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ABSTRACT Leakage current is one of the important parameters reflecting the operation status of distri-
bution network-type surge arresters. At this stage, the polymagnetic current sensor has the advantages of
miniaturization and high accuracy for leakage current measurement, but the complexity of electromagnetic
interference in the field easily introduces more noise interference signals, which limits the performance of
the polymagnetic current sensor for field application. To this end, this paper proposes a leakage current
measurement method for distribution network-type surge arresters based on EEMD-SVD and low-rank
RBF neural network methods. Firstly, the measured leakage current is decomposed by Ensemble Empirical
Mode Decomposition (EEMD) to decompose the modal components containing eigenfrequencies, and then
Singular Value Decomposition (SVD) is used to extract the non-eigenfrequency signals. Finally, a low-rank
Radical Basis Function (RBF) neural network is used to approximate the leakage current signal after de-
interference and combined with the Gaussian window function to remove the white noise interference. The
experimental results show that the signal-to-noise ratio of the polymagnetic current sensor is improved by
about 20dB and the maximum average absolute error is only 2.62%, which can truly reflect the leakage
current of the network-type lightning arrester.

INDEX TERMS Network-type lightning arrester, leakage current, polymagnetic current sensor, EEMD-
SVD, low-rank RBF neural network.

I. INTRODUCTION
Distribution lightning arrester is a key component in the
power distribution system, and ensuring its stable operation
is crucial for maintaining the safety of the entire power dis-
tribution system [1], [2], [3]. Failure of the lightning arrester
such as aging or moisture will affect its normal work, leading
to unsafe operation of the distribution system, and may even
lead to serious consequences such as fire and widespread
power outage [4]. Leakage current, as one of the important
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parameters of a lightning arrester, can visually reflect the
aging, moisture, and local damage of the lightning arrester,
which helps operation and maintenance personnel to find
potential safety hazards of the lightning arrester. However,
the traditional current transformer is only suitable for envi-
ronmental measurements in high-current scenarios, and there
are problems such as large measurement errors and low
precision for the detection of weak leakage current signals
inside the arrester [5], [6], [7]. To solve these problems,
polymagnetic current sensors based on the tunneling magne-
toresistance effect came into being, which performwell in the
field of weak leakage current measurement and can complete
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the current measurement from the microampere level to the
milliampere level with high accuracy [8]. However, in the
lightning arrester leakage current detection, due to the white
noise interference in the sensor’s circuit and electromagnetic
pulse interference in the field environment, the measurement
of weak leakage current signal will be mixed with a lot of
noise interference signals, which will lead to the measured
results will be with the actual current value of the existence
of a large error. If it is not possible to realize the accurate mea-
surement of weak leakage current, it is easy to cause a state
recognition error, protection switch malfunction, false alarm,
etc., which will cause the work burden to the station operation
and maintenance personnel and affect the safe and stable
operation of the power distribution system [9], [10], [11].

Currently, the main methods for removing interference
from the leakage current of network-type surge arresters
include Empirical Mode Decomposition (EMD), Wavelet
Packet Transform (WPT), morphological filtering, adaptive
digital filtering, etc. The existing methods can remove some
of the interference signals in the leakage current of network-
type surge arresters, but they all have some shortcomings.
The existing methods can remove some of the interference
signals in the distribution arrester leakage current, but there
are some shortcomings. Literature [12] uses EMD to pro-
cess the leakage current and extracts the local features in
the signal by decomposing the signal into multiple eigen-
mode functions, but modal confusion occurs, resulting in
the inability to accurately extract the desired eigenfrequency
signal. Literature [13] usedWPT to eliminate the interference
during leakage measurements by decomposing the signal
into subbands of different scales and frequencies to provide
richer time-frequency information, but it is not sensitive to
signals with small amplitudes and cannot effectively remove
white noise interference. Morphological filtering is a nonlin-
ear filtering technique that can effectively suppress discrete
spectral interference, but it is difficult to determine suitable
structural elements in practical applications, thus limiting the
ideal degree of its denoising effect [14]. Adaptive filtering
adapts to the dynamic changes of the signal by continu-
ously updating the weights of the filter, but its convergence
speed is slow and the de-interference performance is poor
in high-noise environments [15]. In recent years, Singular
Value Decomposition (SVD) has been widely used as a
new method for characteristic interference suppression of
leakage current signals. The EMD-SVD method used in the
literature [16] can extract periodic signals to some extent
but suffers from frequency confusion and susceptibility to
flooding by simple harmonic waves. The EMD-WPT-SVD
method used in the literature [17] can eliminate the inter-
ference of simple harmonic waves to the leakage current
signal, but its ability to suppress white noise is not enough,
and due to the partial repetitiveness of the EMD and WPT
in operation, some noise interference components may be
incorrectly decomposed as part of the signal or produce arti-
facts, which affects the accuracy of the results. A combined

application of short-time Fourier variation and singular value
decomposition (STFT-SVD) is proposed in literature [18],
which can filter unwanted white noise signals and discrete
spectral noise, but still results in a certain degree of wave-
form distortion. In the literature [19], a combined method
based on Spearman variationalmodal decomposition and spa-
tially correlated recursive sample entropy (S_VMD-Sdr_SE)
is proposed, which can determine the noise content in the
decomposed modal components by Sdr_SE, and can effec-
tively inhibit the interference of the characteristic noise in the
signals, but has limited ability to deal with the white-noise
interfering signals.

