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ABSTRACT The recent shift towards digitalization in traditional sectors like logistics and transportation
has unlocked new avenues for gaining valuable insights and streamlining operations. This transformation
is facilitated by the abundance and specificity of data now available, including fleet IoT data, transactional
documents, and event notifications. These businesses leave a substantial digital footprint, ripe for analysis
when combined with external data sources. However, harnessing this information requires robust computing
infrastructure and adaptable software capable of handling vast amounts of data. In this paper, we introduce
IW-NET BDA, a big-data analytics framework built on open-source technologies to address the storage
and processing demands of massive datasets from various origins. Developed within the framework of
the EU-funded research and innovation project IW-NET (Innovation driven Collaborative European Inland
Waterways Transport Network), our system caters to the logistics domain but offers a versatile IT service
backbone due to its agnostic design, focusing on infrastructure-as-a-service provision. Furthermore, it allows
for the development and deployment of applications that encapsulate business logic, thus tailored to specific
business needs. In the subsequent sections, we delve into the design principles, architectural components,
and deployment possibilities of IW-NET BDA. Additionally, we present two illustrative use cases: firstly, the
automated detection of areas of interest and vessel activity tracking for insightful geo-temporal data analytics
along the River Weser corridor; secondly, the utilization of recurrent neural networks to forecast water levels
in the Danube River corridor. These examples highlight the adaptability and efficacy of IW-NET BDA in
tackling diverse challenges across different contexts, underscoring its versatility and utility.

INDEX TERMS Big data, cloud computing, DBSCAN, machine learning, recurrent neural networks.

I. INTRODUCTION

With over 40.000 km of navigable waterways and 250 inland
ports, Inland Waterway Transport (IWT) within the EU is
responsible for the movement of circa 550 million tonnes
of goods on a yearly basis, according to the European
Inland Waterway Transport Platform.! Given the European
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approving it for publication was Md. Moinul Hossain
1 https://www.inlandwaterwaytransport.eu/

Commision’s official commitment of Europe becoming the
first climate-neutral continent by adopting policies that aim at
the critical reduction of GHG emissions and the development
of an environmentally sustainable economy,” over the recent
years IWT has emerged as a promising alternative to a
more traditional road-bound logistics eco-system. To help
further develop IWT — by means of improving its efficiency,

2https://commission.europa.eu/strategy—ancl—pc»licy/pric»rities—201 9-
2024/european-green-deal_en
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competitiveness, and reliability — the IW-NET? EU-funded
research and innovation project started in May 2020 and was
active until October 2023.

The project addressed operations and focused on use cases
inspired by real-life scenarios in different regions across
the continent - in particular rivers Danube, Spree/Oder and
Weser, and the regions of Brussels and Ghent. In the context
of the project, we tried to suggest solutions to problems
such as infrastructure bottlenecks, insufficient IT integration
along the chain and slow adoption of technologies, such as
new vessel types, alternative fuels, automation, IoT advanced
data analytics and machine learning, aiming to deliver a
multi-modal optimisation process across the EU Transport
System. The project’s main objectives have been organised
in three distinctive directions:

« Digitalization, focusing on the optimization of the
planning of barge operations in dense urban areas and
navigability in unknown water conditions by employing
a data-driven approach which involved high-volume
data collection from various sources, statistical and
predictive analytics and machine learning tools.

o Sustainable Infrastructure and Intelligent Traffic
Management, focusing on the management of the
infrastructure to reduce uncertainty in voyage planning
(eg. lock management, berth planning with mandatory
shore power supply and other services).

« Innovative vessels, focusing on new barge designs that
fit corridor conditions and target markets.

Concerning digitalization, our efforts focused on the intro-
duction and adoption of state-of-the-art technologies in a
business that has traditionally lagged in that regard. Having
extensively documented the requirements and specificities of
the logistics business in general and the Inland Waterway
operations more specifically, a general architecture was
designed where discreet components based on bleeding-edge
technologies would interact in order to automate, facilitate
and provide visibility to a large part of the supply chain, thus
offering a new perspective to many the stakeholders involved
in these operations.

A very significant aspect of our approach to the full soft-
ware stack design has been the reproducibility of our solution.
We have made the choice to rely on publicly available, open-
source software components to utilise as building blocks for
the largest part of the presented infrastructure. Of course, in a
market as large as the global logistics one, the problems we
have encountered are already being addressed but in such a
highly competitive environment, the norm is that software
is developed in isolation. Organizations and companies
active in the business are investing hefty amounts of
resources in research and innovation [1]. What differentiates
our initiative in comparison to existing solutions is our
open-source and open-data approach which derives from the
EU Commission’s commitment to fund research that will
benefit the global community.

3 https://www.inlandwaterwaytransport.eu/iw-net-project/
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The suggested architecture, displayed in Figure 1, com-
prises various pluggable and loosely coupled components that
interact through secure communication channels. As visu-
alized in the diagram, our data sources can be services
implemented by logistics agents, IoT devices or any other
service that is designed to collect data. Data is pushed
from these services into the system, via a Publish/Subscribe
system based on Apache Kafka [2]. The secure com-
munication is safeguarded by a deployed instance of an
Identity and Access Management [3] component, based on
the state-of-the art open-source solution Keycloak [4]. All
interactions marked with a black key in the architecture
diagram indicate a secure access communication pattern. The
architecture is designed to be modular - all interconnected
connected only need to implement an interface which allows
them to exchange (receive and dispatch) data with the
Publish/Subscribe distributed framework. To satisfy state-of-
the-art business requirements, our services were designed to
produce and consume data compliant with the GS1 [5] and
UN/CEFACT [6] standards for the representation of logistics
actions and operations.

In this paper, the focus of our report is IW-NET BDA,
an open-source* Big Data Storage and Processing System
(presented in the diagram as ““Big Data Analytics”, top right).
Its role in the suggested architecture is to store data, as well
as perform general-purpose data analysis using technologies
that support those operations on Big Data scale. In Section II
we initially present the architecture and deployment plan
of the most significant software components comprising
the computing infrastructure where data was stored and
processed. In Sections III and IV we present two distinct
use cases which we believe provide a representative view
of the complexity of the issues that need to be resolved
in real-world applications. The solutions to the problems
presented here have been utilized to collect and analyze data,
producing insights that have been used by the infrastructure
owners to monitor the IWT networks, as well as in the
implementation of a complex syncrho-modal collaboration
algorithm. More specifically, Section III concentrates on
geo-temporal data analytics, tracking the live movements
of vessels. In Section IV, we focus on the examination of
methods for the forecasting of water levels utilising state-of-
the-art tools and techniques based on machine learning while
Section V concludes our work.

II. INFRASTRUCTURE AND SERVICE DEPLOYMENT

In the heart of every system that aims at enhancing the
operational decision-making of modern-day businesses lies
the ability to store and process large amounts of data [7], [8],
[9], [10], [11]. The software solution that IW-NET proposes
is no different. In the current section, we present the IW-NET
Big Data Analytics Subsystem (BDA). Specifically designed
to support applications that can provide on-the-fly insights
on live, streaming data, the BDA is a reliable and highly

4https ://github.com/iwnet/digitalization-infrastructure
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FIGURE 1. High-level architecture of the IW-NET digitalization ecosystem.
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FIGURE 2. The star schema employed by the BDA storage engines.

performant infrastructural layer. Implemented using state-
of-the-art technologies adopted by industry and academia
alike, such as Apache Spark [12], Hadoop’s distributed file
system HDFS [13], HBase [14] and Postgres [15] amongst
others, it consists of a set of interconnected modules that
interact with each other closely, offering big data storage and
parallel processing capabilities. It has been designed to be as
autonomous and fault-tolerant as possible, requiring minimal
intervention by its administrators to perform its intended
tasks, self-monitor, recover from failures etc.

From a high level, the BDA’s functionality is implemented
by its 3 functional components: the Data Storage Engines,
the Processing Engines and the KPI Database and Service.
However, on a lower-level detailed analysis, it is built upon
five discreet modules: the Datastore module, the Analytics
and Machine Learning (ML) module and the Controller and
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Connector modules, the two latter of which implement the
interfacing and scheduling tasks it requires. Additionally,
a KPI Service has been developed and implemented as a
supportive module which offers persistent storage for the
output of the Analytics and ML workloads.

