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ABSTRACT The ease of usage and the convenience of cloud computing come with considerable
responsibility. The latter, consists of carefully addressing different security aspects of this technology.
The integrity and availability of the outsourced data constitute essential considerations for adopters’ final
decisions. However, the most critical factor is the efficiency of integrity checks, which must prioritize
restricted-resource data owners without affecting the performance of the Cloud Service Provider. This paper
proposes a secure scheme, called Proof of Exponentiation of Dynamic Data Possession PoEDDP based on
RSA-Accumulators. The proof of concept demonstrates that this scheme is 20 times faster compared to other
RSA-based cryptographic accumulator schemes. It could be improved to achieve great results with proper
optimizations on the larger integer multiplication side.

INDEX TERMS RSA-Accumulator, cloud storage security, data integrity verification protocol, proof of
exponentiation, proof of data possession.

I. INTRODUCTION
At the forefront of modern technology, Cloud Computing
provides a vital ecosystem to streamline operations and
enhance efficiency across diverse industries. The Everything-
as-service (XaaS) model ranging from Infrastructure-as-a-
Service to Function-as-a-Service, has become an integral
component of the contemporary innovative business
landscape [1], [2]. This model features cost-effectiveness,
agility, and scalability. Cloud storage accepts a massive
amount of data at a rate of terabytes per second, driven by
the ease of accessibility, effortless programmability, and
seamless integration of various components with cloud
platforms, especially from the rapidly growing market of
connected resource-restricted devices [3]. However, data
integrity is a major concern for adopters when outsourcing
data to Cloud Service Providers [4]. Many data owners
(generators) cannot trust Cloud Service Providers and their
associated third parties to take control of their outsourced
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data without any guarantees, especially for governments and
classified security agencies.

In this paradigm of delegating personal and organizational
private data, extensive research has been deployed to
secure each component of the cloud ecosystem. Provable
Data Possession (PDP) and Proof of Retrievability (PoR)
constitute the main integrity verification mechanisms used
in this regard. Both mechanisms can be implemented in a
deterministic or probabilistic mode. PDP ensures that the data
owner can efficiently, periodically, and securely verify the
integrity of outsourced data. On the other hand, PoR focuses
on proving that the data can be efficiently retrieved from
the cloud. While the deterministic mode in both mechanisms
ensures total correctness, the probabilistic one only checks
the partial correctness of the outsourced data. In scenarios
where absolute data integrity is critical, probabilistic methods
may fall short of providing the level of assurance required.
They introduce an element of uncertainty, making them less
robust compared to deterministic ones.

Practically, the Merkle Hash Tree is the most used
structure to handle the proof of dynamic data possession [5].
It constitutes a Tree-based cryptographic one-way
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accumulator used to commit to a set of dynamic data
blocks distributed over the Merkle Tree leaves. Nevertheless,
as the generated data scales from moderate to very large,
the efficiency of Merkle Hash Trees becomes a pressing
concern [6]. In response to this challenge, group-based
accumulators [7], an alternative cryptographic structure,
have gained traction for efficient data handling and their
support for fast batch verification [8].
Recently, [9] leveraged group-based accumulators for

deterministic integrity check-only in the cloud storage.
It proposes a new BlockGen algorithm, using a technique
to avoid primality tests and collisions. However, the scheme
introduces high computation overhead when performing
large integer multiplication and modular exponentiation,
using the generated blocks.

To address the partial correctness of the probabilistic PDP,
the efficiency problem of, using Merkle Hash Tree, and the
drawbacks of the deterministic PDP scheme [9], we propose
a deterministic proof of data possession scheme, using RSA-
accumulators. Our scheme exploits Proof of Exponentiation
and safe under a new stronger security assumption, called the
Adaptive Root assumption [10]. Unlike [9], our BlockGen
algorithm significantly reduces the computation overhead
by reducing the size of the generated blocks used in large
integer multiplication. As a consequence, it reduces the
communication and storage overhead. Therefore, the scheme
is considered to be fast and efficient. It supports data
integrity verification characteristics, blockless verification,
unrestricted challenge frequency, dynamic data handling, and
public auditability. This scheme is secured against different
data attacks such as tag forgery attacks, data leakage attacks,
replace attacks, replay attacks, and pollution attacks. It can
also be deployed on a trusted or untrusted environment in
which we regard the accumulator manager’s existence or
absence.

A. CONTRIBUTIONS
In this paper, we propose a fast and efficient data integrity
verification scheme based on a variant of group-based
cryptographic accumulators, called RSA-Accumulators,
which is safe under the Adaptive Root assumption. It solves
the computation, storage, and communication efficiency
challenges. The scheme supports different deployment
models, such as trusted and untrusted environments in
which we consider the accumulator manager malicious and
must be restricted in trust-minimized environments where
such behaviors may arise. Furthermore, it supports most
data integrity verification characteristics, such as blockless
verification, unrestricted challenge frequency, dynamic data
handling, public auditability, and fairness. Our scheme is
secure against different data attacks such as tag forgery
attacks, data leakage attacks, replace attacks, replay attacks,
and pollution attacks. It maintains data integrity even if the
CSP caches some values to accelerate the proof generation
without holding the full data. We prove that the accumulator
construction is secure, assuming the Strong-RSA.

B. RELATED WORK
The two data structures used in the integrity verification of
outsourced data are tree-based and group-based (algebraic)
structures. On the one hand, Merkle Hash Tree (MHT)
is the most mature tree-based data structure used to
authenticate dynamic data and perform remote integrity
checks [5]. On the other hand,RSA-based accumulators, also
called cryptographic one-way accumulators are considered
promising alternatives to Merkle Hash Tree [11]. The
commitment in Merkle Hash Tree Fig. 1, is achieved by
computing a succinct digest of the set of data blocks
distributed over the Merkle Tree leaves, using a Collision
Resistant Hash Function. This commitment is used in
subsequent checks to verify that a block or a set of blocks
indeed still exists. This commitment satisfies a vital security
property called binding, which informally means that a
malicious adversary cannot produce two or more valid
openings once it commits to a set of data.

In this regard, [12] was the first to exploit MHT tomaintain
the state of dynamic data in the cloud context. Reference [13]
introduced proofs-of-ownership (PoWs) to deal with the
client-side deduplication based on MHT. Reference [14]
PoOR scheme invoked by the client to prove to the CSP
its ownership of a particular file and verify its blockless
recoverability. It uses erasure codes on an MHT-based
structure with homomorphic verifiable tags to achieve
deduplication. Reference [15] MuR-DPA is a public auditing
scheme based onMHT to support verifiable updates for cloud
storage with multiple replicas. This scheme exploits a new
Authenticated Data Structure (ADS) called MR-MHT, which
organizes replicas for each data block into the same sub-tree.
Reference [16] proposed a provable data transfer protocol
based on provable data possession and deletion operating on
anMHT-based structure. Reference [17] a rank-basedMerkle
Tree (RBMT) scheme called ODPDP is used to achieve
batch updates and outsourced auditing. Reference [18]
PRAYS blockless Merkle Tree authenticated structure, with
permission-based signature to support collaborative multi-
writer. Reference [19] proposed a position-aware structure
based on the Merkle Tree to ensure public verifiability of
dynamic data without retrieving the whole tree structure
to compute the root node. Reference [20] introduced the
concept of Dynamic Large Branching Hash Tree (DLBHT)
based on MHT combined with a Homomorphic Verifiable
Authenticator (HVA) based aggregate signature scheme,
to support batch update and public verification.

All the schemes mentioned above use leverage MHT to
ensure provable data possession. Thus, they suffer from the
efficiency problem reported [6].
Unlike Merkle Hash Tree commitment, group-based

cryptographic one-way accumulators provide a succinct
witness of inclusion and exclusion against an element
independent of the order of elements being accumulated [7],
[21]. These proofs are efficient even without a trapdoor [22],
[23]. Group-based cryptographic one-way accumulators can
be instantiated in different environments, including an

