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ABSTRACT The escalating global prevalence of chronic and lifestyle-related illnesses presents substantial
societal and economic challenges. This work delves into an extensive review of healthcare monitoring
systems tailored for chronic and lifestyle disorders. Subsequently, we propose a pioneering Smart Patient
Monitoring and Recommendation (SPMR) framework, leveraging Deep Learning (DL) and cloud-based
analytics. SPMR ensures continuous monitoring and predictive insights into a patient’s authentic health
status using data from vital signs and contextual activities collected via Ambient Assisted Living devices.
Within the predictive DL component of the LIP module, we employ Categorical Cross Entropy (CCE)
Optimization to forecast real-world health conditions using unbalanced datasets derived from Chronic
Blood Pressure Disorder case studies. Significantly, SPMR’s capability to deliver real-time preventive
measures and treatments persists even without Internet or cloud connectivity. This circumvents the need
to replicate Machine Learning (ML) models and associated procedures in local setups, thus streamlining
operations. Comparative analysis against analogous models showcases the considerable effectiveness of
our proposed model, notably enhancing accuracy by up to 8 to 18 percent. Moreover, both the overall
F-score and the emergency class F-score exhibit marked improvements of 17% and 36%, respectively.
These outcomes underscore SPMR’s pivotal role, especially during crises, emphasizing its significance in
healthcare monitoring systems.

INDEX TERMS Remote patient surveillance, chronic diseases, ambient assisted living (AAL), predictive
deep learning, IoT, healthcare, machine learning, deep learning.

I. INTRODUCTION
The latest information from 2016 reveals that diseases
like cardiovascular disease (CVD), chronic kidney dis-
ease (CKD), cancer, chronic respiratory disease (CRD),
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approving it for publication was Nitin Gupta .

diabetes, and others are responsible for almost 71% of all
deaths globally [1]. This has led to increased healthcare
expenses and a shortage of caregivers due to the grow-
ing number of elderly individuals [2], [3], [4]. Fortunately,
advancements in medical technology, such as mobile com-
munication, Wireless Sensor Networks (WSNs), Internet
of Things (IoT), big data, and wearable computing, have
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brought breakthroughs in the healthcare sector [6], [7]. Mon-
itoring patients’ vital signs remotely through a Wireless
Body Area Network (WBAN) is seen as a new and effec-
tive approach that doesn’t affect patient mobility [8], [9],
[10]. Smart IoT devices, communication-enabled sensors,
and other technologies are assisting hospitals in better under-
standing their medical equipment, physicians, personnel, and
patients [11], [12], [13]. Various studies have explored differ-
ent aspects of remote healthcare and monitoring, addressing
prerequisites, data-driven healthcare philosophy, and the use
of AI and DL techniques like transfer learning for processing
medical data [14], [15]. These advancements enable data
scientists to employ predictive analytics based on Machine
Learning (ML) to improve health outcomes, manage sick-
ness progression, and identify disease causes by analyzing
real-time patient assessments, symptoms, history, surround-
ings, and vital signs [16].
Aside from activities such as sleeping and exercising, envi-

ronmental factors such as temperature and humidity have an
effect on a patient’s vital signs [17]. A big rise in heart rate
(HR) during exercise, for example, is not abnormal, but an
excessively high HR in a patient is. Other factors that may
affect a patient’s vital signs include their age, behaviours,
and gender, to name a few [18]. They all emphasise the
significance of context awareness and vital signs, which
might signal a patient’s health status and so allow for more
personalised healthcare and services [18].

The vital signs of patients and other data obtained via the
continuous monitoring of Ambient Assisted Living (AAL)
devices provide a diverse collection of Big Data [19]. Real-
time action is essential when dealing with massive data
quantities [20]. Numerous machine learning (ML) models
have been built to enhance analytics and predictions using
smart patient monitoring systems, but they have not yet been
assessed outside of their native setting [21]. We may claim
that the majority of the models are not based on patient situa-
tions and simply label the disease as ‘‘Yes’’ or ‘‘No.’’ Due to
their focus on accuracy, these models may provide erroneous
findings when compared to datasets with imbalances [22].
In addition, category accuracy and F-scores for certain classes
have been fully deleted from modern multiclass models.

Due to its reliance on a local server and a single illness,
all previous Remote Patient Monitoring (RPM) systems are
unable to handle a patient’s severe condition or seek emer-
gency assistance. Moreover, none of these systems are able to
manage enormous quantities of data or context [23]. Conse-
quently, academics have devised AAL systems that consider
context [24].
Additionally, cloud computing (CC) platforms are required

for improved analytics and forecasting in the large amounts
of data generated by intelligent RPM systems [25], [26]. Scal-
able computer resources and the most recent technology are
combined in these cloud platforms to increase efficiency and
save costs. There have been new proposals to support RPM
with a cloud-based architecture capable of handling massive

amounts of data [27]. When compared to other previously
suggested designs, these architectures only use cloud-based
systems. This means that the cloud-based model is com-
pletely responsible for classifying a patient’s health state,
which poses a risk to the patient if the Internet connection
is lost [28].

In this comprehensive examination, the paper navigates
through the landscape of healthcare monitoring systems,
encompassing both IoT and ML-based approaches, estab-
lishing their prevalence and smart functionalities [29], [30],
[31]. A meticulous review and comparison of contemporary
researchmaterials are presented in Table 1, providing insights
into the existing landscape. Recognizing the challenges and
limitations of prior systems, the paper introduces a novel
framework known as Sensory Perception Monitoring and
Response (SPMR). The SPMR framework, rooted in Deep
Learning (DL) and Cloud-oriented analytics, addresses the
complexities associated with accurate predictions and clas-
sifications of patients suffering from chronic illnesses [32],
[33], [34], [35]. Notably, the integration of cloud analytics
and DL technologies within SPMR aims to substantially
enhance the accuracy and efficiency of patient monitoring,
ensuring real-time predictive insights into a patient’s authen-
tic health status. Moreover, SPMR’s versatility, equipped
with IoT, ML, Cloud Computing, and AI-enabled devices,
positions it as a forward-thinking and adaptable solution, pro-
viding comprehensive healthcare monitoring that overcomes
the challenges associated with traditional Remote Patient
Monitoring (RPM) systems.

Two pivotal motivations underscore the significance of
SPMR: firstly, the escalating global prevalence of chronic and
lifestyle-related illnesses demands sophisticated monitoring
solutions; secondly, the integration of cloud analytics and
deep learning technologies aims to enhance the accuracy and
efficiency of patient monitoring. SPMR, equipped with IoT,
ML, Cloud Computing, and AI-enabled devices, emerges as
an adaptable and forward-thinking approach in healthcare
monitoring [36], [37].

