
Received 29 January 2024, accepted 26 March 2024, date of publication 10 April 2024, date of current version 18 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387306

On the Generative Power of ReLU Network
for Generating Similar Strings
MAMOONA GHAFOOR AND TATSUYA AKUTSU , (Senior Member, IEEE)
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

Corresponding authors: Mamoona Ghafoor (mamoona.ghafoor@kuicr.kyoto-u.ac.jp) and Tatsuya Akutsu (takutsu@kuicr.kyoto-u.ac.jp)

The work of Tatsuya Akutsu was supported in part by Japan Society for the Promotion of Science (JSPS), Japan, under Grant 22H00532
and Grant 22K19830.

ABSTRACT Recently, generative networks are widely used in different applied fields including
computational biology for data augmentation, DNA sequence generation, and drug discovery. The core
idea of these networks is to generate new data instances that resemble a given set of data. However it is
unclear how many nodes and layers are required to generate the desirable data. In this context, we study the
problem of generating strings with a given Hamming distance and edit distance which are commonly used
for sequence comparison, error detection, and correction in computational biology to comprehend genetic
variations, mutations, and evolutionary changes.More precisely, for a given string e of length n over a symbol
set 6, m = |6|, we proved that all strings over 6 with hamming distance and edit distance at most d from
e can be generated by a generative network with rectified linear unit function as an activation function. The
depth of these networks is constant and are of size O(nd) and O(max(md, nd)).

INDEX TERMS ReLU neural network, hamming distance, edit distance.

I. INTRODUCTION
In the recent years, generative adversarial networks have
been extensively studies due to their data representation
power. These generative networks are basically neural
networks which are used to capture the statistical regularities,
underlying patterns, and dependencies of a given dataset, and
generate new data that have similar characteristics as the
original data [1], [2], [3], [4]. These networks have gained
widespread applicability in diverse domains, spanning natural
language processing, data augmentation, DNA sequence
synthesis, and drug discovery [5], [6], [7], [8], [9], [10], [11],
[12].

Choosing the right network model, or function family,
is crucial in machine learning. If the function family is too
extensive, it can lead to issues like high computational costs
and overfitting. On the other hand, if the function family is too
limited and doesn’t encompass the target functions, it may not
yield the desired prediction results [13]. However, selecting
an appropriate network is a challenging task, and it is still

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

unclear which network should be used for a given problem
setting. Extensive research have been carried out to study the
representational capabilities of networks to get an effective
insight for choosing an appropriate function family.

According to the universal approximation theorem,
a depth-2 neural network (a network with two layers) can
approximate any given Borel measurable function [14].
However, there are many instances where the number of
nodes becomes excessively large, necessitating exploration
of more effective network architectures. In this context,
relationships between function families and the size of
architectures have been studies to find the best architecture
with smaller number of nodes. Furthermore, it has been
noticed that the representation capability of networks
increases exponentially with the depth [15], [16]. Moreover,
every function family cannot be efficiently expressed on
any arbitrary architecture. For example, Telgarsky [17]
discovered a function family that can be represented by deep
neural networks and shallow neural networks with nodes of
linear and exponential order, respectively. Szymanski and
McCane [18] showed that the periodic functions can be
efficiently expressed by deep networks. To express a periodic

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 52603

https://orcid.org/0009-0008-9891-1676
https://orcid.org/0000-0001-9763-797X
https://orcid.org/0000-0002-3195-3168

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

function, Chatziafratis et al. [19] gave lower bounds for
the width as a function of depth. Hanin and Rolnick [20]
demonstrated that the number of regions does not grow
rapidly in a network with piecewise linear activation function.
Bengio et al. [21] and Biau et al. [22] proved that decision
trees and random forests can be efficiently expressed as
neural networks by using sigmoidal functions, Heaviside
functions, and hyperbolic tangent functions as activation
functions. Later on, Kumano and Akutsu [13], extended
the result for the neural networks with rectified linear unit
(ReLU) and other related activation functions.

Sequence comparison, error detection, and correction
in DNA, RNA, and protein sequences are crucial tasks
in computational biology to understand genetic variations,
mutations, and evolutionary changes. Hamming distance and
edit distance are the two most frequently employed distance
metrics for handling these tasks when the sequences have a
fixed and variable length, respectively, [5], [6], [12], [23],
[24], [25].

Motivated by the application of the generative networks
and distance metrics, we study the problem of generating
all strings that are similar to a given string using neural
networks. More precisely, for a given string e of length n
over a symbol set 6, we theoretically prove the existence of
generative networks with ReLU as an activation function that
can generate all strings over 6 with Hamming distance and
edit distance at most d from e. For this purpose we express the
functions δ and [a ≥ θ] as ReLU functions, where δ(a, b) =

1 if a = b, and δ(a, b) = 0, otherwise; [a ≥ θ] = 1 if a ≥ θ ,
and [a ≥ θ] = 0 otherwise; ReLU(a) = max(0, a), for any
real numbers a, b, θ . Furthermore, the implemented networks
can be freely accessed from https://github.com/MGANN-
KU/ReLU_Networks.

The rest of the paper is organized as follows: Conversion
of δ and [a ≥ θ] functions into ReLU is discussed in
Section II. Furthermore, construction of ReLU networks to
generate binary and integer strings with Hamming distance
at most d is discussed in Section II. Construction of ReLU
networks to generate integer strings with edit distance d due
to deletion and insertion operations is discussed in Section III.
The generation of all strings with edit distance at most
d due to simultaneous application of substitution, deletion
and insertion operations by ReLU network is discussed in
Section IV. Concluding remarks are given in Section V.
Proofs of some theorems and explanation of program codes
with sample instances are discussed in Appendix.

II. Hd -GENERATIVE RELU
In this section, we discuss the construction of ReLU network
that can generate all binary and non-binary strings over a
given symbol set with Hamming distance at most d from a
given string. Before going to the details, we first prove in
Props. 1 and 2 that the functions δ and [a ≥ θ] can be
expressed as ReLU function, resp., by using the Heaviside
function H defined as H (a) = 1 if a ≥ 0, and H (a) = 0
otherwise.

Proposition 1: For integers a and b, the function δ(a, b)
can be realized exactly by ReLU function.
Proof: By the definition of functions δ and H , for any two

integers a, b, it holds that

δ(a, b) = H (a− b) + H (b− a) − 1. (1)

By [13, Theorem 1], the Heaviside function H can be
expressed by ReLUfunction as

H (a− b) = ReLU((a− b)/ϵ + 1) − ReLU((a− b)/ϵ),

(2)

where ϵ is a sufficiently small positive real number, and a−

b ̸= 0. By using Eq. (1) in Eq. (2), we get

δ(a, b) = ReLU((a− b)/ϵ + 1) − ReLU((a− b)/ϵ)

+ ReLU((b− a)/ϵ + 1) − ReLU((b− a)/ϵ) − 1.

(3)

This implies that δ(a, b) can be expressed with four nodes of
ReLU as demonstrated in Figure 1(b). □
By Eqs. (2) and (3) the functions H and δ can be

computed by using two and four nodes with ReLU as
an activation function, respectively. Figures 1 (i) and (ii)
illustrate examples of neural networks that can compute δ
using H and ReLU as activation functions, respectively.
Proposition 2: For integers a and θ , the function [a ≥ θ]

can be realized exactly by ReLU function.
Proof: For a sufficiently small positive real number ϵ it holds
that

[a ≥ θ] = ReLU((a− θ)/ϵ + 1) − ReLU((a− θ)/ϵ). (4)

Hence [a ≥ θ] can be expressed with two nodes of ReLU as
demonstrated in Figure 2. □
Eq. (4) implies that the function [a ≥ θ] can be computed

with two nodes with ReLU as an activation function.
Figures 2 (a) and (b) illustrate example neural networks with
[a ≥ θ] and ReLU as an activation function, respectively. The
output of these networks is the same.

Given a binary string e = (e1, e2, . . . , en) of length n
and a non-negative integer d , which implicitly means the
distance. We define binary Hd -generative ReLU, as a ReLU
neural network with d input nodes x = (x1, x2, . . . , xd) and
n output nodes y = y1, y2, . . . , yn such that all binary strings
(y1, y2, . . . , yn) with hamming distance at most d with e can
be obtained by appropriately choosing integer input values
for x = (x1, x2, . . . , xd), where xj ≤ n for all j.
We discuss the existence of binary Hd -generative ReLU

networks in the following theorem.
Theorem 1: For any given binary string e of length n and

a non-negative integer d, there exists a binary Hd -generative
ReLU with size O(dn) and constant depth.
Proof:We first establish that for each string y with hamming
distance at most d with the string e, there exists a string x such
that:

uji = δ(xj, i) for i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}, (5)

52604 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

FIGURE 1. Computing δ by H and ReLU: (a) and (b) Example neural networks with one hidden layer with two and four nodes, and H
and δ as an activation, resp., to compute δ. These networks have two input nodes with values a1 and a2 and one output node. The
values on the edges and nodes of hidden and output layers are the weights and bias. By setting a = a1m1 + a2m2, the outputs of
the neural network in Figures (a) and (b) are nH(a − b)+ nH(b − a) − n = nδ(a,b) and nReLU((a − b)/ϵ + 1) − nReLU((a − b)/ϵ) +

nReLU((b − a)/ϵ + 1) − nReLU((b − a)/ϵ) − n = nδ(a,b), respectively.