The BDA Subsystem follows the ‘“lambda’ architecture
concept [16], to provide both batch and real-time processing
with high performance and fault-tolerance. The Data Storage
Engines is the functional component responsible for storing
all data and meta-data. Incoming data is stored across tables
of both NoSQL and RDBMS systems implementing a star
schema to optimize query responsiveness. Meta-data are
exclusively stored in dedicated RDBMS tables.

The Execution Engines is the component where Analytics
or ML tasks are performed to calculate KPIs, predict variables
and produce metrics that are required per use case. By design,
the BDA tries to abstract business logic, expecting the latter to
be implemented in pluggable applications we call “recipes’.

The KPI Service stores the outcomes of these data
processing workloads. Services developed in the context of
IW-NET architecture external to the BDA can access the KPI
Service and query its data to create reports or visualize the
results.

Finally, the Controller and Connector modules act as the
gateways that facilitate communication either via REST or
the dedicated Publish/Subscribe (Pub/Sub) module, which is
in charge of the message exchange in the general architecture
and connects other IW-NET services to the BDA, while
simultaneously coordinating the rest of the functional com-
ponents. Except for the Publish/Subscribe mechanism, the
BDA is also designed to interact with an additional external
Identity and Access Management component, implemented
by Keycloak [4] in our prototype. This software allowed
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FIGURE 3. BDA subsystem low-level architecture.

us to monitor resource access patterns and define privileges
between roles and actors in our use-cases. Data exchanges
and interactions implement the TLS [17] protocol to ensure
the security of all communications.

The low-level architecture of the BDA subsystem is shown
in Figure 3 and includes the aforementioned functional
components and the five software modules: the Datastore
module, the Analytics and ML module, the KPI Service
module and the Controller and Connector modules. In the
next paragraphs, we will follow the high-level overview of the
BDA and analyze its distinct modules one by one. We shall
also dedicate a short paragraph to the connectivity interfaces
with other IW-NET architectural components and close this
section by providing information on the deployment scheme.

A. DATA STORAGE ENGINES

The Data Storage Engines are implemented within the
Datastore module. The Storage Engines are utilized for two
purposes: (a) to store data that arrive through the connectivity
endpoints and (b) to provide the data for BDA execution
engines to execute Analytics or ML workloads with. To sup-
port BDA operations and functionality, the Data Storage
Engines also maintain meta-data catalogues of all resources
created and utilized at the application and infrastructure level.
Application level meta-data include information such as valid
message types, recipes etc. Infrastructure level meta-data
includes execution engine and environment information,
specific recipe executable paths etc.

Data Storage: The Star Schema: Data in the Storage
Engines are stored using a star schema, which consists of a
fact table, which will be referred to as “Event Log”, and of
smaller dimension tables, also referred to as ““Entity Tables™ .
The Entity Tables contain what is essentially the static data
describing the infrastructure of a supply chain, often included
in message exchanges. They are dictated by the use case
we are addressing and typically need to be populated in the
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initialization phase of the BDA subsystem. This information
rarely changes and needs to be queryable.

On the other hand, the Event Log can be considered as an
append-only log that captures every business message (i.e.,
event) that is flowing into the BDA. The exact schema of the
Event Log table will need to be defined in a different step
of the initialization process previously mentioned, according
to the participating Entities. The basic concept is that every
row represents a message and includes information about
the entities it references (there might be multiple entities
involved - or none, depending on the message type and the
event it describes), and the main message payload. Finally,
the Event Log is populated in a streaming manner by new
event messages after the BDA has been integrated with the
appropriate message exchange mechanism. The star schema
of the BDA Data Storage Engines is shown in Figure 2.
It contains numerous small, immutable Entity Tables and a
single constantly growing Event Log table. Each message is
appended as a new row in the Event Log and is linked to one
or more of the existing Entities.

As amotivating example, consider a simple scenario where
our use-case describes a fleet of barges sailing between
a network of ports and the messages consist of arrivals
and departures. In this case, there would exist two Entity
Tables: one describing the meta-data related to barges and a
second one, containing meta-data related to ports. The Entity
Table dedicated to ports could additionally include data such
as port location, capacity etc. Each message stored in the
Event Log would either describe an event of type “arrival”
or “departure” and would be linked to both a barge and a
port, from both Entity tables.

Meta-Data Storage: As different message types, related
to different events, can trigger different processing work-
loads, it is necessary to also create a persistent storage
resource where the different message types, their attributes
and workload-related meta-data are stored in dedicated,
interconnected meta-data tables. We also store information
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about the workloads, the configurations of the execution
environments and other meta-data information per use case.
These tables are updated/populated with new data upon new
message type and workload creation. An example can be seen
in Figure 4. The functionality of the entities introduced here
is explained in the following subsection, on the Processing
Engines.

Implementation Details: The Datastore module offers
a RESTful interface to facilitate communication with the
storage engines while being agnostic to the specific under-
lying systems utilized to implement them. The API has the
capability to work with several supported storage systems
by using dedicated integrated connectors depending on
the BDA subsystem’s configuration provided during the
initialization. By default, different storage systems are used
to store the Event Log table and the Entities tables to
optimize performance: The Event Log, as an append-only
structure that constantly grows is better suited to a distributed
database or a distributed file system using the appropriate
connectors, whereas the Entities tables contain limited,
immutable information which may be accessed very often so
a replicated RDBMS solution or an in-memory database are
a more suitable choice [18]. Each provided system connector
internally implements the required operations on the data.

Taking into consideration all of the above, as well as the
non-functional requirements that must be met by the storage
service, a containerized setup of the distributed NoSQL
Apache HBase [14] database is employed to store the Event
Log table. HBase offers out-of-the-box scalability and high-
availability features. It supports storage in a semi-structured
and sparse format thus allowing us to adopt any data schema
that a use case requires in an efficient way. This feature is very
useful as our design is use case agnostic and the flexibility
it offers permits the infrastructure to be usable in various
scenarios. In HBase, data rows are divided into multiple
shards (i.e. partitions) and distributed to the cluster nodes.
Therefore, consecutive rows of the Event Log are stored
in different nodes which allows for quick data ingestion.
Moreover, HBase allows user access to be controlled on a
database, table or even file system folder level. We deploy an
instance of Apache Zookeeper [19] to implement the high-
availability feature.

For the Entities tables, on the other hand, a replicated,
containerized deployment of the PostgreSQL [15] RDBMS
is utilized. Multiple copies of the same database are created,
using leader-follower streaming data replication [20]. Each
copy is hosted by a dedicated machine in a cluster setup.
One of the servers is considered as the leader, handling the
write requests. Meanwhile, the follower machines only allow
read access to the data that they contain. We use pgpool [21],
a proxy layer that is used to achieve load-balancing and
scalability for the read throughput when accessing the
Entities tables. Pgpool ensures that, in the case where
the primary leader server fails, a follower can replace it,
thus providing high-availability. PostgreSQL - a typical
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RDBMS - offers adaptable database schema and user roles
and permissions.

Regarding the meta-data tables, since they contain limited
volumes of information, they share the physical resources
of the PostgreSQL deployment where the Entities tables
are stored, implementing a separate, completely disjoint
database schema. The module’s REST API is implemented
as a replicated Java-based service that runs on a Jetty HTTP
Web server [22]. Multiple server instances are deployed in
containers which are accessible using a proxy layer like
HAProxy [23] bundled with Keepalived [24] to achieve
high-availability and load balancing. We also use TLS
encryption [25] and user authentication and authorization for
enhancing the Web server security. More information on the
deployment is offered in the relevant sub-section.

B. BIG DATA PROCESSING ENGINES

The Big Data Processing Engines of the BDA system are
implemented within the Analytics and ML module which
is responsible for performing any type of computations. Its
main purpose is to calculate KPIs or perform predictive
tasks by executing the corresponding applications, using
the proper data. As already mentioned, when performing
a computation task, the BDA essentially executes a recipe
that implements a specific analytics or ML workload. The
input for these workloads is stored in the Data Storage
Engines. The recipes are provided as executable files that
consume data consistent with a specified data schema, so the
module is generally agnostic to the input data schema and
location. A recipe requires the definition of the implemented
algorithm’s programming language, the corresponding binary
executable location, the input data schema specification, and
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other possible user-defined arguments for the configuration
of its execution environment.