The following are the study’s primary goals:
• Identify a patient’s critical condition from a distance
using vital signs and medical rules with active contexts.

• Assess the real-time health status of patients with
chronic diseases who are monitored by healthcare pro-
fessionals and Ambient Assisted Living (AAL) devices
using more efficient models.

• Handle Big data analysis in unstructured and unbalanced
datasets using the proposed models in this paper.

• Compare models that categorize locally and in the cloud
to see which ones are more effective.

This is how the remainder of the document is organized.
Section II of this research presents the SPMR framework and
DL approach for local and cloud predictive models (CPM).
Section II content literature review summary.

The algorithm and mathematical model for new CCE
optimization are also covered in Sect. III. Patients with
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TABLE 1. Monitoring patients with chronic diseases: a review of healthcare regimes.

chronically high blood pressure will be monitored using
the experimental set-up described in Section IV. As a
comparison to earlier investigations, the experiments in
Section V present and discuss numerous performance mea-
sures. Section VI presents the findings and recommendations
for future research.

II. LITERATURE REVIEW
There are a number of benefits to using an Internet of
Things-enabled remote health monitoring system instead
of conventional methods. The device’s capacity to convert
analog information into digital form opens the possibility
of continuous monitoring for the patient. This facilitates
self-care on the part of patients and permits the detection of
chronic illnesses at an earlier stage. Several relevant research
articles are summarized here.

Qureshi et al. [38] provide an account of their efforts to
conceptualize WIoT from a technical, organizational, and
logical standpoint in relation to wearable devices. There are

typically three parts to an IoT architecture for wearables.
1) People can wear sensors on different regions of their
body. Through Gateways connected to the Internet, the data
acquired by the sensors may be sent to the server or cloud
for storage and analysis. Thirdly, cloud computing and IoT
connectivity may facilitate machine learning and big data
analytics. Darshan et al. address the function of IoT in
healthcare and do a literature review on the topic. Their
proposed system has many levels: a) raw data is supplied
and gathered from different sensors on medical IoT devices
(ECG sensor, EEG sensor, skin temperature sensor, etc.).
Here, we take the information that has been filtered, pro-
cessed, and categorized and use it to do analysis and make
predictions. Sahoo et al. [39] present an introduction to the
Internet of Things, its past and future, and how it relates to
healthcare. The concept of the Internet of Things evolved
from Electronic Data Interchange (EDI) in 1999 into the
Internet of People (Internet, M-Internet), and is now its
own distinct entity. The IoT not only benefits us person-
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ally but also many different businesses. They advocate for
implantable medical devices that connect to the Internet,
medical professionals, and patients as part of healthcare
delivery.

When it comes to e-health and the Internet of Things,
Wong et al. [40] provide a paradigm for intelligently pro-
viding medical services. The following are the stages of the
proposed Internet of Things-based paradigm: The four main
components of telemedicine are: A) Patient Records, which
contain all data regarding the patient, acquired in real-time
or from a dataset; B) Clinical Decision System, which pro-
vides DSS for the physicians based on connected knowledge;
C) Remotely monitoring the patient through the use of
sensors attached to the human body to collect data; and
D) Remote treatment, a crucial step because it facilitates
contact with healthcare centers by easily, that gives the rural
population better healthcare. Cano-Marin et al. [41] provide
the idea of how the Internet of Things (IoT) contributes to
and enhances healthcare facilities. There are three tiers to the
suggested system, the first of which is for sensing, which
is the process of gathering data or information in real-time
using sensors (temperature sensor, pulse rate sensor, etc.).
The second level of transmission involves sensors sending
their collected information to a data server. The doctor may
view patient information and make diagnoses from inside the
server with Tier-3 access. The suggested work consists of
both digital (an Android app and a web page) and physical
(an ATMEL 89s52microcontroller, temperature sensor, pulse
rate sensor, serial port, A/D converter, and IC-7805 voltage
regulator) components. Yang [42] offers a comprehensive
review of IoT’s potential in healthcare. He talks about inno-
vative approaches of providing healthcare, such as mHealth
and 6LoWPAN-based healthcare. The mHealth framework
consists of three main parts: 1) The Layer for Collecting Data
There is a layer 2 for storing data and a layer 3 for processing
it. The first step of a 6LoWPAN-based healthcare system
is for sensors to collect data, and then the gateway would
convert the data to IPV6 and send it to the server. They go on
their talk about the latest complete architecture for healthcare
smart systems.

Individuals with chronic diseases like stroke, diabetes,
cancer, etc., may efficiently monitor their own health with
the help of a healthcare monitoring system developed by
Faisal et al. [43], which makes use of the Internet of Things
(IoT) and classifier algorithms for prediction. The suggested
method for monitoring stroke patients consists of three
parts: 1) The hardware tier consists of the microcontroller,
blood pressure monitor, and glucose analyzer. Finally, at the
application layer (web environment, cloud server), machine
learning (ML) techniques such as Naive Bayes and Random
Forest are deployed. The predictive accuracy of the Random
Forest algorithm is 93%. In [44], Horani et al. propose an
IoT-based cancer care system hosted in the cloud. Themethod
used in this research involves attaching a body wireless sen-
sor network (BWSN) to a patient and then collecting and

converting data through the Zigbee protocol before saving
it to a data set or the cloud for analysis. Conceptually, the
Internet of Things (IoT) and its multi-tiered architecture
1) The patient is outfitted with a network of sensors that are
permanently attached to his or her body. 2) A management
processing layer that acts as a conduit for information remap-
ping. Fourth, the applications layer is where the action is on
the Internet of Things since that’s where all the cool stuff
occurs, including information processing, analytics, security,
and device administration. The challenges associated with
implementing IoT in healthcare systems were analyzed by
Maruyama et al. [45] and discussed further.

IoT-based healthcare monitoring system architecture pro-
posed by Kapoor et al. [46] uses ML algorithms to identify
early warning symptoms of heart illness. The suggested
system consists of three levels: At the first level, data is
acquired via Internet of Things sensors carried by the user.
Level 2 uses Apache HBase to store petabytes of informa-
tion. Level-3’s data analytics skills are particularly useful
in the field of cardiovascular disease forecasting. Machine
learning algorithms (MLA) are implemented here. The results
produced by the system are clearly superior. As suggested
by Rathore et al. [47], ensuring security via the use of IoT
and cloud computing. Fuzzy Rule is an innovative approach
to diagnosing various diseases that they present. There are
a total of eight parts that make up the suggested system.
These parts include medical sensors, the UCI Repository
Dataset, cloud computing, data aggregation, a fuzzy temporal
neural classifier, and more. The code was written in JAVA,
and Amazon’s cloud servers hosted the finished application.
K-NN, DT, NB, and SVM are four of the most common
classifiers used in medical diagnosis. The final results are as
follows: K- NN achieves 92% accuracy, DT achieves 95%
accuracy, NB achieves 85% accuracy, and SVM achieves
80% accuracy.

