We propose a sensor virtualization that consists in con-
tinuously involving a different vehicle physical sensor
depending on its location and cost to meet the users’ service
requirements in terms of service continuity.

A. VEHICLE SENSOR VIRTUALIZATION AND COST
COMPUTATION
The vehicle sensor virtualization consists in appending an
abstraction layer between the φs, such as its ID and location,
and the type of data. In other words, the SC customizes the

service without being aware of the ID or the location of
the service supplier (SS). Therefore, the SCSP dynamically
selects a new φs at a same time slot i, when the older one
(selected at the time slot i − 1) becomes unavailable in the
target service zone.

Assuming that the quality of information is guaranteed
by using solely one sensor per time unit, it becomes
imperative to predict the availability of φs and there-
fore the continuity of the service delivery. We define
a virtual sensor (VS) by 6-tuple attributes, VS =<

T ,Z ,Datain,PREP,Dataout ,COMP >, where T =<

TS1,TS2, . . . ,TSn > denotes the required service period
(divided into equal time-slots TS), Z is the target service zone
(it is assumed that a service is maintained on the coverage
of the target service zone Z which is composed of a set
of cells controlled by the SCSP [40]), Datain is the input
data to be collected from a physical sensor φs before being
pre-processed, PREP is the set of functions and operations
performed on Datain, Dataout is the output data after being
processed, and COMP(VS,Z ,T ) is the function that realizes
the spatio-temporal mapping to select one physical sensor φs
per time slot TS such that:

COMP(VS,Z ,T ) = <Map(VS,Z ,TS1),

Map(VS,Z ,TS2), . . . ,Map(VS,TSn)>

= <φs1, φs2, . . . , φsn>

∀φsi ∈ J and i ∈ [1, 2, . . . , n] (1)

whereMap(VS,Z ,TSi) is the function that maps the physical
sensor φs (from a set of available vehicle physical sensors J
registered with SCSP and located in Z ) to the VS at the time
slot i so that location(φsi,TSi) = Z . Note that the sameφsi can
be selected for many consecutive time slots (φsi = φsi−1),
especially as the physical sensor may remain in Z during
TSi and TSi−1 and the SCSP needs to minimize the cost
of sensor provision. Similarly, we define a physical sensor
φs by 4-tuple attributes φs = <ID, SCSP,Dataout , cost>,
where ID stands for the identity of φs in the network, SCSP
is the provider registered with it (a vehicle physical sensor
is registered with only one broker), Dataout is data type
generated by the physical sensor that will feed the virtual
sensor, and cost is its allocation cost which is dependent on
the sensor type and the provided data quality (e.g., accuracy,
integrity, and consistency).

Optimizing both the profitability of the SCSP and the cost-
effectiveness for the SC relies on the consistency of the
decision made to select the most available physical sensor
with the lowest allocation cost. In this work, the SCSP aims to
dynamically select the most available vehicle physical sensor
at each time slot (TS) based on its stay time in the target
service zone Z . We define ηi as a binary selection indicator
to indicate whether the selected vehicle physical sensor φsi is
available at TSi. If it is available, the SCSP pays only the unit
allocation cost, UCost(φsi), for one-time slot of the vehicle
physical sensor φsi that is part of the virtual sensor (VS).
Otherwise, a penalty (Pe) is charged for the false selection,
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and the SCSP has to pay (ηi + Pe) · UCost(φsi) for the SC .

ηi =

{
1, if the selected φsi is available in Z at TSi
0, otherwise

(2)

Moreover, the SCSP seeks to reuse the same vehicle
physical sensor, when it is allocated, to simultaneously
compose multiple virtual sensors (VSs). We define ωi as
a binary indicator to indicate whether the selected vehicle
physical sensor φsi is reused.

ωi =


1, if Map(VS,Z ,TSi) ∈ {COMP(VSu,Z ,TSi),

COMP(VSv,Z ,TSi)}, for some u ̸= v
0, otherwise

(3)

Additionally, the SCSP is motivated to re-select the same
vehicle physical sensor during consecutive time slots to
compose theVS to avoid the charges of allocating new vehicle
physical sensors.We defineψi as a binary indicator to indicate
whether the same vehicle physical sensor φsi is selected
during TSi and TSi−1. In particular, ψi is given by:

ψi =


1, if i = 1 or Map(VSu,Z ,TSi)

= Map(VSu,Z ,TSi−1)
0, otherwise

(4)

To minimize the global allocation cost of a virtual sensor
(i.e., the cost related to the composition COMP(VS,Z ,T ))
during the entire service period T , we define the global cost
GCost(VS,T ) of allocating a virtual sensor as follows:

GCost(VS,T ) =
n∑
i=1

ωi · ((ηi + Pe)1−ηi · UCost(φsi)

+ (1− ψi) · freconf ) (5)

where,UCost(φsi) represents the unit allocation cost (for one
time slot) of the vehicle physical sensor φsi that is part of
VS, and freconf is a fixed fee charged by the SCSP every time
the vehicle physical sensor is reconfigured to be reused for
composing another vehicle virtual sensor.

To ensure efficient and secure accessibility to the fog
resources, we apply the multi-tenancy architecture, allowing
the same φs resources to be shared among multiple virtual
sensors and multiple service consumers (SCs) that request
the same configuration at the same TS. Each virtual sensor
has access to the configuration table responsible for the
adjustment of the sensor provided via secure APIs which are
made available by the SCSP.

