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ABSTRACT Electrocardiogram is a heartbeat signal that can be used for the application of Human-
computer interaction. Electrocardiography (ECG) is a prominent way to analyze heart rate and to diagnose
cardiovascular disease. However, its availability has been restricted, especially in contexts with limited
resources, due to the cost associated with conventional ECG signal processing equipment. The importance
of ECG signal processing classification for improving early diagnoses in clinical and remote monitoring
contexts is highlighted here. The dataset considered for this work is MIT-BIH arrhythmia which has
15 categories and summarized in 5 classes Normal (N), Superventricular ectopic beats (SVEB), Ventricular
ectopic beat (VEB), Fusion beats (F), and Unknown beats (Q). The work discusses the importance of
automated classification techniques that make it possible to analyze vast amounts of ECG data effectively
and objectively. This research presents an investigation into the classification of ECG signals using various
Machine Learning (ML) methods. Specifically, the performance of Decision Tree (DT), Logistic Regression
(LR), Random Forest (RF), K Nearest Neighbor (KNN), and Support Vector Machine (SVM) algorithms are
examined. Among these classifiers, RF exhibits a remarkable accuracy of 98%. The results demonstrate the
superior performance of the proposed approach for heartbeat classification systems.

INDEX TERMS Electrocardiogram, signal processing, feature extraction, machine learning, random forest.

I. INTRODUCTION accurate diagnostic results. For an accurate diagnosis of

With the increase in health problems and the aging popula-
tion, the increase in cardiovascular disease is on the brick,
therefore, acquisition and classifying ECG signals are very
important. Processing and classification of ECG signals are
crucial for identifying cardiovascular disorders and keeping
track of heart health. The cost of typical ECG signal
processing methods, however, may limit their application,
especially in settings with limited resources. In 1901, Willem
Einthoven used a string galvanometer to build an ECG
machine. He labeled the numerous deflections with the letters
P, Q, R, S, and T to produce the ECG signal, which is shown
in Figure 1. Today’s medical research continues to produce
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cardiac disease, real-time processing is important. The ECG
waveform can be described by a high energy concentration
in the QRS complex and a low energy concentration in the
T wave and U wave. In 50% to 75% of ECGs, the T and U
waves are often not discernible [1].

One of the main causes of mortality worldwide is cardiac
illness. Cardiology specialists insist on early detection of car-
diac problems, frequently using an ECG signal, to treat heart
patients promptly and effectively. To appropriately define this
form of heart disease, numerous researchers are contributing
in this area. In [3] their suggested system includes a four-step
gathering of the ECG signal data (from the Physionet ST-T
and MIT/BIH databases), data preprocessing and denoising,
feature extraction, and classification of the signal utilizing an
enhanced random forest technique. Nowadays, direct ECG
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FIGURE 1. ECG signal with PQRST wave [2].
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FIGURE 2. Overview of ECG acquisition and classification.

signal acquisition is done using real-time ECG monitoring
instruments, which is a highly economical technology for
medical purposes, some of the work is highlighted here which
explains how frequent monitoring of cardiac signals helps in
the analysis of any abnormalities [4]. With the increase in
heart care cost the design of a cost-effective ECG monitoring
system is most required, recently many researchers have
designed and developed an ECG monitoring system that
sends the medical report from any portable device [5]. The
development of an ECG monitoring device will require an
amplifier, filter, and sensor. The sensor that can be used for
ECG acquisition is a non-invasive high-precision electrode
that can be placed on the surface of the patient [6], [7]. The
general approach to acquisition and analysis using Machine
Learning (ML) is depicted in Figure 2. An input signal is
taken from the MIT-BIH arrhythmia dataset, filter signal,
denoise, and amplify ECG signal for analysis purposes,
and Pre-processing of captured data and classification of
ECG signal from normal to abnormal class is done using
ML approaches. Improving the prediction of classifying
will help early diagnosis of cardiovascular disease, however,
considering insights from a review of pertinent state-of-
the art research the metrics considered and prediction rate
are less. The challenges faced in the literature are dealing
with missing and highly imbalanced data, selecting a robust
classification algorithm, navigating ECG signal complexity,
and computational complexity, and understanding method-
ological limitations.
The primary contributions of this research are as follows:
o A systematic evaluation and comparison of various
machine learning algorithms for ECG signal classifica-
tion, providing insights into their relative strengths and
weaknesses for this specific task.
« The investigation and incorporation of advanced feature
extraction techniques, including wavelet transforms,
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HOS analysis, and FFT, to effectively capture the intri-
cate patterns and dynamics of ECG signals, potentially
improving classification performance.

o The optimization and fine-tuning of the best-performing
machine learning algorithm(s), specifically Random
Forests, through hyperparameter tuning, to achieve
superior classification accuracy and robustness.

o The development of a reliable and accurate ECG signal
classification approach, which can potentially aid in
early diagnosis of cardiac disorders, remote patient
monitoring, and clinical decision support systems.

Classification of these 5 classes is done using Machine

Learning approach which is further explained in brief. The
organization of this work is as follows shown in Figure 3:
Section I is the introduction where ECG classification based
on different models is defined, section II defines similar
works, where other work based on Deep Learning (DL) is also
highlighted along with some work related to low-cost ECG
signal acquisition for real-time processing, section III defines
methods for analyzing ECG signal form dataset collection to
signal classification and section IV is results and discussion
explained of the proposed approach.

