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ABSTRACT In the rapidly evolving domain of e-commerce, effective warehouse management emerges
as a critical factor for ensuring timely deliveries. This paper addresses the Storage Location Assignment
Problem (SLAP) in e-commerce warehouses, a challenge intensified by varying product volumes and
unpredictable demands. We introduce a novel Intelligent Storage Location Assignment (ISLA) method
that utilizes advanced time series clustering algorithms specifically, Self-Organizing maps, dynamic time
warping-Based k-means, and Agglomerative Hierarchical Clustering (AHC), to optimize order fulfillment
and enhance warehouse efficiency. By clustering and positioning items with similar demand patterns, our
approach minimizes order preparation time, reduces unnecessary warehouse movements, and improves
operational flows. Our empirical evaluation, based on a real-world dataset from Kaggle, demonstrates the
superiority of AHC in efficiently grouping high-turnover items, as evidenced by higher silhouette scores.
Applying this method in simulations across various picking strategies such as s-shape, mid-point, discrete
order picking, zone picking, and batch picking, we achieve significant efficiency improvements. Notably,
our ISLA method results in up to 61% and 69% efficiency gains under s-shape and midpoint routing
policies, respectively, outperforming traditional random and ABC storage assignments. These results not
only highlight the significant potential of Artificial Intelligence (AI) in revolutionizing warehouse operations
but also bridge the existing knowledge gap by showcasing a practical and impactful application of AI
in SLAP. Our research advances the field of smart logistics, emphasizing the critical role of AI-driven
intelligent storage location assignment in optimizing warehouse processes and enhancing the efficiency of
the e-commerce supply chain.

INDEX TERMS E-commerce, intelligent storage location assignment, artificial intelligence, order picking,
time series clustering, warehouse efficiency, smart logistics.

I. INTRODUCTION
The rapid expansion of e-commerce has brought about an
era in which the effective management of warehouses holds
a central position in ensuring punctual deliveries. In this
dynamic environment, optimizing warehousing operations is
not just important; it’s crucial to meet the growing demand
for swift and precise order fulfillment. Warehousing, within
the larger context of supply chain management, carries
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critical responsibilities that encompass the storage of diverse
e-commerce products. To maintain a competitive advantage
in a swiftly evolving industry and outperform competitors,
warehouses must execute their operations with precision.
These tasks range from receiving, put-away, cross-docking,
order picking, to shipping. The execution of these oper-
ations must prioritize efficiency to guarantee the smooth
flow of the supply chain while simultaneously reduc-
ing costs. A central objective in warehouse management
revolves around the minimization of order preparation cycle
time, a process, as illustrated in FIGURE 1, commands
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FIGURE 1. Order picker’s time repartition.

approximately 60% of the total labor resources, with 50%
of that specifically attributed to picking travel. Order prepa-
ration consumes nearly 35% of total warehouse operations
time [1]. It has become the bottleneck in e-commerce logis-
tics [2]. Consequently, the operational efficiency of order
picking, and the management of operating costs hold the
key to not only enhancing warehouse performance but also
to catalyzing sustainable development across the logistics
supply chain in the context of fourth industrial revolution [3]
In parallel, a persistent challenge looms large in the form of
the Storage Location Assignment Problem (SLAP), which
seeks tomaximize the efficiency of storage and retrieval oper-
ations by minimizing the time and effort required to locate
and retrieve items for order fulfillment and various other
operational purposes. However, the formidable complexity
of this problem, compounded by uncertainties surrounding
the future demand for diverse products. Therefore, SLAP has
been firmly established as a non-deterministic polynomial-
time hard (NP-hard) problem [4], underscoring the need for
innovative and data-driven approaches to tackle this complex-
ity. SLAP aims to answer the question: What is the most
suitable location for storing an item to minimize picking
distance? The input for SLAP is the demand for an item rel-
ative to others, and the output is the optimal location for that
item. A recent study applied ABC clustering and association
rule mining to address the SLAP in cold logistics centers,
resulting in strategies that notably improved efficiency opti-
mizing order picking times by up to 8% compared to random
placement [5].

In this study, we will emphasize the Intelligent Storage
Location Assignment (ISLA) approach as a means of antic-
ipating order picking optimization, specifically during the
‘put away’ phase. This involves anticipating the items that
are typically shipped together or, at the very least, during
the same time shift, by grouping similar order shipping
time series using time series clustering algorithms such
as Self-Organizing Maps (SOM), Dynamic Time Warping-
Based K-Means (DTW), and Agglomerative Hierarchical

Clustering. The objective is to concentrate picker activities
within a single area of the warehouse, thereby reducing
logistical inefficiencies (MUDA). It’s important to note that
this ‘put away’ phase precedes the optimization of the order
picking routes.

The motivation behind this study is to address a gap
identified in our recent literature review [6], this systematic
literature review and bibliometric analysis over 230 papers
in the context of Smart Logistics (SL), analyzes 71 repre-
sentative papers published between 2005 and 2017, revealed
a lack of research interest in the utilization of advanced
Information and Communication Technologies (ICT) such
as Artificial Intelligence (AI) and Internet of Things (IoT)
for tackling SLAP. This is in line with the findings of Juan
et al., as corroborated by their literature review on stor-
age location assignment. It calls for further research into
management tools integrating machine learning and arti-
ficial intelligence and suggests broadening future studies
beyond academic papers [7]. Contemporary literature in SL
advocates for AI integration in manufacturing, emphasiz-
ing its role in optimizing logistics processes for enhanced
efficiency in the context of Smart Logistics [8] emphasiz-
ing the importance of AI-driven solutions in SL, proposing
advanced system that optimizes order dispatch, improves
delivery time predictions, and outperforms traditional meth-
ods, ultimately enhancing efficiency and reducing costs in
warehousing using deep learning [9] However, the proposal to
use clustering as a method to tackle SLAP within the context
of SL has never been introduced in the literature. It’s crucial
to emphasize that efficient storage location assignments are
the foundation for optimizing order preparation, and this
aspect should take precedence over the role of TSP in routing
optimization.

Numerous research endeavors have embarked on address-
ing SLAP by harnessing machine learning algorithms and
data mining techniques. These methods encompass the uti-
lization of Association rules to cluster items frequently
shipped together in the same order, thus orchestrating a
reduction in order preparation cycle time [10]. Furthermore,
exploration into deep reinforcement learning techniques has
ventured into product assignment, considering historical
demand patterns for intelligent routing decisions [11].

Our aim is to contribute to the ongoing debate on storage
location assignment by presenting a solution that reduces
warehouse movements. We propose a heuristic optimization
method that provides practical solutions swiftly andwithmin-
imal computing resources. Notably, our contribution entails a
hybrid location assignment based on specific product charac-
teristics, remaining unchanged during product receptions and
put-away processes over defined time periods.