B. SERVICE REQUEST PROCESSING STEPS
The service request processing goes through different steps
as explained in Figure 4:

The Road Side Units (RSUs), managed by a Sensor Cloud
Service Provider (SCSP), are pivotal in instantly collecting
mobility data from registered vehicles within their designated

zone Z. These vehicles, acting as sensor suppliers, feed their
mobility data to the RSUs, which is then transferred to a fog
server for the initial processing. This stage includes essential
operations like interpolating missing data and averaging
values, in preparation for further analysis.

A Service Consumer (SC) initiates the process by submit-
ting a detailed request to the SCSP, (r = <Type, T, Config,
Z>), outlining the service type, period, desired parameter
configurations, and the target service coverage zone. Upon
receiving an acknowledgment of the request, the SCSP
proceeds to instantiate a virtual vehicle sensor. Throughout
the service period, divided into equal time slots, the SCSP
dynamically requests and receives updated data from the fog
server.

The SCSP evaluates all mobility data by applying
Equations 6 and 7 to decide on vehicle candidates for
sensor allocation. The decision-making the process follows
a structured path based on availability, previous selections
of vehicles, and simultaneous sensor sharing among multiple
virtual sensors employing Equations 2, 3, and 4 to guide
these decisions. If a selected vehicle (Vu) is available at the
current timestep (TS), marked by (ηu = 1, as determined by
Equation 2), and was neither selected in the preceding TS
(ψu = 0, according to Equation 4) nor engaged in another
virtual sensor composition at the current TS (ωu = 0, as per
Equation 3), the SCSP requests Vu to allocate its sensor.
Upon confirmation from Vu, the SCSP updates the virtual
sensor composition by integrating the new physical sensor
and configures it to meet the SC’s requirements.

Alternatively, if Vu is already part of another virtual sensor
composition at the same TS (ωu = 1), indicating that the same
physical sensor is shared across different virtual sensors but
with varied data configurations, the SCSP updates the virtual
sensor accordingly. This flexibility allows for efficient use of
resources.

In cases where Vu remains available (ηu = 1) at the current
TS and had been selected in the previous TS (ψu = 1),
indicating continuous allocation, the SCSP solely extends the
allocation period, maintaining the sensor’s composition and
keeping the same previous TS’s configuration.

However, if Vu becomes unavailable (ηu = 0), the SCSP
releases the previously selected sensor and seeks a new
available vehicle (Vw, where w ̸= u) for sensor allocation.
Following confirmation from Vw, the SCSP updates the
virtual sensor by selecting the newly allocated physical sensor
and applying the configurations on the data to meet the
required service exigencies.

VI. REINFORCEMENT LEARNING FOR VEHICLE SENSOR
SELECTION
In this section, we formulate the vehicle physical sensor
selection under a Markov decision problem-solving. We des-
ignate the Reinforcement Learning as a technique that falls
under machine learning technology to solve the vehicle
physical sensor selection. The RL allows a software agent that
has limited information about the environment to learn which
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FIGURE 4. Sequence diagram of the vehicle virtual sensor management and provisioning.

action to take in order to react with the corresponding state.
Therefore, we represent the set of states, action,s and rewards
to enable the RL agent to interact with the mobile vehicular
environment.

A. VIRTUAL SENSOR COMPOSITION AS A MARKOV
DECISION PROCESS (MDP)
The proposed model consists in selecting the most suitable
vehicle physical sensor φs at each time slot TS during the
service period T . The selection is based on the mobility of the
vehicles (as the sensor supplier (SS) including their positions
in the network, speed, and time stayed in the target service
area. The selection also considers the sharing of the same
vehicle physical sensor φs by many vehicle virtual sensors
simultaneously. We approximate the selection process of
vehicle physical sensors in a target service area Z during
T as a Markov Decision Process (MDP) to maximize both
the decision certainty made on the availability of the vehicle
physical sensor (φs) and the cost-effectiveness of the vehicle
virtual sensor (VS) in a dynamic IoV environment. The MDP
is defined by a tuple (S,A,T ,R), where S, (s ∈ S), is the
state space, A, (a ∈ A) is the action space, T (s, a, s′) is
the transition probability between a state s and a state s′

when executing an action a, and R(s, a, s′) is the immediate

reward when an action a is taken under state s leads to a
transition to state s′. Solving a problem of an MDP consists
in finding the optimal policy allowing the mapping from
states to actions while maximizing the cumulative reward.
This purpose can be achieved by learning the transition
probability T from state s to s′, which is called model-
based RL. However, the IoV environment is characterized
by its high dynamics and incompleteness in the collection
of mobility information which leads to a high complexity in
calculating these probabilities. All these properties make the
complexity of defining a consistent mobility pattern within
a time period very enormous. Therefore, solving the MDP
problem is NP-hard undoubtedly [41].