Il. RELATED WORKS

This review of the literature focuses on cutting-edge
methods and creative strategies used in the research on
efficient methods for classifying and processing ECG signals.
Some previous research studies have focused on finding
cardiovascular disease, particularly cardiac arrhythmia [10]
where a learning-based model utilizes three separate machine
learning techniques and three filter-based feature selection
approaches on the cardiac arrhythmia dataset and the model
chooses the best features. Random forest classifier with
the gain ratio feature selection approach and a subset of
30 features had the greatest accuracy of 85.58%. Similarly,
in [11] the work is based on the classification of automatic
detection of arrhythmia with an accuracy of 99.84% using a
discrete wavelet transform (DWT) heartbeat. Another work
has been proposed using the evolutionary neural system for
classifying 17 different myocardium dysfunctions with an
accuracy of 98.8% [12]. Many research projects have been
done using Deep Learning frameworks to develop a novel
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approach to automatically detecting myocardial infarction
(MI) using ECG signals with and without noise removal.
The Convolutional Neural Network (CNN) method for the
automated detection of normal and MI ECG beats achieved an
average accuracy of 93.53% and 95.22%, respectively [13].
The proposed algorithm is beneficial in clinical settings to
assist doctors in making the diagnosis of MI since it can
reliably detect unknown ECG signals even in the presence
of noise. Similar to this, improving the performance of such
models with an accuracy of 99.6% by developing a novel
hybrid hierarchical attention-based bidirectional recurrent
neural network with dilated CNN (HARDC) technique for
arrhythmia classification is proposed [14]. This addresses
issues that are brought about when conventional dilated CNN
models fail to consider the relationship between contexts and
gradient dispersion.

Multi-scale Convolutional Transformer Network (MCT-
net), a unique method for ECG signal classification,
is presented in [15]. It combines the best features of both
architectures, using Transformer to extract global features
through introspective processes and CNN to extract local
features. Another study [16] evaluates several deep-learning
techniques for the diagnosis of cardiovascular disease (CVD)
using electrocardiograms (ECQG). It evaluates multiple ECG
signal coding methods and uses multimodal fusion methods
to improve prediction accuracy. The study uses the PTB-XL
ECG dataset, which contains 21,837 records and labels for
four CVDs. The 1D-ECG representation performs better
than multimodal models and image-based techniques. With
a sensitivity of 79.67% and a specificity of 81.04%, the most
effective model is GRU. In [17] the use of CNN to analyze
ECG data without signal transformation or feature extraction
is done. The project attempts to classify ECG images of
individual heartbeats using CNNs and the Taguchi method.
All fifteen types (five classes) in the MIT-BIH arrhythmia
dataset are included in the study. The classification achieved
an accuracy of 96.79%. Another study based on a deep
learning-based system that detects irregularities in ECG data
and uses that information to predict arrhythmias and heart
failure combines Long Short Memory (LSTM) networks and
CNN [18]. In [19] the proposed approach extracts features
directly from input heartbeats using CNN. The Synthetic
Minority Oversampling Technique (SMOTE) is used to
solve class imbalance problems in the training dataset. The
method achieves an average accuracy of 98.63%, an accuracy
of 92.86%, a sensitivity of 92.41%, and a specificity of
99.06% when accurately classifying five different heartbeat
types.

Another work [20] suggested PSO-SVM optimized with
Independent Component Analysis and a Genetic Algorithm,
for categorizing ECG arrhythmia signals MIT-BIH Arrhyth-
mia database. The SVM classifier is optimized using a
Genetic Algorithm and Particle Swarm Optimisation. The
findings demonstrate that, with a classification accuracy
of 96%, the hybrid classifiers PSO-SVM-ICA and G-ICA
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outperform PCA, ICA, and PSO-SVM with ICA and G-ICA
in terms of performance measures. Deep learning-based
models have a problem maintaining accuracy on large-scale
ECG data, for this, a proposed deep learning-based signal
quality classification model is applied to dynamic monitor-
ing [21]. To give an overview of another aspect of ECG
signal monitoring, a wireless device can also be used that
is flexible and helps in acquiring biosignal in real-time,
[22], [23] suggests a wearable wireless sensor system that
identifies arrhythmia using ML techniques to categorize them
as healthy, non-healthy, or not specified. With early access to
hospital support systems and less congestion in hospitals, the
system can identify anomalies and arrhythmia disorders in
their early phases. The use of ensemble approaches has grown
in popularity recently across several fields, including biomed-
ical signal processing. Although the application of ensemble
techniques to the classification of ECG signals has been
widely studied, learning from comparable approaches used in
peptide analysis and disease prediction could offer important
new insights. In this section, several relevant approaches
are reviewed, including iAtbP-Hyb-EnC, AFP-CMBPred,
pAtbP-EnC, iAFPs-EnC-GA, and pAVP-PSSMDWT-EnC,
which employ ensemble techniques in the context of different
diseases. In [24] to improve prediction accuracy, the iAtbP-
Hyb-EnC model, which has been developed for the identifica-
tion of antitubercular peptides, applies an ensemble learning
strategy. As evidenced by its improved accuracy over current
predictors, iAtbP-Hyb-EnC achieves robust performance by
merging various classification algorithms and feature repre-
sentation techniques. Similarly, in [25] AFP-CMBPred uses
an ensemble-based framework to predict anticancer peptides.
AFP-CMBPred provides enhanced predictive capacities by
utilizing ensemble learning approaches, hence advancing the
field of anticancer peptide research. In [26] the pAtbP-EnC
model is suggested for precisely identifying antitubercular
peptides in the field of peptide analysis. By using an
ensemble method, pAtbP-EnC improves prediction accuracy
by addressing the issues brought about by the fast expansion
of peptide samples. Furthermore, the pAVP-PSSMDWT-EnC
and iAFPs-EnC-GA models in [27] are made to find peptides
linked to particular biological activities, like antiviral and
antifungal characteristics. These models precisely predict
peptide functionality by extracting features from sequential
and evolutionary descriptors through the use of ensemble
learning techniques. By drawing comparisons between these
approaches and the classification of ECG signals, ensemble
techniques could enhance the precision and dependability
of ECG-based disease diagnosis. Ensemble models provide
a strong foundation for handling the intricacies involved in
ECG signal analysis by combining several feature extraction
techniques and classification algorithms. By conducting this
comparative investigation, this study tries to improve the
field of ECG signal categorization and aid in the creation of
useful diagnostic instruments for cardiovascular disorders by
utilizing knowledge from adjacent fields.
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ECG Dataset
Class (V, SVEB, VEB,
FB, Q)