Based on this design, we formulate two types of processing
workloads, which we call “jobs”: a) message-triggered
jobs, used to make real-time predictions/calculations, and b)
periodic jobs that will be used to (re)train an ML model or
calculate aggregating statistics, cuammulative KPIs, or group
of KPIs over specified time windows (in Figure 10 we can
see some examples of such queries). We define a job by
specifying the execution pattern for a recipe: either defining
the message type that triggers its execution or a time interval
for its periodic execution. Multiple jobs can be scheduled
with the same recipe.

Message-triggered jobs will be executed upon a message
arrival of the specified message type, consuming that
particular message, while periodic jobs will be executed
when their specified time interval expires. Moreover, when
a job is defined, the output can be forwarded to either of
two data sinks. It will be either be stored in the appropriate
Data Storage Engine, according to a well-predefined schema
(making use of the Datastore or KPI service modules),
or published as a message to a predefined Pub/Sub topic.
Multiple jobs can be created with different execution
parameters and output locations using the same recipe. These
complex relations between messages, and workloads are on
display in Figure 4, where the schema of the meta-data
indicates the one-to-many connection between the jobs and
recipes tables.

Implementation Details: The Analytics and ML module
offers a Java-based interface used to define recipes and
schedule the execution of a job and can connect to different
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execution engines using the appropriate integrated connector,
to run the required executables. Such computations are per-
formed under the job configuration provided to this module.
A software library is also implemented inside the module that
contains the appropriate connectors for the Storage Engines
and the Pub-Sub which are provided by the module to the
Execution Engines to handle the recipes’ input and output
data.

In general, a recipe that includes a ML algorithm will
calculate (infer) some predicted variables using open-source
ML libraries that will build and query respective models.
The calculated variables are related to the current state
and will then be published as new events to the Pub-Sub
for all subscribed sub-systems to consume. Additionally,
a model instance can be (re)trained provided the appropriate
historical input data. The updated model can then be used
to make real-time predictions consuming the incoming
messages. The Analytics and ML module will indicate,
before launching an ML Recipe, whether a model will be
created/updated or which trained model will be used for
inference.

The main execution environment of the BDA is built
upon on Apache Spark [12]. It is implemented through the
deployment of a containerized Apache Spark cluster that
offers both offline and online processing (using interactive
sessions) and out-of-the-box scalability and high-availability
features which are supported by Zookeeper. Spark supports
multiple programming interfaces (eg. python, Java and scala)
and it also provides a standard SQL interface where analytics
tasks can be programmed. We also support execution
environments such as plain python, or Java as evidenced
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in Section IV where the codebase developed is written in
python.

In order to exploit Spark’s interactive sessions for fast
streaming calculations, the BDA uses Apache Livy [26],
an Apache incubator project that provides a REST interface
to facilitate programmatic and fault-tolerant submission of
both interactive and batch Spark jobs. By configuring the
Analytics and ML module to use the Livy service, we are able
to easily launch a different live session for every streaming
(message-triggered) job. Moreover, the jobs that are part
of a complex DAG-shaped workflow are launched on the
same live session, one after the other. Dependencies between
jobs are stored as meta-data in the Data Storage Engines.
Finally, we use Hadoop YARN [27] as a cluster manager
for Apache Spark. The processing workflow starting from
high to low-level components, is presented in Figure 5. The
Streaming Event that appears in Figure 5 is received by the
BDA and triggers the execution of a job using the Livy
service. Batch jobs can also be periodically launched by the
Cron [28] service. A recipe running in Spark can access the
Data Storage Engines to use them as data sources. Processing
results can be stored in the KPI datastore or directly broadcast
through the Pub/Sub.

C. KPI DATASTORE AND SERVICE
The KPI datastore and service are utilized to store the
results of the analytics workloads executed by the Processing
Engines. Analytics workloads are often used to calculate
KPIs - which explains the name of this module. However,
despite what the name might suggest, the KPI datastore
is designed to be a full-fledged storage service which can
support every kind of data - not merely KPIs - both in terms of
format and size. The KPI datastore and service was initially
designed as a supportive component to the BDA, in the sense
that was not considered as a part of its core functionality.
However, the need to offer a persistent storage service for the
outcomes of the calculations performed made us review that
approach. In its current implementation, the KPI datastore
is designed to use a classic RDBM system as its storage
backbone, sharing the same infrastructure with the Entities
Tables.

Every time a data-processing job is executed, we expect
a result to be generated. The outcome of a processing
job can either be a scalar or integer number, a matrix,
or even a more complex data structure of higher level.
Regardless of the data structure it might consist of, the
output of all processing workloads defined in the BDA is
persisted in a dedicated datastore for future reference and
quick retrieval. More specifically, the output of processing
workloads is wrapped inside a JSON object and pushed into
the appropriate database table using a library specifically
implemented for that purpose. The current implementation
only allows for the storage of serializable data types, but
we plan to extend this functionality to support any type of
data - including binary. Each job instance is given a uniquely
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identifying index upon creation. It is important to point out
that the same recipe can be used to implement multiple jobs.
An application that calculates the averages of some metrics
of interest could, for example, be utilized for a job that
calculates daily averages (executed every day) and another
that calculates weekly averages (executed once per week).
Workload results are stored in a dedicated table per job.
Result tables are automatically created using the recipe and
job indices and contain information such as the data of the
message that triggered the job execution (in case of streaming
processing), the result, and the timestamp that corresponds to
the moment the result is pushed into the database.

D. CONNECTIVITY INTERFACES

The Connectivity Interfaces of the BDA are implemented
by the Controller and Connector modules respectively.
The Controller module co-ordinates and orchestrates the
operation of all other BDA subsystem’s modules, handles
incoming messages and acts as a job scheduler. It has four
important functionalities:

(a) It manages the Pub/Sub subscriptions that need to be
created by the Connector module in order for the BDA
to receive messages.

(b) It is also responsible for forwarding these messages to
the Datastore when they are received (data ingestion).

(c) It acts as a scheduler that can trigger recipes execution
based on the type of incoming messages (streaming
execution) or in a periodic basis (batch execution).

(d) It secures the REST APIs of all modules.

This module interacts with every other internal BDA module.
Additionally, other external components can interact with it
through its REST API, secured by the Identity and Access
Management component. The Connector module acts as
the data ‘gateway’ for the BDA sub-system as it receives
messages from the Pub/Sub component and forwards them
to the Controller to handle them, i.e., forward them to the
Datastore for storage and launch any message-triggered jobs.

In particular, the Controller orchestrates the Pub/Sub
subscriptions that need to be created according to the defined
message types and forwards them to the Connector module.
The Connector module then connects to a Pub/Sub server,
subscribes to these topics and once it receives a message,
forwards it back to the Controller which interacts with
the Datastore module to store the event-related messages.
The Controller therefore has no direct interaction with the
Pub/Sub and only directs the traffic of the data that can flow
into the BDA.

The Controller can also be configured initially (and later on
during the BDA’s life cycle) to execute specific Analytics or
Machine Learning Recipes either in a batch or in a streaming
manner. To perform a specific KPI or ML calculation, the
corresponding Analytics or ML job is explicitly launched
by the controller. In the case of periodical batch processing,
it automatically launches the job every time the selected
period expires. In the case of stream processing, the execution
of a specific job is triggered upon the arrival of a specific type
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FIGURE 6. Containerization of the BDA.

of message. The configuration that will be used in each case
is retrieved from the meta-data tables described in the Data
Storage Engines sub-section.

The Connector is configured by the Controller to connect
with the Pub/Sub and specifically, subscribe to topics
corresponding to the documented message types. Upon
receiving a message through the Pub/Sub, it then parses the
incoming message and ingests the information stored in it
after having validated its format against an XML schema
that is declared during the message type definition process.
Finally, it forwards the message to the Controller module.

Implementation Details: The Controller module uses all
other modules of the BDA to facilitate the main function-
alities of the sub-system (data storage and processing). It is
implemented as a replicated Java-based service that runs
in a Jetty HTTP Web Server [22], deployed in multiple
container instances. These instances are accessible using a
proxy layer to achieve both load balancing and scalability
as well as high-availability. We use authentication and
authorization mechanisms for every action that is submitted
to the Controller through the REST API, as well as TLS
encryption for the input and output data.