VOLUME 12, 2024 52879



A. A. Harchaoui et al.: PoEDDP-A Fast RSA-Based Proof of Possession Accumulator

untrusted setup where the accumulator manager is considered
malicious [24]. They can provide advanced properties like
zero-knowledge arguments [25], [26]. In this line of work,
Ateniese et al. [27] is the first probabilistic verification-only
scheme proposed to ensure that the remote server holds
the data of a particular client. The scheme is considered
probabilistic and doesn’t achieve total correctness. But
before that, Caronni and Waldvogel [28] introduced a
straightforward deterministic integrity check to establish trust
in distributed storage providers. This scheme features public
verifiability but is unable to handle dynamic data. It suffers
from a significant drawback, requiring the data owner to store
replicates of the original data to cross-check the correctness
of the received digest. Deswarte et al. [29] presented two
methods that use the Diffie-Hellman for key exchange. The
first is based on a table containing multiple challenges and
precomputed responses for each file, and the second method
uses single precomputed value stored on the data owner
side for each random challenge. The former method requires
the server to be rebooted to compute new responses, which
means that this method doesn’t achieve unbounded queries.
The latter requires modular exponentiation which makes
it inefficient for large files. Filho and Barreto [30] is an
RSA-based homomorphic hash function scheme proposed
to overcome the aforementioned drawbacks. This scheme
supports unbounded queries but lacks the support of dynamic
data. as well as induces high computation costs. Based on
the Diffie-Hellman as well as the RSA hardness, Sebè et al.
[31] achieve the auditing without performing exponentiation
against the entire data blocks. The proposed scheme shows
a tradeoff between the low computation on the CSP side
and the storage cost required on the data owner side. This
scheme supports unbounded queries but fails to support
both dynamic operations on the data and public auditability.
Hao et al. [32] proposed a scheme supporting dynamic
operation, public verifiability, and privacy against semihonest
behavior. The scheme leverages RSA-based homomorphic
verifiable tags to support data-level dynamics at the block
level. In this construction, when a modification affects the
file, the associated blocks and tags are updated, resulting
in unnecessary computation and communication expenses.
The scheme also suffers from the long time required for
the setup and verification phase due to the number of
modular exponentiations required. Yi et al. [33] introduced
a Provable Data Possession (PDP) scheme utilizing Fully
Homomorphic Encryption (FHE) with multi-copy support to
ensure public verifiability of data duplicates while preserving
confidentiality from third-party authenticators. The scheme
enables dynamic data support and authorizes user access
to shared data. This scheme is susceptible to potential
decryption errors when multiple homomorphic operations
are performed, leading to increased noise in the ciphertext.
Additionally, there is a drawback in storage costs arising
from data expansion in the FHE process. Recently, [9]
relied on a modified RSA-group of known order, which
is safe under the strong RSA assumption to build a

FIGURE 1. A merkle tree commitment.

variant of group-based cryptographic one-way accumulators
called RSA-Accumulator. Based on these assumptions, they
construct a deterministic data integrity verification scheme
in the cloud context that supports dynamic data. They
introduce a non-coprime representation of the precomputed
data blocks, using a BlockGen algorithm, first to avoid
primality tests and collisions, second to overcome the
computation overhead of the large modular exponentiations
of inputs, and finally to prevent the CSP from issuing a
proof without holding the data. The scheme supports public
auditability, dynamic operation, privacy preserving, and
more. However, the scheme suffers from high computation
overhead during both the block generation and proof
generation phases due to the length of the generated blocks
used during the large integer multiplication and modular
exponentiation. Ren et al. [34] proposed a deterministic
integrity verification scheme that utilizes another variant
of group-based cryptographic one-way accumulators called
bilinear map accumulators [26]. This scheme is safe under a
Strong Diffie Hellman assumption noted t− SDH. Thus, the
scheme is restricted with an upper bound of t elements to be
accumulated.

C. ORGANIZATION OF THE PAPER
Our paper is organized as follows: Section II equipped
the reader with the required background, definitions,
assumptions, and the adopted notations used throughout the
paper. Section III describes our proposed scheme from a high-
level overview. Sections IV and V detail the building blocks
of the scheme. Section VI highlights the characteristics
of our scheme, and VII defines the security requirements,
provides formal proofs, and performs a performance analysis.
Section IX discusses the results of our scheme and the
Section X concludes the paper.

II. PRELIMINARIES
Throughout this section, we will highlight some background
and definitions, the adopted notations used in the paper, and
the assumptions that we built upon.

A. NOTATIONS
• negl(λ) is a negligible function of the security
parameter λ.

52880 VOLUME 12, 2024



A. A. Harchaoui et al.: PoEDDP-A Fast RSA-Based Proof of Possession Accumulator

• Primes(λ) is the set of odd primes less than 2λ.

• χ
$
←− G denotes a uniform sampling of the element χ

from the set G.
• χ

$
←− A(.) is a randomized algorithm A that produces a

random variable χ .
• GGen(λ) is a randomized algorithm that generates
either a group of known order or a group of unknown
order.

• keyGen(λ) is a key generation algorithm that produces
the verification key vk and public key pk.

B. BACKGROUND
1) CRYPTOGRAPHIC-ACCUMULATORS
Cryptographic accumulators, as introduced in [11], were
essentially used as a one-way hash function f with the
property of being quasi-commutative primitives. A quasi-
commutative function f is a function such that for all initial
value g ∈ G and for all elements x1, x2 ∈ X :

f : G× X −→ G
∀(g, x1, x2) −→ f (f (g, x1), x2) = f (f (g, x1), x2) (1)

These cryptographic primitives are designed to produce
a succinct binding commitment AX = f (f (f (. . . f (f (f (g, x1),
x2), x3), . . . , xn−2), xn−1), xn) where X = {x1, . . . , xn} is
the set of elements. They generate short membership and
non-membership proof to test whether an element xi is in
the set X or not. These accumulators can be constructed,
using different structures. One employs the hash-based (or
tree-based) approach [5], [35], utilizing the Merkle tree
structure. The other uses the group-based (or algebraic-based)
approach, exploiting the algebraic structure of the underlying
groups. Furthermore, the group-based accumulators can
be further categorized into RSA-Accumulators [7], [21],
[24], [36], built on top of the RSA-groups (Definition 1),
and Bilinear-Accumulators [37], [38], [39] built, using
bilinear pairings. In this work, our focus will be on the
RSA-Accumulators.

The simplest scenario of using these primitives is when a
prover possesses a set of elements xi ∈ X and wants to prove
to a verifier that he holds an element xk . So the prover issues a
proof πk to express that he holds the element in question, then
the verifier executes a check against this proof πk to verify the
claim. Technically, given a group G and a random element
g ∈ G such that G is an RSA-group defined by multiplying
to big prime numbers p, q such thatN = p·q (as mentioned in
next section 1). The prover computes a binding commitment
AX to the set X , using modular exponentiation: AX =

gx1.x2...xk−1.xk .xk+1...xn ∈ G. This commitment can be publicly
disclosed for (non)membership verification. A verifier who
wants to audit for example if xk ∈ X challenges the prover.
The prover then generates a proof πk that xk is indeed in
X by computing the same modular exponentiation, using all
elements xi except for xk . The verifier then checks the proof
to determine if πk

xk is equal to AX .

Definition 1 (RSA-Groups): We call RSA-group the
group Z∗N , i.e., the multiplicative group of invertible
integers modulo N , where N is the product of two big
primes. We define the RSA quotient group for N as
the group Z∗N /{±1}. It is believed that all elements of
Z∗N /{±1} are of unknown order except for the identity
element.
Definition 2 (Collision-Resistant hash Function ): Let

H : {0, 1}∗ → {0, 1}λ be a hashing function, we say that
H is collision-resistant if the advantage of a PPT adversary
A to find x1 ̸= x2 ∧ H (x1) = H (x2) is negligible.
Definition 3 (Division-Intractable Hashing Function):

Let H : {0, 1}λ → {0, 1}λ be a collision-resistant hash
function, H is division-intractable if the advantage of PPT
adversaryA to find and element xj and a set of {xi} ∈ {0, 1}λ

and H (xj) divides
∏n

i=1 H (xi) is negligible.

2) PROOF OF EXPONENTIATION
Proof of Exponentiation PoE is a protocol that allows a
prover to convince a verifier that he knows the correct
value α such that α = gτ , where g and τ are known to the
verifier. It offers efficient verification for resource-intensive
computation (i.e., iterated exponentiation) and allows the
outsourcing of this computation when the verifier is
resource-restricted.

The iterated exponentiation is the commonly used strategy
by most RSA-Accumulators to compute the commitment
AX and the proof πk , on the one hand, and the verification
for a given element xk , on the other hand. However, this
strategy is time and resource-intensive. In our case, the
PoE protocol leverages a shortcut for resource-constraint
verifiers to efficiently check the correct computation
of the exponentiation without performing the whole
computation.

Technically, let the shared inputs g, α in G and x∗ in Z
such that x∗ =

∏n
i=1 xi, if the CSP wants to convince

the data owner that he is still holding all the elements
xi’s, and the computation of α = gx

∗

was done correctly.
First, the data owner sends a random prime number l from
Primes(λ) to the CSP. Then, the CSP finds the pair (q, r)
such that q in ZN and r in [l] where x∗ = q · l + r
in G, and sends back π = gq. Finally, the data owner
checks if π lgr = α holds in G. The latter protocol is
the Proof of Exponentiation PoE protocol introduced by
Wesolowski [10] and generalized by Boneh et al. [8]. One
can notice that this protocol holds significant utility for
the CSP, and it proves highly advantageous when the data
owner is resource-restricted. The job of the former is reduced
from recomputing the whole iterated exponentiations (gx

∗

)
into performing one Euclidean division of x∗ by l and
one exponentiation gq. The latter’s job is reduced from
the old computation cost into one Euclidean division of
x∗ by l and one comparison gq·l+r = gx

∗

in G. This
is considered faster compared to recomputing the iterated
exponentiation gx

∗

.
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3) ADAPTIVE ROOT ASSUMPTION AND STRONG-RSA
ASSUMPTION
The soundness of our PoEDDP relies on a new
computationally hard assumption denoted as the Adaptive
Root Assumption (Definition 5), introduced in [10] and
studied in [40] and [41]. This assumption allowed our
scheme to be instantiated in more general groups, where it
is believed to hold (i.e., the cyclic group ZN /±1 and class
groups). The basic idea behind this assumption is that it
is hard to extract the roots of a given element adaptively.
Adaptive in the context of security models allows the
adversary to behave dynamically and adapt his strategies
based on information acquired during the extraction process
of the root.