Training set (80%) Testing set (20%)

\/

biord.4 Wavelet Transform biord.4 Wavelet Transform

Median filtering Median filtering

P

20,000 samples in up
sampled of minority class.

Power Spectral density using
spectrogram & 2D Histogram —

with Feature Extraction

X

Feature Extraction
HOS (Skewness, Kurtosis, mean,
median, sum, standard deviation, R
peaks) & FFT

without Feature Extraction

Classifier Used
LR(65.9%), SVM(94%),
DT(93%), KNN(93.4%), RF(97%)

Comparison
Result in
Table 3 &
Table 4

Classifier Used
LR(91.3%), SVM(96.6%),
DT(95.5%), KNN{97%), RF(98%)

Best Result RF
hyperparamter fine tune
(n_estimator=100,200)
(random_state=42)(98%)

Comparison
with state-of-
the-art work
shown in
Table 5

Resulis:
Sensitivity: N- 0.99%, SVEB:0.74%, VEB:0.93%, FB: 0.78%, Q: 0.96%
Specificity: N2 0.99%, SVEB:0.98%, VEB: 0.96%, FB: 0.99%, Q:0.97%
Positive Predictive: N: 0.99%, SVEB: 0.74%, VEB: 0.96%,FB: 0.89%, Q: 0.96%

FIGURE 4. Methodology of a proposed approach.

lIl. METHODS

The dataset considered is MIT-BIH Arrhythmia and various
ML techniques that are used for the categorization of datasets.
Figure 4 shows the entire methodology of a proposed
approach.

A. DATASET DESCRIPTION

The training and testing of the model are first done using
the MIT-BIH database, this dataset contains 48 annotated
ECG recordings from 47 different subjects for 30 minutes
and is sampled at the frequency of 360 Hz [8]. Continuous
measurement of heart activity is done where annotations for
various arrhythmias are included. This dataset has widely
been used for developing classification algorithms for the
detection of various heartbeat types and heart rate variability.
There are a total of 15 classes or heartbeat types of arrhyth-
mia classification: Normal rhythm beats (N), Left Bundle
Branch Block (LBBB), Right Bundle Branch Block (RBBB),
Artial Premature Contraction (APC), Premature Ventricular
Contraction (PVC), Ventricular Escape Beat (VEB), Nodal
Escape Beat (NEB), Atrial Fibrillation (AF), Supraven-
tricular Tachycardia (SVT), Ventricular Tachycardia (VT),
Fusion of Ventricular and Normal Beat (FV), Fusion of
Paced and Normal Beat (FP), Atrial Flutter (AFL), Second-
Degree Atriventricular Block (AVB) and Unknown Beat (U).
These are the different and wide range of heartbeat rhythm
patterns that provide a dataset for analysis and classification

57730

TABLE 1. Dataset classification.

Class Name | AAMI Class MIT-BIH Class
Normal Beat
Left Bundle Branch Block Beat
N Normal Beat Right Bundle Branch Block Beat
Atrial Escape Beat
Nodal Escape
Artial Premature Beat
SVEB _ Aberrated Atrial Premature Beat
Superventriculyr ¢ o ventricular Premature Beat
Ectopic Beat P
Ventricular Escape Beat
Ventricular . .
VEB Ectopic Beat Premature Ventricular Contraction
Ventricular Escape Beat
FB Fusion Beat Fusion of Ventricular and Normal Beat
Paced Beat
Q g:zli(tnown Fusion of Paced and Normal Beat
Unclassified Beat

TABLE 2. The training and Testing dataset’s executive summary.

Class Name | Training Set Testing set | Percentage%
N 72471 18115 82.8%
SVEB 2223 556 2.5%

VEB 5788 1448 6.6%

FB 641 162 0.7%

Q 6431 1608 7.3%

Total 87554 21889

algorithm development. Researchers [9] have described these
15 different ECG classes using the AAMI (Association for
the Advancement of Medical Instrumentation) standard into
5 different classes that are N, SVEB, VEB, F, and Q. Table 1
shows the classification of the dataset by AAMI for the
MIT-BIH dataset.

B. ECG DATASET

The ECG dataset is divided into training and testing sets
with a ratio of 80:20. The description of different class data
is shown in Table 1. Class-based assessment is employed.
In previous research, [9], [28] [29], [30] [31] numerous
studies have yielded promising outcomes in the classification
of heartbeat segments based on the class of arrhythmia
using the MIT-BIH Arrhythmia Database. This database
contains a substantial amount of annotated heartbeat data,
comprising a total of 109,446 labeled instances across five
distinct arrhythmia classes. To facilitate model evaluation and
performance assessment, the dataset was divided into training
and testing subsets, following a ratio of 80:20. The heartbeat
segments were acquired through meticulous annotation of
beat locations, ensuring an accurate representation of the
underlying arrhythmia patterns. Table 2 shows the traning and
testing set of all class.