Roderick et al. [48] describe the intelligent technique for
student diagnostics. Here are the proposed steps for the
planned three-stage procedure. 1) Collecting data from IoT
gadgets. The gathered information is sent through a gateway
to a secondary cloud-based system. Second, a diagnosis must
be made once the data has been processed, features extracted,
healthcare measures extracted, measured, analyzed, and so
on. Finally, the patient’s loved ones get a health alert. As clas-
sifiers, they use DT, k-NN, NB, and SVM.

Based on the literature review provided, the conceptual
methodology in the paper is built on a strong founda-
tion, drawing insights from various studies on Internet of
Things (IoT) applications in healthcare. The literature review
extensively covers the use of IoT in healthcare, addressing
areas such as wearable devices, remote health monitor-
ing, telemedicine, and the role of IoT in managing chronic
diseases. The studies cited demonstrate themulti-tiered archi-
tecture of IoT systems, involving data acquisition through
sensors, transmission to servers or the cloud, and utilization of
machine learning algorithms for analysis. Various healthcare
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monitoring systems are discussed, showcasing applications
for chronic diseases like stroke and cancer. These systems
often leverage classifier algorithms and IoT technologies for
effective prediction and monitoring. Security considerations
in IoT-based healthcare systems are highlighted, emphasizing
the need for secure data transmission and storage. Innovative
approaches like fuzzy rule systems are introduced for disease
diagnosis. The literature review underscores the versatility
of IoT in healthcare, covering diverse applications such as
cardiovascular disease forecasting, student diagnostics, and
early warning systems for heart illnesses.

In the process of selecting our final model for ‘‘Smart
Patient Monitoring and Recommendation (SPMR) using
Cloud Analytics and Deep Learning,’’ we conducted rigor-
ous testing across various models and schemes. Our testing
phases involved a comprehensive evaluation, considering
critical factors such as reliability, functionality, cost, and
efficiency. We drew insights from a comparative analysis,
leveraging a detailed examination of healthcare regimes pre-
sented in Table 1.

The testing criteria included parameters like accuracy,
precision, F-measurement, and error rates. We thoroughly
examined the exhibited features, architecture, experiment
domains, reliability, tools employed, functionality, advice
and suggestions, cost, difficulty, parameters, dataset size,
and efficiency results from the reviewed healthcare regimes.
By systematically analyzing these aspects, we aimed to
ensure that our chosen model not only met high standards of
reliability and functionality but also aligned with the specific
requirements of patient monitoring in the context of chronic
diseases. This thorough testing approach allowed us to make
an informed decision in selecting the most suitable model for
our research, contributing to the robustness and effectiveness
of the proposed SPMR framework.

III. SPMR PROPOSED ARCHITECTURE
AI-enabled, IoT, deep learning, and cloud computing gad-
gets have all found a home in modern healthcare facilities.
Patients with chronic conditions can benefit from these hybrid
technologies, which provide improved patient monitoring
and referral systems. The SPMR framework allows hospi-
tals and caregivers to provide better home care for patients.
A DL model applied to vital signs and context data helps
to acquire, store, monitor, and forecast the patient’s health
state. In Fig. 1, you can see the proposed SPMR’s four-layer
architectural structure. Sects. III-A–III-D describe the various
layers.

A. AMBIENT ASSISTED LIVING LAYER 1 (AAL)
Define Patients’ vital signs and environmental conditions can
be monitored and recorded using the AAL system and open-
source e-health software such as My Signals [29].
(Humidity and Temperature). Additionally, AAL systems

always keep track of the patient’s whereabouts and activ-
ity. Each AAL system has a distinct identifier within the
cloud architecture. The patient’s condition determines which

devices are chosen. E-health systems support an extensive
array of connectivity options and specializedmedical sensors.
A support system for sensors that detect light, smoke, tem-
perature, and humidity is provided by the AAL layer. A layer
that monitors key signs while simultaneously recording the
surroundings around it.

B. LOCAL INTELLIGENT PROCESSING AT THE SECOND
LAYER (LIP)
The LIP module collects, aggregates, stores, and processes
data that is sent over intermediate communication protocols
and makes it available to the rest of the system. Because
of this, it may be used both in offline and online envi-
ronments. It differs from previous frameworks in that it
offers high-performance offline learning and recommenda-
tions. It includes the following parts:

1) EDGE DEVICE
IoT Gateway is another name for this device. Low-level
data from sensors, intelligent devices, and the cloud can be
exchanged and processed locally using hardware or software.

2) AN ON-SITE LOCAL PROCESSING AND STORAGE
FACILITY UNIT (LPSU)
An appropriate format is used to store and transform the AAL
layer’s data for the DL model in LPSU. This unit is also
responsible for transforming features. Data exploration is car-
ried out using a variety of strategies, including normalization.
LPM receives the reworked components. Also, the LPSU has
a Cloud Monitoring Module that updates the general medical
rules and medical records on a regular basis (CMM).

3) THE SUGGESTED LOCAL PREDICTIVE MODEL HAS THE
FOLLOWING CHARACTERISTICS: (LPM)
Patients’ health status and emergency scenarios are classified
by LPM on the local side. The model in [30] downloads the
model from the cloud, in contrast to this unit. Vital signs and
current AAL data are used to develop the LPM unit’s own
categorization and predictionmodel. In the event of a network
outage, a lack of cloud services, or any other type of emer-
gency, the model will hold. Once the patient’s health state
has been accurately assessed, this layer takes the required and
appropriate steps to contactmedical professionals, caretakers,
or other support services. The diagram in Fig. 2 provides
an overview of the LIP model development and predic-
tion process utilizing DL based on new CCE optimization.
Sect. III-E provides a thorough explanation of the algorithm
in use.

C. CLOUD MONITORING MODULE IS LOCATED IN LAYER
3. (CMM)
The term ‘‘knowledge module’’ refers to the CMM as a
unit of information. Clouds with patient-specific information,
assistance services, and knowledge databases are part of the
package. Two or more clouds can be included in the CMM
if the right permissions are obtained. When allowed and
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FIGURE 1. Framework components and the proposed architecture of
Smart Patient Monitoring and Recommendation (SPMR).

linked to these clouds, SPMR monitors the CMM. Medical
specialists, hospitals, and carers are all involved in pro-
viding assistance. The most important aspects are covered
here.