In recent years, to solve the phenomenon of modal confu-
sion in EMD, literature [20] proposes an improved method
of Ensemble Empirical Mode Decomposition (EEMD) based
on white noise. However, if a single EEMD is used to per-
form modal decomposition of the signal, and then the useful
modal components are selected according to the energy and
object characteristics for reconstruction will not be able to
effectively remove the characteristic noise interference in
the signal, so this paper proposes to combine the advan-
tages of SVD to inhibit the characteristic interference to
reconstruct the signal after the modal decomposition. Since
the reconstructed signal still has a large amount of white
noise interference, this paper also introduces the radial basis
function (RBF) neural network, which uses the radial basis
function for nonlinear mapping of the input data and adapts
to the training data by adjusting the weights and parameters,
which has the advantages of a simple structure, a fast learning
rate, and a strong nonlinear approximation ability, together
with the Gaussian window function, which is suitable for
the reconstruction of the signal. Gaussian window function is
suitable for removing white noise interference signals [21].
Combining the above analyses, this paper proposes a leak-

age current de-disturbance method for distribution network
surge arrester based on EEMD-SVD and low-rank REF neu-
ral network method. Firstly, the leakage current signal is
decomposed by EEMD to obtain the characteristic frequency
signals, and then SVD is used to extract the non-characteristic
frequency signals through the change of singular values,
and finally, the low-rank REF neural network algorithm is
used to approximate the leakage current signal which only
contains white noise, and the Gaussian window function is
used to remove the white noise interference. An experimen-
tal platform is built using a polymagnetic current sensor,
and compared with EMD-SVD, STFT-SVD, and S_VMD-
Sdr_SE de-interference methods, the results prove that the
proposed method can eliminate multiple interferences in the
leakage current signal.

II. LEAKAGE CURRENT MEASUREMENT PRINCIPLE
A. TUNNEL MAGNETORESISTANCE EFFECT
The core component of a polymagnetic current sensor is
tunnel magnetoresistance based on the tunnel magnetore-
sistance (TMR) effect. The tunnel magnetoresistance effect
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refers to the change in tunnel magnetoresistance due to the
change in the relative magnetization direction of the ferro-
magnetic materials on both sides of a ferromagnetic-insulator
film-ferromagnetic material combination in magnetic tun-
nel junctions (MTJs). The structure of MTJs consists of a
ferromagnetic layer, a nonmagnetic insulator layer, and a
ferrimagnetic layer (FM/I/FM), which is similar to a sand-
wich structure [22], [23]. As shown in Fig. 1, the pinned
layer, tunneling layer, and free layer are included as the main
three layers. The free layer is in direct contact with the top
electrode layer, while the pinned layer is connected to the
bottom electrode layer through antiferromagnetic material.
The electrode layer and the antiferromagnetic material are
usually made of well-conducting but non-magnetic materi-
als to enable the interaction of electromagnetic information.
Through the tunneling effect of the insulating layer, electrons
can tunnel between the ferromagnetic layers, and the magni-
tude of the tunneling current depends on the magnetization
direction of the ferromagnetic layer [24], [25].

FIGURE 1. Magnetic tunnel junction structure.

Therefore, when the external magnetic field environment
changes, the MTJs will sense the change of this magnetic
field, causing the internal electrons to tunnel from the free
layer to the pinned layer, thus causing a change in the resis-
tance of the tunnel magnetoresistors as a whole. It is because
of this characteristic that by packaging four tunnel magne-
toresistors in the form of a Wheatstone bridge in the TMR
sensing chip, the output voltage can be changed when the
external magnetic field changes, thus realizing the magneto-
electric signal conversion [26].

In practice, due to the fact that the tunnel magnetore-
sistance is susceptible to hysteresis, temperature, and other
factors, it will not be able to achieve a one-to-one correspon-
dence from the input magnetic field to the output voltage.
To ensure the measurement linearity and enhance the anti-
interference ability of the sensing chip, the TMR sensing

chip adopts the push-pull bridge structure inside as shown in
Fig. 2 [27].