C. PRE-PROCESSING OF ECG SIGNAL
The dataset may contain noises like baseline drift, artifacts
noise, and redundant data, so to denoise it is necessary to
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FIGURE 7. Filtered ECG signal.

pre-process the data. Figure 5 shows the original ECG signal
from the MIT-BIH dataset, which needs pre-processing.

To denoise the signal a wavelet transforms specifically
‘bior4.4 wavelet’ [32] is used where the input signal is
decomposed into wavelet coefficients, and a nine-level
wavelet decomposition is performed to maintain the signal
no matter how much the signal fluctuates. The coefficients
from O to cutoff low are set to zero similarly a coefficient
from cutoff high to the end is set to zero hence removing
the corresponding frequencies in the reconstructed signal.
Figure 6 shows the input ECG signal with a black line and
the denoised signal with a yellow line.

Multiple median Filtration of different widths is used for
baseline fitting [33]. This approach aims to estimate and
remove the baseline or low-frequency values from the signal,
keeping only the signal of interest. Figure 7 shows the
difference between the given ECG signal in the purple line
and the filtered signal in black line.

D. NORMALIZING ECG DATASET
The considered dataset, MIT-BIH contains an imbalance
of data that may suffer from misclassification because of
the majority class. In the dataset, the maximum number of
data approximately 82% belongs to the normal class, which
may lead to severe causes in medical applications. Further,
to normalize the data, following steps are used:

1) Divide the initial dataset into various subgroups

according to the class:

o Produce a subset that includes samples with values
of N and so on.

2) Increase the sample size of the minority class subsets
to match that of the majority class:

o Create upsampled copies of each minority class
subset by randomly selecting samples from each
subset and replacing them.

o State that there are 20,000 samples in the upsam-
pled subsets for each class.

VOLUME 12, 2024

unknown Beats

normal beat

Ventricular ectopic beats

Fusion Beats

Supraventricular ectopic beats

FIGURE 8. Class normalization of ECG dataset.

o To ensure the reproducibility of the upsampled
subsets, use a separate random state.

3) Combine the majority class subset and the upsampled

subsets which creates a new dataset.

By boosting the number of samples in the minority classes
through upsampling, this algorithm aims to correct the
dataset’s class imbalance, as shown in Figure 8. Ensuring that
all classes are represented equally in the dataset, can help
machine learning models that were trained on uneven data
to perform better.

E. ECG VISUALIZATION

The overall distribution of the data and the frequency content
of the signal over time can be seen in great detail on the
spectrogram which is the strength of a signal with a frequency
range in Figure 9. The length of each segment was set to
256 samples, and the overlap between segments was set to
128 samples for the computation of the spectrogram. To make
power changes more visible, the spectrogram was plotted
using (1)

logarithmicscaling(10 x np.log10(trainingdata)). (1)

The strength of the frequency components at various time
intervals is shown by the colour intensity in the figure with
the help of the spectrogram visualization, it shows frequency
content changes over time and acquires an understanding of
the underlying dynamics and patterns of the signal.

A 2D histogram is one way to graphically represent the
values of the distributed pixels within an ECG signal. It offers
information on the frequency and occurrence of particular
intensity levels across various signal regions. The y-axis
displays the intensity values of the signal inside each interval,
and the x-axis divides the ECG signal into discrete time
intervals (bins). The bin’s colour represents the number of
occurrences or frequencies of various intensity values inside
each time interval, which is used to produce the histogram.
This makes it possible to see how the intensity values are
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FIGURE 11. Class Q.

distributed throughout the ECG signal. It can aid in locating
dominating intensity values or clusters shown in Figure 10
to Figure 14 for each class, evaluate the signal’s symmetry or
variability, and highlight any outliers or odd intensity patterns
as done in the research study [34].
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2D plots of 5 types of ECG segments class N, Class Q,
Class VEB, Class SVEB, class FB which show the intensity
distribution throughout the ECG signal.
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F. FEATURE EXTRACTION
The amplitude, temporal, statistical, and frequency-based
feature of ECG is extracted for analysis of the signal. R-peaks
and their corresponding T-peaks, amplitude, QRS duration,
and overall signal statistics are explained below:

1) Initialize an empty list called features to store the

extracted features.
2) For each sample in the dataset:
« To find an asymmetry of the distribution of ECG
signal skew is calculated.

X; —X)?
Skewness = 2((1—3)) )
n-o
o To find the shape and distribution of the ECG
signal
X; — X)*
Kurtosis = M -3 3)
n-o*

where X; represents the individual observations, X
is the mean of the observations, n is the sample
size, and o is the standard deviation.

o For R-peak calculation peakutils.indexes() is
used where peak detection is based on thresh-
0ld=0.5 and minimum distance =100

o For QRS duration it is calculated using np.diff()

3) Statistical metrics such as (mean, median, sum, and
standard deviation) from the R-peak amplitudes.

4) Finally Fast Fourier Transform (FFT) converts the
signal from the time domain to the frequency domain.

G. ECG SIGNAL CLASS
As discussed in the introduction, there are 5 classes for ECG
signals normal (N) and abnormal (VEB,SVEB,FB,Q), after
preprocessing and extracting features of individual signals it
is classified as follows:

1) NORMAL (N)

The regular electrical activity of the heart during normal sinus
rhythm is referred to as the ‘“‘normal beat class’ as shown in
Figure 15 in the ECG readings. It depicts the typical pattern
of cardiac depolarization and repolarization that take place
in a healthy person devoid of any obvious abnormalities or
arrhythmias [35], [36]. The following traits define the typical
beat class:

o Regular Rhythm: Heartbeats that are considered normal
have aregular rhythm and a constant pause between each
beat.