E. DEPLOYMENT

In Figure 6 we present a deployment diagram for the BDA
and accompanying components such as the Pub/Sub and
Identity and Access Management (IAM) service. Blue boxes
represent containers hosting a service, while stacked blue
boxes represent multiple containers (based on the same
container image) that are part of a distributed service/system
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which can be scaled horizontally by adding more instances
of the same worker. This design was implemented with the
purpose of providing both scalability and fault-tolerance for
all of the included software components of the BDA.

The Storage Engines utilize the Apache HBase [14]
database to store the Event Log. PostgreSQL is also used
to implement the Entity Tables, KPI data store, as well
as store meta-data. An underlying Hadoop Distributed File
System (HDFS) [13] installation supports HBase and the
Apache Spark cluster, which implements Data Processing.
These are distributed services that can horizontally scale.
The same applies to the component implementing the
Publish/Subscribe message exchange mechanism, based
on Apache Kafka. We employ Zookeeper [29] to help
with the management and configuration integrity of our
distributed services. Finally, the Controller module, which
implements the connectivity and interactions between the
BDA sub-modules and external services such as the IAM and
Pub/Sub can be launched in multiple instances to achieve
higher throughput, if necessary. Deployment scripts for the
infrastructure have been made open-source and are available
online.’

Ill. ANALYTICS USING GEO-TEMPORAL DATA

After having presented the infrastructure, we move on to
discuss some characteristic use cases which we tackled in
the context of the project. This section will cover analytics
workloads that process geo-temporal data provided by the

5 https://github.com/iwnet/digitalization-infrastructure
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automatic identification system (AIS) [30], a short-range
coastal tracking system currently used on ships developed
to provide identification and positioning information to both
vessels and shore stations. We have identified two distinct use
cases where analytical workloads can be utilised in order to
extract interesting information from raw data, which will be
presented in detail in the next paragraphs.

A. DATA DESCRIPTION

Before we discuss the specifics of each use case, we consider
it’s important to highlight the properties and characteristics
of the data-set based on which this analysis has been
designed and implemented. The Automatic Identification
System (AIS) [30] is a maritime communication system
that allows ships to exchange information with other vessels
and shore-based facilities. AIS works by transmitting and
receiving data over VHF radio frequencies and is used to
provide vessel identification, position, speed, course, and
other information that can be useful for navigation, collision
avoidance, and maritime safety.

Our data set consists of an anonymized collection of
AIS messages dispatched by vessels active in the inland
corridor of River Weser. The data-set covers two calendar
years - namely 2018 and 2019. The anonymization process
has ensured that identification numbers (MMSI) for all
vessels have been altered in a way that cannot be reversed
- but maintains consistency by allocating the same altered
identification number for every data point referring to the
same vessel.

B. DISCOVERY OF AREAS OF INTEREST
1) PROBLEM DESCRIPTION
The first use case is the discovery of areas of interest in Inland
Waterway networks using clustering techniques. In general,
networks similar to those we can observe in inland waterways
can be modelled as graphs, where edges can be mapped to
navigable paths between stops, and nodes can be mapped
to stops. In the inland waterway context, such stops can be
terminals, bridges, locks, waiting areas, or even congested
parts of the network where traffic needs to be moderated.
Regardless of their function, these stops, or Areas of Interest
(Aol), are of critical importance for the operational aspect of
the network. They often function as bottlenecks, as vessels
typically have to spend significant time there while tasks such
as (un)loading, waiting for water levels to be adjusted, etc. are
performed [31]. The task at hand is to detect Areas of Interest
in a network without prior knowledge of the infrastructure.
This process can prove to be useful in cases where net-
works or parts of a network are unmapped. It can help provide
a list of geo-fenced areas as candidates for business experts
to tag, in order to map the network. It can, alternatively,
be utilised to detect parts of the network where traffic is
slowed down, therefore causing a degradation of the service
for the entire network. This analytical processing workload
was applied using the dataset described above, to locate Aols
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FIGURE 7. Heatmap of AIS messages from non-moving vessels.

in the corridor of River Weser. Our findings were shared
with the authorities who are responsible for the maintenance
and operation of these infrastructures and were also used
to discover patterns of vessel traffic and calculate KPIs
regarding the network performance as described in III-C. The
results of this analysis were used for the design and validation
of realistic simulations of the IWT network traffic, which in
turn can allow operators to optimize the performance and the
quality of their services.

The main concept, upon which our solution is built, is the
observation that Aols are generally locations where vessels
come to a stop. Thus, the problem is equivalent to that of
locating areas inside of which, instances of messages have
been sent reporting zero speed. As we expect vessels to
have spent significant time within these Aols, it is natural
to receive an extremely high number of AIS messages that
has originated from non-moving vessels operating there. As a
result, in order to discover the potential Areas of Interest
in the network, we search the data-set for clusters of data
points that correspond to AIS messages reporting zero speed.
In Figure 7 we present a heatmap of all the AIS messages
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FIGURE 8. Output of the automated discovery of areas of interest in
inland waterway networks using clustering - the clusters identified in
bright yellow frames.

corresponding to non-moving vessels. It is obvious that
certain parts of the corridor contain many more than others.
However, the clustering problem does not have an equally
obvious solution.

2) SUGGESTED SOLUTION
Taking into consideration the characteristics of the problem
at hand, where the number and shape of clusters is a priori
unknown, using the DBSCAN algorithm is a choice that
makes much sense. DBSCAN [32] (Density-Based Spatial
Clustering of Applications with Noise) is a clustering
algorithm that groups data points that are closely packed
together in high-density regions. The algorithm works by first
selecting a random unvisited data point, and then finding all
of the neighbouring points within a specified radius. If the
number of neighbours exceeds a specified threshold, the data
point is labelled as a core point. Otherwise, it is labelled
as a border point. Once all core and border points have
been identified, the algorithm proceeds to form clusters by
connecting core points with their nearby neighbours. Data
points that are not assigned to any cluster are labelled as noise.
Given the fact that a containerised Apache Spark cluster
backs the infrastructure we used in the context of the
IW-NET project, we selected to use GEOSCAN [33] to
implement the DBSCAN clustering algorithm. GEOSCAN
is an open-source implementation of DBSCAN created and
maintained by Databricks, the company that commercializes
Apache Spark. GEOSCAN leverages the H3 [34] geospatial
indexing system and the GraphX [35] graph processing
framework, built on top of Spark. The H3 geospatial indexing
system is a hierarchical hexagonal grid system developed by
Uber Technologies. It provides a way to divide the Earth’s
surface into hexagonal cells of different resolutions, allowing
for efficient indexing, analysis, and processing of geospatial
data, whereas GraphX is Apache Spark’s built-in API for
graphs and graph-parallel computation.
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GEOSCAN [33] can perform efficient distributed process-
ing. The core of the algorithm relies on GraphX to detect
points having more than a minimum number of neighbours
in a distance below a user-set threshold. The results of
this analysis can be stored in the widely adopted GeoJSON
format [36]. Figure 8 displays the output of this analytics
task executed for terminal detection depicted on a map. The
heatmap for locations where vessels have reported zero speed
is also visible for reference.

C. LIVE DATA ANALYTICS USING AIS DATA STREAMS

1) PROBLEM DESCRIPTION

The purpose of this second scenario is to utilise a data-set
describing an Inland Waterway network’s Areas of Interest
(Aol), combined with an incoming stream of AIS messages
from vessels navigating it to generate live data analytics
which can be helpful and provide visibility, transparency and
insights on the operational level of the logistics business.
A final processing stage can be executed on the resulting
condensed logs for the calculation of KPIs and analytics
in time windows selected by the users. Similarly with the
previous use case, we have shared the results of our analysis
with stakeholders in the business world who drove the
implementation of high-level solutions to the issues which
were revealed.

2) SUGGESTED SOLUTION

The main concept around which our proposed solution for the
live data analytics is built, involves the creation and regular
updates of condensed event logs in real-time. Having access
to a live stream of AIS data allows us to track the location
of vessels that sail in the network. However, according to the
AIS communication protocol standards, vessels can produce
an AIS message every few seconds. The rapid rate at which
these messages arrive results in an enormous amount of
data points which is challenging to process quickly and
efficiently. To mitigate this effect, we introduce the concept
of a condensed event log, per vessel - which we call vessel
STATE LOG, and per Aol - which we call Aol ACTIVITY
LOG.