FIGURE 2. Push-pull bridge structure.

where R1 and R4 are pinned in the same direction, R2
and R3 are pinned in the same direction, and R1 and R3
are pinned in opposite directions. In the ideal case, when
the external magnetic field strength is 0, the resistance
of the four tunnel magnetoresistors is equal in magnitude,
i.e., R1 = R2 = R3 = R4, resulting in the differential output
voltage in the bridge circuit is always 0. When the external
magnetic field is applied, the four tunnel magnetoresistors
change in the same magnitude and the opposite direction, i.e.,
R1 = R4 = R+1R, R2 = R3 = R+1R, and at this time, the
voltage output signals are in the form of Eq. (1), which then
achieves the following Magnetic field change is converted to
voltage change.

Vo = (Vb − Va)(
R+ 1R

2R
−
R− 1R

2R
) = (Vb − Va)

1R
R

(1)

B. PRINCIPLE OF LEAKAGE CURRENT MEASUREMENT OF
POLYMAGNETIC CURRENT SENSOR
From the Oersted circuit magnetic effect, it is known that any
wire carrying a current I produces a magnetic field around
it. From the Biot-Saval law, the magnetic induction B at
a point P in space is proportional to the magnitude of the
current element, proportional to the sine of the position vector
from where the current element is located to the point P
and the angle between the current elements, and inversely
proportional to the square of the distance from the current
element to the point P [28]. If the distance from the spatial
point P to the wire is much less than the length of the wire,
the magnetic induction B generated at point P in this case can
be simplified as (2):

B =
µ0I
2πr0

(2)

Accordingly, when the length of the current-carrying conduc-
tor is certain and the position of the conductor concerning
the point P is kept relatively fixed, the magnitude B of the
magnetic field generated by the current-carrying conductor
at the point P is proportional to the value of the current inside
the conductor. Accordingly, a TMR sensing chip capable of
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converting magneto-electric signals as described above and
a magnetic ring capable of polymerizing the magnetic field
around the current-carrying wire form a polymagnetic current
sensor front end as shown in Fig. 3. When a current-carrying
wire passes through the magnetic ring, a magnetic field signal
generated by the current-carrying wire is sensed in the TMR
sensor chip, and this magnetic field signal is converted into a
voltage signal and output. Because the current in the current-
carrying wire is very weak, the voltage signal is also very
weak, so it also needs to be amplified to a certain extent by
the subsequent amplifier circuit, to collect and process the
subsequent voltage signal.

FIGURE 3. Polymagnetic current sensor front end.

After obtaining the front end of the polymagnetic cur-
rent sensor, together with the subsequent signal conditioning
circuit, the power supply circuit and central control circuit
will be composed of the polymagnetic current sensor, and its
overall design block diagram is shown in Fig. 4.

FIGURE 4. Overall design of a polymagnetic current sensor.

When a change in magnetic field is sensed in the front-end
sensing circuit of a polymagnetic current sensor, a voltage
signal is output differentially from the change in magnetic
field, and the signal is initially processed by the amplifier and
filter circuit in the signal conditioning circuit. After process-
ing the analog signal by the signal sampling circuit, it will be
converted into a digital signal and in the microprocessor to
solve the data processing to get the current signal value. The
whole sensor is powered by several regulated power supply
modules to ensure the stability of the module.

C. LEAKAGE CURRENT INTERFERENCE SIGNAL ANALYSIS
According to the above-obtained front-end structure of the
current sensor and the general design block diagram of the

subsequent circuit, the design obtains the polymagnetic cur-
rent sensor as shown in Fig. 5. In the lightning arrester
leakage current detection, due to the complex field envi-
ronment, there is much unknown electromagnetic radiation,
resulting in the current sensor in the signal transmission
process there will be more high-frequency noise interference,
impulse interference, and other disturbances with certain
obvious characteristics. In the signal conditioning circuit,
the power switching chip and amplifier work will make the
signal transmission process inevitably introduce white noise
interference.

FIGURE 5. Polymagnetic current sensors.

To better analyze the impact of various noise interferences
on the leakage current signal measurement under the actual
working environment, the article uses simulation to simulate
the leakage current signal and the impact of various noise
interferences, in which the leakage current signal is generated
by using the sinusoidal function model:

x(t) = A sin 2π ft (3)

whereA represents the amplitude of the leakage current signal
and f is the frequency of the leakage current signal. To better
reflect the actual leakage current, the simulation sampling
frequency is set to 2500 Hz, the amplitude A is set to 500 uA,
and the operating frequency f is set to 50 Hz. In the actual
working condition, it will be subjected to the characteristic
interference and white noise interference analyzed above.
To better simulate the working environment in the field,
it is necessary to superimpose the characteristic interference
signal and random interference signal to the original sig-
nal of leakage current, whose mathematical expressions are
respectively:

G1 = Ai

j∑
i=1

sin 2π fit (4)

G2 = Brandn(t) (5)

In Eq. (4), Ai denotes the amplitude of the i-th character-
istic interference signal, and the magnitude size is set to
400uA, fi denotes the frequency of the i-th characteristic
interference signal, and j denotes the number of characteristic
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interferences, and the characteristic interference signals with
frequencies of 800, 1200, 1800, and 3100 are superimposed,
respectively. In Eq. (5), B denotes the amplitude of the ran-
dom interference signal, and the amplitude size is set to
150 uA. The leakage current signal and the spectrogram after
superimposing the interference signal are shown in Fig. 6.
In Fig. 6a for the leakage current signal time domain graph,
there are many burrs, that have been seriously distorted.
Fig. 6b for the leakage current signal frequency domain
graph, there are in addition to 50Hz other than 800Hz and
other frequencies such as the characteristic interference sig-
nal. Indicates that the original leakage current signal has been
submerged in a variety of interference signals, and cannot
accurately determine the working state of the arrester based
on this.

FIGURE 6. Leakage current signal under interference.

Aiming at the polymagnetic current sensor in the lightning
arrester leakage current signal measurement of the exis-
tence of multiple concurrent interference, need to propose
a new method to remove a variety of interference signals,
to accurately detect the lightning arrester real-time working

condition of the leakage current, and then reflect the lightning
arrester’s operating state.

III. LEAKAGE CURRENT SIGNAL DE-INTERFERENCE
METHOD
A. EEMD DECOMPOSITION OF THE LEAKAGE CURRENT
SIGNAL
According to the local change characteristics of the leakage
current signal, the Empirical Mode Decomposition (EMD)
can decompose the signal into several Intrinsic Mode Func-
tions (IMFs), which reflect the internal characteristics of
the leakage current signal, and the IMFs are correlated with
the signal itself and do not depend on specific basis func-
tions, which is the essential difference between EMD and
other transform methods. The IMF is related to the signal
itself and does not depend on a specific basis function,
which is the essential difference between EMD and other
transform methods. EMD inherits the multi-resolution char-
acteristics of the wavelet transform and solves the problem
of the wavelet transform that the basis function is not self-
adaptive. Therefore, EMD is a truly adaptive time-frequency
analysis method, which is very suitable for dealing with
nonsmooth and nonlinear sequence signals, and has been
widely used in many fields, such as speech signal processing,
local-amplitude signal extraction, machinery fault diagnosis,
seismic signal processing, and so on [29].

However, when the leakage current signal changes drasti-
cally locally or the signal frequency components overlap, the
EMD may lead to mode confusion, i.e., mutual interference
and mixing between multiple IMFs, which in turn affects
the accurate extraction of signal features. To solve the phe-
nomenon of mode confusion in EMD, an improved method
of Ensemble Empirical Mode Decomposition (EEMD) based
on white noise is proposed. The method utilizes the idea
of noise-assisted by artificially adding white noise to the
signal so that it exists in the whole time-frequency space in a
uniformly distributed manner, thus covering the components
of different scales. Bymapping the backgroundwhite noise of
the corresponding scale to each other, the interference effect
of the signal is weakened and the degree of modal aliasing is
mitigated.

EEMD adopts a ‘‘filtering’’ method to extract IMFs,
according to the characteristic time scale of the original data,
from high frequency to low frequency until the termination
condition is satisfied. Let the original leakage current signal
be xLC(t), which is decomposed into the sum of the intrinsic
modal components and the residuals, and the expression is
Eq. (6).

xLC(t) =

N∑
n=1

cn(t) + rN (t) (6)

In Eq. (6), cn(t) is the nth order IMF, N is the order of IMF,
rN (t) is the Nth order residual function, and the workflow
diagram of EEMD is shown in Fig. 7.
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FIGURE 7. EEMD decomposition process.

FIGURE 8. Simulated signal EEMD decomposition results.

After EEMD, the leakage current signal containing the
characteristic interference signal is decomposed, and eight
IMF components containing characteristic frequencies are
obtained as shown in Fig. 8. According to the waveform
distortion in the component diagrams, it can be seen that the
IMF1-5 components contain the interference signals of five
characteristic frequencies, which correspond to the settings.

B. SVD SIGNAL RECONSTRUCTION TO REMOVE FEATURE
INTERFERENCE
After the collected leakage current signal is decomposed by
EEMD, the IMF of each layer is mixed with the noise signal
component. If some of the IMF components are arbitrarily
selected for signal reorganization without feature extraction,
errors will occur, leading to distortion of the final measured
leakage current signal.