« P Wave: A P wave, symbolizes the depolarization of the
atria and is present during a regular beat. Before the QRS
complex, there is a tiny upward deflection called the P
wave.

e« QRS Wave: The depolarization of the ventricles is
represented by the QRS complex during a typical
heartbeat. It is made up of the Q, R, and S waves. The
QRS complex typically has a short duration and a limited
width.
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FIGURE 15. Normal heart beat.

o T Wave: The repolarization of the ventricles is repre-
sented by the T wave in a typical beat. The waveform
that follows the QRS complex is often symmetrical and
smooth.

o Heart Rate: The average adult’s heart rate at rest is
between 60 and 100 beats per minute when it is beating
normally. Depending on elements like age, level of
physical activity, and general health, it could differ
slightly.

2) UNKNOWN BEAT (Q)

In ECG signals, a category known as the “unknown beat
class” designates a beat whose precise nature or classification
is unsure or ambiguous [36], [37]. It reflects situations where
the ECG waveform either exhibits characteristics that make
it difficult to assign to a single group or does not match any
specified classes shown in Figure 16. It has the following
characteristics:

« Morphological patterns with ambiguity: ECG wave-
forms that display morphological characteristics that
differ from regular beats but do not match any specified
aberrant patterns frequently fall under the category of
unknown beats. These beats might have special qualities
or special traits combined, making it challenging to
categorize them precisely.

o The diversity of unidentified beats: The unidentified
beat class may be diverse, including a variety of ECG
anomalies that don’t meet predetermined standards.

« Arbitrary classification: Since different experts or algo-
rithms may interpret the same waveform in different
ways, determining the class of an unknown beat might
be arbitrary.

o Quality of Data and Noise: Unknown beats may be
present in ECG recordings that are noisy or of poor qual-
ity. Accurate categorization can become increasingly
difficult due to signal artifacts, electrode placement
difficulties, or other sources of interference.

« Insufficient Reference Data: There may not be much of
the unidentified beat class in the literature or datasets
that are already available.

3) VENTRICULAR ECTOPIC BEAT (VEB)

In ECG signals, aberrant electrical impulses that come from
the ventricles and cause premature ventricle contractions
outside of the regular sinus rhythm are referred to as
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FIGURE 16. Unknown beat.
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FIGURE 17. Ventricular Ectopic beat.

VEB [37], [38]. The VEB class is shown in Figure 17 and is
described here, along with some of its distinguishing features:

o Ventricular Premature Depolarization: It occurs earlier
in the cardiac cycle than anticipated, breaking the
regular rhythm. They are distinguished by an early QRS
complex that indicates ventricular depolarization and
can be seen before the following anticipated normal beat.

o Broad QRS Complex: Compared to normal beats or
other aberrant beats, the QRS complex in VEB is
broader and distinct. Due to the aberrant conduction, the
enlarged QRS complex represents a delayed or improper
activation of the ventricles.

o Unusual T Wave: In contrast to regular beats, the T wave
in VEB may have an opposing polarity or morphological
abnormalities.

« Restitutionary Pause: A compensating pause follows a
ventricular ectopic beat to give the heart time to regulate
its electrical activity and resume the regular rhythm. This
gap in the ECG data, which is longer than the typical
pauses between normal beats, may be seen.

o Periodic or Recurrent Occurrence: Ectopic beats in the
heart’s ventricles can happen sometimes intermittently
or regularly.

4) SUPRAVENTRICULAR ECTOPIC BEAT (SVEB)

The aberrant electrical impulses that come from the atria
or the atrioventricular (AV) node and cause premature
contractions that take place outside of the regular sinus
rhythm are referred to as SVEB in ECG signals [37], [39].
The SVEB class shown in Figure 18 is described along with
some of its features:

« Atrial pre-depolarization: It occurs earlier in the cardiac
cycle than anticipated, breaking the regular rhythm.
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FIGURE 18. Superventricular Ectopic beat.

They can be identified by an early P wave or atrial
depolarization.

o Narrow or regular QRS Complex: The ventricular
depolarization is represented by the QRS complex,
which is normally normal. Given that the premature beat
originates from the atria or the AV node, the narrow
QRS complex shows that electrical conduction across
the ventricles is normal.

« Modifications to P Wave Morphology: Variations in the
P wave’s amplitude, length, and shape, which reflect the
aberrant atrial depolarization brought on by the ectopic
beat.

« Restitutionary Pause: SVEB followed by a compen-
satory pause before the regular beat, just like VEB. This
delay, which appears as a gap in the ECG recording,
enables the heart to reset may be seen.

o Periodic or Recurrent Occurrence: SVEB can occur
sporadically or infrequently, known as isolated PACs,
or they can happen frequently, referred to as supraven-
tricular ectopy.

5) FUSION BEAT (FB)

In ECG signals, the term “‘fusion beat class™ refers to a
special kind of beat that happens when a regular sinus
beat and a VEB overlap in the cardiac cycle, creating a
composite waveform that demonstrates traits of both beats.
FB happens when the normal conduction channel and the
abnormal pathway connected to the VEB are both activated
at the same time [28], [37]. Figure 19 shows FB and some of
its features are:

« Combination of Normative and Pathological Features:
FB combines elements of both regular sinus and VEB
in their appearance. A normal P wave, which represents
atrial depolarization, a normal or narrow QRS complex,
which represents ventricular depolarization, and an
altered T wave, among other anomalies, may all be seen
in the waveform.

e Modular Morphology: Depending on the timing and
level of overlap between the regular sinus beat and
the VEB, the morphology of FB can vary greatly.
The resulting waveform is distinctive and can be
distinguished from other beat patterns because it may
have blended.

o Transitional Timing: It happens when the time of the
VEB and the regular sinus beat within the cardiac
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FIGURE 19. Fusion beat.

cycle coincide. During a particular phase, the electrical
activation coming from both pathways unites, fusing the
two waveforms.

o Fusion Complex Exists: It is represented by the fusion
complex, which combines both typical and atypical
characteristics. Morphological alterations are possible,
a typical P wave followed by a QRS complex with
characteristics modified by the VEB.