B. REINFORCEMENT LEARNING FOR SOLVING VIRTUAL
SENSOR COMPOSITION PROBLEM
Reinforcement Learning has gained significant popularity as
an MDP-based approach for developing agents that acquire
knowledge through interactions with their environment.
Unlike supervised learning, where explicit feedback is
provided, RL methods rely on the agent’s exploration of
the environment and the immediate rewards it receives. This
process enables the agent to learn optimal behavior without
prior knowledge of the best actions for a given state. The
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FIGURE 5. vehicle physical sensor selection steps.

necessity for known sensor positions is dictated by the
system’s architecture and specific application needs [42]
State: represents the dependencies related to the avail-

ability of the vehicle physical sensor φsi to be involved in
the VS’s composition at the current time slot TSi, in the
target service zone Z . Moreover, we define the state as a
combination of attributes that include the identity (id) of
the cell in the target service zone Z (it is assumed that
a zone Z is divided into a set of square cells) where the
vehicle physical sensor is located, the quantified mean speed
v̄ of the vehicle SSi (embedding the vehicle physical sensor
φs), the remaining time Tr before the vehicle SSi reaches
the nearest exit point px in the zone Z , and the number of
times q the same φsi is selected to compose simultaneously
many vehicle virtual sensors. We denote the set of states by
S= {s1, s2, . . . , s|S|}, where |S| is the cardinality of S which
counts the number of elements in the set S. Thus, |S| is given
by: |S| = H ×M × TR×Q, where H ,M , TR, and Q denote
the set of cells’ identities, the set of quantified mean speeds,
the set of discretized remaining times, and the set of potential
virtual sensors that can be simultaneously composed by the
same vehicle physical sensor, respectively.
Action: represents the decision made over a given state.

We define the action as the ID of the vehicle physical sensor
φs to be selected to compose the vehicle virtual sensor VS at
a time slot TS. Suppose there are n vehicles in the network,
then the action set is denoted by, A= {φs1, φs2, . . . , φsn}.
In the selection process, we can meet a situation where more
than one vehicle is situated in the same cell and therefore, the
same distance is separating these vehicles and the closest exit
point. Because only one vehicle is selected every time slot,
the best action consists in selecting the vehicle whose speed
belongs to the lowest speed interval.

Reward: is assigned to the action under the current
state. Accordingly, we put either positive reward or negative
discount, denoted by r , to the action under a given state.

We define three rewards r1, r2, and r3. r1 is defined with
respect to Tr which is the lowest traveling period Tr of SSi
to move from its position p at the current time slot TSi to
the nearest exit point px . We have Tr = dmin(SSi.p,px )

v̄ , where
dmin is the shortest distance between SSi.p and px , and v̄
is the weighted average speed of the vehicle SS. Moreover,
the availability of the vehicle in the IoV context depends on
its current location and its speed which is impacted by the
density of the visited zone, the traffic signalization status and
the incurred congestion in the cell ch as shown in Figure 5.
The SCSP aims to select the vehicle that stays the longest
period in the target service zone:

SI =
Tr
Tthr
=
dmin(SSi.p, px)

v̄ · Tthr
(6)

where Tthr is a threshold value. We calculate the weighted
average speedNv of a sensor supplier (vehicle) SSi at a time slot
i starting from the average speed measured over a window L
up to the time slot i− 1 and its current speed v at time slot i.

v̄i = σ v̄[i−L, i−1] + (1− σ )vi (7)

Thus, the related reward r1 is obtained as:

r1 =

{
+δ, if SI ≥ 1
−δ, if SI < 1

(8)

where SI stands for the satisfactory indicator that represents
the normalized measure of the remaining time period (before
the vehicle SSi reaches the nearest exit point with respect to its
current position p at TSi) and the availability period threshold.
The second reward r2 is defined to measure the overuse of

the same φs, simultaneously by different VSs as follows:

r2 =

{
+eq, if q > 0
−θ · eq, if q = 0

,∀ q ∈ {0, 1, . . .} (9)

where q is the number of already available vehicle virtual
sensors that simultaneously share the same φsi and θ is
a penalty weight. Moreover, we define r2 to motivate the
sharing of the same φsi simultaneously by many VSs and
therefore to maximize the utilization of the vehicle physical
sensors.

The third reward r3 is defined to motivate the minimization
of the number of vehicle physical sensor modifications from
a time slot to another during T when feeding the same
vehicle virtual sensor VS with data. The reward r3. consists
in compensating the re-selection of the same vehicle physical
sensor φsi during two consecutive time slots.

r3 =

{
+β, φsi = φsi−1
−β, otherwise

(10)

We define the current reward expression R = r1 + r2 + r3
as the resulting reward. The agent seeks to find the best
combinations of state-reward pairs, after sufficient training.
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The agent seeks to find the best combinations of state-reward
pairs. After sufficient training, the one-by-one selection leads
to the maximal accumulative rewards Racc =

∑n
i=1 Ri over

the service period T composed of n time slots.
Value-Based Reinforcement Learning:
In Value-Based Reinforcement Learning, the state value

function V plays a crucial role in evaluating the quality of
a state for the agent. It estimates the value or expected return,
of being in a particular state s under a given policy π as:

V π (s) = E[R |s, π] (11)

The optimal state value function V ∗(s) represents the
maximum state value function achievable under a specific
policy for all states. It captures the highest expected return
that can be attained by following the optimal policy.