1) ONLINE PATENT DATABASE (OPDB)
Information on the patient, such as age, sex, and weight, can
be found in the OPDB. This program is also responsible for
keeping track of a patient’s medical records and investigation
results, as well as their treatment and assistance plans, food,
and any specific thresholds for vital signs. An OPDB cloud
storage account is provided and monitored by a smart health-
care center or hospital. When it comes to patient-specific
regulations and updates, OPDB and the medical cloud are in
sync [31], [32].

2) (MC) THE MEDICAL CLOUD
Symptoms, vital signs to monitor, and broad rule ranges
are all included in this cloud of current medical knowledge.
Medical knowledge is based on the most recent studies and
generic norms in MC, which are updated regularly. The
OPDB syncs up with this information.

3) ASSISTIVE SERVICES
Services supplied by a smart healthcare facility or hospital
are also included in this category. Also included in this is
the patient’s family, friends, and caretakers. When a patient’s
health began to decline or an emergency occurred, these
services were activated. The LIP and CAM layers send alerts
to the team, which responds remotely to any issues that arise.

D. CLOUD FOUR LAYERS OF MONITORING AND CLOUD
ANALYTICS PROPOSED (CAM)
Physically situated cloud components that adhere to strict
privacy standards and legislation can be found in this tier.

FIGURE 2. Proposed LPM (Lifestyle Prediction Mechanism) prediction
mechanism.

FIGURE 3. Predictive models built and deployed using the Google Cloud
Platform ML service.

The massive amounts of data generated by AAL are housed
on massive cloud infrastructure. It’s also accessible as a
subscription service on several platforms (Software as a
Service). To meet the needs of large data analysis, this frame-
work was developed on an expandable cloud platform and is
fast, efficient, and accurate [33], [34]. Together with layers
2 and 3, this layer accumulates the preceding two levels’
data and rules. The CAM-administered machine learning
model can analyse massive amounts of data and trends in
order to anticipate a patient’s health status. The GCP (Google
Cloud Platform) Cloud Predictive Model (CPM) is included
in this module and may be accessed online. The model’s
inputs and outputs are synchronized by layer 2, which is the
second layer. The following components are included in this
module:

1) WORKSPACE FOR GCP MACHINE LEARNING (MLW)
To speed up prediction and classification, GCP-MLW [35]
stores and distributes computation over many computer clus-
ters. Machine learning models may be built and deployed
using this programmed. ML Gallery, ML Studio, and Man-
agement of ML Web Services are all included in Microsoft’s
ML Workspace.
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2) TO HANDLE LARGE DATA SETS, THE PREDICTIVE MODEL
(CPM) IS IMPLEMENTED USING GCP MACHINE
LEARNING (ML)
There are typically five key steps to knowledge discovery
using CPM: preprocessing, model training, testing and evalu-
ating, and finally deployment. Microsoft’s GCPML platform
covers all aspects of machine learning. The ML model was
built and deployed using GCP’s ML service. Packages and
APIs for building machine learning models are available
through the GCPML service, which may be used to construct
web and mobile apps using these models. Figure 3 depicts
the use of the GCP ML service for the development and
deployment of a predictive model.

E. SPMR’S SUGGESTED DL TECHNIQUE FOR LPM AND
CPM
In the higher layer, AAL sends all of the recorded data. For
the purposes of LPMandCPM, data are gathered, aggregated,
stored, and analyzed in LIP. Predictive models are designed
to demonstrate the most accurate categorical categorization
accuracy for the benefit of patients and healthcare providers.
The data has been processed using the technique shown
below. The stages of the model development process are
outlined in the following paragraphs.

1) DATA GATHERING AND AGGREGATION
Unstructured data gathered from sensors and offline devices,
alongside data obtained via the MySignals platform, is cap-
tured and buffered by the Edge device, according to SPMR.
On the edge, raw data may be translated from a low-degree
to a higher-degree abstraction using the High-Level Feature
Provider (HLPF), also known as the Context Aggregator [37].

Note: Notations for below Algorithm
Input dataset with features 1 to n:

A = a1, a2, . . . . . . . . . ....an
W 1

= w1,w1, . . . . . . . . . ....w1

W h
: represents weight set at layer h

W 1
: represents weight set at first hidden layer.

f ( ) is a step function.
f (Z) is activation function

hij = f (Z )

The activation function used in hidden layers is rectified liner
unit ‘‘relu’’.

• Output of linear equation = Z
• bias = b
• attribute value = a
• total number of features = n
• number of features extracted = m
• mean of training samples = α

• standard deviation of training samples = σ

represents ith neuron in ith hidden layer.
The superscript i represents layer while subscripts repre-

sent neuron number.

FIGURE 4. Phases of (CPM) Cloud Predictive Models (DL) implementation
on the GCP cloud.

Number of classes = k
ŷ is probability set for {y1, y2, y3, y4} class labels i.e,

Normal, Alert, Warning, and Emergency.
softmax (Z)compresses the vector [Z] containing real val-

ues into real values within the [0,1] range, ensuring their sum
totals 1.

Where µi is proposed individual Cross Entropy (CE)

2) PREPARATION OF DATA FOR ANALYSIS
Once the MySignals kit and HLFP data is converted into
a unified contextual state by the LPSU, it is stored in a
data repository. Data in the ‘csv’ format relating to the
patient’s physiological signals, environmental circumstances,
and activities are included inside this section for the duration
of the time period indicated. Numbers are used to represent
both numerical and categorical data inDLmodels. As a result,
the data are transformed into a numerical representation that
is compatible with the DL model used in LIP and CAM.

Additionally, the z-score normalization technique was
employed in this study to standardize (normalize) the data.
Each neuron in a Deep Neural Network (DNN) conducts
arithmetic operations on the inputs and weights it receives.

3) TRANSFORMATION OF DATA
After the pre-procedure assessments are complete, the numer-
ical value of an attribute is represented as a straightforward
vector. If you’ve ever trained and operated a deep learning
model using tensor transformation, then you’ll know exactly
what we’re talking about here. Using this transformation, the
model’s features can be translated into the format that the
model employs to make computations go more quickly and
with less effort. A tensor is a representation of vectors and
matrices in a higher dimension than they are traditionally
used. Within its internal structure, TensorFlow encapsulates
tensors by utilizing collections of elemental data types that
are n-dimensional in dimension. Tensors have the capability
of extracting the maximum amount of performance from
the System’s hardware. Primitives for optimal DL are also

54244 VOLUME 12, 2024



A. Sundas et al.: SPMR Using Cloud Analytics and DL

Algorithm 1 DL algorithm for LPM amd CPM
Framework Inputs:
AAL data and Vital Signs
Model Phases:
Input:

A = a1, a2, . . . . . . . . . ....an

I. Pre-process:
1. Convert types to numeric.
2. Apply z - Score for normalization:

z−score =
a− α

σ

II. Feature Engineering:
Extract features as per contexts

A = a1, a2, . . . . . . . . . ....am

III. Model Building (Learn Phase):
1. Calculate

Z =

m∑
i=1

W h
i Ai + b

2. Feed Z into f(Z), so that we get output at each hidden
layer.

hii = f (Z )

3. Calculate the probability score of class Cj given sam-
ple ai.

P(Cj|ai) =
exp(Zj)∑4
k=1 exp(Zk )

IV. Test/Prediction:

ŷ = argmax jϵ{1,2,3,4}P(Cj|ai)

Apply softmax function at output layer

softmax(Z ) =
eZi∑
i e
Zi

V. Optimization:
Apply proposed CCE Optimization and calculate E(W):

E(W ) = −

k∑
i=1

µi

Output:

ŷ = {Warning,Normal,Alert,Emergency}

supplied for things like Activations, Pooling, and Inner Prod-
ucts, among other things.