Combining information about the vessels’ locations with
geo-fencing data that indicate Areas of Interest in the network
enables us to create a vessel STATE LOG for each one of the
vehicles, where we record entry and exit times into/from these
Areas of Interest every time the vessels visit them. Moreover,
we additionally create and regularly update a Aol ACTIVITY
LOG for each one of the networks Areas of Interest, where all
entries and exits the all vessels into/from the specific Point of
Interest are registered. Table 1 contains the attributes of the
STATE and ACTIVITY LOGS.

A motivating example of how our approach reduces the
data size to be processed is presented with the help of
Figure 9. We can see that after the vessel enters the Aol
indicated by the blue overlay and frame, it sends numerous
AIS before it exits its borders. For the needs of our analysis,
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TABLE 1. Attributes of the (vessel) STATE LOG and the (Aol) ACTIVITY LOG.

Attribute Description

VessellID Unique Identifier corresponding to the vessel

AOIID Unique Identifier corresponding to the Aol

EntranceTimestamp | Timestamp of the first message indicating the vessel with ID = VesselID entered the Aol with ID = AoIID
ExitTimestamp Timestamp of the first message indicating the vessel with ID = VesselID exited the Aol with ID = AoIID

bbbl

VesselID, AollID, Entry Timestamp, Exit Timestamp

Lengitude:

- B Timestamp: 20,
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FIGURE 9. Attributes of the (vessel) STATE LOG and the (Aol) ACTIVITY LOG.

we can ignore any messages that do not cause a change of
state for the vessel (i.e., in the context of our use case do
not indicate it has left the area). Therefore, moving from
the AIS data stream to the condensed Event stream that
implements the STATE LOG, reduces our data-set from
48 rows (equal to the number of AIS messages sent by
Vessell) to only one containing the VesselID, AoIID and
EntranceTimestamp/ExitTimestamp.

IV. WATER LEVEL PREDICTION USING NEURAL
NETWORKS

This section will delve into forecasting water levels for a
few stations in the Danube River using machine learning
techniques. The impact of the water levels on the nav-
igability and efficiency of Inland Waterway networks is
a topic well-documented in existing literature [37], [38].
Christodoulou et al. [38] discuss the impact of water levels
on the capacity of vessels with respect to their classification
and size. At the same time, significant effort is being made
to create tools that will allow captains and inland waterway
vessel crews to take information such as water levels into
account in their trip planning process, as evidenced in the
work by Prandtstetter et al. [39]. The importance of being
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able to forecast the water levels in waterway corridors cannot
be overstated, as it heavily influences the capacity of the
vessels and therefore the planning and operational stages
of the logistics business. In our case, our objective is to
provide forecasts as accurate as possible for an automated
decision-making process to take into consideration when
suggesting optimal routing in the planning/scheduling phase.

Our investigation involves the evaluation of multi-day
ahead forecasts, as well as daily predictions. By integrating
weather data into our predictive models, we aim to uncover
patterns and trends that contribute to more nuanced and
precise predictions. Although employed in the current setting
as a proof-of-concept, the main principles of our approach
can be generalized and utilized in any similar scenario. The
source code for this work can be found at GitHub.°

A. DATA COLLECTION

The training data for this study was derived from daily
measurements of water levels obtained from three distinct
stations situated in Austria, namely Kienstock, Pfelling,
and Wildungsmauer. This data is publicly available online
through the respective River Information Systems (RIS)

6https:// github.com/iwnet/water-level-forecasting
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View | Query saL
Time spent in any specific Aol per visit (in | SELECT AoIID, AVG(DATEDIFF(ExitTimestamp,
hours) (last 30 days window) EntranceTimestamp))/24 AS AverageTimeInAoI
FROM STATELog
WHERE EntranceTimestamp »>=
DATE_SUB(current_date(), 3@)
E GROUP BY AoIID;
v
@
> Average number of visits to any SpEl’_‘.iﬁC SELECT AoIID, COUNT(*} / 4 AS AverageVisitsPerWeek
Aol per week (last 30 days window) EROMSTALELER -
WHERE EntranceTimestamp >=
DATE_SUB(current_date(), 30)
GROUP BY AoIID;
Average total weekly number of vessel | SELECT (COUNT(*) / 4) AS AvgVisitsPerWeek
o visits by any vessel (last 30 days window) | FROM ACTIVITYLog
a WHERE EntranceTimestamp >= DATE_SUB
E (current_date(), 38);
=
G Total number of vessel visits for the | SELECT COUNT(*) AS TotalVisitsToAoIX
§ current week FROM ACT;VI"FYLOg
P WHERE ExitTimestamp »= DATE_SUB(current_date(),
7);

FIGURE 10. Queries.

FIGURE 11. Locations of the 3 measurement stations.

portals. The temporal scope of the data-set encompasses
a four-year period spanning from 2017 to 2020. Table 2
demonstrates a statistical analysis and comparison of the data
from each station. We present mean, standard deviation and
variance for each time series and in addition we include
the results of the Kruskal-Wallis [40] test to examine any
similarities between the datasets.

We use the data from each station separately, focusing
on predicting values for a given station rather than training
models to be used across all different locations. This approach
helps keep the complexity of each model low and make more
accurate predictions at the same time. In addition, we do not
train the models using data across the four-year span of the
whole data-set, but we create time frames of 6-month length
each. Each time frame is used as a training set and the 15 days
following the training set are used as a test set, meaning a ratio
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TABLE 2. Dataset statistics.

Stations Mean Standard Deviation | Variance
Kienstock 312.58 87.54 7663.42
Pfelling 223.32 78.55 6171.16
WM 284.02 83.65 6998.46
Kruskal-Wallis test
Test Statistic | 823.28 ] P-value [ 1.68e-179

of approximately 90% for training and 10% for testing, which
is consistent with the literature and prior work on predicting
water levels [41].

Daily weather data was collected for each of the
aforementioned stations. We collected daily measurements
for various weather metrics using the services of Visual
Crossing [42]. Daily weather data served as pivotal future
co-variates in our predictive models and specifically precip-
itation coverage emerged as a key focus, acknowledging its
influence on water level dynamics. For each training set, the
weather data exhibited a temporal length, same as the same
time frame as the water level measurements. Additionally,
an extra buffer of 15 days was appended to the weather data,
aligning with the duration for which predictions were sought.
In practical application scenarios, these additional 15 days
would be supplied as expected weather predictions.

B. MODEL TRAINING

The prediction of water levels involves a temporal aspect,
where each data point corresponds to a specific moment
in time. To address the sequential nature of this task,
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TABLE 3. Model selection.

Model type LSTM, RNN, GRU
Hidden dimensions | 32, 128, 1024, 2048
N° layers 1,2
Input length 10, 15, 21, 32
Output length 1,5 10

recurrent neural networks (RNNs) are generally considered
suitable [43]. Specifically, long short-term memory networks
(LSTMs) [44], standard RNNs [45], and gated recurrent units
(GRUs) [46] were identified as potential candidates.

We conducted a comprehensive exploration of various
model configurations to optimize predictive performance.
Table 3 provides an overview of the diverse configurations
we experimented with, encompassing different architectures
and hyper-parameter settings. Our experimentation involved
the manipulation of key parameters, including the number
of hidden cells, the architecture’s depth (single or double
layers), and variations in input/output sequence lengths.

Our models were trained using the Darts [47] library.
Darts is a Python library for user-friendly forecasting and
anomaly detection on time series. It provides many statistical
models as well as common machine learning models, such as
the ones we used in our work (LSTMs, GRUs and RNNs).
Darts simplifies the training process by simply requiring one,
or more, time series which are used to train models and
make forecasts. The time series are distinguished into two
different categories: the farget series, which are the series
we want to forecast, and the co-variate series, which can
potentially help forecast the target. In our work the daily water
level measurements are the target series and the weather data
are the co-variate ones. Darts’ models are initialized with
an input_chunk_length, the input length provided to
the model, and an output_chunk_length, used by the
library to calculate the training loss and adjust the model’s
parameters. As shown on Table 3 we experiment with various
input sizes and we conclude that models forecast best when
using the last 10 to 15 days.

During training, we pass to Darts a single target time-
series, the 6-month timeframe we are currently training
for, and it automatically creates training samples based
on the input_chunk_length and output_chunk_
length. The Darts library is responsible for creating
the training data-set from a single time series input,
provided an input and output length. There are several
possible ways to slice the series to produce training
samples, and Darts provides a few data-sets. We use
the default Sequentialdata-set, which simply builds
all the consecutive pairs of input/output sub-series (of
lengths input_chunk_length and output_chunk_
length) existing in the series, as shown in Figure 13.