H. CLASSIFICATION USED

The classification of the data varies depending on the
number of factors involved and is contingent upon the
desired outcome of the research. To determine the most
suitable approach for ECG classification, machine learning
classification techniques such as Decision Tree, Random
Forest, Support Vector Machine, and Logistic Regression are
employed.

1) DECISION TREE
Several straightforward and interpretable decision rules make
up the tree structure. In the medical area, where researchers
and practitioners frequently need an understanding of the
decision-making process, this might be helpful [40]. DT can
automatically identify pertinent features from the input
data that relates to the morphology, thythm, or timing of
heartbeats. This can aid in accurately classifying ECG signals
by highlighting key features. This algorithm may efficiently
mimic the nonlinearities that ECG signals can exhibit, which
include complicated patterns and changes. DT algorithm is
capable of efficiently handling enormous datasets or when
real-time classification is necessary. DT can be merged with
other algorithms to create ensemble approaches like Random
Forest or Boosting, which enhance classification perfor-
mance. The following parameter is set during simulation.
o Criterion to measure the quality of split is “gini”
o Splitter = “best” which chooses the best split point
o max_depth = 100
o min_sample_split (min number of samples required to
perform a split) =2
« min_sample_leaf (minimum size of a leaf node to avoid
further splitting) = 1
o max_fetaure = ‘“none” all features are considered
equall
o class_weight = “none” all classes are treated equally
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Researchers have shown that decision tree is one of the
most widely used classification techniques for ECG signals.

2) LOGISTIC REGRESSION
Binary classification problems are ideally suited for logistic
regression. It is frequently necessary to distinguish between
normal and pathological ECG patterns when classifying
ECG signals. Logistic regression uses a linear decision
boundary to represent the association between the input
features (ECG signal properties) and the target class’s
log odds. Despite the complexity of ECG signals, logistic
regression can still be useful when the distinction between
classes can be roughly represented by a linear function.
It captures the linear correlations between class probabilities
and characteristics. Logistic regression is computationally
effective and is capable of handling huge datasets with a
variety of features. ECG signal databases are frequently large
and contain a lot of properties or features that were taken from
the signals. Such multidimensional data can be handled by
logistic regression, which can produce accurate classification
results [41]. The parameters considered during the simulation
are as follows:

« random_state = 0 (same sequence of random number is

generated)

o penalty “L2” for regularization

o Solver “Ibfgs” for multi classification problem

o max_iter =100 (maximum epochs solver will run to

optimize the LR model)

While logistic regression is widely employed as a classi-
fication technique, researchers often favor other machine
learning approaches for ECG classification due to its inherent
linearity assumption, dependence on manually engineered
features, and susceptibility to overfitting.

3) SUPPORT VECTOR MACHINE

SVM handles nonlinear data, resistance to noise, and capacity
for handling high-dimensional data. Through the use of
kernel functions, SVMs can capture nonlinear correlations
between input characteristics and class labels. SVMs may
successfully differentiate several classes of ECG signals by
translating the input data into a higher-dimensional feature
space. ECG signals are frequently represented by a large
number of characteristics or data points, or high-dimensional
data. SVMs are effective at handling high-dimensional data,
even when there are more features than samples. They
construct the decision boundary using a subset of the training
data known as support vectors, which aids in preventing
overfitting and lowering computational costs.

Electrical interference, muscular movement, and improper
electrode placement can all cause noise to interfere with the
ECG data. Compared to some other classifiers, such as neural
networks, SVMs are less sensitive to noise. SVMs are more
resistant to noisy data points because of the maximum margin
concept, which seeks to identify the decision border that
maximizes the separation between various classes [42]. The
parameters that are considered during the simulation are:
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« svm_model: Creating a pipeline for SVM classification
using SVC.
« crossvalidation = 5 for feature selection
o params-grid: hyperparameter combinations for the SVM
Classifier The dictionaries contain the following key-
value pairs:
— parameters for different SVM kernels, such as ‘rbf’,
‘linear’, ‘poly’, and ‘sigmoid’.
— Define values for other hyperparameters like ‘C’
and ‘gamma’

o For each SVM model type (linear, polynomial, RBF,
sigmoid):
— Create an SVM model with the best hyperparame-
ters obtained from grid search which is rbf SVM.

This explains the effects of various percentile values on
feature selection, views the performance of the classifier,
and identifies the most effective SVM hyperparameters. This
iterative method aids in improving the classification model’s
accuracy and ability to generalize to new data.

4) K-NEAREST NEIGHBOR (KNN)
ECG signals frequently display intricate patterns and non-
linear connections between the input features and the
appropriate classes. KNN is a non-parametric technique
that successfully captures non-linear decision boundaries
without relying on presumptions regarding the distribution
of the underlying data. The classification of ECG signals
may include the use of numerous features that have been
derived from the signals. High-dimensional feature spaces
can be handled by KNN without incurring a large processing
burden [43]. The parameters that are considered during the
simulation are:
o knn = KNeighborsClassifier(n_neighbors=5)
n_neighbors: The number of neighbors to consider for
classification is set to 5

5) RANDOM FOREST

Random Forest is a prominent algorithm used for ECG
classification. RF is frequently used for ECG categorization
for the following reasons: Robustness to Noise, ECG signals
are complicated and nonlinear by nature. The non-linear
correlations between the input features and the target classes
can be captured by RF. It can simulate intricate decision
boundaries, enabling precise ECG signal classification. RF is
a technique for ensemble learning that blends various
decision trees to produce predictions. A random selection
of features and samples is used to train each tree, which
lowers the possibility of overfitting and boosts generalization
efficiency. Due to the ensemble method, RF is more resistant
to noise and variability in ECG readings. This algorithm is
capable of processing high-dimensional data with numerous
features, which is frequently the case in the categorization of
ECG signals. With minimal computational overhead, it can
effectively handle feature sets with hundreds or thousands of
features [44]. The parameters used for the simulation are:
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TABLE 3. The summary of the performance of a ML model before feature
extraction for overall class N, SVEB, VEB, FB, Q.