4) FEATURE ENGINEERING AND DESIGN
The Spearman’s correlation coefficient is deemedmore suited
for healthcare data that includes outliers (emergency cases
in our study) [38]. For this purpose, we used the metric
Spearman’s correlation coefficient to identify the most cor-

related of n characteristics from the n input features. The
DL model has been given the tensors of the m correlated
features. A multitude of disease-specific parameters, such as
symptoms, vital signs, and so on, have been retrieved using
the Spearman correlation coefficient for a variety of chronic
illnesses. HR, DBP, SBP, RR, and symptoms were substan-
tially linked with class designations in our research of BP
patients.

We employed tenfold stratified cross-validation to deal
with the unbalanced dataset based on the reference [39].
The F-score of the feature selection approach was 0.98. For
consistency in the training and testing sets, k-fold stratified
cross-validation assures an equal percentage of each class.

5) CONSTRUCTION OF A MODEL
In our pursuit of selecting the optimal model for ‘‘Smart
Patient Monitoring and Recommendation (SPMR) using
Cloud Analytics and Deep Learning,’’ we conducted a thor-
ough analysis, comparing key features and attributes across
various healthcare regimes. Table 2. summarizes the review
of different healthcare regimes, highlighting essential aspects
such as issues addressed, architecture, experiment domains,
reliability, tools, functionality, exhibited items, advice,
cost, difficulty, parameters, dataset size, and efficiency
results.

This comparative analysis helped us in selecting an opti-
mal model based on rigorous testing and specific criteria,
ensuring that our chosen model aligns with the desired
attributes for effective patient monitoring in the proposed
SPMR framework.

In NN, the output is determined by the input X and the
weighted sum of the inputs:

Z = W TX + b (1)

Z stands for a linear equation, WT stands for weights, and b
stands for bias. The step function predicts either a binary or
multi-class output based on the value of Z. Discrete output is
the term for this type of output.

Layers of computing are used to discover patterns from
input data using the DL approach. Some information is taken
at each layer, and the output of one layer is sent to the
next [40]. In the realm of machine learning, it is recognized
as a Deep Neural Network (DNN) and holds significance as a
strong ML technique [41]. In order to predict a recurrent neu-
ral network (RNNs), convolutional neural networks (CNNs),
and multilayer perceptron’s (MLPs) are three popular designs
that have been developed as part of Deep Learning. Their
purpose is to determine the health state or sickness of a
patient by studying the vital signs of the patient and the
environmental stimuli that they are exposed to. Up to and
including three tiers, SPMR’s five-layer deep model learning
procedure made use of an optimal parameter configuration
(MLP). Phases of CPM for each kind of patient are presented
in Figure 4 individually. The anticipated CCE optimization is
described in Section III-F.
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TABLE 2. A sample dataset of patients with high blood pressure.

6) EVALUATION OF THE MODEL
The recommended models were meticulously constructed
through the aforementioned procedures, specifically employ-
ing Deep Learning (DL) coupled with Categorical Cross
Entropy (CCE) optimization. To comprehensively assess
the models’ efficiency, a real-world computing plat-
form, Google Cloud Platform (GCP), was utilized. The
evaluation process incorporated sophisticated techniques,
including correlation-based feature selection and stratified
sampling.

By leveraging a novel CCE optimization technique and
harnessing the capabilities of cloud computing through GCP,
the models demonstrated a remarkable capacity for conduct-
ing extensive data analysis, particularly on unstructured and
imbalanced datasets. This approach ensures robustness and
adaptability to real-world healthcare scenarios.

However, it is crucial to note that the datasets were not
balanced using SMOTE or GAN. This decision was made
to preserve the authenticity of the data and its representa-
tiveness of real-world scenarios. The inherent characteristics
of the dataset and specific study objectives guided this
choice.

The classifier, driven by patient data and contextual
information, excels in predicting the patient’s health sta-
tus. The incorporation of false alarm minimization strate-
gies ensures that the classifier achieves a balance between
sensitivity and specificity, ultimately maximizing classifica-
tion accuracy. This innovative classifier not only provides
reliable predictions but also contributes to reducing unneces-
sary alerts, fostering a more efficient healthcare monitoring
system.

Furthermore, the process of requesting assistance involves
executing a set of well-defined procedures. This includes
the seamless integration of patient data, the initiation of
the predictive model, and the interpretation of the gen-
erated results. The meticulous implementation of these
procedures ensures the accuracy and reliability of the sys-
tem, laying the foundation for a robust healthcare support
framework.

TABLE 3. Description of the data set background for three patients in the
SPMR.

7) SECURITY MEASURES AND THREAT EVALUATION
In ‘‘Smart Patient Monitoring and Recommendation (SPMR)
using Cloud Analytics and Deep Learning,’’ the robustness
of the proposed security measures is paramount. This section
provides a comprehensive overview of the security measures
implemented in the SPMR framework, emphasizing their
effectiveness against potential threats.

• Encryption Protocols and Data Integrity: SPMR
employs state-of-the-art encryption protocols to safe-
guard patient data during transmission and storage. The
use of robust encryption algorithms ensures data confi-
dentiality and integrity, preventing unauthorized access
and tampering.

• Access Control Mechanisms: Access control mech-
anisms are implemented to regulate user access to
sensitive healthcare information. Role-based access con-
trols ensure that only authorized personnel, such as
medical professionals and caregivers, have access to
specific patient data, enhancing overall system security.

• Continuous Monitoring and Anomaly Detection: Con-
tinuous monitoring is a key aspect of SPMR’s security
strategy. The system incorporates anomaly detection
mechanisms to identify and respond to unusual patterns
or activities, alerting administrators to potential security
threats in real-time.