In the pursuit of advancing our understanding and efficacy
in addressing these critical challenges, this study endeavors
to answer several pressing research questions:

1) How has the concept of the Storage Location Assign-
ment Problem evolved within the realm of artificial
intelligence in literature?
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2) What advantages does the practice of item clustering
offer in terms of enhancing warehouse performance?

3) Among the myriad storage location assignments, how
does our proposed method react with different picking
strategies and methods?

To address these questions comprehensively, this paper is
meticulously organized as follows:

Section II provides a comprehensive overview of the exist-
ing body of work related to data-driven storage location
assignment approaches, Setting the stage for our contribution
by providing insights into different time series clustering
methods. In Section III, we introduce our innovative propo-
sition, which centers around leveraging historical demand
clustering as a potent solution to the complex SLAP. In this
section, we present a detailed discussion of our proposal.
Section IV, offers a critical comparative analysis, pitting our
proposal against alternative approaches from the literature.
Additionally, we provide a benchmark analysis to ascertain
the efficacy of the proposed methodology in practical ware-
house scenarios.

II. RELATED WORK
In the realm of warehouse optimization, routing optimiza-
tion is often treated as a Traveling Salesman Problem (TSP)
and as SLAP, each addressing distinct facets of operational
efficiency. While TSP focuses on optimizing the path taken
through the warehouse to minimize travel distance or time,
our method concentrates on the SLAP, specifically target-
ing the intelligent assignment of items to storage locations.
By prioritizing the SLAP, our approach aims to enhance
overall warehouse operations by strategically positioning
items based on demand patterns and other relevant fac-
tors, thereby facilitating more efficient retrieval processes,
and improving the foundation for subsequent routing opti-
mizations. In this section we focus on reviewing papers
tackling SLAP.

A. STORAGE LOCATION ASSIGNMENT
Efficient warehouse management is essential in the rapidly
evolving landscape of e-commerce logistics. At the heart
of this efficiency lies the strategic storage location assign-
ment within the warehouse. It is paramount for achieving
streamlined operations, reducing order fulfillment times, and
minimizing operational costs. This process is crucial for
streamlining order fulfillment, minimizing picking times, and
ultimately reducing overall operational costs by consider-
ing order fulfilment constraint during the put away phase.
The goal is to minimize order picking route FIGURE 2,
by assigning each product to an optimal storage location,
taking into consideration various factors such as warehouse
layout, product characteristics, demand patterns, and opera-
tional constraints.

SLAP is akin to the Quadratic Assignment Problem and is
considered NP-hard, indicating its computational complexity.

Its objective function typically seeks to minimize a cost or
distance metric associated with the allocation of products to

FIGURE 2. The goal of storage location assignment.

specific storage locations [12]. In a generic form, assuming
that each product ‘i’ is assigned to only one location ‘j’ within
the warehouse, it can be expressed as:

Min Z =

∑n

i=1

∑m

j=1
cijxij (1)

• n is the number of products or items
• m is the number of available storage locations
• cij is the cost or distance associated with assigning prod-
uct ‘i’ to storage location ‘j’.

• xij is a binary decision variable representing whether
product ‘i’ is assigned to storage location ‘j’ (1 if
assigned, 0 otherwise).

The specific form of cij depends on the cost or distance metric
chosen, such as travel time, transportation cost, or any other
relevant criterion for the storage assignment problem at hand,
we consider distance and time for this study.

Historically, warehouses employed conventional methods
such as random allocation and ABC classification to assign
storage locations [13]. While these methods provided a
basic level of the organization relies on the rotation fre-
quency of products without considering interdependencies
among them. thus, they often fell short in handling dynamic
demand patterns and the increasing complexity of modern
e-commerce logistics. Recent advancements in storage loca-
tion assignment techniques have revolutionized warehousing
operations. Machine learning and data-driven approaches,
such as clustering algorithms, have gained prominence.
AI and optimization techniques have been pivotal in address-
ing complex storage location assignment challenges. Genetic
algorithms, simulated annealing, and deep reinforcement
learning have emerged as powerful tools to find optimal stor-
age location assignments while considering constraints and
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ever-changing demand patterns [14], [15]. These AI-driven
methods enable real-time adaptability and responsive ware-
house operations. Furthermore, data-driven approaches are
gaining traction, harnessing historical data to inform stor-
age location assignments. By analyzing past order data,
these methods anticipate future demand patterns, thereby
reducing the time and resources needed for storage location
adjustments, these dynamic methods, utilizes sophisticated
algorithms that, while effective, come with a trade-off in
terms of time and computational resource [11]. The impact
of efficient storage location assignment goes beyond cost
reduction. It directly translates into enhanced warehouse
efficiency, faster order fulfillment, and improved customer
satisfaction. In the competitive e-commerce landscape, where
rapid deliveries and precision are crucial, optimized storage
location assignment plays a pivotal role in shaping the logis-
tics ecosystem. In literature, we found two types of storage
locations assignment:
Static Storage Location Assignment (SSLA): is simpler,

offering a stable and easily manageable warehouse layout
with lower initial costs. Yet, it can lead to inefficiencies
and poor space utilization due to its inability to adapt to
fluctuating demand.
Dynamic Storage Location Assignment (DSLA): offers

adaptability and efficiency, optimizing warehouse opera-
tions by adjusting to changing demand patterns, which
enhances space utilization and reduces picking times. How-
ever, it requires sophisticated management systems, incurs
higher setup costs, and demands more extensive staff train-
ing [16].
Hybrid Storage Location Assignment (HSLA): The

approach of using time series clustering for SLAP is dynamic
in its analysis and planning stages but can manifest as static
in its implementation over fixed periods and positions. The
distinction lies in how frequently the analysis results are
applied to physical reassignments. If product locations are
periodically adjusted based on updated time series clustering
analyses, the system embodies a dynamic strategy, albeit
with static phases between adjustments. Thus, it’s a hybrid
model: dynamic in its analytical foundation and potentially
static in its execution, depending on the frequency of physical
reassignments in the warehouse.

B. OPERATIONAL RESEARCH METHODS
Many methodologies showcase the versatility of Oper-
ational Research (OR) techniques in addressing storage
location assignment challenges, providing efficient solutions
while considering constraints, demand patterns, and real-time
adaptability, contributing to enhanced warehouse efficiency
and logistics optimization:

1) PARETO-BASED ABC CLASSIFICATIONS
This approach divides inventory into three categories (A,
B, and C) based on the Pareto principle, with the aim of
reducing the travel distance for forklifts, thereby saving costs,

and improving process efficiency. The new warehouse layout
design led to significant reductions in forklift travel dis-
tances and allowed for a reduction in the number of forklift
operators, showcasing tangible improvements in operational
efficiency within a real warehouse setting.When compared to
time series clustering for the SLAP, several key differences
emerge. Time series clustering dynamically adjusts storage
locations is focusing on long-term operational efficiency and
adaptability to changing demands. It’s particularly effec-
tive in environments where demand for products fluctuates
over time, allowing warehouses to proactively adjust storage
strategies to anticipate future needs. On the other hand, the
ABC classification method, as applied in the discussed paper,
is more static in nature, focusing on optimizing warehouse
layout based on the current categorization of items according
to their turnover rates. While it does lead to immediate effi-
ciency gains by reducing travel times and operational costs,
it may not be as responsive to sudden changes in demand
patterns as time series clustering [17]