V ∗(s) = max
π

V π (s), ∀s ∈ S (12)

To consider the effect of action value, a state-action value
function (Q-function) is used to estimate the expected return
when taking a specific action a under a given state s.
It considers the potential rewards and future states resulting
from that action as:

Qπ (s, a) = E[R |s, a, π] (13)

The optimal Q-function, is computed in a similar manner
to the optimal state value function. It involves maximizing
the expected return over all states. The relation between the
optimal state value function and the optimal action-value
function is expressed as follows:

V ∗(s) = max
a

Q∗(s, a), ∀s ∈ S (14)

The optimal Q∗(s, a), results the optimal policy π∗ by
selecting the action a that maximizes the Q-value for a given
state s. In fact, Q∗(s, a) guides the decision-making process
by identifying the action that yields the highest Q-value,
thereby leading to the optimal policy selection.

π∗ = argmax
a

Q∗(s, a), ∀s ∈ S (15)

The Q-function is exploited to update the reward score for
each action a ∈ A under a state s ∈ S to fill the Q-table via
the recursive nature of Bellman equations using the Markov
property as follows:

Qπ (s, a)← Qπ (s, a)+ α (targetRL − Qπ (s, a)) (16)

where α ∈ [0, 1] is the learning rate that specifies to
what extent the newly acquired information overrides the old
information.
Exploration vs Exploitation:
In line with the existing literature, it is necessary to

consider that if we keep selecting the action with the highest
reward score in the Q-table, the algorithm may obtain a local
optimum. To remedy this problem, we need to explore during
learning, (i.e., sometimes try actions rather than the best one).

We therefore use the ϵ-greedy algorithm to perform action
selection. Specifically, under a certain state, we select the best
action according to the Q-table with probability 1 − ϵ and
randomly select one of the other actions with probability ϵ.
At the beginning of the learning process, we set a relatively
large value of ϵ so that we can try more; then, as the learning
process progresses, we gradually reduce the value until the
Q-table is converged.

1) Q-LEARNING-BASED ALGORITHM FOR THE SELECTION
OF VEHICLE PHYSICAL SENSOR
Q-learning, as a model-free RL, is one of the fundamental
algorithms to deal with the MDP problems. It relies on using
trial and error method to cope with the dynamic vehicle net-
work environment changing and the incompleteness of infor-
mation related to vehicle mobility (e.g., speed, trajectory, and
state). Motivated by the advantages offered by it, we adopt
Q-learning to select vehicle physical sensors (embedded in
vehicles) at every time slot to guarantee continuous service
delivery while minimizing the allocation cost.
Thereby, leading the agent to learn a state value function

V . Q-learning is an off-policy learning algorithm that
updates the agent’s actions by maximizing Q-values across
the available action space. Q-learning is considered as an
off-policy learning algorithm that updates the agent’s actions
by maximizing Q-values across the available action space
based on the target, targetQ−learning = R + γmax

a
Qπ (s′, a),

where γ ∈ [0, 1] is the discount factor indicating the myopic
view of the Q-learning regarding the future reward.

We propose a Q-learning-based algorithm for the selection
of the sequence of vehicle sensors to be involved in the
vehicle virtual sensor composition, as shown in Algorithm 1.
The algorithm gets as input the request rx received from
the Service Consumer (SC) including the type of service
(Type), its configuration Config, the service period T , the
target service zone Z , and also the set of exit points⋃
{px}. It outputs the vehicle virtual sensor composition

COMP(VS,Z ,T ) as a sequence of vehicle sensors φsi at
each TSi during the service period T with respect to the
requirements of rx . The agent starts by updating the set J of
sensor candidates to exclude the sensors that exit the target
service zone Z from being considered in the training. The
Q-learning agent starts each episode by initializing the state
s. For each step of the episode, the agent selects an action a
based on the current state s and uses a policy that is derived
from the Q-values. Then, it executes the chosen action a in
the environment, receives the reward R associated with taking
that action and transitions to the next state s′. The new state
s′ represents the environment’s response to the action taken.
Subsequently, it selects an action a from the new state s′ using
a greedy policy (with the highest Q-value) and updates the
Q-value for the current state-action pair Q(s, a) by applying
the Bellman equation (Q-function). Next, the agent updates
the current state s to the new state s′ for the next iteration.
At the end of each step, the obtained reward R is being used
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later for the accumulative reward Racc. Simultaneously, Racc
is used to decide on the optimal VS’s sequence and also
employed with itrmax as a terminal condition.

Algorithm 1 Q-Learning Algorithm
Input: rx =< Type,T ,Config,Z >,

⋃
{px}

Output: COMP(VS,Z ,T ) =< φs1, φs2, . . . , φsn >

,∀φs ∈ J
Initialization: itrmax and Q(s, a),∀s ∈ S, a ∈ A

Update the set J of φs candidates
Repeat (for each episode)

Initialize s0 = [id, v̄,Tr, q]
for each step of episode
Choose a from s using policy derived from Q
(using ϵ-greedy)
Take action a, receive R, and observe s′

Choose a from s′ using greedy policy (i.e., ϵ =
0), subject to max

a
Qπ (s′, a)

Update Q-value by applying Q-function,
Qπ (s, a)← Qπ (s, a)+α(targetQ−learning−

Qπ (s, a))
s← s′

end for
Compute Racc

until (Racc,iter −Racc,iter−1 < ε) or (itrmax is reached)