Let say that we want to prove that α = gτ , using the Proof
of Exponentiation as mentioned above and in II-B2 such that
τ is the product of the elements xi ∈ X . The verifier sends
a random prime l ∈ [0, 2λ] and verifies the correctness of
the proof π , using the following check π lgr = α such that
r = τ ( mod l), where π = gq is computed by the prover
such that τ = q · l + r . If an adversary fixes some arbitrary
values ĝ ∈ G and α̂ ̸= 1, once he gets the sampled challenge
l from the verifier, he will try to adaptively forge a valid proof
π̂ such that α̂ · ĝτ̂

= π̂ l
· ĝr , and r = q · l + r . He can do so

by finding an element û such that α̂ = ûl . If this extraction is
done correctly, then π̂ = α̂

1
l · ĝq is considered as a valid

proof. Thus, the adversary is able to find the l-th root of
α̂ for an arbitrary non trivial element l sent by the verifier.
However, this computation is considered to be hard in the
groups of interest. Opposed to the Adaptive Root Assumption
which is still developing and a non-standard assumption, the
Strong-RSA Assumption (Definition 6) is classical and well
established assumption, introduced in [36]. It states that it is
difficult to compute the l-th root of a random RSA modulus
N , given only the value of l, where l is a random odd prime.

To wrap up, the difference between the Adaptive Root
Assumption and the Strong-RSA Assumption is that the
former is less restrictive regarding group selection and asserts
that it is hard to extract a random root of a chosen group
element. However, the latter is more restrictive regarding
group selection and asserts that it is hard to extract a chosen
root of a random group element. For more formal definitions
and technical proofs, one can check 5 and VII, respectively.

4) ACCUMULATOR SECURITY (UNDENIABILITY)
We follow the undeniability property as introduced in [24]
to define the security of the accumulator. This property
ensures the accumulator’s security and integrity. It prevents
the accumulator manager from simultaneously confirming
and denying the presence of a specific element if he intends
to act maliciously. Technically, if a particular element xk
doesn’t exist among a set of elements X accumulated into
an accumulated value AX , an adversary A cannot later
provide a proof of inclusion πk of the element xk in the
accumulator AX and provide, at the same time, another proof
of exclusion π̂k to prove the opposite.

In this work, we adapt the formal definition of the
undeniability as appeared in [24] and generalized in [42]
to follow our notations. ProofVer is an algorithm taking
the accumulated value αt , the element xk and the proof πk
or π̂k as inputs and outputs {0,1} to accept or refuse the
provided proof. We say that the accumulator is undeniable if
for all PPT adversaryA the following advantage is negligible
considering the Strong-RSA assumption:
Definition 4 (Accumulator Security (Undeniability)):

Pr


G $
←− GGen(λ)

g
$
←− G

(αt , xk , πk , π̂k )←− A(G, g)
ProofVer(αt , xk , πk ) = 1
∧ProofVer(αt , xk , π̂k ) = 1

 = negl(λ) (2)

5) TRUSTED AND UNTRUSTED SETUP
The trusted setup requires private randomness p and q
to generate the public parameters N = p · q and g,
necessary to our scheme. These private randomness must
be kept secret or discarded to maintain the soundness of
our scheme. If they are disclosed to an adversary or the
CSP wants to act maliciously, it breaks the binding property
of our scheme to forge arbitrary proofs. The forgery of
such proofs could be easily constructed for any element

xk as πk = g

(
x∗· 1xk

)
( mod φ(N ))

( mod N ), where φ(N ) =
(p − 1)(q − 1). Thus, the existence of a trusted party
(other than the CSP), which efficiently generate this RSA
modulus, using GGen and does not disclose the private
randomness, is crucial. Alternatively, GGen can use public
randomness to select a sufficiently large N during the
trusted setup, making factoring N challenging. However,
the larger N is, the impractical it becomes. Often, trusted
parties are undesirable in trust-minimized environments
where malicious behaviors may arise. Thus, the reliance on
a single trusted party can be reduced as in [43], [44], [45],
[46], and [47] by engaging multiple parties in the setup
process or by employing decentralized methods. This choice
between trusted and untrusted setups involves a tradeoff
between efficiency, complexity, computation overhead, and
security. Trusted setups offer simplicity and efficiency but
introduce a central point of trust. On the other hand, untrusted
setups distribute trust among multiple parties or eliminate
them completely to enhance security, but often at the cost of
increased computational complexity. Hence, striking the right
balance depends on the specific application’s requirements
and the desired level of security assurance.

C. ASSUMPTIONS
Definition 5 (Adaptive Root Assumption): Let GGen be

the generator of the groupG of a security parameter λ.We say
that the Adaptive Root Assumption for GGen holds if the
advantage of an adversary (A0,A1) to: first, A0 outputs an
element w ∈ G and some state st. Then, a randomly chosen
prime l in Primes(λ) and A1(w, l, st) outputs w

1
l ∈ G is
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negligible. For all efficient (A0,A1):

Pr


G $
←− GGen(λ)

(w, st)←− A0(G)

ul = w ̸= 1 : l
$
←− Primes(λ)

u←− A1(w, l, st)

 ≤ negl(λ) (3)

Definition 6 (Strong-RSA Assumption): GGen satisfies
the strong RSA assumption if for all efficient A:

Pr


G $
←− GGen(λ),

g
$
←− G

αe = g

s.t e is odd prime : (α, e) ∈ G× Z $
←− A(G, g)


≤ negl(λ) (4)

III. OVERVIEW
In this section, we briefly describe our proposed deterministic
data integrity verification scheme and its three major phases
as shown in Fig. 2.

Our scheme relies on recent results published by
Wesolowski [10], called Proof of Exponentiation PoE.
We exploit PoE over an RSA-Accumulator to build a secure
scheme, called Proof of Exponentiation of Dynamic Data
Possession PoEDDP. This scheme supports dynamic data,
using uniquely computed tags inserted into a persistent
dynamically indexed map, called Hash-to-Prime Mapping
(HPM). The scheme also supports fast proof verification,
low computation, and communication overhead as shown
in Figures 16, 17, and 18. That makes it suitable for
low and restricted resources devices. It supports public
auditability, blockless verification, and unbonded queries.
It fulfills completeness and soundness properties when the
chosen group satisfies the Adaptive Root Assumption and
provides fairness against dishonest verifiers.

1) The setup phase: creates the scheme environment with
a security parameter λ and the desired deployment
model II-B5. It executes the GGen(λ) algorithm to
output the necessary public parameters as follows: a) a
group G of order N , using private randomness p and
q if one opts for a trusted setup or public randomness
if one chooses the untrusted setup. GGen(λ) can also
produce a group G of unknown order for both cases too,
b) a generator g of the group G. In addition to the public
parameters, the keyGen algorithm produces the public
key pk and verification key vk.

2) The preprocessing phase: the data owner splits the data
D into n-blocks fi of size l1, using the split algorithm
and pads it if necessary. This set of data is defined as
F = {fi}ni=1. Then, encrypts each block fi with a secure
cipher Enc to produce the ciphertext ci of size l2 and
form a set of encrypted blocks C = {ci}ni=1. To finalize
the preprocessing phase, the ciphertext ci is fed to the
Hprime algorithm to produce odd primes τi of size l3.
These tags are saved into HPM for a later usage. Later

on, he computes the accumulated value αt , using this set
of odd primes τi such that αt = g

∏n
i=1 τi . Then, he stores

αt to be used during the verification phase, outsources
the concatenation (C || N || g) of the ciphertexts, the
group description and the generator to the CSP, and
deletes his local version of the data F .

3) During the auditing phase (Challenge/Verification
phase): the data owner has to ensure that the CSP
holds the outsourced data and maintains its authenticity.
He starts the verification protocol by sending a
challenge to the CSP. This challenge consists of a

randomly chosen prime number l
$
←− Primes(λ), and a

randomly chosen index j from HPM. Then, the role of
the CSP is to convince the data owner. First, he searches
for the ciphertext of the index j (c′j), hashes it to prime
to get τ ′j , then tries to find a pair (q, r) such that q ∈ ZN

and r ∈ [l] where
n∏
i=1

τ ′i × τ ′−1j = q · l + r , and τ ′j is the

hash-to-prime of c′j done by the CSP. Finally, he sends
back the concatenation (π || c′j) of the proof of data
possession π = gq and the witness c′j to the data owner.
To end the verification phase, the data owner compares
the hash-to-prime of the received c′j with his own τj

and tries to find a value r =
n∏
i=1

τi × τ−1j ( mod l) and

accepts if π lgr = α
τ−1j
t holds.

IV. CONSTRUCTIONS
This section describes the building blocks of PoEDDP
scheme and details the procedures used during its
phases.