Model Accuracy%  Precision %  Recall %  Fl-score %
Decision Tree 0.93 0.712 0.835 0.763
Logistic Regression  0.659 0.442 0.762 0.472
Random Forest 0.974 0.912 0.873 0.892
Polynomial SVM 0.919 0.958 0.919 0.933

rbf SVM 0.94 0.964 0.94 0.948
KNN 0.934 0.716 0.8968 0.78

n-estimators (number of decision tree to be used) = 100
max-depth = None (no limit on the depth of tree)
min-sample-split (min number of samples required to
perform a split) =2
min-sample-leaf (min size of a leaf node to avoid further
splitting) = 1

« max-feature = “auto” or ““sqrt” square root of the total

number of features is considered at each split

o = “true”
By enabling the evaluation of feature importance, tree
architectures, and prediction routes, RF offers insights into
the decision-making process. RF is a flexible and strong
algorithm that can manage the difficulties associated with
ECG categorization. It is a well-liked option for analyzing
ECG signals and precisely classifying them into several
classes.

IV. RESULTS AND DISCUSSION

In this section, we will discuss the result of our experiment.
Furthermore, for further analysis and classification, various
ML models have been employed for the accurate classi-
fication of ECG signals. For ML the parameters used for
the performance evaluation are accuracy, precision, recall,
specificity, positive predictive value (ppv) for all classes that
are calculated by the values of True Positive (TP), True
Negative (TN), False Negative (FN) and False Positive (FP)
the value of Fl-score is calculated by (4)

F1 =2 x (precision x recall)/(precision + recall)  (4)

This research presents a comparative analysis of various
supervised learning algorithms, including DT, SVM, KNN,
logistic regression, and RF, for the classification of ECG sig-
nals. The classification performance of these algorithms was
evaluated before the feature extraction process, as depicted
in Table 3. The findings shed light on the effectiveness of
different algorithms in handling ECG signal classification
tasks prior to feature extraction.

Random forest demonstrated promising results, suggesting
its suitability for ECG signal classification tasks. This study
focuses on the effective classification of ECG signals into
normal and pathological classes using the Fast Fourier
Transform (FFT) as a feature extraction technique. FFT is
used to extract pertinent frequency-domain characteristics,
improving classification performance. The findings show that
FFT-based feature extraction makes a major contribution to
the trustworthy diagnosis of heart diseases by accurately
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FIGURE 20. Box plot of a magnitude spectrum of different target variable class (N,SVEB,VEB,FB,Q).

TABLE 4. The summary of the performance of a ML model after feature
extraction for overall class (N,SVEB,VEB,FB,Q).

Model Accuracy%  Precision %  Recall %  Fl-score %
Decision Tree 0.955 0.806 0.806 0.808
Logistic Regression  0.9130 0.792 0.55 0.618
Random Forest 0.98 0.972 0.812 0.878
rbf SVM 0.966 0.944 0.756 0.822
KNN 0.97 0.934 0.836 0.878

classifying ECG signals. FFT is used for the ECG signal using
equation5

N-1

X[kl =D (x[n]-exp(—j- 27 -k -n/N) ()

n=0

where X [k] represents the output signal at frequency index k,
x[n] is the input signal at time index n, N is the total number
of samples, and exp denotes the exponential function.

To show the effect of the extracted feature over each class
of ECG signal a box plot is shown in figure 20. It is observed
from the plot that N beat and F beat can be classified, whereas
SVEB, VEB, and Q beat are difficult to distinguish as this
beat has some common characteristics associated with it.

The classification results, in terms of performance mea-
sures, obtained after performing FFT on the ECG signals
before classification are presented in Table 4.

The classifier with the best performance RF, was applied
to a testing set to create a confusion matrix, which was then
used to evaluate the effectiveness of the classification model.
The 98% overall accuracy of the results demonstrated the
model’s capacity to appropriately classify ECG signals into
the appropriate groups. A confusion matrix is a useful tool
for assessing how well a classification model is working.
To analyze true positives, true negatives, false positives, and
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FIGURE 21. Confusion Matrix of RF classifier.

false negatives, it gives a thorough breakdown of the expected
and actual class labels shown in Figure 21.

The sensitivity values attained by our approach are
as follows: normal beats (N) —0.99%, SVEB —0.74%,
VEB —0.93%, fusion beats (FB) —0.78%, and unknown
beats (Q) —0.96%. Sensitivity measures the proportion of
correctly identified positive instances within each class.
Furthermore, the specificity values achieved are N —0.99%,
SVEB —0.98%, VEB —0.96%, FB —0.99%, and Q —0.97%.
Specificity represents the proportion of accurately identified
negative instances within each class. Additionally, the posi-
tive predictive values obtained are N - 0.99%, SVEB - 0.74%,
VEB - 0.96%, FB - 0.89%, and Q - 0.96%. Positive predictive
value denotes the proportion of correctly predicted positive
instances within each class.