2) SARSA-BASED ALGORITHM FOR THE SELECTION OF
VEHICLE PHYSICAL SENSOR
In value-based RL, it exists SARSA algorithm which is
classified as an on-policy RL method, thereby updating the
agent’s actions based on the policy π , which is derived
from the Q-values based on the target, targetSARSA = R +
γ Qπ (s′, a′) and via the Bellman equation as: Qπ (s, a) ←
Qπ (s, a)+α (targetSARSA−Qπ (s, a)). The SARSA algorithm
(presented in Algorithm 2) begins each episode by initializing
the state s. At each step of the episode, the agent chooses an
action a based on the current state s using a policy derived
from the Q-values using ϵ-greedy. The selected action a is
then executed in the environment, resulting in a reward R and
a transition to the next state s′. This updated state s′ represents
the environment’s response to the action taken. Subsequently,
the agent chooses the next action a′ from the new state s′ using
a policy based on the Q-values, often employing an ϵ-greedy
strategy. The Q-value for the current state-action pair Q(s, a)
is updated via the Bellman equation. The current state s is
then replaced with the new state s′, and the current action a is
replaced with the next action a′ for the subsequent iteration.
At the end of each step, the obtained reward R contributes to
the accumulated rewardRacc. The convergence of the SARSA
algorithm and the termination condition is determined by
evaluating the difference between consecutive accumulated
rewards Racc against a predefined threshold or by reaching
the maximum number of iterations itrmax .

Algorithm 2 SARSA Algorithm
Input: rx =< Type,T ,Config,Z >,

⋃
{px}

Output: COMP(VS,Z ,T ) =< φs1, φs2, . . . , φsn >

,∀φs ∈ J
Initialization: itrmax and Q(s, a),∀s ∈ S, a ∈ A

Update the set J of φs candidates
Repeat (for each episode)

Initialize s0 = [id, v̄,Tr, q]
Choose a from s using policy derived from Q
(using ϵ-greedy)
for each step of episode
Take action a, receive R, and observe s′

Choose a′ from s′ using policy derived from Q
(using ϵ-greedy)
Update Q-value by applying Q-function:
Qπ (s, a) ← Qπ (s, a) + α (targetSARSA −

Qπ (s, a))
s← s′, a← a′

end for
Compute Racc

until (Racc,iter −Racc,iter−1 < ε) or (itrmax is reached)

The main difference between Q-learning and SARSA lies
in their action selection and Q-value update strategies. In Q-
learning, action selection is performed at each step within
an episode using a policy derived from the Q-values. Q-
learning aims to learn the optimal action-value function by
selecting actions based on the maximum Q-value of the next
state. On the other hand, SARSA performs action selection
once per episode using a policy derived from the Q-values.
SARSA updates Q-values based on the Q-value of the next
state-action pair resulting from the action selected under the
policy. Another distinction is that SARSA updates both the
state and action variables while Q-learning only updates the
state variable.

VII. RESULTS AND DISCUSSION
We conducted simulations to evaluate the performance of our
model, employing Simulation of Urban Mobility (SUMO) to
generate mobility trace datasets and MATLAB for executing
the proposed reinforcement learning algorithms. Our study
focuses on a vehicular grid network within an urban topology
consisting of two-way roads, 25 intersections, 80 edges
(represents a one-way connection between two intersections
and defines a potential route for vehicles in the simulation).
The simulation involves 100 vehicles traveling with an
average speed of 13.8 m/s, operating within a service zone
covering an area of 0.64 km2.

A. CONVERGENCE SPEED COMPARISON BETWEEN
Q-LEARNING AND SARSA ALGORITHMS WITH RESPECT
TO THE EXPLORATION PROBABILITY ϵ

In Reinforcement Learning (RL), model convergence refers
to the process where the learning algorithm reaches a
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point where further learning does not significantly change
the policy or the value function. This implies that the
algorithm has learned an optimal or near-optimal policy
that maximizes the expected cumulative reward over time,
given the environment dynamics and the reward structure.
Thus, we evaluated the convergence of the mean reward with
respect to the number of episodes, as depicted in Figure 6.
Therefore, we set the discount factor γ to 0.7 and the learning
rate α to 0.2. To assess the impact of exploration versus
exploitation for both Q-learning and SARSA, we varied
the exploration probability ϵ from 0.1 to 0.9 as illustrated
in Figures 6a and 6b, respectively.The analysis of the Q-
learning algorithm’s performance, with varying ϵ values
offers deep insights into the impact of exploration levels on
learning outcomes. Starting uniformly across all strategies,
the mean rewards soon diverge significantly. A conservative
exploration strategy (ϵ = 0.1) leads to a stable and
efficient learning curve, peaking at a mean reward of
113.8, highlighting the benefits of a gradual approach that
favors known good actions. Meanwhile, a balanced strategy
(ϵ = 0.5) achieves a harmonious exploration-exploitation the
trade-off, resulting in consistent progress and a final mean
reward of 111.4. On the other hand, an aggressive exploration
approach (ϵ = 0.9) initially delays convergence, as evidenced
by a modest mean reward early on, but eventually secures
a significant learning outcome with a final mean reward
of 107.2. This analysis underscores the nuanced trade-
offs between exploration and exploitation in reinforcement
learning, emphasizing the importance of strategic ϵ selection
for optimizing Q-learning performance.