A. PHASES
1) SETUP PHASE
Given a security parameter λ which specifies the required
security degree of the RSA key size (i.e., 3072 RSA key size
for 128 bits of security). In Fig. (3), the data owner, denoted
as V for verifier, generates a group G, using the GGen
algorithm. There exist two possible choices: 1) If we opt for
a completely untrusted environment, the GGen algorithm is
run, using decentralized methods: an untrusted setup model
via Multi-Party Computation (MPC) or threshold method to
produce necessary secrets to build group G. Otherwise, G of
an unknown order can be chosen (i.e., class groups). 2) If
the data owner is an accumulator manager playing the role
of a trusted entity, which could affect the fairness property
toward the CSP, the GGen algorithm produces a group
G of known order N = p · q such that p and q are two
relatively big primes (i.e., Z∗N). Then, we sample a random
element g fromG used to instantiate our accumulator. Finally,
the data owner instantiates a mapping of the accumulated
values called HPM, which consists of a dynamic indexed
mapping used to track the elements involved to generate the
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FIGURE 2. PoEDDP scheme.

FIGURE 3. Setup phase.

accumulated value αt in a given time t . To perform later
data encryption, with the secure Enc cipher, we generate the
(pk, vk), using the keyGen algorithm.

2) PREPROCESSING PHASE
In this phase shown in Fig. 4, the data owner V preprocesses
the data he wanted to outsource to the CSP denoted as P for
prover.

1) He splits the data file D into n-blocks fi of size l1, using
split procedures. If the block fi is not a multiple of l1,
V pads it accordingly.

2) Then, he encrypts each block fi, using a secure block
cipher Enc (i.e, AES ) with the key vk to produce the
encrypted block ci of size l2.

3) He hashes to prime each block ci using a hash-to-prime
division-intractable hashing function Hprime to generate
hashes to primes τi of size l3 linked to each block ci,

4) and stores τi into the dynamic mapping HPM.
5) Then, V computes the digest αt = g

∏n
i=1 τi , which is the

sampled element g raised to the power of the product of
the hashes to prime of the encrypted blocks. Finally,

6) V outsources the encrypted data C to P, concatenated
with the public parameters N and g as (C || N || g),
using a secure channel (i.e., TLS 1.3).

3) AUDITING PHASE
During this phase Fig. 5, V initiates the protocol to verify that
P holds the full version of the outsourced data, by the mean
of the accumulated value αt that he owned:
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FIGURE 4. Preprocessing phase.

1) he randomly generates a prime number l
$
←− Primes(λ),

and a random index j from HPM, then, sends them to P
as a challenge to P.

2) P receives (l || j), he searches for the block c′j to compute
his version of the hashing to prime τ ′j . He then tries
to find the pair (q, r) such that q in ZN and r in [l]

where
n∏
i=1

τ ′i × τ ′−1j = q · l + r , and τ ′i is the hash-to-

prime of the encrypted block ci performed byP. Then,P
proves the possession of V’s data by computing π = gq

and sending the concatenation of the proof π and the
witness c′j to V. Finally, V gets (π || c′j), compares
τ ′j ←− Hprime(c′j) with his local τj. Then, he tries to

find the value r such that r =
n∏
i=1

τi × τ ′−1j ( mod l),

and accepts if π lgr = α
τ ′−1j
t following the proof of

correctness of our protocol described in (5):

π lgr = α
τ ′−1j
t (5)

⇔ < def (π )l = (gq)l , def αt = g

n∏
i=1

τi

>

(
gq
)l gr = g

 n∏
i=1

τi


τ
′−1
j

⇔ < exponents identities >

gql+r = g

n∏
i=1

τi×τ ′−1j

⇔ < exponents property >

ql + r =
n∏
i=1

τi × τ ′−1j

Q.E .D

V. DATA DYNAMICS SUPPORT
We have just constructed our initial RSA-based Provable
Data Possession accumulator, denoted αt , over the set of the
hashes to primes τi’s stored in HPM table. Handling static
data carries little significance, especially in light of the radical
transformation introduced by IoT and edge/cloud computing.
These devices capture and generate a vast amount of data,
which may contain sensitive or critical information. This data
undergoes processing, storage, updates, long-term archiving,
or deletion. This dynamic nature, along with integrity,
confidentiality, and privacy are of paramount consideration
for different organizations when they decide to outsource
their sensitive data to cloud computing and transiting to full-
cloud entities. Thus, our PoEDDP leverages the necessary
mechanism to ensure the security of the dynamic nature of
the data without sacrificing the efficiency. In this section,
we describe our approach for dynamic data handling to
support various operations. We begin by addressing the
simpler cases of single-block addition, deletion, and update.
Subsequently, we expand the scheme to accommodate
m-blocks operations.

A. ADD ONE BLOCK
Let’s say that the data owner wants to add a new block fk to
the cloud storage, which holds the old dataF on its encrypted
form C. Fig. 6 shows the state of the HPM mapping on the
data owner side and the state of the encrypted blocks C on the
CSP side, before and after adding the block of data fk .
1) The data owner V creates one block denoted fk of size

l1 such that k is the position where the new block will
be added. He pads the block fk if the length of fk < l1,
performs the encryption, using the cipher Enc, and the
authentication, using Hprime to produce the pair (ck , τk)
of the ciphertext ck and the tag τk . Then, he stores
the hash-to-prime into the HPM, HPM.Save(τk ), and
commits to the new set HPM ∪ {τk}, by computing the
new digest αt+1 = α

τk
t . This quantity represents the old

digest, raised to the power of the hash-to-prime of the
new encrypted block ck . In the end, V outsources the
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FIGURE 5. Auditing phase.

new encrypted block ck to the P, concatenated with a

randomly chosen prime l
$
←− Primes(λ), and an index j,

to challenge P as (ck || l || j).
2) Upon receiving (ck || l || j), P computes his own

hash-to-prime τ ′k of ck and inserts ck into k-th position
of C. Then, he proceeds to the proving process to
prove the correct insertion of the newly received block.
He searches for the encrypted block c′j of the received
index j to compute the corresponding hash-to-prime τ ′j .
He then tries to find the pair (q, r) such that q ∈ ZN

and r ∈ [l] where
n∏
i=1

τ ′i · τ
′−1
j = q · l + r . Finally, P

computes π = gq, and sends the concatenation
(
π || c′j

)
of the proof and the witness to V.

3) V receives
(
π || c′j

)
and accepts the claim that the block

fk was inserted correctly and P still has the complete
data C if equation (7) holds, following the same proof
of correctness previously done in (5).

τj = τ ′j ←− Hprime(c
′
j)

r ←−
n∏
i=1

τi · τ
′
j
−1( mod l)

π lgr = (αt+1)
τ−1j

(7)

B. ADD MULTIPLE BLOCKS
We expanded the previous process, of adding 1-block and
proving its correct outsourcing to the remote CSP, to support
batch addition of m-blocks of data, as described in Fig. 8.

FIGURE 6. The state of the HPM table on the client side and encrypted
blocks on the CSP side before and after adding one element.

Let Dm be the set of the new unique m-blocks, that the data
owner wanted to outsource, Fm be the set of the m-padded
blocks of size l1 of Dm, Cm be the set of the m-ciphertexts of
each element of Fm, and Tm be the set of the m-hashes-to-
prime created from each element of Cm. The data owner V:

1) prepares the m-blocks of Dm, using the split procedure
to create blocks fj of size l1, and performs padding if
fj < l1, where j = {1, . . . ,m},

2) encrypts each block fj, using the cipher Enc to
produce cj,

3) authenticates the each ciphertext cj, using the Hprime
procedure to produce the tags τj,
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FIGURE 7. One block addition.

4) saves each hash-to-prime τj into the dynamic mapping
HPM,

5) computes the new accumulated value αt+1, which is the
old accumulator αt raised to the power of the product
of the new m-hashe-to-prime of the encrypted blocks fj,
as follows αt+1 = αt

∏m
j=1 τj ,

6) outsources the new encrypted data Cm concatenated with
a randomly chosen prime l and an index k from the
HPM as (Cm || l || k) to the CSP. l and k will
be used as a challenge to produce the proof of correct
insertion.

Once the CSP receives (Cm || l || k). He appends
the m-blocks to the old encrypted data C and tries to
produce a proof to convince V that the insertion was
done correctly. Consequently, he follows the same process
described previously by retrieving the encrypted block c′k
corresponding to the received index k to computes his own
hash-to-prime τ ′k . Then, he tries to find (q, r) such that q ∈ ZN
and r ∈ [l] where(

n∏
i=1

τ ′i

)
·

 m∏
j=1

τ ′j

 · τ ′−1k = q · l + r (9)

with
∏m

j=1 τ ′j is the product of the hashes-to-prime of the
new received m-blocks computed by the CSP. Finally,
He computes the proof π = gq and sends it concatenated with
the witness c′k to V. When V receives (π || c′k ), he verifies the
proof and accepts if

τk = τ ′k ←− Hprime(c
′
k )

r ←−

 n∏
i=1

τi ·

 m∏
j=1

τ ′j

 · τ ′k−1( mod l)


π lgr = (αt+1)

τ−1k

C. DELETE 1-BLOCK
Moreover, our construction is easily enhanced to support the
efficient deletion of one block from the accumulator even
without a trapdoor, as shown in Fig. 9. The following steps
cover how to delete the j-th block and prove its correct
deletion from the remote cloud storage. Fig. 10 illustrates the
state of the HPM mapping on the data owner’s side and the
state of the encrypted blocks C on the CSP’s side before and
after the deletion the j-th block. The data owner V:
1) determines the j-th block he wanted to delete.
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FIGURE 8. m-blocks addition.