2) BRANCH AND BOUND ALGORITHMS
These algorithms are widely employed in operational
research for storage location assignment due to their abil-
ity to systematically explore the solution space while
minimizing computational efforts. These algorithms typi-
cally start with an initial solution and iteratively branch
into subproblems, evaluating lower and upper bounds for
each branch. Researchers have improved upon traditional
Branch and Bound techniques, as seen in Huang, Liu,
and Wang [18] by introducing an advanced Branch and
Bound algorithm designed for e-commerce warehousing,
emphasizing optimized item placements to reduce order
picking times. The algorithm employs sophisticated heuris-
tics and pruning strategies to expedite the search process
and enhance overall efficiency. Class-based storage policies
have also garnered attention, as they have proven to be
efficient in minimizing pick travel distances. A proposed
nonlinear integer-programming model considers savings in
required storage space due to the random allocation of
products within a class. To solve the model, a branch and
bound algorithm (BBA) is developed and compared with
a benchmark dynamic programming algorithm. Computa-
tional experience shows that the class-based policy results
in shorter pick-travel distances, with the BBA demonstrat-
ing superior computational efficiency [18]. However, these
algorithms can be limited by their dependency on initial solu-
tions and heuristics, potentially hindering their adaptability to
dynamic warehousing environments. Time series clustering
(our approach) addresses these limitations by clustering items
based on demand trends, thereby offering a more flexible and
foresighted approach to storage location assignment.

3) A-STAR ALGORITHM
Recognized for its pathfinding capabilities, this algorithm
has found applications in real-time storage location
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assignment, particularly in automated warehouses. Opera-
tional research endeavors have formulated the assignment
problem as a graph-based model, where storage locations
represent nodes, and distances between them form the edges.
Chen, Wu, and Li exemplify this approach, applying the
A-Star algorithm to automate storage location assignment in
warehouses [1]. By considering factors like item characteris-
tics, demand patterns, and order picking routes, the algorithm
optimizes storage assignments to minimize time and resource
wastage in retrieval processes. Real-time adaptability and
efficiency are key benefits of this approach. Several studies
have been conducted to explore and optimize storage location
assignment in warehouses and fulfillment systems using
operational research such as branch and bound algorithms,
A-star etc., and using artificial intelligence technics such
as deep reinforcement learning and genetic algorithm, also
data mining such as Apriori algorithm for association rules.
One such study focuses on collaborative optimization in
robotic mobile fulfillment systems, where storage location
assignment and path planning are combined into a single
optimization problem. By establishing a sustainable math-
ematical model, proposes a location assignment strategy
that incorporates goods clustering, rack turnover, reserva-
tion tables, automated guided vehicle operation rules, and
an improved A-star algorithm. Simulation studies confirm
the effectiveness of the approach, showcasing significant
improvements in order picking efficiency, energy consump-
tion reduction, and overall operating cost reduction [1]. The
A-Star algorithm excels in automated warehousing through
its real-time adaptability and precise pathfinding, optimizing
storage assignments based on various operational factors.
However, its efficiency can be contingent upon the accuracy
of the initial model and may not dynamically respond to
fluctuating demand patterns, potentially leading to subopti-
mal storage allocations as market trends evolve. Time series
clustering addresses these limitations by analyzing historical
demand data to forecast future patterns, allowing for storage
assignments that adapt to anticipated changes in demand.

4) DYNAMIC PROGRAMMING
It has been harnessed for class-based storage location assign-
ment, catering to specialized warehouse scenarios. Wang
and Zhang illustrate this methodology in their case study
focused on cold storage warehouses [19]. Dynamic program-
ming optimizes assignments based on classes or categories
of items, enabling energy-efficient storage location decisions.
The approach considers constraints such as temperature con-
trol and item compatibility, ensuring that items are allocated
to suitable locations. By utilizing dynamic programming, this
research demonstrates significant improvements in energy
consumption and storage utilization, highlighting the adapt-
ability of operational research methodologies to specific
warehousing needs. This method excels in making calculated
decisions that account for complex operational constraints,
leading to significant improvements in resource utilization.
However, its reliance on predefined item classes may not

fully capture the dynamic nature of demand fluctuations over
time. In contrast, time series clustering addresses SLAP by
analyzing historical demand data, providing a more nuanced
understanding of how item demand patterns evolve.

5) NESTED ANNEALING AND HAMMING DISTANCES
This approach utilizes aMarkov Chain method for initial can-
didate assignment sampling, followed by future-forecasted
pick-round modifications according to candidate assign-
ments, solving these as TSP. It incorporates advanced tech-
niques like Simulated Annealing and a Hamming-distance
location-swap heuristic for optimizing storage assignment.
The method is designed to be layout-agnostic and introduces
strategies to expedite the search for strong solution candi-
dates, including the use of fast function approximation and
algorithm restarts from local minima to enhance computa-
tional efficiency [20].

C. DATA MINING METHODS
1) ASSOCIATION RULES
Pang and Chan introduce an algorithm driven by data min-
ing techniques, specifically designed for assigning storage
locations to individual items in a randomized picker-to-parts
warehouse [10]. The algorithm utilizes the extraction and
analysis of association relationships among different products
found in customer orders. Its primary objective is to min-
imize travel distances for both put-away and order-picking
tasks, leading to improved efficiency overall, this approach
focuses on capturing customer buying behavior by identify-
ing patterns of frequently purchased related products. This
approach is particularly beneficial in warehousing scenarios
where storing correlated products in proximity can reduce
order-picking time and cost. The use of data mining and
the Apriori algorithm has been successful in addressing this
problem. The output of this algorithm are clusters of products
that must be grouped together in the warehouse. However,
these algorithms do not consider the temporal aspect and are
static in nature, lacking the ability to handle seasonality or
non-stationary demand. However, while effective in captur-
ing product associations, this method does not account for
the temporal variations in demand, presenting a static solution
that might not adapt well to seasonality or changes in demand
patterns over time. In contrast, time series clustering for the
SLAP offers a dynamic approach by analyzing historical
demand data to adjust storage locations.

2) ASSOCIATION RULES-BASED ABC CLASSIFICATION
This approach employs ABC clustering and association
rule mining from historical orders, demonstrating substantial
improvements in picking and waiting times compared to
random placements [5]. Comparatively, time series clustering
for SLAP dynamically adjusts storage locations based on
historical demand patterns, aiming for long-term operational
efficiency by anticipating future storage needs. While both
methods seek to optimize warehouse operations, the former
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emphasizes immediate efficiency gains in cold storage envi-
ronments through strategic placement, whereas time series
clustering focuses on adapting to changing demand patterns
for general warehousing scenarios.