FIGURE 2. Computing [a ≥ θ] using ReLU. (a) and (b) Example neural networks with [a ≥ θ] and ReLU as an activation
function, resp., with two input nodes with values a1 and a2, one hidden layer. The values on the edges and nodes of
hidden and output layers are the weight and bias. By setting a = a1m1 + a2m2, the output of these two networks is
the same.

vi =

 d∑
j=1

uji ≥ 1

 for i ∈ {1, 2, . . . , n}, (6)

yi = 1 − δ(vi, ei) for i ∈ {1, 2, . . . , n}. (7)

Suppose that e = (e1, e2, . . . , en) and y = (y1, y2, . . . , yn)
such that the hamming distance between e and y is d ′

≤ d .
Then e and y differ at exactly d ′ positions k1, k2, . . . , kd ′ , i.e.,
ei ̸= yi, for all i = kj where kj ≤ n and 1 ≤ j ≤ d ′. Consider a
string x = (x1, x2, . . . , xd) such that xj′ ∈ {0, k1, k2, . . . , kd ′},
and for each j, at least one xj′ takes the value kj. This implies
that

∑d
j=1 u

j
ixi ≥ 1 if and only if i ∈ {k1, k2, . . . , kd ′} from

which it follows that vi = 1 if and only if i ∈ {k1, k2, . . . , kd ′}.
Thus we have 1 − δ(vi, ei) = 0 (resp., 1) if ei = 1 (resp., 0)
for i ∈ {k1, k2, . . . , kd ′}, and 1 − δ(vi, ei) = 0 (resp., 1) if
ei = 0 (resp., 1) for i ̸∈ {k1, k2, . . . , kd ′}, which implies that
y can be obtained by x.

We construct a neural network by using Eqs. (3) and (4)
with five layers, and use ReLUas an activation function
to express the computation of Eqs. (5), (6), and (7).
An illustration of the network is given in Figure 3. We denote

a node and its value with the same symbol. The first and
the last layers are the input and output layers with d and n
nodes storing the entries of the strings x and y, respectively.
The second layer (first hidden layer) corresponds to Eqs. (5).
There are dn values of δ(xj, i), and by Eq. (3) δ(xj, i) can
be computed using four nodes with ReLUas an activation
function. Therefore there are 4dn nodes in the second layer.
Let α1ij, α

2
ij, β

1
ij , and β

2
ij denote such nodes, i ∈ {1, 2, . . . , n}

and j ∈ {1, 2, . . . , d}, with bias −i/ϵ + 1, −i/ϵ, i/ϵ + 1, i/ϵ,
resp., where ϵ is a sufficiently small positive real number.
The edges (xj, α1ij), (xj, α

2
ij), (xj, β

1
ij), (xj, β

2
ij) have the only

non-zero weights 1/ϵ, 1/ϵ,−1/ϵ,−1/ϵ, respectively. This
implies that

α1ij = ReLU((xj − i)/ϵ + 1), α2ij = ReLU((xj − i)/ϵ),

β1ij = ReLU((i− xj)/ϵ + 1), β2ij = ReLU((i− xj)/ϵ).

The third layer performs the computation of Eq. (6). There
are n values of vi, and by Eq. (4) for each vi, two nodes are
required to express [a ≥ 1] as ReLU. Therefore there are 2n
nodes in the third layer. Let η1i , and η

2
i , i ∈ {1, 2, . . . , n},

VOLUME 12, 2024 52605

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

FIGURE 3. An illustration of a binary Hd -generative neural network with three hidden layers. The bias and non-zero weights of a
few nodes and edges are shown.

are such nodes with bias −(d + 1)/ϵ + 1 and −(d + 1)/ϵ,
respectively. The edges (α1ij, η

h
i), (α

2
ij, η

h
i), (β

1
ij, η

h
i), (β

2
ij, η

h
i),

h = 1, 2 have non-zero weights 1/ϵ,−1/ϵ, 1/ϵ,−1/ϵ
respectively.

Thus with ReLU as an activation function and Eq. (1), we
have

η1i = ReLU

 d∑
j=1

(α1ij − α2ij+β
1
ij−β

2
ij)/ϵ−(d + 1)/ϵ + 1

= ReLU

 d∑
j=1

(H (xj−i)+H (i− xj))/ϵ−(d+1)/ϵ+1

,
(8)

η2i = ReLU

 d∑
j=1

(α1ij − α2ij + β1ij − β2ij)/ϵ − (d + 1)/ϵ

= ReLU

 d∑
j=1

(H (xj − i) + H (i− xj))/ϵ − (d + 1)/ϵ

 .

(9)

By setting a =
∑d

j=1(H (xj − i) + H (i− xj)) − d in Eqs. (8),
and (9), and θ = 1, we have

η1i = ReLU((a− θ)/ϵ + 1), η2i = ReLU((a− θ)/ϵ)).

This and Eq. (2) implies that

η1i − η2i = [a ≥ 1] (10)

=

 d∑
j=1

(H (xj−i) + H (i− xj)) − d ≥ 1

 (11)

=

 d∑
j=1

δ(xj, i) ≥ 1

 . (12)

The fourth layer is used to compute Eq. (7). For each δ,
we need four nodes, and therefore the fourth layer has 4n
nodes. Let µ1

i , µ
2
i , γ

1
i and γ 2

i denote such nodes with bias
−ei/ϵ + 1, −ei/ϵ, ei/ϵ + 1 and ei/ϵ, respectively. The edges
(η1i , µ

1
i), (η

2
i , µ

1
i) (η

1
i , µ

2
i), (η

2
i , µ

2
i) (resp., (η

1
i , γ

1
i), (η

2
i , γ

1
i)

(η1i , γ
2
i), (η

2
i , γ

2
i)) have the non-zero weights 1/ϵ,−1/ϵ, 1/ϵ,

−1/ϵ (resp.,−1/ϵ, 1/ϵ,−1/ϵ, 1/ϵ) respectively. By Eq. (10)
we have

µ1
i = ReLU

(
(η1i − η2i − ei)/ϵ + 1

)
,

µ2
i = ReLU

(
(η1i − η2i − ei)/ϵ

)
,

γ 1
i = ReLU

(
(−η1i + η2i + ei)/ϵ + 1

)
,

γ 2
i = ReLU

(
(−η1i + η2i + ei)/ϵ

)
.

The fifth layer is the output layer with n nodes yi with bias 2.
The non-zero weights of the edges (µ1

i , yi), (γ
1
i , yi), (µ

2
i , yi),

(γ 2
i , yi) are -1, -1, 1, 1, respectively. By using Eqs. (1) and (4),

we have

yi = −µ1
i + µ2

i − γ 1
i + γ 2

i + 2

= −H (η1i − η2i − ei) − H (ei − (η1i − η2i)) + 2

= 1 − δ(η1i − η2i , ei)

52606 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

= 1 − δ

 d∑
j=1

δ(xj, i) ≥ 1

 , ei

= 1 − δ([p ≥ 1], ei) = 1 − δ(vi, ei).

This implies that for each input string x the constructed
network can output a string y that has hamming distance
at most d with e. Furthermore, the size of the network is
d + 4dn + 2n + 4n + n = O(dn), and has a constant depth,
which completes the proof. □
Example 1: Suppose that e = (1, 1, 0), d = 2, and y =

(0, 1, 1), where the hamming distance between e and y is 2.
The strings e and y differ at positions i = 1, 3. By Theorem 1,
set x1 = 1 and x2 = 3, i.e., x = (1, 3). We demonstrate that by
using x = 1, 3 as an input to the neural network with ReLU
as an activation function constructed in Theorem 1, we get
the same output y. The architecture of the neural network
is shown in Figure 4, where the edges with zero weights
are omitted. The values of each node in the second, third,
fourth, and fifth layers are listed in Tables 1, 2, 3, and 4,
respectively.

We extend the definition of binaryHd -generative ReLU for
integer strings as follows.

Given a string e = (e1, e2, . . . , en) of length n over
alphabet 6 = {1, 2, . . . ,m}, and a non-negative integer d .
We define Hd -generative ReLU, as a ReLU neural network
with 2d input nodes x = (x1, x2, . . . , x2d) and n output nodes
y = y1, y2, . . . , yn such that all strings y = (y1, y2, . . . , yn)
over 6 with hamming distance at most d with e can be
obtained by appropriately choosing input values for x =

(x1, x2, . . . , x2d), where xj ≤ n, and xj+d ∈ 6 for 1 ≤ j ≤ d .
We discuss the existence of Hd -generative ReLU in

Theorem 2.
Theorem 2: For a given string e of size n over a symbol

set 6 = {1, 2, . . . ,m}, and a non-negative integer d, there
exits an Hd -generative ReLU network with size O(nd) and
constant depth.

A proof of Theorem 2 and its computation are demon-
strated in Example 3 in Appendix.