2) computes the new accumulated value αt+1 over the new

set HPM \ {τj} such that αt+1 = (αt)
τ−1j , where HPM \

{τj} is the old set of hashes-to-prime stored in the HPM
mapping with the hash-to-prime of the selected block
excluded.

3) sends a sampled random prime l
$
←− Primes(λ)

concatenated with the block’s index j to P.
Once P receives (l || j):

1) he retrieves the encrypted block c′j of the received index,
using the procedure LookupBlock(C, j),

2) he computes his own hash-to-prime τ ′j of the cj′ and
prepares the block cj′ to be deleted from the store.

3) Then, P sends
(
π = gq || c′j

)
as non-membership proof

of the j-th block, to prove that the deletion was done
successfully. We use the same protocol to find (q, r) ∈
N × [l] such that (10) holds.(

n∏
i=1

τ ′i

)
· τ ′−1j = q · l + r (10)

Finally, upon receiving the proof π concatenated with the
witness c′j, the data owner V checks and deletes the hash-to-
prime τj permanently from theHPMmapping if the follwoing
equation (11) holds:

τj = τ ′j ←− Hprime(c
′
j)

r ←−

 n∏
i=1
i̸=j

τi( mod l)


π lgr = αt+1

(11)

D. DELETE MULTIPLE BLOCKS
Supporting m-blocks deletion is straightforward. It is an
extension of the method used for deleting a single block.
Instead of just dealing with one position j, it now involves
sending a list (vector) of m positions to the CSP. Let Cd be
the set of the m ciphertexts and Td be the set of the m hashes-
to-prime of the elements of Cd such that d = (1, . . . ,m) is the
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FIGURE 9. One block deletion.

FIGURE 10. The state of the HPM mapping on the client’s side and the
encrypted blocks on the CSP’s side before and after deleting one element.

vector of m positions that V will send to P. Fig. 11 illustrates
the process of m-blocks deletion:

1) The data owner V determines a vector d = (1, . . . ,m)
of the m-indices he wanted to delete,

2) computes the new accumulated value αt+1 =

(αt)

 m∏
j=1

τj


−1

over the new set HPM \ Td . This

set is the old HPM without the set Td of the m
hashes-to-prime.

3) He randomly select a prime l from Primes(λ),
concatenates it with the vector d and an index k
randomly selected from the HPM where k /∈ d . Then,
he sends this concatenation (l || d || k) to the CSP.

4) Once the CSP receives (l || d || k), he retrieves the
m-encrypted blocks Cd from the data store C, using the
vector d as an input to the LookupBlock procedure such
that C′d ←− LookupBlock(C, d),

5) retrieves the kth encrypted block c′k , using
the LookupBlock procedure such that
c′k ←− LookupBlock(C, k).

6) Then, he tries to find the pair (q, r) such that the
equation (13) holds where (q, r) ∈ ZN × [l].

n∏
i=1
i/∈d

τ ′i = q · l + r (13)

7) Finally, he computes the proof π = gq, concatenates
it with the witness c′k and sends them to the data
owner V.

8) Upon receiving the concatenation
(
π || c′k

)
, the data

owner V verifies the proof π and accepts the deletion
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of the m-blocks if the following equation 14 holds:

τk = τ ′k ←− Hprime
(
c′k
)

r ←−

 n∏
i=1
i/∈d

τi( mod l)


π lgr = αt+1

(14)

E. UPDATING BLOCKS
Let’s say that the data owner wants to update one or more
blocks of his outsourced data with some newly created ones.
The update operation combines the two previous operations
add block(s) and delete(s). Proving the correct update of an
element τoldu against an accumulated value αt is equivalent
to prove that the accumulated value αt doesn’t contain the
element τoldu which corresponds to the delete operation, but
contains a new element τnewu used as a replacement which
corresponds to the add operation. Fig. 12 describes how to
perform one block update to allow the data owner to substitute
the encrypted block coldu of the index u at theCSP’s side with
the new block cnewu , and to update it’s local HPM mapping
with corresponding tag τoldu with the new one τnewu . Fig. 13
describes how to perform m-blocks updates. This process
requires V to send a vector d = (1 . . .m) of m-indices to P

which maps to the set of blocks which the data ownerVwants
to update.

VI. CHARACTERISTICS OF POEDDP SCHEME
This section describes the characteristics of our proposed
scheme. It follows the cloud’s general data integrity
verification characteristics as described in [4].

1) Blockless Verification: Our scheme removes the need
for the data owner to download all the data from the
remote data storage to perform integrity verification.
The data owner challenges the CSP with a randomly
chosen prime number. The CSP generates a proof and
sends it back to the data owner, who runs the proof
verification.

2) Unrestricted Challenge Frequency: Our challenging
mechanism does not solely depend on the order of
the outsourced data blocks. Our challenge comprises a
combination of two sets: a) the set of indices of the
blocks being outsourced, and b) the set of odd primes
less than 2λ such that λ is the chosen security parameter
(i.e. 128, 192, or 256). The set of odd primes less 2λ is
considerable in size, and when combined with the set of
indices, it provides an effectively unlimited number of
challenges.

FIGURE 11. m-blocks deletion.
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FIGURE 12. One block update.

3) Soundness: Considering the case where the CSP could
caches the value

∏n
i=1 τ ′i without holding the data.

Once the CSP received the challenge, he needs to
exclude the hash-to-prime of the requested block jwhich
is τ ′j from the quantity

∏n
i=1 τ ′i . Reconstructing this

value τ ′j from
∏n

i=1 τ ′i is unfeasible and considered
hard without holding at least holding a mapping of the
hashes-to-prime of the deleted data. The fact that the
CSP could cache a mapping of the hashes to prime
HPM to accelerate the computation won’t help him pass
the audit. Therefore, he is required to send back the
requested jth block to the data owner, which implies that
the CSP must hold the full version of the encrypted
data. For that reason, our protocol satisfies the soundness
characteristic.

4) Stateless Verification: Our scheme doesn’t rely on
previous audits to perform subsequent audits, as the
data owner generates a new random prime number
l to challenge the CSP for each audit phase. The
uniqueness of this prime ensures the uniqueness of the
proof π , as finding the pair (q, r) for each l is unique.
Storing previous states (π, li, qi, ri on the CSP side

will cost additional storage overhead and won’t help
him bypass the subsequent checks without holding the
data.Therefore, our scheme complies with the stateless
verification characteristic.

5) Robustness: To generate the proof of data possession,
the CSP uses all the hashes-to-prime of the encrypted
data stored on theHPM except the block being requested

to compute the value
n∏
i=1
i̸=j

τi
′. This value is then used

to find the unique pair (q, r) to compute π . Minor
tampering with the date will be promptly detected.
The auditor receives π concatenated with block cj′

and immediately caught data manipulation during the
checking process of τ ′j ← Hprime(c′j) and π against the
stored version of τj and the accumulated value αt .

6) Data Recovery: Our scheme could be easily enhanced
to support data recovery, using any error-correcting
codes (i.e., Fast Reed-Solomon Interactive Oracle
Proofs of Proximity [48]) during the preprocessing
phase to inject the necessary metadata required
to do so.
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FIGURE 13. m-blocks update.

7) Dynamic Data Handling: Our scheme supports
dynamic data operations, making it convenient for real-
world applications. It relies on the dynamic mapping of
encrypted data blocks with corresponding tags stored in
the HPM. Data owners can perform any data operation
on the remote cloud storage without downloading the
data locally or altering the protocol. Additionally, they
can verify the integrity of operations and identify any
faulty ones.

8) Public Auditability: Our scheme supports public
auditing to remove the burden of frequently challenging
the CSP. Public auditing involves a Third Party Auditor
TPA to perform the blockless verification on behalf of
the data owner. It is feasible to delegate this auditing
process to a transparent and untrusted TPA that does
not require access to private information (i.e., secret
keys). This TPA has to operate solely as a computing
service on behalf of the data owner. This characteristic
cloud be achieved, using any process of public auditing
integration [49], [50].

9) Privacy-Preserving: Since the data owner encrypts
his blocks of data using his secret key vk during the
preprocessing, the CSP gains no knowledge of the data.
As a result, the client’s data remains confidential even in
the event of a data breach.

10) Fairness: Facing dishonest data owners accusing an
honest CSP of data manipulation, it is important to
consider the challenges of proving the innocence of the
honest CSP. If the CSP lacks the means to provide
such proof, especially in a legal setting, the CSP
could face a significant financial burden, as disputes
of this nature often tend to be biased against the
CSP. To this end, our scheme supports fairness to
protect the reputation of reliable and honest CSPs.
It enables a Law Enforcement Agency LEA to check
whether the CSP is innocent or not. Fig. 14 illustrates
the interaction between the different actors to achieve
fairness.
1) The LEA requests the necessary public parameters

from the data owner.
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FIGURE 14. Model of checking fairness toward the CSP.

2) The data owner sends g, λ, αt , |HPM|, the base value,
the security parameter, the public binding to the set
of elements stored in HPM, and the size of the HPM
table, respectively.

