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ABSTRACT A fundamental step in the design of electronic circuits is the verification that they are stable
at least on a given set of external terminations, in order to avoid that the solution found be not observable in
practice. This is especially true at microwave and millimeter-wave circuits, which are typically analyzed in
the frequency domain rather than in the time domain. As a consequence, both in the linear and large-signal
case, unstable solutions may be found instead of an observable one. Unfortunately, as compared to the linear
case, the stability analysis of large-signal solutions is significantly more cumbersome. In particular, although
it is possible to translate the small-signal tests based on the Nyquist principle to large-signal equivalents,
the price to pay is a significant increase in matrix size. In the case of the Ohtomo test, which has only
recently been applied to large-signal solutions, it is however possible to exploit the structure of the problem
to significantly reduce the complexity and, therefore, simulation time. A real-world balanced amplifier is
selected to validate the proposed method and illustrate its practical usage. The application of the method to
a realistic monolithic circuit with a large number of devices is also presented.

INDEX TERMS Harmonic balance, microwaves, nonlinear circuits, Ohtomo test, stability analysis.

I. INTRODUCTION
Electronic circuits operating at frequencies high enough
that distributed effects cannot be neglected (most notably,
in the microwave and millimeter-wave ranges) are typically
analyzed in the frequency domain through the Harmonic
Balance (HB) algorithm rather than in the time domain.
As a consequence, the solutions returned by the circuit
simulator are by construction periodic [1], [2]. Nevertheless,
there is no a priori guarantee that the equilibria considered
in the analysis will be stable: quite to the contrary, the
possibility exists that the simulated solution is unstable and,
as such, not observable in the fabricated circuits [3]. This
represents a problem to the designers of high-frequency
circuits, especially amplifiers (both in the small-signal and
large-signal regimes) but also frequency multipliers and
mixers. Conversely, being able to reliably detect the startup
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conditions of autonomous oscillations is also important in the
design of oscillators and frequency dividers.

Although there exists a variety of easy-to-use tools to
investigate the stability of d.c. solutions [4], [5] or even
the unconditional stability of linear 2-ports [6], [7], the
large-signal case is significantly harder to tackle. Since
the latter can be reduced to a linear problem through
linearization, the difficulty does not really arise so much
from a theoretical difference as, rather, from an increase in
the dimension of the problem. Thus, both in the linear and
nonlinear case, the established theory of linear dynamical
systems [8] can be exploited. Ultimately, the stability analysis
reduces to studying the zeros of the characteristic polynomial
associated with the solution at hand, with only a few
exceptions [3], [9], [10], [11], [12].
In order to localize the zeros of the characteristic

polynomial on the complex plane, two main approaches can
be recognized in the literature: namely, identification-based
techniques [13], [14], [15] and Nyquist-based techniques [1],
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[16], [17], [18], [19], [20]. Although the former are easier
to implement and use, the latter are significantly more
user-independent and reliable if they are fed the full descrip-
tion of the circuit under consideration, from the vantage
point of a circuit section for which observability [8] can be
assumed. This full description is obtained by computing, for
each perturbation frequency of a reasonably extended sweep,
the whole conversion matrices [2] of two P-port sub-circuits,
where P is a potentially large number of ports. If the HB
order is denoted by H , these matrices have size N × N ,
with N = (2H + 1)P: thus, the problem size increases
quadratically with H and P.
In this contribution, a peculiarity of the Ohtomo test (a

stability analysis tool first generalized to the large-signal
regime in [20]) is exploited to overcome the ‘curse of
dimensionality’ inherent in previous stability tests based on
the combined usage of the Nyquist principle and conversion
matrices. The results are expected to be of significant
interest to designers of microwave integrated circuits (MICs)
and monolithic MICs (MMICs) such as power amplifiers,
frequency multipliers, mixers and, secondarily, oscillators
and frequency dividers.

The implementation described in this work is based
on Keysight’s Advanced Design System (ADS [21]),
but equivalent adaptations in other commercial Electronic
Design Automation (EDA) environments, such as Cadence’s
Microwave Office [22], are clearly possible, by exploiting
the relevant scripting capabilities. Notice that the simulation
data are processed and the Nyquist plots produced directly
within the EDA environment (rather than relying on external
mathematical software, such as MATLAB [23]) by extensive
use of custom functions in the Application Extension
Language (AEL).