An essential consideration in our approach is the efficient
use of computational resources. Despite employing a basic
CPU processor, the training of our models is swift. This
expedited training is attributable to the relatively modest size
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TABLE 4. Models evaluated for each station.

Station Model configurations
Model Hidden N° Input Output
Type Dimension | layers | Length | Length
Kienstock | GRU 32/2048 1 10/15 1/5
Pfelling GRU 128/2048 1 10/15 1/5
WM GRU 32/2048 1 10/15 1/5

and simplicity of the models we employ. Consequently, there
is no imperative need for GPU acceleration. This efficiency is
particularly advantageous, given our recurrent need to re-train
models regularly to accommodate the latest data and make
predictions for future periods. The learning rate for training
is chosen using PyTorch Lightning’s Tunerlr_find which
performs a range test of good initial learning rates, to reduce
the amount of guesswork, and we choose Mean Squared Error
(MSE) as the loss function.

C. RESULTS

To ascertain the models/configurations that excel in fore-
casting, the Root Mean Squared Error (RMSE) function is
employed. We train every configuration across various (but
not all) time windows. The RMSE is then calculated and
models with the lowest cumulative RMSE across all time
windows are identified as the most effective. Table 4 presents
a summary, delineating the optimal model configurations
for each station based on their superior performance in
minimizing RMSE. In this section, we will focus on these
models and their evaluation.

After selecting the best-performing models, we retrain
them to all consecutive time windows, across the history
data for each station, in order to make predictions for the
whole data-set. We consider two primary approaches to
comprehensively gauge the models’ performance: multi-day
ahead forecasting and sequential one-day forecasting with
iterative updates.

Moreover, we compare the performance of each model,
when removing the weather co-variate, evaluating the impact
of incorporating weather data into our models.

1) MULTI-DAY AHEAD FORECASTING

In the first evaluation scenario, the models are challenged
to predict water levels multiple days into the future. This
method is representative of a real-world application where
users may require an extended forecast to inform decision-
making processes. To conduct this evaluation, the trained
models are provided with the whole 6-month historical data,
which was used to train them, and their performance is then
measured against the true water levels for each subsequent
day over the forecast horizon.

It is evident that the models exhibit commendable perfor-
mance in capturing the overall trend of river water levels.
Despite occasional challenges in predicting sudden spikes,
the models consistently showcase proficiency in forecasting
fluctuations even up to a 16-day horizon. This implies a robust
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FIGURE 12. Multi day forecasts.

ability to provide stakeholders with valuable insights into
the general trajectory of river water levels over an extended
period.

In Fig. 12, we showcase results for each station for a
few consecutive time windows. Each vertical dotted line
represents a point in time where we re-trained the models
in the latest 6-month period before forecasting the following
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15-day window. In addition, Figures 15 display violin plots
which summarise the absolute error of each prediction day
across all successive time windows. Finally, tables 6, 5 and 7
showcase the average RRMSE, RMSE, MAE and SMAPE,
of each model for long forecasting, for each station, for the
most promising model configurations. In these tables we
also include two additional forecasting methods, two linear
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FIGURE 13. The slicing of two target time series to produce some input/output training samples, in the case of a

Sequential data-set (no co-variate in this example).

regression models (with different input sizes) and a naive
forecasting approach which simple forecasts the last available
measurement.

2) SEQUENTIAL ONE-DAY FORECASTING WITH ITERATIVE
UPDATES

In the second evaluation approach, the models undergo
scrutiny regarding their proficiency in delivering precise daily
predictions. This evaluation method involves augmenting the
input data with the actual value of each day, before forecasting
the next one, mimicking a realistic forecasting scenario. This
iterative process mirrors the dynamic nature of real-time
data, progressively providing the models with the latest data.
Ateach step, a prediction is computed, revealing the evolving
accuracy of the model as it adapts to the fluctuating conditions
of river water levels. Note that we still re-train the model
every 15 days with the latest 6-month time window. For this
evaluation, we prefer to train using an output length size
of 1, since we only want the model to focus on the next day
forecast.

This approach unveils the models’ heightened ability
to generate more refined predictions when granted the
opportunity to dynamically adjust to evolving data. The
iterative incorporation of true values from subsequent days
enables the models to responsively adapt to changing river
conditions, resulting in predictions that closely align with
observed values. Consequently, the day-to-day forecasting
method emerges as a notably more reliable and accurate
approach for short-term predictions, showcasing the models’
adaptability and precision in capturing the intricacies of daily
variations in river water levels. Tables 8, 9 and 10 showcase
the average RRMSE, RMSE, MAE and SMAPE of each
model for daily forecasts, for each station. Similarly to the
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TABLE 5. Models’ performance for Pfelling, long 15-day forecasting.

Model RRMSE | RMSE | MAE | SMAPE

( d?nlfgz/mvlvg“;ﬂfrl) 1955% | 55.13 | 47.42 | 17.411%
( d?nljgzl ﬁl"lvga;ﬁfrl) 1973% | 5547 | 47.93 | 17.48%
( dSanUzg”janggff 5 | 1998% | 5658 | 47.52 | 17.54%
( dlf’anUzg“l’an;g‘lff 5 | 2001% | 5672 | 4873 | 18.008%
(%I'I“fg‘roﬁfﬁ) 20.12% | 5812 | 4847 | 17.533%

( d?l‘[ljtgzl, mvlvga;ﬁfrs) 2093% | 5849 | 5115 | 18.88%
Last value (naive) 21.24% 58.54 48.45 17.164%

( d?rigzl’ ‘l‘l’l“l’ga(t)ﬁfrs) 2048% | 5859 | 50.33 | 18.377%
(%I'I“fgroﬁfﬁ) 21.63% | 6059 | 51.03 | 18.506%

( dSanUngjnWlegi‘g b | 2147% | 084 | 524 | 19.349%
( dSnRBg“l’an;i‘f: b | 21s6% | 6135 | 5359 | 19.345%
(dim: 12511311:{ soul) | 235% | 6552 | 5591 | 20215%
( dim:32?§;[110,out: b | 2374% | 6688 | 57.68 | 20.926%
dim: lzgil;I:JlO,out: b | 2443% | 6809 | sss | 21.588%
( dim;32§§lljs,out: 5) | 2434% | 6946 | 6064 | 21.936%
dim1 2§1§U1 Sows) | 2496% | TLI6 | 6181 | 22.543%
imi1 25’2‘{ ooty | 2571% | 7245 | 63.04 | 23.102%
( dim:32§113:]ij5,out:1) 2661% | 7437 | 6492 | 23213%
( dim;32i§:[1jo,out: 5 | 2707% | 7533 | 6502 | 23.578%

long forecasting case, we include two additional forecasting
methods, one using a linear regression model and one naive
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FIGURE 14. Next day forecasts: Predicting with the weather as co-variate vs training on water levels - Input is updated every day, the tip of each arrow
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FIGURE 15. Multi day forecasts - Distribution of RMSE for Each Day, Pfelling station.

approach, where we simply forecast the last measurement (no incorporate weather data. While the quantitative metrics
change) for the water level. may not exhibit a significant difference, a qualitative gain

For stations Kienstock and Wildungsmauer we see a clear is evident when examining graphical representations. For
potential in forecasting water levels, especially when we instance, in graph 14b, our model accurately predicts an
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TABLE 6. Models’ performance for Kienstock, long 15-day forecasting.