III. EDd AND EId -GENERATIVE RELU
Given a string e = (e1, e2, . . . , en) of length n over alphabet
6 = {1, 2, . . . ,m}, and a non-negative integer d , we define
EDd -generative ReLU, to be a ReLU neural network with d
input nodes x = (x1, x2, . . . , xd), and n−d output nodes y =

y1, y2, . . . , yn−d such that all strings y = (y1, y2, . . . , yn−d)
over 6 with edit distance exactly d from e due to deletion
can be obtained by appropriately choosing the input string
x = (x1, x2, . . . , xd), where xj ≤ n, 1 ≤ j ≤ d .

The following theorem discuss the existence of
EDd -generative ReLU.
Theorem 3: For a string e of size n over 6, and a

non-negative integer d, there exists an EDd -generative
ReLUnetwork with size O(dn) and constant depth.
Proof: Suppose e = (e1, e2, . . . , en) and y =

(y1, y2, . . . , yn−d) are two strings over 6 such that y is

obtained from e by deleting exactly d entries at the
positions k1, k2, . . . , kd of e. Consider an integer string x =

(x1, x2, . . . , xd) such that xj ∈ {k1, k2, . . . , kd }. Then the
following system of equations implies that we can obtain y
from x.

pi =

{
0 if xj = i,
1 otherwise,

for i ∈ {1, 2, . . . , n}, for some

j ∈ {1, 2, . . . , d}, (13)

qi = max(B
i∑

k=1

pk−Cδ(pi, 0), 0) for i ∈ {1, 2, . . . , n},

B ≫ n,C ≫ B, (14)

r ji =
[
iB ≤ qi+j−1 ≤ iB+ 1

]
for i ∈ {1, 2, . . . , n− d},

j ∈ {1, 2, . . . , d + 1}, (15)

t ji = max(ei+j−1 − C(1 − r ji), 0) for i ∈ {1, 2, . . . , n− d},

j ∈ {1, 2, . . . , d + 1}, (16)

yi =

d+1∑
j=1

t ji for i ∈ {1, 2, . . . , n− d}. (17)

Eq. (13) encodes the indices i as a binary vector to determine
if ei should be deleted or not from e. Eq. (14) is used to assign
the weights to each index in an increasing order such that the
weight qi is zero if pi is zero, i.e., the entry ei should be deleted
from e. Eqs. (15) and (16) are used to determine the positions
in y of those entries of e that should not be deleted. Since
exactly d entries can be deleted from e therefore each i can be
shifted by at most value d . Hence, a given position i in y can
have the value ei+j−1, for some j, depending on the number of
zeros before qi, i.e., the number of entries to be deleted before
ei as demonstrated in Example 2.
Construct an eight-layer neural network with ReLU as an

activation function by expressing Eqs. (13)-(17) as ReLU as
follows. An illustration of such a network is given in Figure 5
where the first layer is the input layer with input x, the last
layer is the output layer that outputs y. The Input layer has d
nodes which are denoted by xj, 1 ≤ j ≤ d . We can express
Eq. (13) as δ, [a ≥ θ] as follows.

uji = 1 − δ(xj, i), (18)

zi =

 d∑
j=1

uji ≥ d

 . (19)

By Eq. (19), we have zi = pi. By using Prop. 1 the second
layer performs the computation of Eq. (18) with 4nd nodes
α1ij, α

2
ij, β

1
ij , β

2
ij , 1 ≤ i ≤ n, 1 ≤ j ≤ d . The values of these

nodes are:

α1ij = ReLU((xj − i)/ϵ + 1), α2ij = ReLU((xj − i)/ϵ),

β1ij = ReLU((i− xj)/ϵ + 1), β2ij = ReLU((i− xj)/ϵ).

By using Prop. 2, the third layer performs the computation
of Eq. (19) with 2n nodes η1i and η2i , 1 ≤ i ≤ n, with

VOLUME 12, 2024 52607

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

FIGURE 4. An example Hd -generative ReLU obtained by using Theorem 1. The edges with zero weights are omitted.

values:

η1i = ReLU

 d∑
j=1

(−α1ij − β1ij + α2ij + β2ij)/ϵ + d/ϵ + 1

 ,

η2i = ReLU

 d∑
j=1

(−α1ij − β1ij + α2ij + β2ij)/ϵ + d/ϵ

 .

Fourth and fifth layers are used to perform the computation
of Eq. (14). The fourth layer calculates the values of
ReLU(

∑i
k=1 zk) and δ(zi, 0) with 5n nodes γi, µ1

i , µ
2
i ,

λ1
i , λ2

i by using Prop. 1. The values of these nodes
are:

γi = ReLU(
i∑

k=1

(η1k − η2k)).

µ1
i = ReLU((η1i − η2i)/ϵ + 1),

µ2
i = ReLU((η1i − η2i)/ϵ),

λ1
i = ReLU((−η1i + η2i)/ϵ + 1),

λ2
i = ReLU((−η1i + η2i)/ϵ).

Finally, the fifth layer with n nodes τi computes Eq. (14) as
follows:

τi = ReLU
(
Bγi−C(µ1

i − µ2
i + λ1

i − λ2
i) + C

)
.

The sixth layer is used to compute
[
qi+j−1 ≥ iB

]
and[

−qi+j−1 ≥ −(iB+ 1)
]

in Eq. (15) by using Prop. 2
with 4(n − d)(d + 1) nodes ψ1

ij , ψ
2
ij , ρ

1
ij and ρ2ij such

that

ψ1
ij = ReLU(τi+j−1/ϵ + (−iB/ϵ + 1)),

ψ2
ij = ReLU(τi+j−1/ϵ + (−iB/ϵ)),

ρ1ij = ReLU(−τi+j−1/ϵ + (iB+ 1)/ϵ + 1),

ρ2ij = ReLU(−τi+j−1/ϵ + (iB+ 1)/ϵ).

Thus, Eq. (16) is computed in the seventh layer with (n −

d)(d + 1) nodes ζij such that

ζij = ReLU
(
ei+j−1 − C(−ψ1

ij + ψ2
ij − ρ1ij + ρ2ij + 2)

)
.

Finally, the eighth layer is used to perform the computation
of Eq. (17) with n− d nodes yi with value

yi =

d+1∑
j=1

ζij.

Hence the constructed neural network is an EDd -generative
ReLU with size O(dn) and constant depth. □
Example 2: Suppose that the symbol set is 6 =

{1, 2, 3, 4, 5}, e = (3, 2, 4, 1), d = 2 and y = (2, 1). The
strings obtained by using x = (1, 3) and Eqs. (13)- (15) are
p = [0, 1, 0, 1], q = [0,B, 0, 2B], r = [[0, 1, 0], [0, 0, 1]],
t = [[0, 2, 0], [0, 0, 1]], and y = (2, 1). We show that
the EDd -generative ReLU constructed by using Theorem 3
outputs the required string y. The values of each node of the
layers are listed in Tables 12- 19.
Next, we define EId -generative ReLU for strings as

follows.
For a string e = (e1, e2, . . . , en) of length n over alphabet

6 = {1, 2, . . . ,m}, and a non-negative integer d , we define
EId -generative ReLU to be a ReLU neural network with 2d
input nodes x = (x1, x2, . . . , x2d), and n+d output nodes y =

y1, y2, . . . , yn+d such that all strings y = (y1, y2, . . . , yn+d)

52608 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

FIGURE 5. An illustration of EDd -generative ReLU with the six hidden layers, where a few nodes and edges with
their bias and non-zero weights are shown, respectively.

over 6 with edit distance exactly d from e due to insertion
can be obtained by appropriately choosing the input string
x = (x1, x2, . . . , x2d), where xj ≤ n, and xj+d ∈ 6 for 1 ≤

j ≤ d .
The existence of of such EId -generative ReLU is discussed

in Theorem 4.
Theorem 4: For a string e of size n over 6 =

{1, 2, . . . ,m}, and a non-negative integer d, there exists an
EId -generative ReLUnetwork with size O(nd) and constant
depth.

A proof of Theorem 4 and its computation are demon-
strated in Example 4 in Appendix.

IV. Ed -GENERATIVE RELU
For a string e = (e1, e2, . . . , en) of length n over alphabet
6 = {1, 2, . . . ,m}, and a non-negative integer d , we
define Ed -generative ReLU to be a ReLU neural network
such that all strings y over 6 with edit distance at most d
from e due to deletion, substitution and insertion and can
be obtained by appropriately choosing input string x =

(x1, . . . , xj, . . . , x5d), such that xj ∈ [0, 1) and xj is of the
form i ·1, where i is an integer, and 1 is a small constant.
Theorem 5: For a string e of size n over 6, and

a non-negative integer d, there exists an Ed -generative

ReLU-network with size O(max(dn, dm)) and constant
depth.

A proof of Theorem 5 and its computation are demon-
strated in Example 5 in Appendix.