3) The LEA samples a prime number l from the set of
odd primes in [0, 2λ], and a random index from the

HPM table, k
$
←− (|HPM| − 1) he challenges the

CSP and the data owner with (l, k):
4) The CSP sends the concatenatation (π || ck ||

rcsp) of the proof, the jth encrypted block and the

remainder such that π = gq, and
n∏
i=1

τi · τ
−1
k =

q · l + rcsp and τk = Hprime(ck ) and τ ’s are the
hashes-to-prime of the encrypted blocks ci’s on
the CSP side.

5) the client respond with (τk || rcli) such that
n∏
i=1

τi ·

τ−1k = q · l + rcli and τ ’s here are the hashes-to-
prime found on the HPM mapping on the client
side.

8) The LEA checks if the hash-to-prime of the received
ck from the CSP, equals to the tag τk received from
the data owner. He also checks if rcsp received from
the CSP, equals to rcli the following atomic check:

τcli = Hprime(ck )
rcli = rcsp

π lgrcli =

(
α

1
Hprime(ck )

t

) (18)

If the equation 18 holds, then the CSP is innocent, else
he will be legally accused. The proof of correctness of 18
is as follow:

π lgrcli =

(
α

1
Hprime(ck )

t

)

⇔ < def (π )l = (gq)l , def αt = g

n∏
i=1

τi

>

⇔ < exponents identities >

gqlgrcli = g

n∏
i=1

τi·
1

Hprime(ck )

⇔ < exponents property >

ql + rcli =
n∏
i=1

τi ·
1

Hprime(ck )

Q.E .D

This proves that
n∏
i=1

τi ·
1

Hprime(ck )
is uniquely decomposed

into q · l+ rcli. The former quantity, contains Hprime(ck ),
which is the contribution from the CSP side, and
n∏
i=1

τi which constitute the contribution from the data

owner side. The latter quantity also contains q, which
is the contribution from the CSP, and rcli, which is
the a contribution from the data owner. Additionally,
it incorporates a special contribution from the Law
Enforcement Agency, represented by the random prime
number l.

11) Deployment Model: Our PoEDDP scheme could be
deployed under the trusted or untrusted setup models
as mentioned in II-B5. In the trusted setup model, the
trusted party (i.e., the CSP or a trusted authority) will
run the GGen algorithm and produce the modulus N .
In this case, we required this party to keep the secret
key safe. On the other hand, we can remove the trust
from a single entity and involve multiple parties in the
setup process or use decentralized methods and adopt
the untrusted setup model via Multi-Party Computation
(MPC) or by a threshold method. In this regard, also,
we require that the involved parties can’t conspire to
forge and then leak the factorization of N to the CSP.

VII. REQUIREMENTS & SECURITY ANALYSIS
The CSP could be considered an active adversary A with
unlimited resources if he decided to act maliciously and
potentially mount different vectors to attack the soundness
and robustness of our scheme. On one hand, assuming
the malicious CSP no longer holds the data, he may
attempt to break the hardness of the required assumptions
(i.e., Adaptive Root Assumption, Strong-RSA, Division-
intractability, Accumulator Security) to forge correct proofs.
On the other hand, he could try to break the confidentiality
of the client’s data by attacking the semantic security of the
underlying cipher since he has access to the ciphertext C.

In this section, we defined the security requirements of
the PoEDDP scheme. We start with the correct notion of
security that our scheme should provide against tampering
with the ciphertext. Then, we explore the work deployed by
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an adversarial CSP claiming to hold the data but does not.
Formal proofs are also provided for each security requirement
our scheme should meet.

1) IND-CCA REQUIREMENT OF THE CIPHER
Deducing information about the ciphertext, even a minor
bit, puts the client’s data in a critical situation. To ensure
data confidentiality, even from a very powerful CSP,
from any adversary A who could mount active attacks
against the ciphertext C. Our scheme uses a Semantically
Secure (SS) cipher Encpoeddp = (keyGen, Enc, Dec) that
provides Indistinguishability under the Chosen Ciphertext
Attack IND− CCA [51]. The appropriate notion of security,
particularly in terms of confidentiality in this context,
is established under the IND− CCA security model. Firstly,
when employing Public Key Encryption (PKE) with the
PoEDDP protocol, which encrypts data for storage and
later consumption by another party. Secondly, when using
Symmetric Key Encryption (SKE). To illustrate this notion,
a simulation to mesure Encpoeddp’s security is used as
follow: Let Encpoeddp be the cipher used in our PoEDDP,
defined over the message space M (block of files fi), and
the ciphertext C, such that keyGen is the key generation
algorithm, Enc, and Dec are the encryption, and the
decryption algorithms respectively. For a given adversary A.
We define the simulation by two experiments (b = 0 and
b = 1). The experiment begins with a key-generation step
on the data owner’s side to generate a public key pk and
verification key vk, considering the PKE case for simplicity,
for the security parameter λ, (pk, vk) ←− keyGen(λ).
He then sends the pk to A. We start by allowing A to make
a ξ query to the data owner. Each query is one of the two
types:

1) Encryption query: consists of a pair of randommessages

(mi0, mi1)
$
←−M, where | mi0 |=| mi1 |. The data owner

encrypts mib such that ci = Enc(pk,mib), and sends it
to A.

2) Decryption query: consists of a randomly chosen

ciphertext ĉj
$
←− C∗ such that ĉj /∈ C that is

not among the responses to the previous encryption
queries,

The data owner then, decrypts the received ĉj such that m̂j =
Dec(vk, ĉj), and sends it to A. At the end of the experiment,
A outputs b̂ ∈ {0, 1}.
Let Wb be the event that A outputs 1 in the experiment b,

and advIND−CCA [A, Encpoeddp
]
be the advantage of A with

respect to the cipher Encpoeddp used in PoEDDP to win this
security game.
Definition 7: PoEDDP is secure and provides data

confidentiality, if for all efficient adversary A, the advantage
advIND−CCA [A, Encpoeddp

]
of breaking IND− CCA of the

underlying cipher Encpoeddp is negligible.

advCCA[A, Encpoeddp] =| Pr[W0]− Pr[W1] | (19)

2) THE ADAPTIVE ROOT ASSUMPTION REQUIREMENT
Suppose that something went wrong, and the CSP wants
to convince the data owner that he holds his data, even if

αt ̸= g

∏
τi

τj in G. At this stage, we explore the computation
power supposed to be deployed by the CSP to achieve
his attempt of deducing a correct value to convince the
data owner. We demonstrate the necessity for the Adaptive
Root assumptions to hold within the group of interest.
To illustrate this, we employ a simple root-finding game
borrowed from [10], as showcased in Section VII-2. This
assumption has been generalized to cover generic groups
in [52].

Attack game: The root finding The root finding game is
defined over the group G, generated during the setup phase.
LetW be the event of an adversaryA of outputting a random
element α and then deducing an element u such that ul = α,
where l is randomly sampled from Primes(λ). Let Pr[W ] be
the probability of this eventW .
Definition 8: PoEDDP is sound if, for all efficient

adversary A, the probability Pr[W ] of A to win the root
finding game is negligible.

Proof sketch: if A fixes a value α = αt/g

∏
τi

τj ̸= 1 before
starting the auditing protocol, he could generate a proof such

that π = gq. when the challenger generates l
$
←− Primes(λ),

and sends it back to A concatenated with an index j. Given
u = π

gq , the expression u
l
= π l/gql is derived. We now from

the verification condition that π l
=

αt
gr then, u

l
=

(
αt
gr

)
/gql .

Consequently, ul simplifies to α = αt

g

∏
τi

τj

. The computational

task faced by the adversary A entails discovering an α,
equivalent to computing the l-th root of u, which is known
to be a hard problem.

3) THE STRONG-RSA REQUIREMENT
Based on the previous assumption of dealing with a malicious
CSP trying to mount a forgery against the accumulated value
αt without holding the ciphertext C or a version of set of
tags T . This adversary A who on input (N , g) finds both an
exponent τ and the τ -th root of g, can forge valid proofs.
In doing so, A solved the Strong-RSA assumption, which is
known to be a computationally hard problem.

Given this capability, if A finds (α, τ ) such that ατ
= g

for a given challenge (l, k), the proof then is π = gq such
that 1/τ = q · l + r . Thus, A has the ability to create
a sequence τ1 . . . τn of tags such that for any challenge k ,
τk divides

∏
τi, which means that A may output valid tags

{τi}
n
i=1 ←− Hprime({cj}ni=1). Finding valid tags implies that A

finds collisions on Hprime.
Suppose A finds a collision. Let prove that A breaks

the Strong-RSA problem. Finding a collision means that
A finds a sequence of tags τ1, . . . , τn, τ ′, and a value α′t

such that (α′t )
τ ′
= g

n∏
i=1

τi

. Using the Extended Euclidean
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Algorithm (EEA) and since τ ′ is prime, A finds Bèzout

coefficients (a, b) such that a.
n∏
i=1

τi + b.τ ′ = 1 and puts

α = (α′t )
a.gb. Consequently,

αe = (α′t )
a.gbe

⇔ < exponents properties >

αe = (α′t )
a.e.gb.e

αe = ((α′t )
e)a.gb.e

⇔ < let e be τ ′ and (α′t )
τ ′ = g

n∏
i=1

τi

>

αe = g

a.

n∏
i=1

τi

.gb.τ
′

⇔ < exponents identity >

αe = g

n∏
i=1

τi.a+b.τ ′

⇔ < a.
n∏
i=1

τi + b.τ ′ = 1 >

αe = g
Q.E.D

Another proof under the generic group model can be found
in [52].