• Offline Security Measures: Acknowledging scenar-
ios without Internet or cloud connectivity, SPMR is
designed to maintain its security measures offline.
This feature ensures the framework’s ability to deliver
real-time preventive measures and treatments, even in
emergency situations.

• Threat Evaluation and Countermeasures: A thorough
threat evaluation is conducted to assess potential risks
to the healthcare monitoring system. Countermeasures,
both preventive and responsive, are implemented based
on this evaluation to fortify the system against diverse
security threats.
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Algorithm 2 Optimizations for the CCE
Inputs:
Actual probability list (P)
Predicted probability list (Q)
Initialize the List of resulting cross entropy R and variables i,
j and Mean_CE
for i to length (P):

Calculate (CE) as [-sum ([P[i]∗log (Q[i])]
Append CE for each input to lisr R

mean_CE = sum (R)/length (P)
for j to length (R):

if (R[j] > mean_CE):
R[j] = (R[j] - mean_CE)

Outputs: New CE obtained in list R

F. PROPOSED CCE (CATEGORICAL CROSS ENTROPY)
OPTIMIZATION ALGORITHM
For the suggested DL, a unique CCE cost optimization is
used. Our key aim is to minimize CCE losses in our model
while using the entire training dataset. To build a fresh list of
novel CCEs, the following algorithm is employed. As a result
of the updated Cross Entropy (CE) values, Deep learning
makes use of a number of different optimization strategies,
some of which include stochastic gradient descent (SGD)
and adaptive gradient descent (AdaGrad). could potentially
lead to faster convergence. Average CE loss is calculated by
removing the chance of an event that is muchmore likely than
the average CE loss. When fewer epochs are used, the DL
algorithms achieve their goal quicker [44], [45], [46].
Where log(), sum(), and length() are implicit function for

corresponding function-alities

1) A MATHEMATICAL MODEL IS DISCUSSED IN DETAIL
After calculating the individual CE errors, first determine the
mean CCE.

E(W) = −1/N
∑

_(i − 1)^k y_i log(^y^) (2)

Compute Fresh CCE, E(W) based on µ_i where µ_i is new
individual CE

µ_i(3) = y_i log(^y^) − E(W)if y_i log(^y^) > E(W) (3)

New CCE is based on the newer CE vector µ_i which may
be expressed as:

E(W) = −

∑
_(i − 1)^kµ_i

IV. SETUP EXPERIMENT
To test the credibility of SPMR and its constituent DLmodels,
an experimental case study is offered here. Patients with per-
sistent Blood Pressure (BP) issues can benefit from this study,
which is currently being monitored. Patients with hyperten-
sion (P1), hypotension (P2), and normal blood pressure (P3)
are all under observation [46], [47]

A. DATA CREATION USING FICTITIOUS INFORMATION
The scarcity of long-term monitoring data for patients with
chronic diseases, such as high blood pressure, led to the
creation of a dataset detailed in Table 4. Vital signs were col-
lected at a 15-minute sample rate for a year from three actual
patients, utilizing the PhysioNet MIMIC-II database [48].
Additionally, data from e-Medical IoT kits (My Signals) con-
tributed to the creation of the fictitious dataset (S.L. 2019).
SPMR, designed for context awareness, collects patients’
physical activity and timestamps. In the CMMLayer, doctors
and caregivers are responsible for determining and maintain-
ing sensors linked to Ambient Assisted Living (AAL).

A year of vital signs, ambient circumstances, symptoms,
activities, and medicine (Med) are collected by SPMR as
a big data source, encompassing metrics such as heart
rate, diastolic blood pressure (DBP), systolic blood pressure
(SBP), respiration rate (RR), and peripheral oxygen satu-
ration (SPO) are the vital indicators observed in this case
study (SpO2). For long-term monitoring of biomedical data,
synthetic data creation has demonstrated its dependability
in earlier research [49]. Class descriptions for unbalanced
datasets may be found in Table 4 (see below). General med-
ical criteria can only categories the data into normal and
abnormal categories since the dataset is so unbalanced. False
positives result from this categorization, putting patients at
danger of receiving the wrong medicine and care. With the
use of SPMR, it is now possible to divide patients into sev-
eral groups based on their activities, vital signs, symptoms,
surrounding circumstances, and current drug intake.

According to personal medical guidelines, the circumstan-
tial categorization in Table 5 is utilised to anticipate classes.
In addition, it lists the activities that must be completed
in order to meet the expected class’s requirements. For a
complete list of properties and ranges, please refer to Table 6.

B. SETUP OF THE EXPERIMENT ENVIRONMENT
Each trial was carried out on the same computer, which has
the system comprises an Intel Core i3 processor clocked
at 2 GHz and equipped with 8 GB of RAM. The software
environment includes Python 3.7.7 and the necessary Python
packages for machine learning, data mining, data visual-
isation, mathematical calculations, Additionally, graphics
drivers are installed on a Microsoft Windows 10 (64-bit)
operating system. The model’s implementation relies heavily
on Google TensorFlow and Keras (Keras Documentation).
Using simple high-level APIs like Keras, TensorFlow is an
open-source package that makes it easier to build and train
machine learning models than ever before. From basic neural
networks to high-level deep learning, the libraries include
a wide variety of models (DL). For complicated nonlinear
systems, the DL is the most effective of the ML models,
making it the ideal choice.

For example, SciPy (1.1.0), Scikit-Learn (0.20.1), NumPy
(1.16.2), Keras (2.2.4), TensorFlow Google (1.11.1), Pandas
(0.23.4), and Matplotlib, Seaborn (0.9.1), were used to
build the models (3.0.2). The local system is in charge of
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TABLE 4. Classification based on the medical model and actions
administered to the patient.

developing and deploying LPM at the layer 2 level. The
model hosted on the cloud platform within 4th layer is
built and deployed using GCPresources cloud and masters of
labour welfare [50], [51].

V. DISCUSSION, COMPARISON AND RESULTS
In order to evaluate the performance of the suggested models
in SPMR, many simulations were run with various opti-
mization settings. Classifying and forecasting the patient’s
status using the DL + CCE based model in layer 2 is
what is providing notifications to doctors, carers, and assis-
tance agencies [52], [53], [54]. Layer 4’s CPM uses DL and
performs the same duties as the LPM. Both the local and
cloud DL models’ performance must be compatible in order
to accurately determine a patient’s health state and to provide
appropriate recommendations to that patient. Therefore, this
comparison includes both local and cloud-based models [55],
[56], [57], [58], [59], [60].

Comparing DL + CCE with other classifiers developed
in comparable and contemporary works is provided as well
(see Table 7) [61], [62], [63]. The confusion matrix serves
as the primary source of most of the data mining parame-
ters. Fig. 5a–c depicts the CPM over cloud confusion matrix
acquired for several classes, for all three patients.