D. ARTIFICIAL INTELLIGENCE METHODS
1) DEEP REINFORCEMENT LEARNING (DRL)
DRL has gained significant attention in optimizing storage
location assignments. Its agents are trained using historical
data of storage and retrieval operations. These agents learn
optimal storage location assignment strategies by interacting
with the environment. Recent advancements in DRL have
demonstrated remarkable efficiency improvements, espe-
cially in minimizing transportation costs and enhancing
overall warehouse performance [14]. One research paper
investigates the use of constrained clustering methods inte-
grated with principal component analysis. By incorporating
item characteristics and practical storage constraints, the
proposed method aims to cluster stored items effectively.
Additionally, the application of genetic algorithms in ware-
house management systems is examined to solve the storage
location assignment problem. By utilizing data analytics and
a genetic algorithm, a smart logistics solution is proposed to
reduce picking time. Another research article addresses the
dynamic Storage Location Assignment Problem (DSLAP)
by training a DRL agent on historical data of storage and
retrieval operations, the study derives a suitable storage
location assignment strategy. The evaluation of new data
demonstrates a notable decrease in transportation costs com-
pared to manual ABC classifications. This highlights the
competitiveness of DRL as an alternative solution for DSLAP
and related problems in the warehousing industry [14], [15].
DRL is highly adaptable to complex, dynamic environments.
It can continuously learn and improve from new data, mak-
ing it suitable for environments where conditions frequently
change, or new patterns emerge. However, this approach
requires significant computational resources and expertise to
implement. The learning process can be time-consuming and
finding the right balance.

2) GENETIC ALGORITHMS (GA)
GA are employed to tackle the storage location assignment
problem by optimizing storage placements based on genetic
operators. These algorithms utilize data analytics to pro-
pose intelligent logistics solutions, resulting in reduced order
picking times and improved warehouse efficiency. GA-based
approaches are effective when dealing with large and com-
plex storage facilities [21].

3) MACHINE LEARNING (ML)-BASED ABC CLASSIFICATION
The study uses machine learning models, including ordinary
least squares regression, regression tree, random forest, and
multilayer perceptron, to predict optimal zone sizes based on
factors like warehouse layout, demand characteristics, and
storage and routing policies. In relation to SLAP, this paper’s

contribution is significant. It offers a sophisticated approach
to determining the best zone sizes for ABC classified items in
a warehouse, which directly impacts the efficiency of order
picking processes, comparing this approach to time series
clustering for SLAP, which adjusts storage locations based on
historical demand patterns, presents a contrast between static
and dynamic methods of optimizing warehouse operations.
Time series clustering focuses on long-term efficiency and
adaptability, making it suitable for environments with fluc-
tuating demand. On the other hand, the ABC classification
method discussed in this paper, while beingmore static, offers
a direct way to achieve immediate efficiency by optimizing
warehouse layout based on the current categorization of items
according to their turnover rates.

4) LSTM (LONG-SHORT-TERM-MEMORY)
Dynamic storage location assignment algorithms continu-
ously monitor order data and adapt storage locations to
ensure that frequently picked items remain easily accessi-
ble. This real-time adaptability is essential for efficient and
responsive warehouse operations, especially in fast-paced
environments, Niu and Wang introduces a model-based deep
reinforcement learning approach for a simplified storage
assignment problem, leveraging an LSTM network order
predictor and approximate value iteration. The algorithm
effectively addresses the tradeoff between travel-time effi-
ciency and reposition costs, outperforming random assign-
ment and heuristics in various simulated environments [11].
In summary, the landscape of storage location assignment
has undergone a significant transformation, shifting from
conventional methodologies to contemporary, data-centric
approaches. These advancements not only enhance ware-
house operations but also play a vital role in streamlining
e-commerce logistics, a crucial aspect in the continuously
expanding realm of online retail. While many studies have
addressed this challenge through operations research, our
literature review underscores the scarcity of AI-centric inves-
tigations. Additionally, we highlight the practicality of static
storage assignment using heuristics as a viable solution for
determining optimal storage locations.

5) TIME SERIES CLUSTERING (OUR PROPOSAL)
Our research leverages time series clustering algorithms
to analyze e-commerce order datasets, aiming to identify
patterns of products frequently purchased together. By devel-
oping specialized clustering algorithms, we intend to group
products based on high demand correlation, subsequently
optimizing their storage location within the warehouse for
efficiency in a hybrid way. To evaluate the effectiveness
of our approach, we plan to simulate order preparation in
6 picking scenarios using the clustering method that achieves
the highest silhouette score, focusing on key performance
metrics such as total route distance and order collection travel
time. These metrics will be contrasted with those derived
from random and ABC storage location assignment methods,
serving as foundational references for our storage location
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TABLE 1. Literature review summary.

assignment theory. The study will encompass various order
picking strategies and methods, with the goal of statistically
validating our findings through ANOVA and Tukey’s tests,
thus providing a comprehensive analysis of the potential
benefits of our proposed clustering-based storage location
assignment model.

TABLE 1. provides a summary of the contributions con-
sidered in our literature review.

III. PROPOSED METHODOLOGY
A. INTRODUCTION TO INTELLIGENT STORAGE LOCATION
ASSIGNMENT TECHNIC
Our research utilizes data-driven techniques to ana-
lyze e-commerce orders dataset, identifying patterns of
co-occurring products in the same order. We will develop
clustering algorithms specifically designed to group products
with high demand correlation. Subsequently, these clusters
will be optimally assigned to storage locations within the
warehouse. To gauge the effectiveness of this approach,
we will simulate the order preparation of items using the clus-
tering method that yields the highest silhouette score. Metrics
such as total route distance to collect orders will be employed.
This routing metrics will be compared with random location
and ABC location assignment methods, As the foundational
references for storage location assignment theory. Various
scenarios related to picking strategies and methods will be
considered. To statistically validate our hypothesis, we will
use ANOVA and Tukey’s tests.

B. Assumptions
• Data Assumption: The data used for analysis consists

of univariate time series, representing the variation in
demand for each product over time.

• Storage Constraints: The model assumes no con-
straints related to storage, weight limitations, or com-
patibility between stored items.

• Product Assignment: Each product is assigned to only
one position within the warehouse. There is a one-to-
one mapping between products and storage positions.

• Single Depot: The model considers a single depot or
storage grouping for all products.

• The number of batches (Batch picking strategy):we
assume that the picker can collect items for 6 orders
simultaneously.

• The number of zones (Zone picking strategy): we
assume that the number of zones is equivalent to the
number of clusters identified by our clustering method.

• Metric: route distance in meter (m)
• Distance Calculation: The distance calculation con-

siders only the proximity between individual items
within the warehouse, and not between the depot and
items.

• Sorting time (Batch and zone picking strategies):
our proposal doesn’t cover the sorting time impact.