These performance metrics demonstrate the effectiveness
of our approach in accurately classifying ECG signals
across different heartbeat classes. The high sensitivity values
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TABLE 5. Performance comparison with some of the state of art-work result.

State of Feature Extraction Classifier Parameter N SVEB  VEB FB
the art work
Proposed approach ~ RR feature, Morphological feature, HOS, FFT Optimized RF Accuracy 0.977 0.98 0.977 0.978
Sensitivity 0.99 0.74 0.93 0.78
Specificity 0.99 0.98 0.96 0.99
PPV 0.99 0.74 0.96 0.89
Fl-score 0.99 0.75 0.93 0.75
Precision 0.97 0.975 0.97 0.95
Spectral Feature,
L;‘ll ?5]6‘ ;Ssgf:;;“gu“r’i‘gr SVM Accuracy 0960 0982 0977  0.988
transform (GFT)
Sensitivity 0.993 0.715 0.767 0.462
F1-Score 0.833 0.831 0.865 0.63
Fourier, Higher
Ma;;f}};’glf’et (gr(()i;;,sct;z:g?;s], Naive bias Accuracy 0.94
Kurtosis
Sensitivity 0.996 0.2 0.736 -
Specificity 0.489 0.998 0.998 -
Statistical domain, )
Bsh. a;ttaacll.l’agg]a ? F?pectral domair}, an]ilngifnli/tlﬂte)yo{?vli\l/[: A Accuracy 0.9821
emporal domain
Sensitivity - 0.742 0.942 -
PPV - 0.9009  0.959 -
Z;“ [(3:533‘ S?g‘jn‘e“;frﬁ’;é’e | RE with CNN Accuracy 0.96
F1-score 0.98 074 0.93 -
Precision - 0.76 - -
Sensitivity - 0.78 - -
Projected and
C;en[,gsl.]e t dynamic feature, SVM Accuracy 0.9846
v RR intervals
Mar. Tt Time domain,. SFFS, linfzar,
al ’[ 45] frequency domain, quadratic Accuracy 0.89
” non-linear features discriminant, MLP
. Statistical and
Aﬂ;?ar[rxélli e mixture modelling Decision Tree Accuracy 0.9615
v feature, HOS, GMM
Sensitivity 0.9737  0.865 0.959 0.118
Positive Predictive  0.984 0.909 0.7763  0.2421
Lin,C et RR interval, o o
al ’[ 47) Morphological linear discriminant Sensitivity 0.916 0.814 0.862 -
” feature
Positive Predictive  0.993 0.316 0.777 -
Garcia,G et TVCG and
al., [48] complex networks PSO,SVM Accuracy 0.924
Sensitivity 0.94 0.62 0.873 -

Positive Predictive ~ 0.98 0.53 0.594 -

indicate the model’s ability to correctly identify positive
instances, while the high specificity values reflect its
proficiency in accurately classifying negative instances. The
positive predictive values provide insights into the precision
of the classification model within each class.

The overall accuracy of 98% showcases the robustness of
the proposed approach in accurately predicting the heartbeat
classes of ECG signals. These results suggest the potential of
the approach in assisting with the early detection and diag-
nosis of cardiac abnormalities, particularly thoserelated to
SVEB and VEB, which can have significant implications for
patient health and well-being. Table 5 presents a comparative
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analysis demonstrating the superior performance of the
proposed approach in efficient and automated arrhythmia
diagnosis through heartbeat classification from ECG signals,
surpassing state-of-the-art methods proposed in previous
years. The study aimed to evaluate the effectiveness of
various approaches for arrhythmia diagnosis and classifica-
tion. Our proposed approach exhibited significantly higher
accuracy and robustness compared to the existing state-of-
the-art methods.

The RF algorithm’s robustness is evident in its ability
to classify ECG signals accurately, even in the presence of
noise and data variability. Its decision tree-based ensemble
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approach provides insights into the decision-making process,
enhancing interpretability. Furthermore, RF can handle
high-dimensional ECG data with numerous features, making
it suitable for complex signal analysis tasks. However, RF’s
computational complexity can be a drawback, especially
for large datasets or when considering a wide range of
hyperparameters. There is also a risk of bias if the individual
decision trees are not diverse enough or if the training data is
imbalanced. Additionally, while the overall decision-making
process of RF is interpretable, the individual decision trees
within the ensemble can be complex, making it challenging
to understand the contribution of each feature or tree. RF’s
performance can also be sensitive to hyperparameter settings,
necessitating careful tuning and optimization for optimal
results.

V. CONCLUSION

In this work, a machine learning-based approach for classi-
fying ECG data into various types of heartbeats, and distin-
guishing between healthy and unhealthy patterns is identified.
RF classifiers give a more accurate performance before and
after feature extraction as compared with other classifiers like
SVM, LR, KNN, and DT. The proposed approach leverages
methodology that explores and incorporates advanced feature
extraction techniques, such as wavelet transform for signal
denoising, morphological features, statistical features, and
HOS analysis for effective feature extraction along with
FFT on the performance of ECG signal classification. RF is
optimized to enhance the accuracy of heartbeat classification.
The result shows the proposed approach gives an overall
accuracy of 98%, precision of 97.2%, sensitivity of 81.2%,
and F1-score of 87.8% surprising state-of-the-art work to the
best of our knowledge.

Furthermore, future work includes integrating Deep Learn-
ing frameworks into the existing classification model has the
advantage of leveraging their powerful learning capabilities,
enabling the model to learn intricate representations of
the ECG signals. This can lead to improved accuracy by
effectively capturing the intricate patterns and variations in
the data [49], [50]. Low-cost ECG circuit development for
real-time ECG signal processing [51] is also one of the areas
that can be explored for live ECG signal analysis.
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