The SARSA algorithm’s exploration strategies exhibit
distinct patterns in learning dynamics across different epsilon
values. Initially, the mean rewards start at−42.0 for ϵ = 0.1,
−52.4 for ϵ = 0.5, and -47.4 for ϵ = 0.9, reflecting the
algorithm’s early exploration phase. As the episodes progress,
by the 50th episode, ϵ = 0.1 shows a promising increase in
mean rewards to 74.6, indicating efficient and stable learning.
ϵ = 0.5 progresses to a mean reward of 60.6, demonstrating
a balanced approach to learning. In contrast, ϵ = 0.9, with
its aggressive exploration, shows a decrease in mean reward
to -14.6, suggesting that higher exploration initially hampers
convergence. However, towards the later stages, stability is
observed as the mean rewards for ϵ = 0.1 reach 113.2,
ϵ = 0.5 at 112.4, and ϵ = 0.9 improves significantly
to 104.4, showcasing the algorithm’s capacity to learn and
adapt over time. This analysis highlights the nuanced impact
of epsilon values on the SARSA algorithm’s learning speed
and stability, emphasizing the importance of strategic epsilon
selection for optimizing performance.

Both Q-learning and SARSA algorithms demonstrate
sensitivity to ϵ -driven exploration strategies, impacting
convergence and reward optimization. Q-learning, with its
off-policy nature, slightly outperforms SARSA, an on-policy
algorithm, under aggressive exploration (ϵ = 0.9), due
to its ability to evaluate policies independently of the
agent’s actions. This distinction highlights the critical role

FIGURE 6. Convergence speed comparison between Q-learning and
SARSA w.r.t the ϵ parameter.

of ϵ in balancing exploration-exploitation trade-offs and
underscores the importance of algorithm selection based on
the specific dynamics of the learning environment.

B. CONVERGENCE SPEED COMPARISON BETWEEN
Q-LEARNING AND SARSA WITH RESPECT TO THE
DISCOUNT FACTOR PARAMETER γ

We conducted a simulation to evaluate the influence of the
discount factor γ on the convergence of both Q-learning and
SARSA in terms of mean reward as shown in Figure 7. The
analysis of Q-learning convergence across γ values of 0.1,
0.5, and 0.9 (as shown in Figures 7a), supported by mean
rewards and convergence metrics, revealing distinct learning
dynamics. γ = 0.1 converges quickly and stably, indicated
by a convergence start at episode 1355 and a mean reward
of approximately 113.80, highlighting a preference for
immediate rewards but potentially sacrificing the pursuit of
higher long-term rewards. γ = 0.5, starting its convergence
around episode 1660 with a similar mean reward, suggests
a balanced exploration-exploitation strategy, leading to an
effective yet slightly delayed convergence compared to γ =
0.1. Meanwhile, γ = 0.9, with its convergence beginning
later at episode 2111 and a slightly lower mean reward of
110.74, demonstrates a strategy that values future rewards
more, leading to slower convergence and a less stable learning
process. These findings underscore the trade-offs between
convergence speed, stability, and reward optimization in
Q-learning, influenced significantly by the choice of γ
value. Analyzing the SARSA algorithm’s convergence across
γ values of 0.1, 0.5, and 0.9 (as shown in Figure 7b),
considering the provided mean reward curves, reveals unique
insights into its learning behavior. Like Q-learning, lower γ
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FIGURE 7. Convergence speed comparison between Q-learning and
SARSA w.r.t the γ parameter.

values in SARSA lead to quicker, more stable convergence,
likely due to a focus on immediate rewards over future
rewards, potentially at the cost of achieving higher long-
term rewards. Mid-range γ values offer a balanced approach,
achieving effective convergence with a mix of short and
long-term rewards, likely leading to more optimal policies.
Higher γ values emphasize future rewards, resulting in slower
convergence and less stability, indicating ongoing exploration
and adjustment in policy. These dynamics underscore the
trade-offs between convergence speed, stability, and reward
optimization in SARSA, significantly influenced by the γ
value choice.

C. IMPACT OF THE PROBABILITY OF SERVICE REQUEST
PR ON THE RATE OF SERVICE FAILURE (RSF )
In the subsequent step, we evaluate the Rate of Service
Failure (RSF) in relation to the service request probability,
denoted as Pr , as depicted in Figure 8. RSF quantifies the
number of requests that fail to be served when a specific
vehicle physical sensor (φs) is selected for the vehicle virtual
service (VS), but the corresponding sensor is unavailable
during the expected time slot. For this evaluation, we set
the maximum number of received requests to 30, and the
service duration to 30 time slots. Initially, we analyze theRSF
with respect to the discount factor γ , as shown in Figure 8a.
It is evident that a higher value of γ leads to a higher RSF ,
as the algorithm prioritizes the next action over the current
one. This preference for the next action significantly impacts
the decision-making process for sensor selection, ultimately
leading to a higher rate of service failure.

Furthermore, we assess the RSF while varying the reward
weights in relation to Pr . As shown in Figure 8b, the RSF
remains below 0.1 throughout the assessment. The curves

FIGURE 8. Assessment of the rate of service failure RSF .

exhibit an increasing trend until they reach their respective
maximum values, after which they stabilize regardless of Pr .
Notably, the curve with the lowest values corresponds to the
configuration with the highest δ. In this case, the algorithm
is trained to prioritize selecting the sensor with the highest
availability within the target service zone. Conversely, the
curvewith the highest values corresponds to the configuration
with the highest β. Here, the algorithm is trained to maintain
the same sensor selection for as long as possible, even if it is
not the most available one.