C. ORDER TIME SERIES CLUSTERING
The selection of the clustering algorithm is contingent upon
the nature of the data. We opt for algorithms that are suit-
able for univariate time series analysis such as: K-mean,
Self-Organizing Map (SOM), and Hierarchical Clustering
(HC). The silhouette scores of these algorithms are compared,
and the one demonstrating the highest compatibility will be
retained for subsequent phases of our study.

1) K-MEAN TS CLUSTERING
K-means algorithm minimizes the sum of squared distances
between data points and their assigned cluster centroids,
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by minimizing the following objective function:

Min Z =

∑k

i=1

∑ni

j=1
|xij − ci|2 (2)

With:
• xij: Data points
• ci: Centroid of the cluster
• |xij − ci|: Distance metric, Represents the dissimilarity
between a data point ‘xij’ and the centroid ci of its
assigned cluster. We use Euclidean distance or Dynamic
Time Warping

• k: Number of Clusters, we identify the optimal number
of clusters using the Elbow Method

In our context, each data point represents an order time series.
The algorithm iteratively assigns orders to clusters based on
the similarity of their time series patterns. We aim to identify
clusters that exhibit cohesive temporal behaviors, allowing
us to discern patterns in the order data. The centroid of
each cluster serves as a representative profile, capturing the
common characteristics of orders within that cluster, we use
for our case study both Euclidean and DTW metric.

2) SELF-ORGANIZING MAP (SOM)
We use SOM algorithm to cluster order time series by mini-
mizing the following objective function:

Min Z = λ x Topological Error

+
(
1 − λ

)
Quantization Error (3)

With:
• ‘λ ’ Is the is a weight parameter between 0 and 1 that
determines the balance between preserving topology and
minimizing quantization error.

The topological error component of the objective function
relates to how well the SOM preserves the temporal rela-
tionships between different orders, ensuring that orders with
similar temporal patterns are grouped together on the SOM
map. Simultaneously, the quantization error measures how
accurately the SOM represents clusters of orders with similar
time series patterns. Our goal is to uncover and visualize
meaningful patterns in the order time series data, emphasizing
the preservation of temporal relationships and the accurate
representation of order clusters. During the training process,
the SOM dynamically adjusts its nodes to minimize the
combined objective function, facilitating the identification of
clusters of orders with similar temporal characteristics [22].
The grid size we used for SOM is the square of dataset size.

It has a direct impact on the number of clusters which we
can’t parameter directly (the case of hierarchical clustering
and K-mean TS clustering)

3) AGGLOMERATIVE HIERARCHICAL CLUSTERING (AHC)
The objective is to group orders with similar temporal
patterns, providing insights for warehouse optimization.
The dissimilarity matrix Dissim (x, y) plays a pivotal role
within the HC, capturing pairwise dissimilarities between

each order’s time series. For distance measurement, we opt
for the Euclidean metric due to its efficiency, avoiding
resource-intensive alternatives like Dynamic Time Warp-
ing. The mathematical model involves initializing singleton
clusters, computing the dissimilarity matrix, and iteratively
merging clusters based on the complete linkage method. The
objective function for linkage is defined as:

CompleteLinkage = max{Dissim (x, y) (4)

With:
• x ∈ Ci: x datapoint from time series ‘Ci’
• y ∈ Cj: y datapoint from time series ‘Cj’

reflecting the maximum dissimilarity between individual
time series in two clusters. This process continues until
all orders are part of a single cluster. Visualization is
achieved through a dendrogram, providing a hierarchical
representation of cluster merging at different dissimilarity
levels.

4) MODEL SELECTION AND VALIDATION
In our comprehensive study, we compared various clus-
tering algorithms. Since the findings from the benchmark
study on time series clustering revealed no single algorithm
consistently excels across all datasets, underscoring the
importance of dataset-specific algorithm selection [23]. The
Adjusted Rand Index highlighted significant variability in
the performance of partitional, hierarchical, and density-
based methods. Conversely, another study demonstrated how
silhouette scores help the time series model selection and
validation, by evaluating cluster compactness and separa-
tion [24]. Concretely, we compared the silhouette scores of
the aforementioned models. This score provided a quan-
tifiable measure of how well each algorithm captured the
inherent structure of our dataset, emphasizing the compact-
ness and separation of clusters. The algorithm yielding the
highest silhouette score was selected for further analysis and
simulation, as it demonstrated the highest compatibility with
our dataset’s nature.

D. SIMULATION ENVIRONMENT & SCENARIOS
Order picking is a logistical process where items are selected
from a warehouse or storage location to fulfill customer
orders. Our simulation environment meticulously incorpo-
rates two distinct picking policies; S-shape and Midpoint, the
S-shape is highlighted as the most efficient beside the VRP in
the case study made by Shetty et al. [25] and the Midpoint as
the worst one among 4 picking policies, in order to diversify
the scenarios of our proposal. We also consider three diverse
picking strategies: DiscreteOrder Picking, Batch picking, and
Zone picking. A comprehensive approach allows us to thor-
oughly assess the impact of our proposal across a spectrum
of scenarios, ensuring adaptability and versatility. In addi-
tion to its accessibility and straightforward implementation,
our simulation environment underscores the notion that the
potency of artificial intelligence isn’t solely derived from its
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FIGURE 3. Intelligent storage location assignment model.

complexity. Instead, it shines in its ability to address various
scenarios effectively, demonstrating that the true power of
artificial intelligence lies in its practical versatility. Studying
static storage location assignment involves items maintain-
ing a fixed position over time without changing with each
reception or put-away. We’ve simulated a warehouse with
788 positions, 19 aisles, and bays of 20 positions each, adopt-
ing a mono-block setup (no cross-aisle).

1) S-SHAPE PICKING POLICY
In the S-shape policy, the route taken by the order pickers
forms the shape of an S. This means that any aisle con-
taining at least one pick is traversed entirely by the order
picker, as depicted in FIGURE 4 Aisles devoid of picks are
bypassed, and the order picker returns to the drop-off location
(depot) starting from the last visited aisle.

2) MID-POINT PICKING POLICY
In the mid-point policy, the warehouse is divided into
two halves. Picks from the bottom half are retrieved from
the bottom cross aisle, while picks from the top half
are retrieved from the top cross aisle, which is illus-
trated in FIGURE 4. If the number of picks per aisle is
small, this policy provides better results than the S-shape
policy.

FIGURE 4. S-Shape and Mid-Point picking policies.

3) DISCRETE ORDER PICKING STRATEGY
This represents the most prevalent form of order picking
due to its fundamental and straightforward nature. In a dis-
crete order picking approach, each order-picker handles a
single order, addressing one line at a time. The benefits of
employing this order picking method include its simplicity,
suitability for paper-based picking systems, swift response
times for order fulfillment, and the ease of tracking order
picker accuracy, and doesn’t need sorting.
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4) BATCH PICKING STRATEGY
Batch picking is a strategy where a single picker handles a
group or batch of orders simultaneously [26] as depicted in
FIGURE 5. This approach proves beneficial when multiple
orders share the same item, allowing the order picker to
make a single trip to the pick location for that specific item,
fulfilling multiple orders efficiently. The primary advantage
of choosing batch picking lies in reduced travel time, con-
tributing to increased overall productivity.