V. CONCLUSION
We proved that the functions δ and [a ≥ θ] can be
expressed as a ReLU network with four and two hidden
nodes, respectively. By using this results, we discussed the
existence of ReLU generative networks that can generate
strings similar to a given string with respect to Hamming
distance and edit distance. We first proved that all the binary
and non-binary strings of length n with Hamming distance
at most d from a given string can be generated with a
ReLU network with constant depth and size O(nd). This
result is then extended for the case of edit distance when
either deletion or insertion operations are allowed, and proved
the existence of a ReLU network with constant depth and
size O(nd) to generate all strings over a given symbol set
with edit distance exactly d from a given string. Finally,
based on these results, we proved the generalized case where
substitution, deletion and insertion operations can be applied
simultaneously. More concretely, for a given string of size n
over a symbol set of size m, there exists a ReLU generative

VOLUME 12, 2024 52609

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 1. Values of the nodes of the second layer.

TABLE 2. Values of the nodes of the third layer.

TABLE 3. Values of the nodes of the fourth layer.

TABLE 4. Values of the nodes of the fifth layer.

network that can generate all the strings with edit distance at
most d due to substitution, deletion and insertion operations
with constant depth and size O(max(md, nd)).

The complexity of the proposed networks is at leastO(nd)
which can be computationally expensive with the increase in
n and d . Therefore it is a natural research problem to improve
the complexity of the proposed networks from O(nd) to
o(nd). Furthermore, an interesting future direction can be to
extend these results for other distance metrics such as tree
distance. From a practical viewpoint, it is important future
work to improve and apply the proposedmethod to generation
of real string data such as DNA sequences and protein
sequences. An implementation of the constructed gener-
ative network is available at https://github.com/MGANN-
KU/ReLU_Networks.

APPENDIX
PROOFS AND EXAMPLES
Proof of Theorem 2: Let e = (e1, e2, . . . , en) be a string
over 6. We can partition the strings y over 6 that have
hamming distance with e at most d with respect to their exact
hamming distance and the positions they differ from e. Let
y = (y1, y2, . . . , yn) be a string with hamming distance d ′

≤

d and differs from e at the positions k1, k2, . . . , kd ′ . Then it
holds that ykj ∈ 6\{ekj}. Construct x = (x1, x2, . . . , x2d) such
that x1, . . . , xd is a sequence over {0, k1, k2, . . . , kd ′}, where

each kℓ appears at least once in x1, . . . , xd , and xd+j = ykℓ
(resp., a ∈ 6) if xj = kℓ (resp., 0), for 1 ≤ j ≤ d . It is easy to
verify that Eqs. (20)-(23) hold for e, y, and x, i.e., we can get
y from the constructed x.

pj = max(xj − C ·

j−1∑
k=1

δ(xj, xk), 0) for j ∈ {1, 2, . . . , d},

where C is a constant with C ≫ max(m, n), (20)

qi = max(ei − C
d∑
j=1

δ(pj, i), 0) for i ∈ {1, 2, . . . , n}, (21)

ri =

d∑
j=1

(
max(xj+d − C(1 − δ(pj, i)), 0)

)
for i ∈ {1, 2, . . . , n}, (22)

yi = qi + ri for i ∈ {1, 2, . . . , n}. (23)

The variable pj = 1 if and only if the value of xj is not repeated
before. Basically, pj is used to ignore the repetition in the
sequence x1, . . . , xd . The variable qi stores the values of e
that will not be substituted. More precisely, qi = ei if and
only if xj ̸= i for all j (as demonstrated in Example 3). The
variable ri stores the values that should be substituted, i.e.,
ri = xd+j if and only if xj = i for some j. Finally, the required
string y is obtained by adding qi and ri, since exactly one of
these can be non-zero.

Construct a seven-layer neural network with ReLU as an
activation function by expressing Eqs. (20)- (23) as ReLU.
An illustration of such a network is given in Figure 6. The
first layer is the input layer with input x having 2d nodes
which are denoted by xj, 1 ≤ j ≤ 2d . The last layer is the
output layer which outputs y using Eq. (23) and n nodes yi,

52610 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

FIGURE 6. An illustration of the Hd -generative ReLU with five hidden layers, where a few nodes
with their bias and edges with non-zero weights are shown.

TABLE 5. Values of the nodes ψ1
kj , ψ

2
kj , ρ

1
kj , ρ

2
kj of the second layer for 1 ≤ j,k ≤ d .

TABLE 6. Values of the nodes x ′

j of the third layer.

1 ≤ i ≤ n. The five hidden layers perform the computation of
Eqs. (21) and (22). The second layer keeps a copy of 2d nodes
xj and performs the computation of δ(xj, xk) with 4d2 nodes
ψ1
kj, ψ

2
kj, ρ

1
kj, ρ

2
kj, 1 ≤ j, k ≤ d based on Prop. 1. The values

of these nodes are:

ψ1
kj = ReLU((xj − xk)/ϵ + 1), ψ2

kj = ReLU((xj − xk)/ϵ),

ρ1kj = ReLU((xk − xj)/ϵ + 1), ρ2kj = ReLU((xk − xj)/ϵ).

The third layer keeps a copy of d nodes xj+d and performs the
computation of Eq. (20) with d nodes x ′

j fo 1 ≤ j ≤ d which
is given as:

x ′
j = ReLU

xj − C ·

j−1∑
k=1

(ψ1
kj − ψ2

kj + ρ1kj − ρ2kj − 1)

 .

VOLUME 12, 2024 52611

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 7. Values of the nodes α1
ij , α

2
ij , β

1
ij , β

2
ij of the second layer for 1 ≤ i ≤ n,1 ≤ j ≤ d .

TABLE 8. Values of the nodes λi of the third layer.

TABLE 9. Values of the nodes µij of the third layer.

TABLE 10. Values of the nodes γi of the fourth layer.

TABLE 11. Values of the nodes yi of the output layer.

The fourth layer keeps a copy of d nodes xj+d and performs
the computation of δ(pj, i) with 4nd nodesα1ij, α

2
ij, β

1
ij , β

2
ij , 1 ≤

i ≤ n, 1 ≤ j ≤ d based on Prop. 1. The value of these nodes
are:

α1ij = ReLU((x ′
j − i)/ϵ + 1), α2ij = ReLU((x ′

j − i)/ϵ),

β1ij = ReLU((i− x ′
j)/ϵ + 1), β2ij = ReLU((i− x ′

j)/ϵ).

The computation of Eq. (21) andmax(xj+d−C(1−δ(pj, i)), 0)
in Eq. (22) is performed in the fifth layer with n and nd nodes

λi and µij, resp., such that

λi = ReLU

 d∑
j=1

(−Cα1ij+Cα
2
ij−Cβ

1
ij+Cβ

2
ij)+(ei+Cd)

,
µij = ReLU

(
Cα1ij − Cα2ij + Cβ1ij − Cβ2ij + xd+j − 2C

)
.

The sixth layer keeps a copy of n nodes λi, and is used
to perform the computation of Eq. (21) with n nodes as
follows

γi = ReLU

 d∑
j=1

µij

 .

Finally, the output layer computes yi with the following
equation

yi = λi + γi.

Hence the constructed neural network is an Hd -generative
ReLU with size O(nd) and constant depth.
Example 3: Suppose 6 = {1, 2, 3, 4, 5}, d = 3, e =

(4, 1, 3, 2) and y = (4, 5, 3, 1). The strings e and y differ at
positions i = 2, 4, and therefore their hamming distance d ′

is 2. By using x = (2, 4, 2, 5, 1, 3) in Eqs. (20)- (23), we get
the vectors p = [2, 4, 0], q = [4, 0, 3, 0], r = [0, 5, 0, 1],
y = (4, 5, 3, 1). We show that the Hd -generative ReLU
constructed by using Theorem 2 outputs the string y from the
input x. The values of each node of the layers are listed in
Tables 5- 11.
Proof of Theorem 4: Suppose e = (e1, e2, . . . , en) and

let y = (y1, y2, . . . , yn+d) be a string such that y can
be obtained from e by inserting the values ykj before the
positions kj, where kj ≤ m, 1 ≤ j ≤ d . Note that more
than one entry can be inserted before a fixed position, and
therefore {k1, k2, . . . , kd } is a multi-set. Furthermore the edit
distance of y from e due to insertion is exactly d . Construct
x = (x1, x2, . . . , x2d) such that xj ∈ {k1, k2, . . . , kd } and
xj+d = ykj for 1 ≤ j ≤ d . Then we see that y can
be obtained from e using x with the following system of

52612 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 12. Values of the nodes of the second layer.

TABLE 13. Values of the nodes of the third layer.