4) DIVISION-INTRACTABILITY REQUIREMENT
Finding valid tags, as shown above, won’t help A to
convince the data owner because he needs to construct a
witness ck . Hence, another requirement related to Hprime
is needed. This requirement prevents an adversary A
who wants to skip breaking the Strong-RSA problem
to adaptively choose a sequence of distinct elements
ck , c1, . . . , cn of the ciphertexts, such that for the challenge
(l || k), Hprime(ck ) divides

∏
Hprime(ci). The needed

requirement on Hprime is known as the division-intractability.
Constructing such familly of functions is introduced to
build a collision-free accumulator and fail-stop signature
without trees in [36], and a Hash-and-Sign scheme called
GHR after (Gennaro, Halevi, and Rabin) in [53]. Both
[36] and [53] show that the security analysis of their
scheme could be modeled in the random oracle and the
standard model. These types of functions are built from
the assumption of collision-resistant of the underlying hash
function 2.
Definition 9: TheDivision-intractability ofHprime implies

that our scheme is existentially unforgeable under the
adaptive chosen message attack, assuming the Strong-RSA
assumption.

Proof sketch: If A founds a sequence c1, . . . , cn, and ck
such that Hprime(ck ) divides

∏
Hprime(ci). Hence, he finds

a value t for which
∏

Hprime(ci) = t · Hprime(ck ) holds.
Then, he easily computes (qf , rf ) such that t =

∏
Hprime(ci)·

Hprime(ck )−1 and t = qf · l+ rf , to forge the proof πf = gqf .
πf then is sent with the witness ck .

5) ACCUMULATOR SECURITY (UNDENIABILITY)
REQUIREMENT
Our Accumulator is secure and provides undeniability
assuming the Strong-RSA holds in the group G.
An adversary A who wants to crack the security of our
accumulator has to forge the tuple

(
αt , τk , πk , π̂k

)
such that

αt is the binding commitment, πk is the proof of inclusion,
and π̂k is the proof of exclusion of a given element τk .
This forgery must holds for ProofVer (αt , τk , πk), and
ProofVer

(
αt , τk , π̂k

)
. By definition, as in [52], the proof

of exclusion is the pair π̂k =
(
a, gb

)
, such that a and b

are the Bèzout coefficient between
∏n

i=1 τi and τk where
a ·

∏n
i=1 τi + b · τk = 1. This proof is verifiable if

αat · g
bτk
= g ∈ G.

Given the G ←− GGen(λ) and a base value g
$
←− G

to the adversary A, if A successfully outputs the tuple(
αt , τk , πk , π̂k

)
, he can put gb · (πk )a ∈ G to be the x-th

root of g. Since By definition, αat · g
bτk
= g ∈ G and the

forge gives
(
gb · (πk )a

)τk
= g ∈ G, thus we get αat · g

b·τk =(
gb · (πk )a

)τk
∈ G. The right hand side is then simplied into

gb·τk · αat ∈ G, using the law of exponentiation twice and
knowing that αt = π

τk
k . Thus, we have αat ·g

bτk
= gb·τk ·αat ∈

G which contradicts that the Strong-RSA assumption holds
in G and implies that the accumulator is undeniable.

VIII. PERFORMANCE ANALYSIS
In this section, we conduct a performance analysis of our
PoEDDP scheme compared to the scheme proposed by
Khadr et al. [9]. Both schemes share similar characteristics,
including being deterministic RSA-based Accumulators.

First, We quantify the computation, communication, and
storage costs incurred by the participating parties, using the
similar notation used in [9] as shown in Table 1, such that
1) (s1 = |τ | = |l| = |r| = 128-bits), be the size of tags, the
prime challenge, and the remainder of the division modulo l
respectively. 2) (s2 = |N | = |q| = 3072-bits), be the size
of the RSA-moduli, and the quotient of the division modulo
l respectively. 3) (s3 = |φ(N )| = 3071-bits), be the of the
Euler’s phi function, 4) (s4 = |b′′i | = 3327-bits),be the size
of the generated block in Khadr et al.s scheme, These cost
metrics provide a basis to benchmark our scheme against
Khadr et al. scheme’s [9] and compare different optimizations
to improve our PoEDDP scheme. The selected metrics also
help us assess how well our scheme fits real-world scenarios
with resource constraints.

Afterward, we compare the performance of a prototype of
our scheme to the previously mentioned scheme, using Z-
score normalization. It’s important to emphasize that the use
of this normalization distort the results and obscure certain
performance details. To provide a more accurate assessment,
we also present the unnormalized results for both schemes.

A. COMPUTATION COST
Our scheme operates through three phases: setup, pre-
processing, and auditing. The setup phase is a one-time
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TABLE 1. Notations of operation costs.

operation following a setup model of choice II-B5. For
simplicity, we will keep it on the client side assuming a trused
setup. This phase takes Tsetup = 2TRprime + Tmuls2 + Trand .
The pre-processing phase depends on the size of file F
and lets n be the number of data blocks. This phase takes
Tpre = nTEnc + nTHprime + nTmuls1 + Texps2. The auditing
phase comprises three steps; challenge, proof Generation, and
proofVerification; each introducing different overhead levels.
This final phase takes Taud = Tchal + TpGen + TpVer , where
the challenge step introduces a random selection of prime
number Tchal = TRprime, the proof generation takes TpGen =
Tlookup+(n−1)Tmuls1+Tdiv+Texps2, and the proof verification
takes TpVer = THprime+(n−1)Tmuls1+Tdiv+Tinv+3Texps1+.

As illustrated above, we have enumerated every
computation task, including minor ones. However, for clarity
and conciseness in the performance comparison regarding
computation cost between our scheme and [9], we omitted
less resource-intensive operations as it makes sense to
highlight those that require significant computational
resources or are time-consuming, as these are often the
bottlenecks in the scheme’s performance. Also we merged
the setup phase with the pre-processing phase and called
it the setup phase. Thus, the final computation cost is
summarized in Table 2.

B. COMMUNICATION COST
In principle, The data owner has to send (N , g, l, j),
in addition to the size of data sent to the CSP. We apply
the Fiat Shamir transformation [54] to reduce the challenge
size into |j|, then the CSP responds with

(
π || c′j

)
. Thus our

scheme introduces a communication cost of |N | + |g| + |j| +
|π | + c′j.

C. STORAGE COST
The CSP has to store the |N | + |g| + |{ci}|, the modulus,
a group element, and the outsourced data, respectively.

Conversely, the data owner stores |N | + |g| + |HPM| +
|vk| + |αt |, the modulus, a group element, the Hash-to-Prime
Mapping HPM, and the digest, respectively. Table 2 shows a
performance comparison between our PoEDDP scheme and
khadr’s scheme [9].

D. NUMERICAL SIMULATIONS
We implement a prototype version of our scheme,
as published on GitHub [55], using python-3.11.4 and
pycryptodomex library [56]. We opted to use Python for
our cryptographic simulations due to its versatility and
ease of use. This made it an ideal choice to construct a
fast Proof of Concept that could be easily tested across
multiple platforms, ensuring a broad scope for evaluation.
Pycryptodomex is a widely used and self-contained Python
package of low-level cryptographic primitives. It offers the
advantage of being a well-maintained, comprehensive library
that meets the stringent requirements of cryptographic
operations while ensuring ease of integration into our
Python-based simulations.

We construct the RSA-Accumulators for both schemes,
using a 3072-bit RSA modulus to ensure 128-bit security.
We encrypt random blocks of 348 bytes, using AES-128-
GCM to get 416 bytes for each cipher-text, including the tag
and nonce, and hashing was done, using SHA256. AES-128-
GCM and SHA256 are imported from the Pycryptodomex
library. The set of blocks consists of increments of 10k
blocks, each with a size of 416 bytes. The block count
ranges from 10k to 100k blocks. This upper limit of 100k
blocks, equivalent to approximately 42 megabytes, was
chosen to ensure that the computation time for Khadr et
al.’s scheme [9] remains within an acceptable range (3 hrs
29 min 27.98 sec). It is worth noting that the 384-byte block
selection is a deliberate choice made with a specific purpose.
We aim to conduct a performance comparison that directly
competes with Khadr et al.’s scheme in their realm and under
their optimized implementation. This choice enables us to
rigorously evaluate our scheme against theirs and showcase
its capabilities under the conditions most relevant to them.
We believe that this approach provides valuable insights and
a fair basis for comparison, highlighting the strengths and
advantages of our scheme.

We conducted the numerical simulations without any
optimizations or alterations to the number of hardware
threads and parallelization. The simulations were performed
ten (10) times on a MacBook Air M1 with MacOS Ventura
13.5.2 installed and updated. The MacBook Air M1 features
an 8-core CPUwith 4 performance cores, 4 efficiency cores, a
7-coreGPU, a 16-coreNeural Engine, and 8GBof RAM. The
average computation cost for each phase was then calculated.
In the results illustrated in Figures Fig. 15, Fig. 16, Fig. 17,
and Fig. 18, we depict the number of encrypted blocks
processed on the x-axis, while the computation time in
seconds for various phases is represented on the y-axis.