D. IMPACT OF THE NUMBER OF VEHICLES VARIATION ON
THE VIRTUALIZATION METRICS USING Q-LEARNING AND
SARSA ALGORITHMS
We conducted simulations to evaluate the performance of the
proposed intelligent sensor selection using Q-learning and
SARSAwhile varying the number of vehicles in the network,
as shown in Figure 9.

We started by varying the number of vehicles and testing
the rate of true sensor selection based on Equation 2. This
metric consists in computing the total number of sensors that
are selected and available (i.e with respect to Equation 6) to
compose the VS during the required service period T over
the total number of selected sensors as follows:

∑n
i=1 ηi·φsi∑n
i=1 φsi

.
As depicted in Figure 9, the rate of true sensor selection
increases decreasingly as the number of vehicles increases
because there will be more vehicles as sensor supplier
candidates in the target service zone Z to be selected to
compose theVS. In addition, when the network ismore dense,
there will be more congestion and more preference of the
vehicles to travel different path in the network and therefore
spend longer stay time in the target service zone Z . We can
notice that the Q-learning algorithm has higher performance
in selecting true available sensors compared to SARSA.
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Then, we evaluated the rate of sensor re-selection based
on Equation 4 using Q-learning and SARSA. This metric
consists in computing the total number of time slots where the
vehicle physical sensor is selected consecutively to compose
the same VS over the total number of time slots (during
the required service period T ):

∑n
i=1 ψi·TSi∑n
i=1 TSi

. As shown in
Figure 9b, the rate of sensor re-selection decreases as the
number of vehicles increases using Q-learning and SARSA
because when the number of vehicle candidates is low, the
preference of the RL agents is to prioritize the re-selection of
the same sensor and therefore to get more rewards.

We also evaluated the rate of multi-tenant sensor sharing
based on Equation 3 using Q-learning and SARSA. This
metric measures the number of times the same vehicle
physical sensor (selected to compose a VS at TSi) is re-
utilized to simultaneously compose other virtual sensors
at the same TSi. The latter metric is defined as follows:∑n

i=1 ωi·φsi∑n
i=1 φsi

. As illustrated in Figure 9c, the rate of multi-tenant
sensor sharing increases as the number of vehicles in the
network increases. The SCSP prefers to reuse the same
vehicle physical sensor to create multiple virtual sensors
simultaneously, especially when it is available in the target
service zone Z . This preference is based on the higher number
of vehicles traveling the network, enabling greater utilization
of the sensor resources.

E. ASSESSMENT OF THE GLOBAL COST (GCOST) AND THE
RATE OF ECONOMICS WHILE VARYING THE NUMBER OF
VEHICLES
We also conducted a simulation to test the impact of the
number of vehicles on the global provisioning cost (GCost)
which is calculated using the Equation 5 and therefore to
compute the rate of economics. The later represents the
economics earned by the SCSP from the provisioning of
the vehicle virtual sensor (VS) using the intelligent sensor
selection (considering the metrics of true sensor selection,
sensor re-selection, and sensor re-utilization). Both of GCost
and economics are computed for the three phases: Q-learning,
SARSA, and random sensor selection. The random sensor
selection consists in randomly allocating at each time slot
a sensor from a vehicle that is seen available in Z at the
current time slot without being aware of its stay time in
the network. The GCost using random selection is computed
based on the true sensor selection without considering the
multi-tenant sharing nor the re-selection of sensors. Thus,
GCost is obtained by: GCostRandom(VS,T ) =

∑n
i=1(ηi +

Pe)1−ηi · UCost(φsi). The rate of economics is calculated as
follows: Rate of economics =

∑n
i=1 UCost(φsi)−GCost∑n

i=1 UCost(φsi)
.

The results show that GCost decreases as the number
of vehicles increases. In addition, GCost using Q-learning
reaches earlier an approximately constant value than SARSA.
However, even with random selection, GCost decreases
linearly but remains considerably higher compared to both
Q-learning and SARSA. This is primarily because randomly
selecting a sensor from an available vehicle based solely on its

FIGURE 9. Comparison of Q-learning and SARSA while varying the
number of vehicles in the network.

current time slot does not guarantee its continuous availability
throughout the time horizon. Consequently, penalties are
incurred due to virtual sensor service interruptions.

Accordingly, since the rate of SCSP economics is cal-
culated based on GCost, it then increases as the number
of vehicles increases where both of the RL algorithms
select actually available vehicles and find more candidates
to compose the vehicle virtual sensors. We can also observe
that the rate of economics using Q-learning is always
positive contrarily to that using SARSA which starts holding
positive economics from a number of vehicles close to 40.
On the other side, the random selection shows negative
economics regardless of the number of vehicles due to the
exhaustive penalty incurred by the lack of awareness on
vehicle availability and also the non-exploitation of sensor
resources by many virtual sensors simultaneously.

F. IMPACT OF THE VEHICLES’ SPEED VARIATION ON THE
VIRTUALIZATION METRICS USING Q-LEARNING AND
SARSA ALGORITHMS
We conducted simulations to assess the proposed model for
intelligent sensor selection using Q-learning and SARSA
algorithms, while varying vehicle speeds. As shown in
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FIGURE 10. Assessment of the SCSP profitability using intelligent and
random sensor selection approaches while varying the number of
vehicles.