TABLE 14. Values of γi nodes of the fourth layer.

equations.

pj =

d∑
k=1

H (xj, xk) −

d∑
k=j

δ(xj, xk) for j ∈ {1, 2, . . . , d},

(24)

qℓ =

d∑
j=1

max(xj − C · (1 − δ(ℓ, pj + 1)), 0) for ℓ ∈ {1,

2, . . . , d},where C is a constant with C ≫ max(m, n),

(25)

qd+ℓ =

d∑
j=1

max(xd+j − C · (1 − δ(ℓ, pj + 1)), 0)

for ℓ ∈ {1, 2, . . . , d}, (26)

ri =

d∑
ℓ=1

δ(qℓ, i) for i ∈ {1, . . . , n+ 1}, (27)

ti = i+
i∑

k=1

rk for i ∈ {1, 2, . . . , n}, (28)

uℓi = max(ei − C · (1 − δ(ti, i+ ℓ− 1)), 0)

for i ∈ {1, 2, . . . , n}, ℓ ∈ {1, 2, . . . , d + 1}, (29)

fh =

∑
∀i,ℓ|i+ℓ−1=h

uℓi for h ∈ {1, 2, . . . , n+ d}, (30)

vℓ = qℓ + ℓ− 1 for ℓ ∈ {1, 2, . . . , d}, (31)

wℓi = max(qd+ℓ − C · (1 − δ(vℓ, i+ ℓ− 1)), 0)

for i ∈ {1, . . . , n+ 1}, ℓ ∈ {1, 2, . . . , d}, (32)

gh =

∑
∀i,ℓ|i+ℓ−1=h

wℓi for h ∈ {1, 2, . . . , n+ d}, (33)

yh = fh + gh for h ∈ {1, 2, . . . , n+ d}. (34)

Eqs. (24)-(26) are used to realize the values of indices
xj in ascending order and accordingly the values of xd+j.
Eqs. (27)-(30) are used to determine the position h of ei in y.
Intuitively, the position of ei will be shifted by the number
of insertions to be performed before ei. This implies that we
can express the position h of ei as h = i+ ℓ− 1 for some ℓ,
1 ≤ ℓ ≤ d + 1, where ℓ − 1 is the insertions before ei. The
variable ri counts the number of insertions between ei−1 and
ei, if it exists. The term

∑i
k=1 rk in Eq. (28) gives the number

of all insertions before ei, and therefore ti is the position of ei
in y. The value of the variable uℓi is ei if and only if the number
of insertions before ei is ℓ−1. The variable fh determines the
values from e at position h in y, i.e., fh = ei for some i if
and only if the determined position i + ℓ − 1 of ei in y is
equal to h. Eqs. (31)-(33) are used to determine the position
h in y of the new values qℓ+d to be inserted in e. It is easy
to observe that the position of qℓ+d that should be inserted
before qℓ = iwill be h = i+ℓ−1. Intuitively, ℓ is the number
of entries to be inserted until ei. The variable vℓ in Eq. (31)
outputs the position of the new entry to be inserted before qℓ.
The variable uℓi is qℓ+d if and only if the position of qℓ+d in
y is i + ℓ − 1. The variable gh determines the value at the
position h in y, i.e., gh = qℓ+d if and only if the determined
position i + ℓ − 1 of the new entry qℓ is equal to h. Finally,
adding fh and gh gives the output entry yh since ei and inserted
entries cannot have the same position in y.
Construct an eight-layer neural network with six hidden

layers and ReLU as an activation function to perform the
computation of Eqs. (24)-(34), where the first layer is the
input layer with 2d nodes xj, and the last layer is the output
layer with n + d nodes yi. An illustration of the network
is given in Figure 7. The second layer keeps a copy of
2d nodes xj. By using Prop. 1, this layer also computes
H (xj, xk) and δ(xj, xk) with 2d2 and 4d2 nodes, resp., as
follows

η1kj = ReLU((xj − xk)/ϵ + 1), η2kj = ReLU((xj − xk)/ϵ),

ψ11
kj = ReLU((xj − xk)/ϵ + 1), ψ12

kj = ReLU((xj − xk)/ϵ),

ρ11kj = ReLU((xk − xj)/ϵ + 1), ρ12kj = ReLU((xk − xj)/ϵ).

VOLUME 12, 2024 52613

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 15. Values of µi and λi nodes of the fourth layer.

TABLE 16. Values of the nodes of the fifth layer.

The third layer keeps a copy of 2d nodes xj and computes
pj with d nodes, as follows

ϱj = ReLU(
d∑
k=1

(η1kj − η2kj) −

d∑
k=j

(ψ11
kj − ψ12

kj + ρ11kj − ρ12kj)

+ (d − j+ 1)).

The fourth layer keeps a copy of 2d nodes xj. By using
Prop. 1, this layer also computes δ(ℓ, pj + 1) with 4d2 nodes,
as follows

ψ21
ℓj = ReLU((ϱj + 1 − ℓ)/ϵ + 1),

ψ22
ℓj = ReLU((ϱj + 1 − ℓ)/ϵ),

ρ21ℓj = ReLU((ℓ− ϱj − 1)/ϵ + 1),

ρ22ℓj = ReLU((ℓ− ϱj − 1)/ϵ).

The fifth layer shows the computations of max(xj − C(1 −

δ(ℓ, pj + 1)), 0) and max(xd+j − C(1 − δ(ℓ, pj + 1)), 0) with
d2 nodes, as follows

χℓj=ReLU
(
xj+Cψ21

ℓj −Cψ22
ℓj +Cρ21ℓj − Cρ22ℓj −2C

)
,

χℓ(d+j)=ReLU
(
xd+j+Cψ21

ℓj −Cψ22
ℓj +Cρ21ℓj −Cρ22ℓj −2C

)
.

The sixth layer shows the computations of Eqs. (25) and (26)
with d2 nodes, as follows

x ′

ℓ = ReLU

 d∑
j=1

χℓj

 ,

x ′

d+ℓ = ReLU

 d∑
j=1

χℓ(d+j)

 .

The seventh layer keeps a copy of d nodes x ′

d+ℓ. By using
Prop. 1, this layer also computes δ(qℓ, i) and vℓ used in
Eqs. (27) and (31) with 4(n + 1)d , and d nodes, resp.,
as follows

α1iℓ = ReLU((x ′

ℓ − i)/ϵ + 1), α2iℓ = ReLU((x ′

ℓ − i)/ϵ),

β1iℓ = ReLU((i− x ′

ℓ)/ϵ + 1), β2iℓ = ReLU((i− x ′

ℓ)/ϵ),

γℓ = ReLU(x ′

ℓ + ℓ− 1).

The eighth layer keeps a copy of d nodes xd+ℓ, and computes
ri and δ(vℓ, i + ℓ − 1) used in Eqs. (27) and (32) with
n + 1, and 4(n + 1)d nodes, resp., by using Prop. 1 as
follows:

τi = ReLU(
d∑
ℓ=1

(α1iℓ − α2iℓ + β1iℓ − β2iℓ) − d),

µ11
iℓ = ReLU((γℓ − (i+ ℓ− 1))/ϵ + 1),

µ12
iℓ = ReLU((γℓ − (i+ ℓ− 1))/ϵ),

λ11
iℓ = ReLU(((i+ ℓ− 1) − γℓ)/ϵ + 1),

λ12
iℓ = ReLU(((i+ ℓ− 1) − γℓ)/ϵ).

The computation of ti and wℓi used in Eqs. (28) and (32) is
performed in the ninth layer with n and (n+1)d nodes, resp.,
such that

τ ′
i = ReLU(i+

i∑
k=1

τk),

ωiℓ = ReLU(Cµ11
iℓ − Cµ12

iℓ + Cλ11
iℓ − Cλ12

iℓ + x ′

d+ℓ − 2C).

The tenth layer is used to compute δ(ti, i+ℓ−1) and gh used
in Eqs. (29) and (33) with 4(d + 1)n and n+ d nodes, resp.,
by using Prop. 1 as follows

µ21
iℓ = ReLU((τ ′

i − (i+ ℓ− 1))/ϵ + 1),

µ22
iℓ = ReLU((τ ′

i − (i+ ℓ− 1))/ϵ),

λ21
iℓ = ReLU(((i+ ℓ− 1) − τ ′

i)/ϵ + 1),

λ22
iℓ = ReLU(((i+ ℓ− 1) − τ ′

i)/ϵ),

ζh = ReLU(
∑

∀i,ℓ|i+ℓ−1=h

ωiℓ).

The eleventh layer keeps a copy of n + d nodes ζh, and
computes uℓi with n(d + 1) nodes ω′

iℓ that satisfies the
following equation

ω′

iℓ = ReLU(Cµ21
iℓ − Cµ22

iℓ + Cλ21
iℓ − Cλ22

iℓ + ei − 2C).

The twelfth layer again keeps a copy of n + d nodes ζh, and
computes fh in Eq. (30) with (n+ d) nodes ζ ′

h such that

ζ ′
h = ReLU(

∑
∀i,ℓ|i+ℓ−1=h

ω′

iℓ)

Finally, the output layer computes yh as follows

yh = ζ ′
h + ζh.

Hence the constructed network is an EId -generative ReLU of
size O(nd) and constant depth.

52614 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 17. Values of the nodes of the sixth layer.

FIGURE 7. An illustration of EId -generative ReLU with the eleven hidden layers, where a few nodes and edges with their bias and
non-zero weights are shown, respectively.

TABLE 18. Values of the nodes of the seventh layer.

TABLE 19. Values of the nodes of the output layer.