The manuscript is organized as follows. Section II will
provide some background on the problem at hand. Section III
will introduce the key idea, i.e., the partitioning of the
Ohtomo test. Section IV will demonstrate that, thanks to the
partitioning, the efficiency of the test improves significantly
as compared to the standard approach (from quadratic to
linear in the number of active devices). Section V will show
that the proposed approach provides correct results when
applied to a well known test vehicle, but with significantly
improved efficiency than the standard approach. An example
on how to use the proposed approach to verify the efficacy
of stabilization techniques is also illustrated. Section VI will
present the application of the presented approach to a realistic
MMIC, with state-of-the-art performance and comprising a
large number of active devices. For the Reader’s convenience,
a summary of the main symbols and acronyms is presented in
Tables 1 and 2, respectively.

II. THEORETICAL BACKGROUND
The reader is referred to Ohtomo’s original paper [4] for
the general setup and the basic notation, with particular
reference to the definition of the stability matrix MN (s) and
of the loop gains Gk(s). It is in that paper that the scattering

representation is used for the first time in the stability analysis
of linear circuits, with some advantages in the verification of
the ‘inherent stability’ proviso, i.e., a theoretical precondition
for the Nyquist principle to be applied safely. In practice, this
and similar methods are typically applied to linearized d.c.
solutions rather than to actually linear circuits.

Consider, on the other hand, the case of forced periodic
solutions in nonlinear circuits (the most representative
example being that of power amplifierswith continuous-wave
inputs of nonnegligible level), as typically found through the
HB algorithm. The stability of these solutions can be analyzed
by injecting a small signal and considering the perturbed
solution, which can be expressed as the superposition of the
original orbit (i.e., periodic solution) and of its linearization.
This is analogous to the linear case, except that the linearized
portion of the solution is now represented by a conversion
matrix [2].

As a consequence, the theoretical tools available to analyze
the stability of large-signal solutions are basically the same
as for the small-signal case, as mentioned in the Introduction.
With specific reference to the Nyquist-based techniques, the
two which most clearly appear as translations of small-signal
approaches are presented in [18] and [20]. If we exclude
the aspects pertaining to the implementation, these two
approaches simply differ by the representation of choice, i.e.,
impedance or admittance in the former, scattering in the latter.

Thus, the theoretical validity of these methods is already
well established. Nevertheless, the actual implementation
becomes important in practice for reasons of computational
efficiency, since the size of the conversion matrices involved
in typical circuits grows quickly with the number of active
devices, harmonic components and small-signal frequencies.
The present contribution builds up on [20] and provides a
partitioned formulation of the network determinant, which
ultimately leads to a significantly improved implementation,
as illustrated in Section III and quantified in Section IV.

As to the actual computation of the conversion matrices,
this is performed, in the EDA environment of choice, through
a large-signal/small-signal (LSSS) simulation [2]. To start,
denote with IpfSS a perturbation current at port p and frequency

fSS , and with V p′

fSS+hfLS a response voltage at port p′ and
frequency fSS + hfLS , where −H ≤ h ≤ +H . Then:

Zp
′,p

fSS+hfLS ,fSS =
V p′

fSS+hfLS

IpfSS

∣∣∣∣∣∣
oc

(1)

where the ‘oc’ subscript specifies an open-circuit termination
for all ports and small-signal frequencies. The orderly
compilation (by p and h) of all such terms results in
the conversion matrix of the considered network in the
impedance representation. Admittance and scattering con-
version matrices can be computed either directly through
analogous procedures or, alternatively, by changing the
representation (through textbook formulas) of an already
available conversion matrix.
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TABLE 1. Definition of main symbols used throughout the paper.

TABLE 2. Definition of main acronyms used throughout the paper.

When the conversion matrix of a sub-network is required,
the outlined procedure assumes that the sub-network under
test is appropriately separated from the whole circuit by
means of ideal filters: see again [20] for further details.