In the field of signal processing, Singular Value Decom-
position (SVD) is a classical orthogonal transformation
technique, which has excellent stability and invariance and
can be applied to signal noise reduction and filtering, feature
extraction, and separation of weak signals [30].
Assuming that the sampled sequence of IMF components

after EEMD decomposition is X = {x1, x2, · · ·xb}, the Hankel
matrix is constructed from the resulting sampled sequence as

shown in Eq. (7).

Ha×k =


x1 x2 · · · xk
x2 x3 · · · xk+1
...

...
...

xa xa+1 · · · xb

 (7)

where H is the matrix of order a × k , a and k are the
rows and columns of the Hankel matrix, respectively, and
k = b − a + 1, b is the length of the sampling sequence
X . By performing the singular value decomposition of the
Hankel matrix, we can obtain Eq. (8).

H = UAV T (8)

where U and V are unit orthogonal matrices of order a and
k , respectively; A is a diagonal matrix whose elements on the
diagonal are called singular values and are usually arranged
in descending order, i.e.

A = diag[Q1,Q2,Q3 · · · Qm] (9)

where m = min(a, k), and Q1 > Q2 > Q3. . .> Qm.
According to the singular value decomposition with

decomposition uniqueness, the characteristic interference
signal in the leakage current signal can be removed by finding
the order c (0 < c < m) corresponding to the characteristic
interference singular value in the IMF signal after EEMD
decomposition and performing signal reconstruction on it.
The reconstruction process of the first c effective singular
values is shown in Eq. (10).

X ′
= Ua×cAc×cV T

k×c (10)

In the formula, X ′ is the matrix after dimensionality reduc-
tion, by averaging the anti-diagonal elements of X ′, you
can get the 1-dimensional effective signal matrix after the
removal of the characteristic interference signal. Solving the
matrix yields the time domain and frequency domain plots
of the leakage current signal after removing the characteristic
interference signal as shown in Fig. 9.
From Fig. 9a, it can be found that the signal waveform

distortion after removing the characteristic interference is
significantly improved. From Fig. 9b it can be found that at
this time there are mainly 50Hz signals, other characteristic
frequency interference signals are removed, but there are still
more white noise interference signals need to be removed.

C. LOW-RANK RBF NEURAL NETWORK TO REMOVE
WHITE NOISE INTERFERENCE
After being processed by the aforementioned EEMD-SVD
method, the characteristic interference in the measured leak-
age current signal can be removed, but due to the white noise
introduced by the EEMD and the white noise interference in
the circuit of the polymagnetic current sensor itself, it is also
necessary to carry out the white noise interference removal
process on the leakage current signal after the removal of the
characteristic interference to be closer to the real lightning
arrester leakage current signal value. Because the remaining
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FIGURE 9. Leakage current signal after removal of characteristic
interference.

white noise presents Gaussian distribution, the article uses a
Gaussian window to effectively extract the leakage current
signal containing white noise interference, and its functional
expression in Eq. (11).

G = exp

(
− (I − µ)2

2λ2

)
(11)

where I is the input leakage current signal vector; u is the
center of thewindow function, and λ is the standard deviation.
To determine the parameters of the Gaussian window func-
tion, the article uses the RBF neural network to approximate
the leakage current signal after removing the characteristic
interference and performs the Gaussian window to remove
the white noise interference.

The RBF neural network is a local approximation network
capable of approximating a variety of continuous functions
with arbitrary accuracy by adjusting parameters such as
weight coefficients, centers, and widths [31]. These parame-
ters are represented in the parameter space using Gauss kernel
and the network is trained by least squares theory to mini-
mize the mean square error of uncertain signals. The leakage
current signal after removing the characteristic interference
signal consists of a combination of deterministic signal and
random noise. Therefore, the RBF neural network can effec-
tively characterize the deterministic signal and deal with the
uncertain noise in the filtering process. The flexibility and

FIGURE 10. RBF forward network structure diagram.

accuracy of this network make it a powerful tool for handling
signal approximation and filtering tasks. Its forward network
structure model is shown in Fig. 10.
In the RBF neural network, the Gauss kernel function is

used as its operational basis function and is calculated as in
Eq. (12).