Example 4: Suppose that 6 = {1, 2, 3, 4, 5}, e =

(3, 2, 4, 1), d = 3 and y = (4, 3, 2, 4, 2, 5, 1). By using

TABLE 20. Values of the nodes η1
kj , η

2
kj of the second layer.

x = (4, 1, 4, 3, 2, 5) in Eqs. (24)- (34), we get the
vectors p = [1, 0, 2], q = [1, 4, 4, 2, 3, 5], r =

[1, 0, 0, 2, 0], t = [2, 3, 4, 7], u = [[0, 3, 0, 0], [0, 2, 0, 0],
[0, 4, 0, 0], [0, 0, 0, 1]], f = [0, 3, 2, 4, 0, 0, 1], v = [1, 5, 6],

VOLUME 12, 2024 52615

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 21. Values of the nodes ψ11
kj , ψ

12
kj , ρ

11
kj , ρ

12
kj of the second layer.

TABLE 22. Values of the nodes ϱj of the third layer.

w = [[2, 0, 0], [0, 0, 0], [0, 0, 0], [0, 3, 5], [0, 0, 0]] g =

[2, 0, 0, 0, 3, 5, 0], and y = (2, 3, 2, 4, 3, 5, 1). We show that
the EId -generative ReLU constructed by using Theorem 4
outputs y for the input x. The values of each node of the layers
are listed in Tables 20- 36.
Proof of Theorem 5: Suppose e = (e1, e2, . . . , en) is a

string over 6, and x = (x1, . . . , xj, . . . , x5d) be an arbitrary
string over [0, 1) with xj = i · 1, where 1 is a small
constant. We consider that the entries xj, 1 ≤ j ≤ 2d ,
(resp., 2d + 1 ≤ j ≤ 3d and 3d + 1 ≤ j ≤ 5d)
correspond to substitution (resp., deletion and insertion)
operations. These operations are performed in the following
six steps which consist of pre-processing of x, padding on
e followed by substitution, deletion, insertion, and trimming
operations.

(i) Perform a pre-processing to convert x into an integer
string such that the real value xj with 1 ≤ j ≤ d, 2d+1 ≤ j ≤
3d, 3d+1 ≤ j ≤ 4d (resp., d+1 ≤ j ≤ 2d , 4d+1 ≤ j ≤ 5d)
in the intervals 0, (0, 1/(n+1)], . . . , (n/(n+1), (n+1)/(n+

1)] (resp., [0, 1/m], (1/m, 2/m], . . . , ((m − 1)/m,m/m] is
converted into 0, 1, . . . , n + 1 (resp., 1, 2, . . . ,m). This is
performed by first identifying the range and then applying
the threshold function by using Eqs. (35)- (38). The variable
pji (resp., q

i
ℓ) in Eq. (35) (resp., Eq. (36)) are used to identify

the range of xj. More precisely pji (resp., q
i
ℓ) is 1 if and only

if xj is in the i-th interval from 0, (0, 1/(n+ 1)], . . . , (n/(n+

1), (n + 1)/(n + 1)] (resp., [0, 1/m], (1/m, 2/m], . . . , ((m −

1)/m,m/m]). The variables p′
j and q

′
j store the integer value

corresponding to xj, i.e., p′
j = i (resp., q′

j = ℓ) if and only if

pji = 1 (resp., qiℓ = 1).

pji =
[
(i− 1)/(n+ 1) ≤ xj ≤ i/(n+ 1)

]
−

δ(xj, (i− 1)/(n+ 1)),

for i ∈ {0, 1, . . . , n+1}, j ∈ {1, . . . , d, 2d+1, . . . , 4d},

(35)

For j ∈ {d + 1, . . . , 2d, 4d + 1, . . . , 5d},

qjℓ =

[
(ℓ− 1)/m ≤ xj ≤ ℓ/m

]
if ℓ = 1,[

(ℓ− 1)/m ≤ xj ≤ ℓ/m
]
− if ℓ ∈ {2, . . . ,m},

δ(xj, (ℓ− 1)/m).

(36)

p′
j =

n+1∑
i=0

pji · i for j ∈ {1, . . . , d, 2d + 1, . . . , 4d}. (37)

q′
j =

m∑
ℓ=1

qjℓ · ℓ for j ∈ {d + 1, . . . , 2d, 4d + 1, . . . , 5d}.

(38)

Let x be the converted string. To avoid performing redundant
operations, ignore xj if it is repeated for 1 ≤ j ≤ d, 2d + 1 ≤

j ≤ 3d, or set xj := 0 if it has at least (d + 1)-th index
among the non-zero and non-repeating values for 1 ≤ j ≤

d, 2d + 1 ≤ j ≤ 4d . Furthermore for the insertion indices
3d + 1 ≤ j ≤ 4d , set xj := n+ 1 if xj = 0 since, the insertion
operation cannot handle the index zero. These computations
are performed using Eqs. (39)- (42) as follows

tj =

max(1 − (δ(p′
j, 0) +

j−1∑
k=1

δ(p′
j, p

′
k)), 0)

if j ∈ {1, . . . , d},

max(1 − (δ(p′
j, 0) +

j−1∑
k=2d+1

δ(p′
j, p

′
k)), 0)

if j ∈ {2d + 1, . . . , 3d},

1 − δ(p′
j, 0) if j ∈ {3d + 1, . . . , 4d}.

(39)

uj =

 j∑
k=1

tk ≥ d + 1

 for j ∈ {1, . . . , d, 2d + 1, . . . , 4d}.

(40)

vj = max(p′
j − C · uj, 0) for j ∈ {1, . . . , d, 2d + 1, . . . , 4d}.

(41)

wj =

{
vj if j ∈ {1, . . . , d, 2d + 1, . . . , 3d},

max(vj+(n+1) · δ(vj, 0), 0) if j ∈ {3d+1, . . . , 4d}.

(42)

52616 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 23. Values of the nodes ψ21
ℓj , ψ

22
ℓj , ρ

21
ℓj , ρ

22
ℓj of the fourth layer.

TABLE 24. Values of the nodes χℓj and χℓ(d+j) of the fifth layer.

TABLE 25. Values of the nodes x ′
ℓ

and x ′

d+ℓ
of the sixth layer.

Here tj identifies if xj is non-zero and non-repeated, i.e., tj =

1 if and only if xj = p′
j is non-zero and non-repeated (resp.,

xj = 0) for 1 ≤ j ≤ d, 2d + 1 ≤ j ≤ 3d (resp., 3d + 1 ≤ j ≤
4d). The variable uj identifies if xj has index greater than d .
More precisely, uj = 1 if and only if xj has index greater than
d among the non-zero and non-repeating values and vj = 0 if
and only if uj = 1. Finally,wj is used to replace 0 with n+1 to
perform insertion operation, i.e.,wj = n+1 if and only if vj =

0 for the insertion indices for 3d + 1 ≤ j ≤ 4d . Basically, wj
and q′

j are the resultant values that are obtained by converting
xj into integers, where wj is used to identify positions to make
changes and q′

j is used to store the value to be substituted or
inserted. Finally, get a processed string x ′ by concatenating
wj and q′

j as x
′
j := wj (resp., q′

j) if 1 ≤ j ≤ d, 2d+1 ≤ j ≤ 4d
(resp., d + 1 ≤ j ≤ 2d, 4d + 1 ≤ j ≤ 5d).
(ii) Due to the different number of substitution, deletion,

and insertion operations, the resultant strings can have
different lengths. To handle this issue, increase the length of
e by padding d zeros at the end so that the total length of the
string becomes n+ d .
(iii) Apply substitution operations on e using x ′

j , 1 ≤ j ≤

2d , as discussed in Theorem 2 and get a string of size n+ d .
(iv) Apply deletion on the output of (iii) using x ′

j , 2d+1 ≤

j ≤ 3d , as discussed in Theorem 3 and get a string of size n.

(v) Apply insertion operations on the output of (iv) using
x ′
j , 3d + 1 ≤ j ≤ 5d , as discussed in Theorem 4 and get a
string of size n+ d .

(vi) Finally, obtain the resultant string y with the first n −

nD+nI entries of the output of (v), where nD is the number of
distinct non-zero entries among x ′

j , 2d + 1 ≤ j ≤ 3d , and nI
is the number of non-zero entries among x ′

j , 3d+1 ≤ j ≤ 4d ,
that are in the range (0, (n+ 1− nD)/(n+ 1)] with index less
than d+1. It is easy to notice that y has edit distance at most d
from e. Furthermore, the number of substitution, deletion and
insertion operations can be controlled in x, and therefore any
string y over6 with at most distance d from e can be obtained
by appropriately selecting x and applying steps (i)-(vi).