Fig. 15 shows a full comparison of our proposed scheme
and Khadr et al.’s scheme [9]. It illustrates the normalized
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TABLE 2. Performance comparison between our PoEDDP scheme and Khadr et al.’s scheme.

FIGURE 15. Performance of the proposed and Khadr et al.’s scheme on
different set of blocks of 416 bytes with time normalized, using Z-score.

costs of block generation, proof generation, and proof
verification, using Z-scores. It shows that, in both schemes,
the time required for block generation and proof generation
exhibits a linear relation in function of the number of
processed blocks. On the other hand, verification times in
both schemes exhibit a significant rate of change from higher
values when processing 10,000 and 20,000 blocks to lower
values around 30,000 blocks. We can consider the proof
verification as independent of the number of blocks.

Fig. 16 illustrates the computation cost in both
schemes during the block generation phase without
Z-score normalization. This phase is the most critical and
time-consuming in both cases. It encompasses several tasks,
including dividing large files into blocks, encrypting these
blocks, generating signatures,applying transformations when
necessary (e.g., left shifts by 1 as in [9] and hash-to-primes in
our scheme), and computing the binding value through large
integers multiplication and exponentiation. It is worth noting
that the large integer multiplication and the exponentiation
represent the bottleneck in this process, as they require
intensive computational resources. In both schemes, this
costs is linear in the number of the processed blocks, but the
rate of change in Khadr et al.’s scheme is faster compared to
ours.

Fig. 17 illustrates the computation cost in both schemes
during the proof generation phase without Z-score
normalization. It involves large integer multiplication
and exponentiation. The former is required, in our scheme,

FIGURE 16. Block Generation time comparison of the proposed scheme
and Khadr et al.’s scheme on different set of blocks of 416 bytes with a
non normalized time.

FIGURE 17. Proof Generation time comparison of the proposed scheme
and Khadr et al.’s scheme on different set of blocks of 416 bytes with a
non normalized time.

to deterministically accumulate all tags into one value to be
used in the Euclidean division. The latter is required by [9]
to compute the witness. One can deduce that performing
large integer multiplication has less computation overhead
compared to the exponentiation. This cost is also linear in
the number of elements processed and the rate of change in
Khadr et al.’s scheme is faster compared to ours.
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FIGURE 18. Proof Verification time comparison of the proposed scheme
and Khadr et al.’s scheme on different set of blocks of 416 bytes with a
non normalized time.

TABLE 3. The average scaling factors for ‘blockGen time’, ‘proofGen time’,
and ‘proofVer time’ between the Khadr scheme and our proposed scheme.

The last Fig. 18 illustrates the computation cost in
both schemes during the proof verification phase without
Z-score normalization. It is apparent that this phase is
faster in both cases compared to other phases and tends to
exhibit quasi-constant time behavior. Additionally, the figure
demonstrates that our scheme is faster compared to Khadr et
al’s scheme by an order of magnitude.

Figures 16, 17, and 18, provide clear evidence of our
scheme’s superior performance compared to Khadr et al.’
scheme across all three phases. The summarized results in
Table 3 highlight the significant speed advantage of our
scheme. Specifically, it surpasses Khadr et al.’ scheme by
approximately a factor of 24 in the block generation and proof
generation phases and by approximately a factor of 14 in
the verification phase. These findings affirm the substantial
performance gains achieved by our scheme.

IX. DISCUSSION
Initially, it appears that the comparison, using Z-score
normalization, as depicted in Figure 15, might suggest that
our scheme offers no advantage over Khadr et al.’s scheme
and that both schemes are useless for small files with fewer
than 30k blocks. This is because the time required for proof
verification is considerably longer than for block generation
and proof generation. While the initial impression may lack
an advantage for our scheme over Khadr et al.’s scheme, the
simulations without Z-score normalization reveal significant
distortion to the results. Thus, when the comparisons were
performed without Z-score normalization as illustrated in

figures Fig. 16, 17, and 18, our scheme proved substantially
faster, outperforming Khadr’s by factors of 24x in block
generation and in proof generation, and 12x in the proof
verification, as evidenced in Table 3. In Khadr et al.’s
scheme, each block undergoes encryption, hashing, and
concatenation with the corresponding tag. Following this,
a left shift by one position is applied to create a final
block, which serves as non-coprime representatives. As per
the simulation parameters detailed in Section VIII-D, this
block has a size of 3327 bits and is used in the subsequent
multiplication and exponentiation steps. Performing large
integer multiplication, each approximately 3327 bits in size,
modulo φ(N ) of size approximately 3071 bits, represents
a significant computational bottleneck in this task. The
impact is visible, and we saw significant performance
degradation when dealing with sets of significant amounts
of blocks, especially during the block generation and proof
generation phases Fig. 16, and 17 respectively. In contrast,
our proposed scheme encrypts each block, concatenates it
with the corresponding tag, and then applies a hash-to-prime
transformation to create a final odd prime of size 128 bits used
for multiplications. While this step incurs a hashing process,
which requires additional processing time, we gain in terms of
performance and efficiency during subsequentmultiplication.
As a result, the multiplication of 128-bit integers is unlikely
to present a significant bottleneck in our scheme for medium
to high numbers of blocks during block generation and proof
generation.

In the performance evaluation above, Khadr’s scheme
and our proposed scheme were executed, using specified
settings VIII-D, employing AES-128-GCM and SHA256
on a MacBook Air equipped with an M1 (arm) processor.
It is crucial to note that modifying AES encryption modes
and parameters from AES-128-GCM can significantly
impact the security and performance of both schemes.
While this modification does not affect the block size, given
the fixed output size of AES, it introduces an additional
computation overhead during the encryption process in the
block generation (blockGen) phase. Switching to alternative
ciphers, which produce outputs exceeding 128 bits,
exclusively affects Khadr’s scheme. This alteration extends
the length of the final block, consequently influencing the
modular multiplication and modular exponentiation phases
when dealing with the larger block size. Furthermore,
replacing SHA256 with another cryptographic hash function
(CRH) like SHA3 [57] or Keccak [58] has implications
for both schemes. In Khadr’s scheme, this substitution will
make the size of the final block larger ( > 3327 bits). Thus,
in addition to the computation overhead on the hashing
process (tag creation), it will introduce more overhead to
the modular multiplication and exponentiation bottleneck.
Consequently, the scheme will be impractical when dealing
with low-power devices. Conversely, our scheme is impacted
solely by the additional overhead of the hashing process;
however, other critical phases, such as modular multiplication
and exponentiation, remain unaffected due to the fixed size
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of the final block set at 128 bits during the hash-to-prime
process. Another drawback of both schemes is the usage of
RSA; thus, they inherited RSA limitations that we do not
tackle in this work. For comprehensive benchmarking, future
considerations may involve exploring additional parameters,
particularly those relevant to post-quantum cryptography,
such as Crystals and Kyber [59].

X. CONCLUSION
We introduce PoEDDP, a member of the Proof of Data
Possession (PDP) family is implemented, using a variant of
RSA-Accumulators based on Proof of Exponentiation PoE.
The scheme allows data owners to continuously audit the
integrity and availability of the outsourced data. The audit
guarantees that the CSP deterministicly uses the stored data
to compute the proof of data possession. This proof is then
verified against a single accumulated value αt computed
from small footprints of tags stored in HPM. Additionally,
the scheme offers dynamic capabilities to execute various
operations on the outsourced data, including additions,
updates, and deletions within the CSP′s end.

Comparatively, our scheme significantly outperforms
Khadr’s scheme [9]. To provide a practical example, our proof
generation phase, conducted on a dataset of 100k blocks,
each consisting of 416 bytes, requires a mere (8 min 4 sec).
In contrast, Khadr’s scheme takes (2 hrs 54 min 4 sec)
under the same conditions. These results are obtained with
naive Proof of Concept (PoC) without specialized libraries or
optimizations tailored for large integer multiplication. Thus,
it excels in computational efficiency across all phases, even
when processing extensive datasets.

Our proposed scheme offers several advantages compared
toKhadr et al.; however, it is worth acknowledging the current
limitations. Both schemes are built on top of RSA-groups.
Thus, they rely on the intractability problem of the RSA
modulus. On one hand, a sufficiently large modulus, such
as 3072 bits for 128-bit security, is essential but inevitably
leads to decreased performance, especially when handling
larger moduli. On the other hand, the intractability of the
RSA modulus is facing a significant threat in the post-
quantum era, as done for the widely used RSA-2048 by
Yan et al. in [60], using the classical lattice reduction with a
quantum approximate optimization algorithm. Additionally,
both schemes primarily target data possession within remote
servers, focusing on ensuring data integrity and possession.
However, they fall short in addressing a vital aspect of the
proof of data retrievability, which represents a significant
limitation in both schemes.

Thus, as researchers, we may consider whether we
can develop a scheme capable of delegating the most
resource-intensive tasks (e.g., block generation) to the CSP
while ensuring both the proof of correct computation and
the proof of data retrievability, all within the context of
an untrusted setup and taking into account the quantum
computing threat.
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