Model RRMSE | RMSE | MAE | SMAPE

( d?nfgz/ﬁlvlvga;ﬁfrs) 1578% | 53.66 | 4438 | 12.577%
( dfnﬁfzgﬁn‘:"fﬁﬁl) 1569% | 53.86 | 4536 | 12.953%
( dimﬁﬁiﬁ]&ou cy | 162% | 5573 | 4113 | 13471%
(i‘l“legroﬁfgl) 1606% | 5575 | 4642 | 13.284%
(i1 25?5}{ sowly | 1622% | 5612 | 4761 | 13.582%
dim: 1251121;{ ooutl) | 1646% | 5656 | 4727 | 13.44%
(dim: 12511311:{ Souss) | 1632% | 5666 | 4739 | 13.513%
(Er‘l“fgroﬁf%) 164% | 5691 | 47.97 | 13.728%

( dim:nﬁﬁ%’om: b | 166% | 5723 | ass3 | 14042%
( dim:32§llillj5,0ut: 5 | 1675% | 5772 | 48388 | 14.003%
( nglegVTan;gff s | 171% | 5876 | 4918 | 14201%
( dim:lzgﬁf{ oous) | 1728% | 5898 | 5023 | 14.248%
( dim;3zililljo,out: 5 | 1726% | 590 | 4957 | 14.003%
( d?rrligZ/, m“l’ga;ﬁfrl) 17.80% | 60.97 | 5053 | 14.312%
( diGHIigZ/, mvga;ﬂfrs) 1867% | 6204 | 52.67 | 14.905%
Last value (naive) 18.02% 63.42 52.48 14.749%

( dSanUng:anS‘g‘ff 5 | 1893% | 6all | sas1 | 1558%
( dE‘annganle;‘(l)’f: b | 1945% | 6498 | 5467 | 16.528%
( diGHIigZ/, Vlzl“l’ga;ﬂfrl) 2029% | 6861 | 5931 | 16.528%

upcoming increase in water levels (from 2017-12-03 to
2017-12-10), contrasting with a naive model that might
seemingly outperform in terms of RMSE. Notably, Pfelling
station, a location where linear regression models and naive
approaches excel, exhibits the lowest mean and standard
deviation, as highlighted in Table 2. This observation justifies
why a simplistic approach, such as forecasting the same
values each day, could yield better quantitative performance,
despite the nuanced insights provided by our model in
capturing dynamic patterns.

In Figure 14 we display the performance of daily forecast-
ing; for each daily measurement, we provide a prediction for
the next day. Each arrow represents a daily prediction; the
base of the arrow is the last measurement provided to the
model and the tip is the forecast for the next day.

D. RELATED WORK

The topic of utilizing statistical analytics, machine learning
and artificial intelligence techniques to make predictions
regarding the evolution of natural phenomena has been
common in literature ever since researchers have had large
enough data describing them, as well as the processing
power to analyze them, readily available. In contrast to our
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TABLE 7. Models’ performance for Wildungsmauer, long 15-day
forecasting.

Model RRMSE | RMSE | MAE | SMAPE
dim: 128G,il§11:J1 soucly | 1684% | SLUL | 426 | 14032%
( dim:32(j11i[1JS,out: 5 | 1709% | s1s4 | 4277 | 14.087%
( dfnRPzgvanles“iff 5 | 17.04% | sLss | 4347 | 1424%
dim: 1zgﬁﬂo,ouu | o | osir | a2se | 1anin
(';;“fgroﬁf%) 17.12% | 52.16 | 434 | 14291%
( dfanUzgvanng‘lff 5 | 1755% | 5225 | 43.99 | 14.496%
( dim:32?r]illjo,0ut: 5 | 1743% | 5236 | 4374 | 14.398%
( dSanUngjnWleggff b | 173 | 5273 | 4403 | 14701%
dim: IZSE{ ooy | 1751% | 5284 | 4406 | 14493%
( dim:32(,;]11i[1JS,out: b | 1763% | 5302 | 4383 | 14.396%
( d(i}rr}?:gll, m“l’ga;ﬁfrl) 17.68% | 5331 | 4637 | 15.281%
( d?nligz/, ‘l‘il"lvga;ﬁfrl) 17.83% | 53.86 | 4533 | 14.975%
( dim:lzgﬁg sows) | 1795% | 5417 | 4571 | 148%
(%;“f;’roﬁf%) 17.89% | 5436 | 4555 | 15.011%
( dﬁfgé“fnwfg‘i‘g b | 1818% | sad1 | 4484 | 14507%
( d?nlfgzlmvlvg“;ﬁfrs) 18.11% | 5515 | 46.13 | 14.973%
Last value (naive) 18.18% 55.54 46.34 | 15.175%
( dim;32€§11jo,ou Gl | 1868% | 5564 | 4717 | 15.409%
( diGrrliI;Z/, ‘lﬁlvlvga;ﬁfrs) 2103% | 6284 | 52.66 | 16.482%

approach, most studies aim at forecasting extreme events
which can cause natural disasters due to overflow [48].

In contrast to more traditional approaches, where the
physical systems had to be modelled in great detail, these
data-driven approaches have allowed researchers to generate
accurate predictive models based mainly on observation.
More specifically, concerning the topic of water level
prediction, a significant number of studies have been
published over recent years. In [49], Nguyen et al. utilize a
hybrid method that combines ARIMA and neural network
techniques such as KNN, SVR, RF, LSTM to forecast water
levels of the Red River in Vietnam. In similar fashion,
in [50], Ganetal. leverage the predictive capabilities of
the LightGBM model to outperform predictions obtained
from physics-based models, such as the non-stationary tidal
harmonic analysis model (NS_TIDE) for the lower Columbia
River, in the USA. In another approach to the problem of
predicting water levels of rivers, Ahmed et al. [S1] combine
historical measurements with rainfall data to train a model
that performs accurate predictions for a case study focused on
the Durian Tunggal River, in Malaysia. In a slightly different
context, Zhu et al. [52] study a system of 69 temperate lakes
in Poland and suggest models that can estimate their water
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TABLE 8. Models’ performance for Kienstock, daily forecasts (sorted by
RMSE).

Model RRMSE | RMSE | MAE | SMAPE

( dl?nRBg"ran;‘:j{ | s2% | 2821 | 222 | 6387%
" dfnRggV:nwleé‘%ftr | 821% | 2829 | 2204 | 6.263%
( d?n}igz/, \:;V;lga;llllet:rs) 821% | 2838 | 2096 | 5.897%
( d?n}ilsjzl, ‘z}"lvga;ﬁfrl) 831% | 2867 | 2224 | 6.301%
(Il‘rll“legrolzf%) 825% | 28.68 | 21.28 | 6.015%
(%I‘l“f;roﬁf%) 827% | 28.72 | 2132 | 6.046%

" dfnR}]zg"anfngf 5) | 838% | 2888 | 2195 | 6241%
( dim:32§§l1j5,out:1) 832% | 2888 | 21.62 | 6.136%
Last value (naive) 8.35% 29.05 20.79 5.753%

( d?n}?:gZ/, ‘l“l’qvlvga;l;‘:r]) 837% | 2906 | 2171 | 6.07%
( dim:nﬁﬁ%pm: 5 | 4% | 924 | 203 | 6237%
dim:1 ZSEU] oouly | S44% | 2027 | 2067 | 6.15%
( dim:32€rlilljo,out: b | sde% | 2052 | 2236 | 6285%
( dim:32§rlillj0,0ut: s | 851% | 2953 | 2271 | 6434
i ZSGIIEUI Soucl) | 855% | 2969 | 2264 | 6417%
( dffgg“;ﬂ‘”f;‘i‘f{ s | 864% | 2077 | 2246 | 6399%
( d?nlgé ﬁlvlvga;gfrs) 876% | 2992 | 2296 | 6.57%
dim1 28GIIEU1 oous) | S64% | 3004 | 23.04 | 6526%
im1 251131[}1 sous) | 871% | 3006 | 2275 | 6489%

levels based on the Feed-Forward Neural Network and Deep
Learning techniques. Finally, in [53], Wee et al. present a
comprehensive survey of papers that tackle the problem of
water level forecasting based on machine learning and report
the details of their findings.

E. OBSERVATIONS

We recognize significant potential in leveraging machine
learning for forecasting water levels. The weather co-variate
plays a pivotal role, proving essential for ensuring precise
predictions. In our study, we exclusively utilized weather data
from the specific location corresponding to the prediction sta-
tion in each case. Nevertheless, augmenting the models with
weather data from surrounding areas, influencing the river,
holds the promise of yielding even more superior results.

In general we see that the complexity and size of the
model does not play an important role. Using a bigger GRU
model with more hidden dimensions does not offer any
improved performance. Using smaller models gives us a
similar performance with the added benefit of faster training,
which is crucial since we re train the models every 15 days.

Concerning multi-day forecasting, our models excel in
capturing fluctuation patterns, though there exists some
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TABLE 9. Models’ performance for Pfelling, daily forecasts (sorted by
RMSE).