Qi (I ) = exp

(
−

|I − ζi|
2

2η2i

)
, i = 1, 2, · · · ,M (12)

where I is the input leakage current signal sample, ζi and
ηi are the center and width of the i-th unit basis function,
respectively, andM is the number of hidden layer nodes, i.e.,
neuron rank. The purpose of the RBF neural network training
is to approximate the leakage current signal with no white
noise interference. In the RBF training network: the input is
the time series of the leakage current signal, the output is the
leakage current signal after removing the feature interference,
and the process of minimizing the noise energy during the
training of the network is shown in Eq. (13):

R = argmin
N∑
I=1

(
M∑
i=1

wiQi (I ) − y(I )

)2

(13)

where wi is the network weights between the implied layer
and the output layer, y(I ) denotes the output value when the
input is I , R is the parameter space of the neural network
{ζi, ηi,wi}i=l···M , whose parameters can be obtained through
network training, and R denotes the estimated value of the
network. After the training is completed, the parameters in
the parameter space R are linearly combined according to the
network topology for the output of the implied layer, and the
trained leakage current signal can be obtained as shown in
Eq. (14).

y =

M∑
i=1

(wiQi (I )) (14)

In the RBF neural network approximation process, when
the number of input samples is equal to the rank M of the
neurons in the hidden layer, the network has a high degree of
freedom and can completely map the entire noise-containing
interference signal. However, if the neuron rankM is too low,
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TABLE 1. Neuronal rank judgment system.

FIGURE 11. RBF neural network approximation results.

the network has a low degree of freedom and can only obtain
a limited number of useful signals. Therefore, choosing the
appropriate neuron rank of the hidden layer can effectively
distinguish the noise-containing interference signal from the
useful signal. To this end, the article uses the judgment system
shown in Table 1 to determine the rankM of the hidden layer
neurons and retains only the low-rank neurons to approximate
the noise-free signal. At this point, the RBF neural network is
trained to achieve the best approximation effect, which will
retain most of the useful signals and remove a large number
of white noise interfering signals.

By repeatedly approximating the noiseless signal through
the judgment system of Table 1, its neuron rank is obtained as
18, and the output signal waveform graph is shown in Fig. 11,
which has been closer to the real leakage current signal.

According to the approximation results of the RBF neural
network training in Fig. 11, the Gaussian window size N is

FIGURE 12. Leakage current signal after removing white noise
interference.

determined by the sampling period and sampling rate, the
window center u is determined and λ is the standard deviation
of the window function is selected by the rule of thumb.
According to the approximation results to determine the win-
dow size N is 50, the window center u is 25, and the standard
deviation of the window function λ is 7.8. Because the noise
interference in the leakage current signal begins to decay
to both sides after reaching the peak value, the Gaussian
window principal flap is used to remove the characteristic
interference after the signal is processed to remove the white
noise interference, and the processed results are shown in
Fig. 12. Fig. 12a has greatly restored the original waveform
compared to before de-interference, in Fig. 12b only the main
frequency signal of 50Hz exists, and the other frequency
interference signals have reached an amplitude close to 0.

Comparing Fig. 9a and Fig. 12a, it can be seen that there
is a large white noise interference in the signal decomposed
and reconstructed by the EEMD-SVDmethod, and the Gaus-
sian white noise in the leakage current signal is effectively
suppressed after removing the characteristic interference and
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FIGURE 13. Experimental platforms.

the original signal waveform can be well restored after the
processing by the Gaussian window function trained by the
low-rank RBF neural network.

IV. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL PLATFORM CONSTRUCTION AND
EXPERIMENTAL METHODS
To verify the effectiveness of EEMD-SVD and low-rank
RBF neural network methods for improving the accuracy of
weak leakage current signals under the background of strong
interference, the experimental platform for de-interference of
weak leakage current signals under the background of strong
interference is constructed and de-interference experiments
are carried out as shown in Fig. 13. The experimental platform
mainly contains the following equipment:

1) RIGOL DG1032 Signal Generator as weak leakage
current signal generation;

2) Power Amplifier to increase the load carrying capacity
of the input weak leakage current signal;

3) RIGOL DP831 DC Power Supply provides power to the
Power Amplifier;

4) TMR Sensing acts as the front-end sensing element for
the polymagnetic current sensor;

5) EEMD-SVD and low-rank RBF neural network method
based polymagnetic current sensor as the main experimental
object of this experimental platform;

6) Tektronix TDS 2024C Oscilloscope is used to read the
weak leakage current signal data obtained after processing by
the polymagnetic current sensor.

As shown in Fig.. 13, during the experiment, the student
power supply was first used to power the power amplifier, and
then a sinusoidal signal was output from the signal generator,
which passed through the load at one end of the output port of
the power amplifier and returned to the other end of the output
port of the power amplifier through the TMR sensing element
to form a complete loop, and an oscilloscope was used to
read the weak leakage current processed by the polymagnetic
current sensor. Signal data.

To verify the performance of EEMD-SVD and low-rank
RBF neural network methods for the de-disturbance of weak
leakage current signals in a strong interference background,
signal-to-noise ratio (SNR), normalized correlation coeffi-
cient (NCC), normalized root-mean-square error (NRMSE),
and mean absolute error (MAE) are introduced in this paper
to characterize and analyze the de-disturbance effect of the
signals.