5) ZONE PICKING STRATEGY
In the zone picking strategy, each order picker is assigned
a distinct and physically defined zone within the pick area.
The assigned picker is responsible for retrieving all items
located in their designated zone for each order as depicted
in FIGURE 5. If an order includes items from multiple
zones, the order is sequentially processed through each zone,
a method commonly known as ‘‘pick and pass’’. The goal of
our proposal is to reduce sorting time by reducing the number
of zones engaged to fulfill the order and the decrease the total
lead time to fulfill order.

FIGURE 5. Batch picking and Zone picking strategies.

IV. EXPERIMENT RESULTS AND ANALYSIS
This section outlines our computational experiments, val-
idating the proposed model from the preceding section.
For our SLAP study, we utilized Google Colab’s Nvidia
RTX 3060 GPU and Intel Xeon(R) Platinum 8259CL CPU
@ 2.50GHz with 16 cores. This setup enabled efficient exe-
cution of SOM and K-Means DTW algorithms leveraging
GPU [27]. Utilizing a real-world dataset from Kaggle. Ini-
tially, we employ our developed clustering algorithms to
group items typically shipped together in the same order.
Subsequently, we simulate order picking under various sce-
narios, comparingmean time for order collection. The section
concludes with statistical validations. With a clean and
focused dataset, our implementation of developed clustering
algorithms on Google Colab efficiently grouped items that
are typically shipped together, leveraging the computational
power and simplicity of the integrated Jupyter notebook,

with the assistance of ChatGPT in debugging the code [28].
The simulation of various order picking scenarios, informed
by these clusters, provided valuable insights into optimizing
order collection times. Statistical validations underscored the
robustness of our findings, offering a compelling case for the
applied methodologies. After implementing each of the four
models, we meticulously evaluated their performance, ulti-
mately selecting the model that yielded the highest silhouette
score. This score served as a quantitative measure of how
well eachmodel clustered the dataset, with a higher silhouette
score indicating a better fit of the model to the data’s inher-
ent structure. The chosen model was identified as the most
compatible with our dataset’s nature, effectively capturing the
nuances of item groupings based on their co-occurrence in
orders, to showcase our approach’s significance in picking
optimization through simulations across six varied scenarios.

A. ITEM CLUSRERING
1) DATASET DESCRIPTION AND PREPROCESSING
Our study utilizes a comprehensive e-commerce dataset
sourced from Kaggle [29], featuring 541,909 order lines
spanning over a business period from January 10, 2011,
to September 9, 2011. The dataset encompasses a wide
array of products, totaling 4,070 unique items across 25,900
distinct orders. The data attributes include InvoiceNo, Stock-
Code, Description, Quantity, InvoiceDate, UnitPrice, Cus-
tomerID, and Country. These attributes offer a multifaceted
view of the retail operations, from transaction details to item
specifics and customer geography.

a: DATASET PREPROCESSING
The preprocessing phase was critical in refining the dataset
for our clustering and simulation analyses. Our approach was
methodical, aimed at ensuring data integrity and relevance for
high-impact insights. The steps undertaken include:

Data cleansing: We began by removing entries with neg-
ative quantities to exclude returns or inventory adjustments,
ensuring our analysis focused on actual sales data. Addition-
ally, records with missing values, particularly in key fields
such as CustomerID and Description, were omitted to main-
tain data consistency and reliability.

Focusing on high-runner Items: To align our analysis with
the most commercially impactful products, we applied the
Pareto principle, isolating the top 788 items by turnover,
known as the ‘‘Pareto head.’’ This concentration allowed for
a more targeted examination of products driving the major-
ity of sales. Temporal Transformation: Invoice dates were
converted into minutes of the year to achieve a uniform
temporal scale, facilitating more nuanced temporal analyses
and clustering based on time of purchase.

b: DATA STANDARDIZATION
We structured monovariate dataframes for each of the Pareto
items, focusing on essential attributes for clustering, such
as quantity and invoice data. To ensure consistency across
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FIGURE 6. Elbow method.

these dataframes, we applied padding where necessary to
standardize their lengths.

c: DATA NORMALIZATION
Recognizing the variance in quantity scales across items,
we employed Min-Max scaling to normalize these values.
This normalization was crucial for our clustering algorithms,
ensuring that differences in order magnitude did not bias the
analysis.

The preprocessing steps significantly enhanced the
dataset’s suitability for our objectives. By focusing on
high-turnover items and ensuring data quality and uniformity,
we laid a solid foundation for extracting meaningful patterns
and insights. This refined dataset not only facilitated effective
item clustering but also allowed for the simulation of order
picking scenarios with greater accuracy and relevance to real-
world operations.

2) K-MEAN CLUSTERING
We identified the optimal number of clusters through the
elbow method ‘FIGURE 6’, As explained by Delgado et al.,
the elbow is identified by the tangent to the curve and the
parallel to the straight line connecting the first and the last
point on the curve [30] revealed that 13 clusters are optimal
for our analysis. This information guided the parameteriza-
tion of both K-means and AHC [31].
In the analysis, we employed both Euclidean and DTW

metrics for K-means, finding that the Euclidean metric out-
performed DTW in terms of computational efficiency but
the negative silhouette score suggests that the clusters may
be poorly defined or overlapping. DTW, while effective,
was notably slower compared to other clustering algo-
rithms utilized in our study, and the low positive silhouette
score indicates slightly better-defined clusters compared to
Euclidean distance, but still not strongly distinct.

3) AGGLOMERATIVE HIERARCHICAL CLUSTERING (AHC)
In our analysis, we applied AHC using the complete linkage
criterion to dissect our dataset. This approach determines
cluster dissimilarity by identifying the greatest distance
between points in separate clusters. Guided by the elbow
method’s insights, we partitioned the data into 13 distinct
clusters, achieving an optimal silhouette score. The truncated
dendrogram, depicted in FIGURE 7, meticulously illustrates
the grouping of items based on their mutual characteristics,
revealing the data’s hierarchical organization. This division
into 13 clusters is a deliberate choice, mirroring the method-
ology outlined in the case study by Xu and Beard [31].
The silhouette score obtained, which quantifies the clustering
effectiveness, is marked as 0.22, underscoring the method’s
robustness in identifying coherent product groupings.

4) SELF-ORGANIZING MAP (SOM)
We conducted training for 100 epochs with the implementa-
tion of an early stopping mechanism to prevent overfitting.
This precaution is crucial, particularly when dealing with
datasets that share similar characteristics to avoid the risk of
grouping all items into a single cluster. Through experimenta-
tion, we identified the optimal hyperparameters for the SOM
model, including a best sigma value of 0.1 and a learning
rate of 1.0. Additionally, the grid size was determined as
the square root of the total number of items, resulting in
the creation of 9 distinct clusters FIGURE 8. The positive
silhouette score suggests relatively well-separated clusters
with instances belonging clearly to their assigned clusters.