Construct a twenty-two-layer neural network with ReLU
as an activation function to perform the steps (i)-(v). The first
layer is the input layer with 5d nodes xj, and the last layer
is the output layer of size n + d with output y′. The second
layer corresponds to Eqs. (35) and (36) which computes[
xj ≥ (i− 1)/(n+ 1)

]
,
[
−xj ≥ −i/(n+ 1)

]
, δ(xj, (i−1)/(n+

1)),
[
xj ≥ (ℓ− 1)/m

]
,
[
−xj ≥ −ℓ/m

]
and δ(xj, (ℓ − 1)/m),

by using Props. 1 and 2 with 2(n + 2)(5d) nodes γ 11
ij , γ 12

ij ,
2(n + 2)(5d) nodes γ 21

ij , γ 22
ij , 4(n + 2)(5d) nodes α11ij , α

12
ij ,

β11ij , β
12
ij , 2(m)(5d) nodes ω

11
ℓj , ω

12
ℓj , 2(m)(5d) nodes ω

21
ℓj , ω

22
ℓj

and 4(m)(5d) nodes α21ℓj , α
22
ℓj , β

21
ℓj , β

22
ℓj , respectively:

γ 11
ij = ReLU(xj/ϵ − (i− 1)/ϵ(n+ 1) + 1),

γ 12
ij = ReLU(xj/ϵ − (i− 1)/ϵ(n+ 1)),

γ 21
ij = ReLU(−xj/ϵ + i/ϵ(n+ 1) + 1),

γ 22
ij = ReLU(−xj/ϵ + i/ϵ(n+ 1)),

α11ij = ReLU(xj/ϵ − (i− 1)/ϵ(n+ 1) + 1),

α12ij = ReLU(xj/ϵ − (i− 1)/ϵ(n+ 1)),

β11ij = ReLU((i− 1)/ϵ(n+ 1) − xj/ϵ + 1),

β12ij = ReLU((i− 1)/ϵ(n+ 1) − xj/ϵ),

ω11
ℓj = ReLU(xj/ϵ − (ℓ− 1)/ϵm+ 1),

ω12
ℓj = ReLU(xj/ϵ − (ℓ− 1)/ϵm),

ω21
ℓj = ReLU(−xj/ϵ + ℓ/ϵm+ 1),

ω22
ℓj = ReLU(−xj/ϵ + ℓ/ϵm),

α21ℓj = ReLU(xj/ϵ − (ℓ− 1)/ϵm+ 1),

VOLUME 12, 2024 52617

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 26. Values of the nodes α1
iℓ, α

2
iℓ, β

1
iℓ, β

2
iℓ of the seventh layer.

TABLE 27. Values of the nodes τj of the seventh layer.

TABLE 28. Values of the nodes τi of the eighth layer.

α22ℓj = ReLU(xj/ϵ − (ℓ− 1)/ϵm),

β21ℓj = ReLU((ℓ− 1)/ϵm− xj/ϵ + 1),

β22ℓj = ReLU((ℓ− 1)/ϵm− xj/ϵ).

The third layer corresponds to Eqs. (37)-(38) with 5d and 5d
nodes ρj and ψj, respectively, as follows

ρj = ReLU(
n+1∑
i=0

(γ 11
ij − γ 12

ij + γ 21
ij − γ 22

ij − α11ij + α12ij − β11ij

+ β12ij) · i),

ψj = ReLU(
m∑
ℓ=1

(ω11
ℓj − ω12

ℓj + ω21
ℓj − ω22

ℓj − 1) · ℓ−

m∑
ℓ=2

(α21ℓj

− α22ℓj + β21ℓj − β22ℓj − 1) · ℓ).

The fourth layer keeps copies of ρj and ψj, and computes
δ(p′

j, 0) and δ(p
′
j, p

′
k) with 4(5d) and 4(9d2) nodes, respec-

tively. These nodes are:

µ11
0j = ReLU(ρj/ϵ + 1),

µ12
0j = ReLU(ρj/ϵ),

λ11
0j = ReLU(−ρj/ϵ + 1),

λ12
0j = ReLU(−ρj/ϵ),

µ21
kj = ReLU((ρj − ρk)/ϵ + 1),

µ22
kj = ReLU((ρj − ρk)/ϵ),

λ21
kj = ReLU((−ρj + ρk)/ϵ + 1),

λ22
kj = ReLU((−ρj + ρk)/ϵ).

The fifth layer keeps copies of ρj and ψj nodes and computes
τj with 5d nodes as follows

τj

=

ReLU(j+ 1 − µ11
0j + µ12

0j − λ11
0j +λ12

0j − if 1≤ j≤d,
j−1∑
k=1

(µ21
kj − µ22

kj + λ21
kj − λ22

kj))

ReLU(j− 2d + 1 − µ11
0j +µ

12
0j − if 2d+1 ≤ j ≤ 3d,

λ11
0j + λ12

0j −

j−1∑
k=2d+1

(µ21
kj − µ22

kj + λ21
kj − λ22

kj)),

ReLU(2 − µ11
0j + µ12

0j − λ11
0j + λ12

0j) if 3d+1≤ j≤4d .

The sixth layer keeps copies of ρj and ψj nodes and performs
the computation of Eq. (40) with 10d nodes η1j and η2j as
follows:

η1j = ReLU(
j∑

k=1

τk/ϵ − (d + 1)/ϵ + 1),

η2j = ReLU(
j∑

k=1

τk/ϵ − (d + 1)/ϵ).

The seventh layer keeps a copy of ψj and performs the
computation of Eq. (41) with 5d nodes ζj such that

ζj = ReLU(ρj−C · (η1j − η2j)).

The eighth layer keeps copies of ψj and ζj. It also computes
δ(vj, 0) with 4(5d) nodes µ31

0j , µ
32
0j , λ

31
0j and λ32

0j

µ31
0j = ReLU(ζj/ϵ + 1), µ32

0j = ReLU(ζj/ϵ),

λ31
0j = ReLU(−ζj/ϵ + 1), λ32

0j = ReLU(−ζj/ϵ).

52618 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 29. Values of the nodes µ11
iℓ , µ12

iℓ , λ11
iℓ and λ12

iℓ of the eighth layer.

TABLE 30. Values of the nodes τ ′

i of the ninth layer.

The ninth layer keeps a copy of ψj and computes wj
corresponding to Eq. (42) with 4(5d) nodes ϱj such that

ϱj =

ζj if 1 ≤ j ≤ d, 2d + 1 ≤ j ≤ 3d,

ReLU(ζj + (n+ 1)(µ31
0j − µ32

0j + λ31
0j − λ32

0j − 1))

if 3d + 1 ≤ j ≤ 4d .

The tenth layer computes x ′
j with 5d nodes χj as follows:

χj = ReLU(ϱj + ψj).

Next apply substitution (resp., deletion, and insertion) on the
nodes χj, with 1 ≤ j ≤ 2d (resp., 2d + 1 ≤ j ≤ 3d ,
and 3d + 1 ≤ j ≤ 5d) using the networks defined in
Theorems 2, 3 and 4with a little alteration, and get y′. For this,
the eleventh layer of this neural network is the second layer
of substitution (resp., deletion, and insertion). The sixteenth
layer of this neural network gives the output of substitution
operation in the form of nodes eSh for h ∈ {1, . . . , n + d},
by using Theorems 2 whereas this layer copies the sixth
layer of deletion operation from the fifteenth layer as an
identity map and has the seventh layer of insertion operation.
To construct the seventeenth layer, in the equation

ζij = ReLU
(
ei+j−1 − C(−ψ1

ij + ψ2
ij − ρ1ij + ρ2ij + 2)

)
.

of the seventh layer of deletion, ei+j−1 = eS i+j−1 is a node
of the previous layer connected with ζij with weight 1. In this
case the bias of ζij is only−2C . The eighteenth layer gives the
output of deletion operation in the form of nodes eDi for i ∈

{1, . . . , n}, by using Theorem 3 and also contains the ninth

layer of insertion. The nineteenth layer of this neural network
copies eDi nodes as an identity map and contains the nodes of
the tenth layer of insertion. To construct the twentieth layer,
in the equation

ω′

iℓ = ReLU(Cµ21
iℓ − Cµ22

iℓ + Cλ21
iℓ − Cλ22

iℓ + ei − 2C).

of the eleventh layer of insertion, ei = eDi is a node of
previous layer connected with ω′

iℓ with weight 1. In this case
the only bias ofω′

iℓ is−2C . The twenty-second layer gives the
output in the form of nodes eI h = y′h for h ∈ {1, . . . , n + d}

after the insertion operation by using Theorem 4. Finally, get
y by applying step (vi) on y′. Thus, network has a constant
depth and sizeO(max(dn, dm)), which completes the proof.□
Example 5: Let 6 = {1, 2, 3, 4, 5, 6, 7}, e =

(4, 1, 3, 7, 5), and d = 3. Take 1 = 0.01 and
x = (0.03, 0, 0.03, 0.27, 0, 0.6, 0, 0.55, 0.55, 0, 0.25, 0.9, 0,
0.7, 0.24). By using x in Eqs. (35)- (42), we get the vectors:

p = [[0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]],

q = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

p′
= [1, 0, 1, 0, 0, 0, 0, 4, 4, 0, 2, 6, 0, 0, 0],

q′
= [0, 0, 0, 2, 1, 5, 0, 0, 0, 0, 0, 0, 1, 5, 2],

t = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0],

u = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

VOLUME 12, 2024 52619

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 31. Values of the nodes ωiℓ of the ninth layer.

TABLE 32. Values of the nodes µ21
iℓ , µ22

iℓ , λ21
iℓ and λ22

iℓ of the tenth layer.