SNR = 10 lg(S/N ) (15)

NCC =

(
N∑
k=1

I2I1

)
/

√√√√( N∑
k=1

I22

)(
N∑
k=1

I21

)
(16)

NRMSE =

√√√√1
n

n∑
k=1

(I2 − I1)2/(Imax − Imin) (17)

RE =
I2 − I1
I1

× 100% (18)

In Eq. (15), the signal-to-noise ratio SNR is in dB, S is the
average power of the current signal output by the current
sensor with the input current signal, N is the average power
of the noise signal output by the current sensor without the
input current signal. In Eq. (16), I1 is the input current signal,
I2 is the current signal measured by the current sensor. In
Eq. (17), Imax is the maximum value of a group of output
current dataset, Imin is theminimumvalue of a group of output
current dataset, n is the signal length.

B. ANALYSIS OF EXPERIMENTAL RESULTS
During the experiment, a signal generator was used to out-
put current signals with a frequency of 50 Hz and sizes
of 50 uA, 500 uA, 1000 uA, and 1500 uA, respectively,
to the polymagnetic current sensor in sequence. By com-
paring the magnitude of SNR and NCC before and after
adding the EEMD-SVD and low-rank RBF neural network
methods to the microcontroller, it was determined whether
the EEMD-SVD and low-rank RBF neural network methods
had an optimization effect in the measurement process, and
the results of the two experiments were recorded in Table 2.
In Table 2, Is represents the magnitude of the input cur-

rent signal at each instance. SNR1 and NCC1 represent the
signal-to-noise ratio and waveform similarity coefficient of
the output waveform when the EEMD-SVD and low-rank
RBF neural network algorithms are not applied, respectively.
Similarly, SNR2 andNCC2 represent the signal-to-noise ratio
and waveform similarity coefficient of the output waveform
when the EEMD-SVD and low-rank RBF neural network
algorithms are applied.

From Table 2, before the current signal measured by the
polymagnetic current sensor is de-interference processed, the
signal-to-noise ratio increases with the decreasing current
amplitude, and the waveform similarity coefficient is getting
smaller and smaller, which cannot be used to judge the health
state of the network-type lightning arrester.When the EEMD-
SVD and low-rank RBF neural network algorithm are written
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TABLE 2. The comparison of the results of the two experiments.

FIGURE 14. The Comparison of the results of the de-interference process.

in the sensor processor, the signal-to-noise ratio is effec-
tively improved by about 20 dB, and the waveform similarity
coefficient is closer to 1, which is capable of filtering weak
leakage current signals in a strong noise background to meet
the design requirements.

To compare and verify the superiority of the EEMD-SVD
and low-rank RBF neural network algorithms in the article,
the EMD-SVD, STFT-SVD, and S_VMD-Sdr_SE algorithms
are used to de-interference the leakage current signal, respec-
tively. In the constructed experimental platform, a weak
leakage current signal of 50uA is input with a frequency of
50Hz. the unprocessed and processed leakage current sig-
nals using different algorithms are represented as shown in
Fig. 14.

Fig. 14 shows that there aremany interference signals in the
input current signal of 50uA, and after EMD-SVD process-
ing of the measured leakage current signal, some frequency
confusion occurs and there is a certain amount of impulse
interference; STFT-SVD method processing, some of the
characteristics of the interference is filtered out, but there
still exists a certain degree of impulse interference and white
noise interference signals, and signal Waveform distortion;
using the S_VMD-Sdr_SE method, the pulse interference
and white noise interference in the original signal is substan-
tially removed, but there is still a small portion of the noise

interference signal, which affects the subsequent analysis of
the leakage current data; and the use of this paper’s method
not only eliminates almost all of the impulse interference and
white noise interference signals, and the measured signals are
closest to the target signal.

In order to further verify the superiority of the EEMD-SVD
and low-rank RBF neural network de-disturbance methods,
multiple sets of experimental data comparisons are required.
Here, a current signal with a frequency of 50 Hz and sizes
of 50 uA, 100 uA, 200 uA and 300 uA is input, and the
output current signal on the display of the device is read
consecutively for 50 times after untreated by the method, pro-
cessed by EMD-SVD, processed by STFT-SVD, processed
by S_VMD-Sdr_SE, and processed by the EEMD-SVD and
low-rank RBF neural network RMS values, and the experi-
mental results are represented as shown in Fig. 15.
In Fig. 15, it can be found that the RMS value of the

current signal measured by the polymagnetic current sensor
is distributed on both sides of the input current signal value,
and as the input current signal decreases, the amplitude of
floating on both sides is larger. After the four methods of de-
interference processing, the floating amplitude of the RMS
value of the current signal is improved, in which the de-
interference effect of EMD-SVD is relatively poor, and the
RMS value of the current signal floats more after process-
ing due to the effect of modal aliasing, compared to the
smaller float after processing by the STFT-SVDmethod. The
S_VMD-Sdr_SE method and the EEMD-SVD-RBF method
are more effective than EMD-SVD and STFT-SVD in remov-
ing the interference, and the RMS values of the current signals
are all closer to the target input values. By comparing the
remaining white noise interference after being processed by
the methods, it can be seen that the EEMD-SVD and low-
rank RBF neural network methods proposed in this paper
are superior to the S_VMD-Sdr_SE method, and the float-
ing amplitude is minimized after being de-disturbed by the
method of this paper, and the de-disturbing effect is the best.