TABLE 5. Description of the dataset’s attributes, as well as their type and
range.

In seeking avenues to further enhance the performance of
the Smart Patient Monitoring and Recommendation (SPMR)
framework, several strategies can be explored:

• Optimization Techniques: Continuously explore and
implement advanced optimization techniques for
Deep Learning (DL) models within the SPMR
framework. Investigate alternative optimization algo-
rithms or fine-tune existing ones to achieve even
more efficient convergence and improved model
performance.

• Feature Engineering: Conduct in-depth feature engi-
neering to identify and incorporate additional relevant
features that could contribute to better predictions. Con-
sider contextual factors, patient behaviors, or lifestyle
indicators that may provide valuable insights into health
status, thereby enhancing the overall predictive capabil-
ities of the system.

• Data Augmentation: Explore techniques such as data
augmentation to artificially increase the size and diver-
sity of the dataset. Augmenting the dataset with
variations of existing instances may help mitigate data
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TABLE 6. A comparison of this research to another recent study.

imbalance issues and further enhance the robustness of
the predictive models.

• Ensemble Models: Investigate the implementation of
ensemble learning techniques, where multiple models
are combined to make predictions. Ensemble models
can often outperform individual models by leveraging
diverse strengths. Combining the Local PredictionMod-
ule (LPM) and Context Prediction Module (CPM) in
an ensemble approach may yield improved forecasting
accuracy.

• Dynamic Model Updating: Implement mechanisms for
dynamic model updating based on continuous learning.
As new data becomes available, the models could be
updated in real-time, ensuring that the SPMR system
remains adaptive to evolving patient conditions and
healthcare scenarios.

• Adaptive Thresholds: Explore the establishment of
adaptive thresholds for urgency classifications. Fine-
tune the sensitivity and specificity thresholds based on
the specific health conditions or characteristics of indi-
vidual patients. This customization can contribute to
more precise and tailored alerting mechanisms.

• Integration of External Data Sources: Consider integrat-
ing external data sources, such as real-time weather data,
air quality information, or other environmental factors,
to enhance the contextual understanding of a patient’s
health. This integration could provide a more compre-
hensive view and contribute to improved forecasting
accuracy.

• Continuous Monitoring and Evaluation: Establish a
robust system for continuous monitoring and eval-
uation of model performance. Implement feedback
loops that allow the system to learn from out-
comes, identify areas for improvement, and adapt over
time.

By exploring these avenues, the SPMR framework can
not only maintain its high performance but also evolve to
meet the dynamic challenges of healthcare monitoring, ensur-
ing continuous improvements in accuracy, efficiency, and
adaptability.

A. PERFORMANCE METRICS
Predictive models are evaluated based on the factors that best
identify their predictive models Precision, F-measure, and
Categorical Precision are the best metrics for assessment.
An essential indicator for model comparison and demon-
stration of efficacy is the F-score (average) and the F-score
of the Emergency class. This F-score is often used to illus-
trate the efficacy of SPMR in emergency instances. It is
the average of the F-scores produced from ten runs of the
experiment using test data, which is the F-score (avg.). Only
data from the Emergency class is used to calculate an F-score
(Emergency).

1) ACCURACY OF PREDICTION

Accuracy =
True results
Total Cases

=
TP+ TN

TP+ TN + FP+ FN

False Positive, False Negative, and True Positive are all abbre-
viations for the same thing: ‘‘True Positive.’’ A comparison
of the accuracy of the predictions is provided (see Fig. 6).

2) REPRESENTATION F-SCORE
The model’s precision on a dataset can be evaluated using
the F-score, often referred to as the F1-score. Binary classifi-
cation systems, which categorise instances into ‘positive’ or
‘negative,’ are evaluated using this method.

It is defined as the harmonic mean of the model’s accuracy
and recall, which is a means of combining precision and
recall.

Information retrieval systems like search engines and
a variety of machine learning models, particularly those
involved in natural language processing, are often evaluated
using the F-score.

Figures numbers 7 and 8 represent the mean F-score and
the F-score for emergency cases, respectively.

F−score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

3) REPRESENTATION OF PRECISION

Precision =
TP

TP+ FP
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FIGURE 5. (a) Confusion matrix generated by Cloud Predictive Modeling
(CPM) for an individual with hypertension (P1), (b) Confusion matrix for
hypotensive patient (P2) and (c) Confusion matrix for a normal patient
(P1) (P3).

4) SENSITIVITY/ RECALL
The term ‘‘sensitivity’’ originates from the field of statistics
to describe how well a binary classification performs, but the
term ‘‘recall’’ is more closely associated with the field of
information engineering.

Sensitivity =
TP

TP+ FN

FIGURE 6. Predictive accuracy is compared against current research.

5) COMPARISON, DISCUSSION AND RESULTS
The integration of Deep Learning (DL) with a novel
Categorical Cross Entropy (CCE) optimization in SPMR
demonstrates remarkable performance and efficient conver-
gence. The proposed SPMR exhibits significantly higher
accuracy across all patient groups compared to existing
studies. Sensitivity ranges from 0.79 to 0.93 when com-
pared to alternative models. Notably, SPMR’s Local Predic-
tive Model (LPM) outperforms in hypertensive individuals,
achieving a notably higher F-score (emergency), while the
Cloud Predictive Model (CPM) excels slightly in hypoten-
sive and normotensive patients. Despite data imbalances,
all classifiers achieve an average F-score surpassing 0.90,
showcasing the effectiveness of SPMR in forecasting urgent
situations, notifications, cautionary signals, and standard
occurrences.

During the validation phase of our research on ‘‘Smart
Patient Monitoring and Recommendation (SPMR) using
Cloud Analytics and Deep Learning,’’ certain limitations
and constraints were encountered. One notable constraint
involved the availability of long-term monitoring data for
patients with chronic diseases, particularly high blood pres-
sure, using IoT sensors. The scarcity of such data posed
challenges in creating a realistic and diverse dataset for
training and testing the SPMR framework. Additionally, the
imbalance in the dataset categories, especially concerning
emergency and alert incidents, influenced the performance
metrics. These limitations highlight the need for further
exploration and data acquisition strategies to enhance the
robustness and generalizability of the proposed framework in
real-world healthcare scenarios. The validation phase served
as a valuable opportunity to identify these constraints, paving
the way for future research improvements and advancements
in smart patient monitoring systems.

B. CLOUD ANALYTICS INFRASTRUCTURE
This section unveils the essential components and elements
that constitute the Cloud Analytics Infrastructure support-
ing the ‘‘Smart Patient Monitoring and Recommendation
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FIGURE 7. P1, P2, and P3, the average F-score (Average) is compared to
work done in the last one year.