5) MODEL SELECTION AND VALIDATION
The clustering outcomes are concisely presented in the
TABLE 2. The AHC method that exhibits superior clustering
performance, as evidenced by the silhouette score, is carefully
selected for further simulations.
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FIGURE 7. Hierarchical Clustering Dendrogram.

FIGURE 8. Clustered demand time series using SOM.

TABLE 2. Summary of clustering.

B. ORDER FULFILMENT SIMULATIONS AND ANALYSIS
In this simulation phase, we are comparing the Clustering-
based storage location assignment, employing the AHC
model that we selected for its superior silhouette score,
against two alternative approaches: Random storage assign-
ment and the traditional ABC storage assignment. The
evaluation metric employed is the distance in meters, and
we assess the Mean Time to Collect Orders. The simula-
tion specifically includes orders containing the top Pareto
items selected during data preprocessing. The order picking

simulation encompasses 788 picking positions, 19 aisles, and
follows a mono-block setup (without cross aisles). Various
picking policies and strategies are considered, resulting in a
total of six scenarios for our study.

In the ABC clustering scenario, items are classified into
classes A, B, and C based on turnover. Class A includes
high-priority items assigned to positions 1-190, Class B
comprises items with moderate turnover in positions 191-
570, and Class C involves items with lower turnover beyond
position 570. For random assignment, products are dis-
tributed randomly throughout the warehouse. We simulate
the order picking from the initial dataset 320150 order lines
that contains these 788 Items. To evaluate and compare
the effectiveness of our approach using statistical methods,
we employ a one-way ANOVA to test the equality of means
across multiple groups. Subsequently, we apply Tukey’s mul-
tiple comparison test to identify which storage assignment
demonstrates superior performance in terms of average travel
distance when compared pairwise. In the context of ANOVA,
the null hypothesis posits that all travel time means are equal,
while the alternative hypothesis suggests that at least one
mean differs. Symbolically, H0= u1= u2= u3, and Ha indi-
cates that at least one pair of means differs from each other.
Here, H0 and Ha represent the null and alternate hypotheses,
respectively, and u1, u2, and u3 denote the population means
of travel distances for three location assignment approaches.
A significance level of 5% is chosen, and the analysis assumes
equal variance.

1) S-SHAPE: DISCRETE ORDER PICKING STRATEGY
Mean distance to collect orders for the first scenario:

• Random: 404.86 m
• ABC: 387.50 m
• AHC: 358.91m

Notably, AHC outperforms Random by 11.38% and demon-
strates a 7.5% improvement compared to the ABC strategy
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FIGURE 9. Travel distance Boxplot for first scenario.

FIGURE 9. These results highlight the effectiveness of our
approach in optimizing order collection distances within the
given warehouse context.

The ANOVA one-way rejected the null hypothesis, means
that there is a significant difference inmean distance to collect
orders in between various assignment methods, and Tukey’s
test confirm the effectiveness of our approach TABLE 3.

TABLE 3. Tukey simultaneous tests for first scenario.

2) S-SHAPE: BATCH PICKING STRATEGY
Mean distance to collect orders for the second scenario:

• Random: 157.17m
• ABC: 69.15m
• AHC: 66.25m

In comparison toABC, theAHC assignment exhibits superior
performance by 4.34%, while surpassing Random by a sig-
nificant margin of 57%. Notably, the maximum distance in
the Random approach reaches 229, whereas both AHC and
ABC limit this to 106 and 109, respectively. However, it’s
worth noting that there are some aberrant distances exceeding
200 meters in all three strategies.

Interestingly, ABC and AHC showcase relatively similar
performance levels, especially in the context of batch picking
within the given parameters, and this is confirmed by the fact
that the null hypothesis for AHC and ABC cannot be rejected
based on the results of Tukey’s TABLE 4.

3) S-SHAPE: ZONE PICKING STRATEGY
In this scenario, our approach demonstrates superior results:

• Random: 348.47m
• ABC: 244.75m
• AHC: 133.82m

TABLE 4. Tukey simultaneous tests for second scenario.

FIGURE 10. Travel distance Boxplot for scenario 2.

Our approach outperforms Random by 61% and ABC
by 43%. The clusters corresponding to zones in our approach
exhibit better results than random storage and ABC assign-
ment.

FIGURE 11. Travel distance Boxplot for scenario 3.

The interval of distances is lower in AHC compared to
the others FIGURE 11 contributing to better flow manage-
ment and aiding in balancing the load capacity within the
warehouse. This characteristic of AHC enhances its ability
to optimize the distribution of distances, leading to more
efficient operations and improved overall capacity utilization
in the warehouse.

This superiority is further validated by Tukey’s and
ANOVA tests TABLE 5, affirming the effectiveness of our
storage assignment approach in optimizing travel distances.

4) MID-POINT: DISCRETE ORDER PICKING STRATEGY
Mean distance to collect orders for the fourth scenario:
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TABLE 5. Tukey simultaneous tests for third scenario.

• Random: 385.79m
• ABC: 423.45m
• AHC: 313.58m
In comparison to Random, AHC outperforms by 18%, and

against ABC, it shows a superior performance by 26%. These
percentages highlight the efficiency gains our approach, par-
ticularly AHC, achieves over both Random and ABC in
scenario 4. And the results are confirmed by Tukey’s and
ANOVA tests TABLE 6, Also The interval of distances is
lower in AHC compared to the others.

TABLE 6. Tukey simultaneous tests for 4th scenario.

5) MID-POINT: BATCH PICKING STRATEGY
Mean distance to collect orders for the fifth scenario:

• Random: 193.56m
• ABC: 213.00m
• AHC: 66.50m

AHC outperforms ABC by 69%, and against Random,
it demonstrates a superior performance by 65%. These per-
centages indicate the efficiency gains of HC over both ABC
and Random in terms of mean distances in this scenario.

The statistical analysis indicates that there is a significant
difference between AHC and ABC TABLE 7, as well as
between AHC and Random in terms of mean distances, but
there is no significant difference is observed between ABC
and Random.

TABLE 7. Tukey simultaneous tests for 5th scenario.

6) MID-POINT: ZONE PICKING STRATEGY
In the final scenario:

• Random: 341.03m
• ABC: 1183.46m
• AHC: 723.32m

FIGURE 12. Travel distance Boxplot for scenario 4.

FIGURE 13. Travel distance Boxplot for scenario 5.

TABLE 8. Tukey simultaneous tests for 6th scenario.

The performance of our model is not satisfactory in this
scenario, and similarly, ABC does not align well with the
midpoint zone picking strategy FIGURE 14, the results
are summarized in TABLE 8. This can be attributed to the
fact that zones are separated by the midpoint policy, forc-
ing pickers to start in the front aisle and then move to the
back aisle within the same zone. This practice increases the
overall travel distance. To enhance the performance of these
approaches, it is essential to adapt zones for the front aisle
and separate zones for the back aisles. This adjustment can
potentially optimize the picking strategy and reduce travel
distances of our proposal in such scenarios to fit the result
we have got in the S-Shape policy.