To further reflect the superiority of themethod of this paper
relative to other methods in the measurement of leakage cur-
rent signal de-interference effect, the different input current
signals, different de-interference methods to deal with the
results of its measurement of the de-interference effect of the
evaluation indexes are listed in the Table 3.
From the experimental results in Table 3, it can be seen

that the SNR value is higher and the NCC value is lower
after being processed by this paper’s method, and the wave-
form similarity coefficient still holds 0.952 under the current
input of 50uA, which is improved by 0.131, 0.055, and
0.026 compared with that of the EMD-SVD, STFT-SVD,
and S_VMD-Sdr_SE methods, respectively, to prove that the
waveforms treated by this paper’s method are closer to the
input current signal, with better de-noise interference effects.
It is proved that the waveforms processed by this method are
closer to the input current signal, and the effect of remov-
ing noise interference is better. Meanwhile, compared with
the results of other methods, the NRMSE and MAE of this
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FIGURE 15. Results of different algorithms for de-interference processing
under different current inputs.

paper’s method are smaller, the average absolute error is only
2.62%, and the normalized root mean square error is only
0.081, which is 0.083, 0.058, and 0.042 lower than that of
the EMD-SVD, STFT-SVD, and S_VMD-Sdr_SE methods.

TABLE 3. Evaluation indicators for different methods.

It shows that the method in this paper still maintains good
stability and higher measurement accuracy when measuring
very weak current signals. Based on the above comparative
analysis, the EEMD-SVD and low-rank RBF neural network
de-interference processing methods will be superior to the
current commonly used signal de-noise interference process-
ing methods and will have higher reliability among the weak
leakage current signal measurements of distribution network
arrester.

V. CONCLUSION
In this paper, a leakage current de-disturbance method for
distribution network surge arrester based on EEMD-SVD and
low-rank RBF neural network method is proposed. Firstly,
the working principle and the overall workflow of the leak-
age current measurement of the distribution network arrester
by using a polymagnetic current sensor are introduced, and
the noise interference in the sensor circuit is simulated and
analyzed, which emphasizes the great influence on the final
signal result under the noise interference. Secondly, the
EEMD-SVD and low-rank RBF neural network method are
proposed by combining the advantages of EEMD’s eigenfre-
quency signal decomposition, SVD’s eigenfrequency signal
extraction, and RBF neural network approximation to the
target signal. Finally, the validity of the proposed mea-
surement method is relevantly verified in the constructed
experimental platform. The main contributions of the article
are:

(1) In this paper, a leakage current de-interference method
for distribution network arrester based on EEMD-SVD and
low-rank REF neural network method is proposed by com-
bining the ability of EEMD to remove modal confusion,
the ability of SVD to inhibit the characteristic interference
and the advantage of local approximation of REF neural
network. Through experiments, it is verified that the method
in this paper effectively removes the impulse interference
and white noise interference in the leakage current signal
measurement, which effectively solves the deficiencies of
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frequency confusion, easy to be flooded by simple harmonic
waves, and unable to suppress white noise interference in the
current existing research.

(2) The use of EEMD-SVD and low-rank RBF neural
network method optimized polymagnetic current sensor, for
the lightning arrester leakage current signal measurement
accuracy has been improved to some extent, in addition to the
leakage current signal of the various noise interference, the
signal-to-noise ratio increased by about 20dB, the waveform
similarity coefficient is closer to 1. It will be conducive to
the distribution system operation and maintenance personnel
to accurately determine whether the lightning arrester faults.
It will help the operation and maintenance personnel of the
distribution system to accurately determine whether the light-
ning arrester has failed.

(3) The method of this paper is compared with EMD-SVD,
STFT-SVD, and S_VMD-Sdr_SE methods, which proves
that the evaluation indexes of the method of this paper are
better than other methods, in which the maximum normalized
root mean square error is only 0.081, and the maximum
average absolute error is only 2.62%, which proves that
the optimization of the polymagnetic current sensor will be
more reliable after the optimization of the polymagnetic cur-
rent sensor for distribution network arrester leakage current
measurement.
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