FIGURE 8. Analyzed in comparison to more current work over a period of
one year, F-scores for P1, P2, and P3.

(SPMR) using Cloud Analytics and Deep Learning’’ frame-
work in healthcare innovation. Leveraging the power of Deep
Learning (DL) and cloud-based analytics, SPMR ensures
continuous monitoring and predictive insights into a patient’s
authentic health status. The incorporation of Categorical
Cross Entropy (CCE) Optimization within the DL com-
ponent emphasizes the adaptability of the framework to
real-world health conditions. Notably, SPMR’s ability to
provide real-time preventive measures persists even without
Internet or cloud connectivity, streamlining operational pro-
cesses. Through comparative analysis against similar models,
the efficacy of the proposed SPMR model becomes evident,
showcasing heightened accuracy and significant improve-
ments in F-scores. This section provides a transparent and
insightful overview of the Cloud Analytics Infrastructure of
SPMR, elucidating the necessary platforms and technologies,
thereby contributing to the evolution of healthcaremonitoring
systems.

VI. FUTURE RESEARCH RESULTS AND CONCLUSIONS
The SPMR system keeps tabs on chronic illness sufferers
who are located far away, such as hypertension and diabetes,
in real time. This framework’s local and cloud implementa-
tions are equally effective at forecasting crucial events such
as power outages and natural disasters.

Using a new CCE optimization approach in combina-
tion with a novel DL technique, we were able to decrease
the discrepancy between the predicted and actual label
error rate. Uniqueness increases the likelihood that the DL
algorithm will reach efficient convergence. Our work is
ground-breaking since we identify massive datasets using a
cloud-based prediction algorithm hosted on GCP.

To sum up, the study successfully met its main goals, and
here are the main discoveries and contributions:

• Efficient Remote Monitoring: The SPMR system
demonstrated real-time monitoring of chronic illness
sufferers, particularly those at a distance, such as indi-
viduals with hypertension and diabetes.

• Equal Effectiveness of Local and Cloud Implemen-
tations: Both local and cloud implementations of the
SPMR framework proved equally effective in forecast-
ing crucial events, including power outages and natural
disasters.

• Enhanced Prediction Accuracy with CCE Optimization:
The implementation of a new Categorical Cross Entropy
(CCE) optimization approach, coupled with a novel
Deep Learning (DL) technique, significantly reduced
the discrepancy between predicted and actual label error
rates. This uniqueness enhances the likelihood of effi-
cient DL algorithm convergence.

• Groundbreaking Cloud-Based Prediction Algorithm:
The work breaks new ground by identifying massive
datasets through a cloud-based prediction algorithm
hosted on Google Cloud Platform (GCP). This innova-
tion contributes to the robustness and scalability of the
proposed framework.

These findings collectively highlight the effectiveness and
innovation of the ‘‘Smart Patient Monitoring and Rec-
ommendation (SPMR)’’ framework, paving the way for
advancements in remote patient monitoring systems.

SPMRhas the following advantages over other frameworks:

• Offline learning is resilient due to its high performance,
and an expert may provide ideas that take context into
consideration.

• Utilization of deep learning algorithms is required (cog-
nitive techniques). It reduces the amount of time and
effort needed to do parallel processing.

• In contrast to other frameworks, this one instals the
cloud-based learner across the local network.

• Even when the Internet goes down and cloud services
are unavailable to you, you’ll still be able to access your
data.

• Capable of managing large datasets that are inconsistent
and poorly structured.

• A common source of an overfitting issue is the omission
of sampling strategies.

• The health status of patients may be collected, kept,
monitored, categorized, and forecasted.

• Big data analysis may be accommodated by deep learn-
ing via the cloud computing platform such that it has
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high performance in terms of prediction accuracy, pre-
cision and categorical accuracy.

• Constant monitoring of a patient from a distance
increases healthcare quality.

• Testing on a legitimate cloud computing platform, for
example, it may make use of cutting-edge technologies
like Al, IoT, and cloud computing.

Using DL packages like as Scikit-learn, TensorFlow, and
Keras, our research team has shown that deep neural net-
works may be deployed rapidly and with little effort on
local computers. In the future, the framework proposed might
be used to develop various deep learning algorithms. Other
chronic conditions, such as cancer, will be tested utilizing the
context-aware framework that has been presented. Accord-
ing to [54], [55], [56], [57], [58], and [59], the suggested
framework will be evaluated on a variety of quality of service
(QoS), energy use [60], [61], [62], [63], and social network
service (SNS) in the cloud (Cloud) criteria.

VII. FUTURE WORK
Our ongoing research efforts will focus on further refining the
SPMR framework and extending its applicability to diverse
healthcare scenarios. We aim to explore the development
of additional deep learning algorithms within the proposed
framework, with a specific emphasis on addressing various
chronic conditions, such as cancer. Evaluation criteria will
expand to include comprehensive assessments of quality of
service (QoS), energy efficiency, and social network ser-
vice (SNS) in the cloud. Additionally, we will investigate
the integration of emerging technologies and frameworks
to enhance the SPMR system’s capabilities, ensuring its
relevance and effectiveness in the evolving landscape of
healthcare technology.
Potential Improvements and Future Research Avenues:

• Enhanced Offline Learning: Explore avenues to further
enhance the resilience of offline learning by incorporat-
ing advanced context-awareness and feedback mecha-
nisms from healthcare experts.

• Addressing Overfitting Issues: Develop and implement
advanced sampling strategies to address overfitting
issues, ensuring more accurate and reliable predictions
with large and inconsistent datasets.

• Expansion to Other Chronic Conditions: Extend the
framework to accommodate and monitor additional
chronic conditions beyond hypertension and diabetes,
such as cancer, utilizing the context-aware approach
presented.

• Evaluation on Diverse Criteria: Conduct comprehensive
evaluations of the proposed framework on various qual-
ity of service (QoS), energy consumption, and social
network service (SNS) criteria in the cloud environment,
as suggested by [54], [55], [56], [57], [58], and [59].

• Integration of Emerging Technologies: Explore the inte-
gration of emerging technologies like Artificial Intel-
ligence (AI), Internet of Things (IoT), and advanced

cloud computing technologies to further enhance the
capabilities and features of the SPMR framework.

• Efficiency and Scalability: Work towards improving the
efficiency and scalability of the deep neural networks,
enabling rapid and effortless deployment on local com-
puters while maintaining high performance.

• User-Friendly Framework Development: Focus on
developing a user-friendly framework that facilitates the
rapid development and testing of various deep learning
algorithms, promoting accessibility and adoption by a
broader audience in the healthcare domain.
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