C. SUMMARY OF THE RESULTS
The results could be summarized for S-shape in TABLE 9:
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FIGURE 14. Travel distance Boxplot for scenario 6.

TABLE 9. Summary of results S-shape.

And results of Mid-point policies in TABLE 10:

TABLE 10. Summary of results Mid-point.

V. DISCUSSION
In this work, we’ve explored various methodologies for
optimizing storage location assignments, drawing on both
traditional operational research methods and advanced arti-
ficial intelligence techniques. We delved into the potential
of Pareto-based ABC classifications, Branch and Bound
Algorithms, and the A-Star Algorithm, each offering unique
advantages for warehouse efficiency. Additionally, we exam-
ined data mining methods like association rules and AI
approaches, including DRL and GA for their adaptability
and efficiency in dynamic environments. Our proposal stands
out by focusing on a data-driven clustering approach, val-
idated through comprehensive computational experiments.
By employing clustering algorithms and simulating order
preparation using methods yielding the highest silhouette
scores, we’ve showcased substantial improvements in order
picking performance. Our model’s success, particularly in
AHC scenarios, demonstrates its superiority over random
and ABC methods in various picking strategies, confirmed
by rigorous statistical analysis. This section aims to high-
light the innovative aspects of our research, particularly

our clustering-based model’s ability to enhance efficiency
and adapt to complex warehouse operations. In doing so,
we acknowledge the contributions and limitations of existing
works, setting a foundation for our study’s significance in
advancing storage location assignment strategies. Our work
not only contributes to the theoretical landscape but also
offers practical insights for implementing AI-driven logis-
tics solutions in real-world warehousing scenarios. There is
potential for further optimization of our clustering algorithm
by hyperparameter tuning, including adjusting the number of
epochs, finding the optimal grid size for SOM, and select-
ing the best linkage model for AHC, could enhance overall
performance. Additionally, it’s essential to acknowledge that
the nature of our dataset, with closely similar demand pat-
terns among items, poses a challenge, explained by the low
silhouette score. Despite this, our clustering-based storage
location assignment method remains a powerful tool for
optimization. Continuous refinement, both in hyperparameter
tuning and adapting to specific dataset characteristics, is key
to unlocking even better results. Our time series clustering
approach for storage location assignment represents a novel
hybrid model within the spectrum of solutions discussed
in the literature. Unlike purely static methods like Branch
and Bound, Pareto-based ABC, ML-based ABC, Association
rules-based ABC, A-Star, and Dynamic Programming, our
method dynamically analyzes demand patterns through time
series clustering, enabling more responsive storage decisions.
This approach allows for adaptation to demand fluctua-
tions without the constant need for physical reassignments,
addressing a key limitation of static methods. Furthermore,
compared to purely dynamic methods that require frequent
and resource-intensive changes to storage positions, our
hybrid model offers a balanced solution by incorporating
dynamic analysis with less frequent implementation phases,
thereby conserving operational resources.

Additionally, our method distinguishes itself by adopting
a heuristic approach, aiming to provide an optimal solution
with less computational resource consumption. This contrasts
with more complex or exhaustive techniques like genetic
algorithms or deep reinforcement learning, which, while
powerful, may demand significant computational power and
expertise. By leveraging the strengths of both static and
dynamic methodologies and utilizing a heuristic for efficient
computation, our time series clustering approach offers a
promising alternative for storage location assignment, par-
ticularly in environments where demand patterns exhibit
variability, but operational flexibility is constrained. Our
study stands out from the existing literature by compre-
hensively covering six distinct scenarios related to various
picking methods and strategies. This extensive coverage
ensures a holistic understanding of how our time series
clustering approach can be optimized across different oper-
ational contexts. Unlike other studies that may focus on a
singular aspect of warehouse operations or apply a one-
size-fits-all approach, our research delves into the nuances
of multiple picking scenarios. This includes examining the
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efficiency of batch picking, zone picking, and different strate-
gies within these frameworks, such as S-Shape andMid-Point
picking. This diversity in scenario analysis highlights our
study’s unique contribution to the field, offering insights into
the adaptability and effectiveness of our method across a
range of warehouse activities, thereby providing a richer,
more nuanced understanding of its potential benefits and
applicability.

The results of simulations consistently highlight the
prowess of our ISLA approach in optimizing order picking
performance across various scenarios. In S-Shape policies,
AHC consistently outperforms both random and ABC, show-
casing efficiency gains ranging from 4.34% to 61%. These
improvements are substantiated by statistical tests, affirming
the significance of our proposal. In Mid-Point scenarios,
AHC demonstrates remarkable efficiency gains, surpassing
random by 18% to 69% and ABC by 26% to 65%. Tukey’s
and ANOVA tests further validate the effectiveness of AHC
in these contexts. However, in the 6th scenario involving
Zone picking with a Mid-Point constraint, our model faces
challenges due to the chevauchee between implemented
zones and the routing policy. Without addressing this con-
straint, our proposed method might not yield optimal results,
as demonstrated in the superior performance observed in
S-Shape Scenario 3. To address this constraint, we recom-
mend adapting zones for front and back aisles, potentially
aligning the results with the success observed in S-Shape
Scenario 3.

VI. CONCLUSION
In conclusion, our study represents a significant advance-
ment in addressing SLAP within the realm of e-commerce
warehouse management. By introducing and validating the
Intelligent Storage Location Assignment model, we have
not only demonstrated its robustness in optimizing ware-
house operations but also highlighted its adaptability to
diverse logistical scenarios. Our approach stands out for its
innovative integration of time series clustering and spatial
analysis, tailored specifically for the dynamic requirements of
e-commerce warehouses. The strategic value of our research
lies in its potential to revolutionize e-commerce logistics
by offering a scalable, flexible solution to storage location
assignment that can significantly enhance order fulfillment
processes. With its proven effectiveness, particularly in sce-
narios employing S-Shape policies, our method paves the
way for more efficient, cost-effective warehouse manage-
ment practices. Looking ahead, we are poised to explore
further optimizations, with a keen interest in refining Mid-
point policies and Zone picking strategies. Our future work
will also delve into the integration of collaborative filtering
and the inclusion of more granular warehouse and product
characteristics to fine-tune our model. This ongoing research
endeavor aims not only to refine the practical applicability of
our approach but also to contribute to the broader academic
and operational discourse on e-commerce logistics manage-
ment. This study, therefore, does not merely present a novel

approach to SLAP but also lays the groundwork for subse-
quent innovations in warehouse management. It underscores
the critical role of advanced, data-driven models in enhancing
the efficiency and effectiveness of e-commerce warehouse
operations, setting a new benchmark for future research in
this field.
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