Model RRMSE | RMSE | MAE | SMAPE
Lastvalue (naive) | 8.76% | 2334 | 17.82 | 6.526%
(%;“fgroﬁf%) 8.94% | 2382 | 1783 | 6.672%
(%I‘I“f;‘roﬁfgl) 9.02% | 2393 | 17.94 | 6.733%
( d?nligé V;lvlvg‘ﬂfrl )| 876% | 2408 | 1931 | 6962%
( d?nligz/, ‘z}vlvga;ﬁfrl) 897% | 2447 | 196 | 7.092%
( diGnliléjzl, ﬁlvlvga(‘)ﬁfrs) 9.3% 256 | 2046 | 7.33%
( dgfgg"fnwfgfg 5 | 938% | 2575 | 2062 | 7.405%
( dlﬁfgg"fﬁfgi‘f{ b | 94w | 2595 | 200 | 75249%
( dim:32§r1?:lljo,om:1 , | oss% | 264 | 2036 | 7251%
(dim ZSEU] ooutl) | 6% | 2644 | 2055 | 7372%
¢ dfnR}ngan;‘i‘ff s) | 961% | 2653 | 2145 | 7.666%
( d?rigé ‘l’jlvlvg‘léﬁfrs) 9.60% | 2684 | 2148 | 7.727%
( dim:32311§:[1I5,0ut: 5 | 066% | 2692 | 2103 | 7494%
( dim:ngﬁﬂo’om: 5 | 989% | 2726 | 2111 | 7556%
( dim:32§§?o’ou es) | 989% | 2759 | 215 | 7.589%
dim: 1251131[:{ sous) | 1005% | 2807 | 2213 | 7835%
( dim:32§r}§:[1JS,0ut:l )| 1006% | 2841 | 2225 | 7.806%
( dim:lzgiljﬁ soul) | 1021% | 28.69 | 2208 | 7.733%
’ dl?nR}ngnwle;gff b | 1044% | 2062 | 2378 | 8244%

variance from the actual values. It is noteworthy that as
we extend our forecasting horizon, the disparity increases.
Despite this, we successfully maintain an accurate depiction
of the general trend in water levels. Figures 12 and 15
underscore the pivotal role of reliable weather predictions
in capturing these trends. In practical applications, obtaining
precise weather forecasts for periods beyond 5 days proves
challenging. However, our models only necessitate precipita-
tion coverage as an input, which may be more predictable in
the near future, even surpassing the 5-day mark.

The daily step forecast emerges as a markedly superior
method for predicting water levels. Ideally, in Figure 14,
each arrow tip should align with the corresponding water
level value. While this alignment is not consistently achieved,
especially during significant spikes and shallows, the model
demonstrates a remarkable ability to accurately predict trends
and forecast toward the correct values. Notably, in instances
of sudden spikes in water levels, our model exhibits a steep
increase in predictions 2-3 days prior to the actual rise.
This observation underscores the clear potential of employing
machine learning for water level prediction.

Overall, machine learning for water level forecasting
has yielded promising qualitative outcomes, showcasing the
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TABLE 10. Models’ performance for Wildungsmauer, daily forecasts
(sorted by RMSE).

Model RRMSE | RMSE | MAE | SMAPE
( dfnRgg“l’anS?ftr b | 821% | 2496 | 1922 | 6248%
( d?{ig; ﬁl"lvga;gfrl) 829% | 2509 | 1851 | 6.004%
( dl?nRgg“anfS‘gf: s | 835% | 2528 | 1922 | 631%
( d?nfigz/’ ‘z)vlvga;ﬁfrl) 837% | 2536 | 1894 | 6.143%
( dg%g:ﬁ;gff s | 843% | 2558 | 193 | 6312%
(%r‘l“fgroﬁf%) 843% | 25.69 | 19.11 | 6.184%
(%I‘l“f;‘roﬁte%) 851% | 2591 | 19.46 | 6.288%
( dHGanUzévfnwfg‘g‘g b | 854% | 259 | 1942 | 6343%
( dim:32€rlillj5,0ut: s | 858% | 2599 | 1958 | 6377%
( d?rigi ﬁlvlvgaégfrs) 871% | 2618 | 198 | 6.451%
( dim:32§§[1jo,out:1) 8.64% | 262 | 1983 | 6.456%
Last value (naive) 8.6% 26.25 19.52 6.192%
dim1 ZSEUI ooul) | 87% | 2649 | 19.66 | 6396%
im1 ZSEUI oouts) | 8T1% | 2661 | 2006 | 6561%
( dim:32(jrl?:[1j0,0ut: s | 879% | 2664 | 2001 | 6506%
( dim:32ﬁrlillj5,out: b | 88w | 2683 | 1988 | 6488%
( d?{ﬁgz/ﬁl"lvga;gfrs) 8.86% | 2684 | 1997 | 6511%
dim QSEU] sous) | 889% | 2702 | 2061 | 6746%
dim:1 ZSEUI soucl) | 902% | 2753 | 2027 | 6.644%

potential of accurate predictions. However, we acknowledge
certain concerns in the quantitative performance of the
models and that simpler approaches occasionally outperform
more complex models. That said, our emphasis in this study
leans towards the IW-NET system, considering machine
learning as a complementary proof-of-concept rather than
a definitive forecasting solution. Moving forward, further
research should address the constraints imposed by data
availability and model complexity to enhance the robustness
and reliability of water level predictions.

F. LIMITATIONS

It is clear that our machine learning models demonstrate
promising qualitative outcomes, however, there are limi-
tations in their quantitative performance. Metrics such as
RMSE do not show a substantial improvement, and in certain
instances, such as the Pfelling station in Table 9, the naive
approach and linear regression models outperform the GRU
models. It is crucial to acknowledge that the current challenge
lies in the limited availability of data for proper training and
experimentation with various machine learning models. Our
datasets consists of only four years of daily measurements
and is relatively small compared to the extensive datasets
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utilized in the literature [52]. Limited dataset size also affects
more complex models, like deep GRUs, that require more
data for successful training. Finally, a station like Pfelling
showcases less fluctuations as we can see at Table 2. The
mean and the standard deviation is much less compared to
the other stations, meaning not only that the models have less
samples to train, but also that naive approaches tend to be
more accurate since the water level does not fluctuate a lot
throughout the year.

V. CONCLUSION AND FUTURE WORK

In this work, we presented IW-NET BDA, an open-source
Big-Data enabled distributed processing framework that is
used to collect and process data from the Inland Waterway
Transport Logistics domain. We present IW-NET BDA'’s
architectural components and the deployment scheme of
the infrastructure. We finally describe two different actual
business cases where IW-NET BDA was used to perform i)
automatic Areas of Interest identification and geo-temporal
analytics and ii) water level forecasting using neural net-
works. In both cases, IW-NET BDA successfully tackles each
problem in hand. A geo-fencing method using DBSCAN
algorithm correctly identified existing point of interests in the
first case, whereas in the second case, Gated Recurrent Units
(GRU), a special category of Recurrent Neural Networks,
could efficiently predict water levels with a relatively small
error.

Our plans for future work involve expanding the supported
execution environments that the BDA can support out-of-
the-box by automating the configuration process, which for
the average distributed system is quite complex and often
presents a daunting challenge for system administrators.
By providing a ready-to-deploy environment we hope that
we can help developers experiment with new technologies
and test their code with minimal effort. Other improvements
involve supporting more complex workflows and improve-
ments on the way that stream processing is implemented.

Regarding water level forecasting, we see that utilizing
machine learning models becomes evident. Our current
research is constrained by the limited size of our dataset (the
historical water level measurements), as well as the available
weather data. Future work should focus on investigating
more sophisticated models trained over extended periods
to comprehensively analyze annual patterns and provide
the models with a greater number of samples and diverse
examples. Additionally, it is worthwhile to explore alternative
weather metrics beyond precipitation, such as snow coverage
or tide phase. While our study concentrates on weather
data at a specific station, it is reasonable to presume
that weather conditions in different areas may significantly
impact the water level at a particular station. Expanding our
analysis to encompass a broader range of weather variables
and geographic locations could enhance the accuracy and
applicability of our forecasting models.

Finally, a comprehensive environmental impact assess-
ment of the innovations introduced would be a very intuitive
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way to express the effectiveness of our suggested solutions.
However, such a study has not been performed in the context
of the project. Most of the developed software and hardware

are

prototypes, some of which are in the process of being

introduced in a production environment. Their impact can be
assessed after a short period of production-level operation.
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