TABLE 33. Values of the nodes ζh of the tenth layer.

v = [1, 0, 1, 0, 0, 0, 0, 4, 4, 0, 2, 0, 0, 0, 0],

w = [1, 0, 1, 0, 0, 0, 0, 4, 4, 6, 2, 6, 0, 0, 0],

x ′
= (1, 0, 1, 2, 1, 5, 0, 4, 4, 6, 2, 6, 1, 5, 2).

By applying substitution, deletion, and insertion opera-
tions on e = (4, 1, 3, 7, 5, 0, 0, 0) using x ′ we get
(2, 1, 3, 7, 5, 0, 0, 0); (2, 1, 3, 5, 0); and
y′ = (2, 5, 1, 3, 5, 0, 0, 0), respectively. Finally, by selecting
first n− nD + nI = 5 − 1 + 1 = 5 we get y = (2, 5, 1, 3, 5).

EXAMPLES OF CODE EXECUTION
All codes are freely available at https://github.com/MGANN-
KU/ReLU_Networks. An explanation of the program codes
is given below.

The file Binary_Hamming_distance_
substitution.py contains an implementation of binary
Hd -generative ReLU to generate strings with a given
Hamming distance.

Input:
e:= Input string of length n
d:= Hamming distance
x:= The binary conversion string of length n
Output:
y:= The string obtained by applying substitution operation

on e following x and has at most distance d.
An example: e = (1,1,0), d = 2, x = (1,

3), y = (0, 1, 1).
The file Hamming_distance_substitution.py

contains an implementation of Hd -generative ReLU to
generate strings with a given Hamming distance.

Input:
e:= Input string of length n
d:= Hamming distance
m:= The size of the symbol set
x:= The conversion string of length 2n
Output:
y:= The string obtained by applying substitution operation

on e following x and has at most distance d.
An example: e = (4,1, 3, 2), d = 3, m =

5, x = (2, 4, 2, 5, 1, 3), y = (4, 5, 3,
1). The file Edit_distance_deletion.py contains
an implementation of R EDd -generative ReLU to generate
strings with a given edit distance due to deletion operation
only.

Input:
e:= Input string of length n

52620 VOLUME 12, 2024

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

TABLE 34. Values of the nodes ω′

iℓ of the eleventh layer.

TABLE 35. Values of the nodes ζ ′

h of the seventh layer.

TABLE 36. Values of the nodes yh of the output layer.

d:= Hamming distance
x:= The conversion string of length n
Output:
y:= The string obtained by applying deletion operation on

e following x and has at most distance d.
An example: e = (3, 2, 4, 1) d = 2, x =

(1, 3), y = (2, 1).
The file Edit_distance_insertion.py contains

an implementation of EId -generative ReLU to generate
strings with a given edit distance due to insertion operation
only.

Input:
e:= Input string of length n
d:= Hamming distance
m:= The size of the symbol set
x:= The conversion string of length n
Output:
y:= The string obtained by applying insertion operation on

e following x and has at most distance d.
An example: e = (3, 2, 4, 1) d = 3, m =

5, x = (4, 1, 4, 3, 2, 5), y = (2, 3, 2,
4, 3, 5, 1).

The file Edit_distance_unified.py contains an
implementation of Ed -generative ReLU to generate strings
with a given edit distance due to substitution, deletion and
insertion operations simultaneously.

Input:
e:= Input string of length n
d:= Hamming distance
m:= The size of the symbol set
1:= The small number
x:= The conversion string of length 2n
Output:

y:= The string obtained by applying substitution, deletion,
and insertion operations simultaneously on e following x and
has at most distance d.

An example: e:= (4, 1, 3, 7, 5) d:= 3, m:= 7,1:= 0.01 x:=
(0.03, 0, 0.03, 0.27, 0, 0.6, 0, 0.55, 0.55, 0, 0.25, 0.9, 0, 0.7,
0.24), y:= (2, 5, 1, 3, 5).

ACKNOWLEDGMENT
The authors would like to thank Dr. Naveed Ahmed
Azam, Quaid-i-Azam University, for the useful technical
discussions.

REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning: A

review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, ‘‘Greedy layer-wise
training of deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 19,
2006, pp. 1–4.

[3] D. P Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[4] S. Thrun, Exploring Artificial Intelligence in the New Millenium, Chapter
Robotic Mapping: A Survey. San Mateo, CA, USA: Morgan Kaufmann,
2005, pp. 1–35.

[5] B. A. Kindhi, M. A. Hendrawan, D. Purwitasari, T. A. Sardjono, and
M. H. Purnomo, ‘‘Distance-based pattern matching of DNA sequences for
evaluating primary mutation,’’ in Proc. 2nd Int. Conf. Inf. Technol., Inf.
Syst. Electr. Eng. (ICITISEE), Nov. 2017, pp. 310–314.

[6] T. Buschmann and L. V. Bystrykh, ‘‘Levenshtein error-correcting barcodes
for multiplexed DNA sequencing,’’ BMC Bioinf., vol. 14, no. 1, pp. 1–10,
Dec. 2013.

[7] R. Cotterell and J. Eisner, ‘‘Probabilistic typology: Deep generativemodels
of vowel inventories,’’ 2017, arXiv:1705.01684.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
‘‘Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 82–97, Nov. 2012.

[9] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm for
deep belief nets,’’Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[10] D. Klein and D. M. Christopher, ‘‘Fast exact inference with a factored
model for natural language parsing,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2002, pp. 1–15.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

VOLUME 12, 2024 52621

M. Ghafoor, T. Akutsu: On the Generative Power of ReLU Network for Generating Similar Strings

[12] H. P. Pinheiro, A. de Souza Pinheiro, and P. K. Sen, ‘‘Comparison
of genomic sequences using the Hamming distance,’’ J. Stat. Planning
Inference, vol. 130, nos. 1–2, pp. 325–339, Mar. 2005.

[13] S. Kumano and T. Akutsu, ‘‘Comparison of the representational power of
random forests, binary decision diagrams, and neural networks,’’ Neural
Comput., vol. 34, no. 4, pp. 1019–1044, 2022.

[14] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward
networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, Jan. 1989.

[15] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, ‘‘On the number of
linear regions of deep neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 1–9.

[16] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein, ‘‘On
the expressive power of deep neural networks,’’ in Proc. 34th Int. Conf.
Mach. Learn., vol. 70, Aug. 2017, pp. 2847–2854.

[17] M. Telgarsky, ‘‘Representation benefits of deep feedforward networks,’’
2015, arXiv:1509.08101.

[18] L. Szymanski and B. McCane, ‘‘Deep networks are effective encoders
of periodicity,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 10,
pp. 1816–1827, Oct. 2014.

[19] V. Chatziafratis, S. G. Nagarajan, I. Panageas, and X. Wang, ‘‘Depth-
width trade-offs for ReLU networks via Sharkovsky’s theorem,’’ 2019,
arXiv:1912.04378.

[20] B. Hanin andD. Rolnick, ‘‘Complexity of linear regions in deep networks,’’
in Proc. Int. Conf. Mach. Learn., 2019, pp. 2596–2604.

[21] Y. Bengio, O. Delalleau, and C. Simard, ‘‘Decision trees do not generalize
to new variations,’’Comput. Intell., vol. 26, no. 4, pp. 449–467, Nov. 2010.

[22] G. Biau, E. Scornet, and J. Welbl, ‘‘Neural random forests,’’ Sankhya A,
vol. 81, no. 2, pp. 347–386, Dec. 2019.

[23] C. Wang, W.-H. Kao, and C. K. Hsiao, ‘‘Using Hamming distance as
information for SNP-sets clustering and testing in disease association
studies,’’ PLoS ONE, vol. 10, no. 8, Aug. 2015, Art. no. e0135918.

[24] M. Mohammadi-Kambs, K. Hölz, M. M. Somoza, and A. Ott, ‘‘Hamming
distance as a concept in DNA molecular recognition,’’ ACS Omega, vol. 2,
no. 4, pp. 1302–1308, Apr. 2017.

[25] M. Hasan, A. S. M. Miah, M. M. Hossain, and M. S. Hossain, ‘‘LL-PMS8:
A time efficient approach to solve planted motif search problem,’’ J. King
Saud Univ. Comput. Inf. Sci., vol. 34, no. 6, pp. 3843–3850, Jun. 2022.

MAMOONA GHAFOOR received the M.Sc. and
M.Phil. degrees in mathematics from Quaid-i-
AzamUniversity Islamabad, Pakistan, in 2011 and
2013, respectively. She is currently pursuing the
Ph.D. degree with the Bioinformatics Center,
Institute for Chemical Research, Kyoto Univer-
sity. Her research interests include computational
mathematics and machine learning algorithms.

TATSUYA AKUTSU (Senior Member, IEEE)
received the B.E. and M.E. degrees in aeronautics
and the D.E. degree in information engineering
from The University of Tokyo, in 1984, 1986,
and 1989, respectively. Since 2001, he has been a
Professor with the Bioinformatics Center, Institute
for Chemical Research, Kyoto University. His
research interests include bioinformatics, complex
networks, and discrete algorithms.

52622 VOLUME 12, 2024