Figure 11a, the rate of true sensor selection initially peaks at
a value of one when the vehicle’s speed is equal to 10 km/h.
This is because when vehicles travel at a lower speed, they
spend more time within the target service zone Z . This
increased duration enhances their availability, resulting in a
larger pool of candidates for selection by the SCSP. However,
as the speed increases to 80 km/h, the vehicles quickly exit
the service zone Z, leading to a gradual decrease in the rate
of true sensor selection, falling below 0.7.

Regarding the rate of sensor re-selection, both the
Q-learning and SARSA curves initially start from low values
as depicted in Figure 11b. This can be attributed to the
fact that the RL agents prioritize learning and selecting the
sensors of new vehicles with higher availability, rather than
re-selecting the sensors of the same vehicle to increase their
rewards.

In terms of the rate of multi-tenant sensor sharing, the
RL agents tend to re-allocate the same vehicle’s sensor
for multiple virtual services when the certainty of its true
availability is higher, particularly when the vehicle speed is
low. This behavior is illustrated in Figure 11c.

G. ASSESSMENT OF THE GLOBAL COST (GCOST) AND THE
RATE OF ECONOMICS WHILE VARYING THE MAXIMUM
ALLOWED SPEED
We conducted simulations to investigate the impact of vehicle
speed on the global provisioning cost (GCost) and the rate
of economics. A comparison study is performed between
Q-learning and SARSA (both as RL models) and a random
selection approach, as illustrated in Figure 11. The GCost
when utilizing RL models demonstrate a slight increase

FIGURE 11. Comparison of Q-learning and SARSA with respect to the
maximum allowed speed.

with vehicle speed until a certain threshold is reached.
Beyond this threshold, the GCost experiences a substantial
escalation. However, when employing a random sensor
selection approach, the GCost continues to rise significantly
as the vehicle speed increases, resulting in a substantial
gap compared to the GCost obtained from Q-learning and
SARSA algorithms as shown in Figure 12.
Regarding the rate of economics, both Q-learning and

SARSA algorithms consistently yield positive and significant
rates of economics, particularly for lower vehicle speeds. The
SCSP, when employing Q-learning and SARSA, tends to
prioritize sensor selection from vehicles with lower speeds,
leading to improved economic performance. In contrast,
when utilizing random sensor selection, the rate of economics
remains consistently negative. This is especially due to the
penalties incurred and the sub-optimal utilization of sensors
caused by the lack of awareness of vehicle availability and
the absence of an optimized selection mechanism.
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FIGURE 12. Assessment of the SCSP profitability using intelligent and
random sensor selection approaches with respect to the vehicle’s speed.

VIII. CONCLUSION
In this paper, we introduced a reinforcement learning-based
solution for managing and provisioning virtual sensors within
the Internet of Vehicles (IoV). Our method begins with the
establishment of an interactive IoV-Cloud architecture, which
facilitates the on-demand provisioning of vehicle virtual
sensors. We designed a concept of sensor virtualization
that involves performing configuration mapping on vehicle
physical sensors to optimize their utilization and enable them
to serve multiple application requests. Additionally, we have
developed a reinforcement learning model that dynamically
selects a vehicle physical sensor at each time step to
compose the vehicle virtual sensor. This intelligent sensor
selection process is based on sensor localization, availability,
and the cost-effectiveness of provisioning vehicle virtual
sensors. Simulation results demonstrate the effectiveness
of our proposed reinforcement learning solution in achiev-
ing stable sensor composition and significant provisioning
cost savings. As future work, ensuring security in sensor
virtualization is crucial for preventing unauthorized access
within interconnected IoV systems. The need for security is
heightened for applications accessed through the cloud, due
to the inherent vulnerabilities of cloud computing, such as
shared infrastructure risks. Furthermore, the use of data from
heterogeneous vehicle sensors, which form the virtual sensor,
introduces the potential for data falsification by malicious
vehicles. These vehiclesmight tamper withmobility or sensor

data to influence the future sensor selection to compose the
virtual sensors.

Thus, we plan to introduce a blockchain-based framework
to preserve the data history and reputation of vehicles
selected to contribute to virtual sensors, while ensuring the
anonymity of participants using pseudonyms. This approach
also includes using Smart Contracts to manage data updates,
vehicle selection, and sensor access impartially, thereby
eliminating bias.

Regarding data transmission security, it is essential that
the data remains private and anonymized from vehicles
not involved in the virtual sensor network. We propose
enhancing this aspect by generating and distributing a new
session key between the vehicle virtual sensor and the
selected physical sensor at each timeslot. This method
ensures that access to sensor data is tightly controlled and
restricted to authorized periods. The session key exchange
can be established using the ephemeral Elliptic Curve Diffie-
Helman (ECDH) protocol after completing authentication of
the selected physical sensor and the vehicle virtual sensor
using Pre-Shared Key (PSK) form, with an emphasis on
Perfect Forward Secrecy (PFS). PFS prevents the decryption
of past or future transmissions with compromised keys, thus
enhancing security against breaches.

The proposed security measures should conform to the
standards set by the European Telecommunications Standards
Institute (ETSI) and the Internet Engineering Task Force
(IETF). Such compliance is essential for establishing a
Public Key Infrastructure (PKI) within the vehicular domain,
enabling the issuance of necessary authentication and
authorization certificates for secure communication among
vehicles.
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