III. PARTITIONED OHTOMO TEST
Let us recall a fundamental relationship, implicit in [4] and
pointed out in [24], between the determinant of the stability
matrixMN (s) and the loop gains Gk(s):

det[MN (s)] = 1(s) ≜
N∏
k=1

(
Gk(s) − 1

)
(2)

Hence, the following observation can be made, which
represents the basis for the partitioned Ohtomo test proposed
in this contribution. Namely, the multiplicative nature of the
expression of 1(s) makes it so that the various factors can be
grouped arbitrarily:

1(s) =

B∏
b=1

1b(s) (3)

where, for the time being, 1b(s) is simply a sub-product of
the form:

1b(s) =

∏
k∈Kb

(
Gk(s) − 1

)
(4)

and Kb are disjoint sets of indexes whose union is
{k : 1, 2, . . . ,N }.
Then, denotingwithE[·] an operator countingwith sign the

number of encirclements of the origin made by its argument
(clockwise encirclements corresponding to positive counts)
allows to write:

E[1] =

B∑
b=1

E[1b] (5)

A noteworthy possibility is by collecting in separate
sub-products all the factors relevant to each active block of
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FIGURE 1. Principle of the Ohtomo test splitting exemplified in the case
B = 3, n1 = n2 = n3 = 2. One obtains that Δ = Δ1·Δ2·Δ3. The test
points are marked by black circles.

the active sub-network, namely:

1b(s) ≜
Nb+nb∏
k=Nb+1

(
Gk(s) − 1

)
(6)

where nb is the number of terminals of the b-th block and:

Nb ≜
b−1∑
l=1

nl (7)

which equals 0, n1, n1 + n2, . . . ,N − nB for b equal to
1, 2, 3, . . . ,B.
To illustrate, consider the simple case depicted in Fig. 1,

i.e., B = 3, n1 = n2 = n3 = 2. The baseline test
corresponds to the upper-left frame, with 6 test points: this
would yield the full determinant 1(s) as per (2). The other
frames depict the test conditions corresponding to (6), with
b equal to 1 (upper-right), 2 (lower-left) and 3 (lower-right).
The product of the associated sub-factors (11, 12 and 13,
respectively) gives back 1. Notice that, since the active
blocks in Fig. 1 are isolated, the blocks associated with b < b̄
are in effect replaced by normalization impedances when
solving sub-problem b̄.
Notice, from the definition of MN (s) and Gk(s) in [4],

that both the standard and the partitioned Ohtomo test can
be applied algebraically directly on the sub-circuit matrices
rather than through circuit operations (i.e., rather than by
computing reflectances as in [4]).

Finally, notice that the partitioned test reduces to the
standard test if one chooses B = 1, n1 = N , i.e.,
if all active devices are grouped together in one single
block. Conversely, the minimum granularity resulting in
computational advantages is obtained by setting B equal to
the number of active devices: indeed, even if it is possible

to split a device across multiple blocks, such a choice would
nullify the advantages of the proposed partitioning.

IV. EFFICIENCY IMPROVEMENT IN THE NONLINEAR CASE
The discussion in Section III holds true in general for
small-signal (H = 0) and large-signal (H > 0)
solutions. However, in the latter case, it is implicit that
each physical port corresponds to 2H + 1 virtual ports
at different frequency shifts with respect to the nominal
perturbation frequency, consistently with the standard theory
of conversion matrices [2]. Thus, N = (2H + 1)P in the
large-signal case, which entails a much larger computational
burden as compared to the small-signal case. For this reason
the partitioned approach is of limited utility if H = 0 but is
more and more advantageous as H increases.

In the typical situation where all blocks have the same
number of physical terminals pb (with pb = 2 in most
cases), the partitioned Ohtomo test would yield matrices
of size [(2H + 1) pb] × [(2H + 1) pb], in a sequence of
B sub-tests. As opposed to this, the standard test would
involve matrices of size [(2H + 1) pbB] × [(2H + 1) pbB].
Thus, the complexity growth effectively decreases from
being quadratic to being linear in B. As a matter of fact,
to compare the two approaches, it is worth defining an index
of complexity C as the number of elements which need to be
computed to fill in the required conversionmatrices. From the
above we have:

C =

{
(2H + 1)2 p2bB

2 standard test

(2H + 1)2 p2bB partitioned test
(8)

To further improve efficiency, the authors’ implementation
computes automatically the required conversion matrices
starting from a unique sweep of the perturbation frequency,
fSS . The sweep is devised in such a manner that, for
each nominal perturbation frequency, it contains the other
perturbation frequencies at |fSS + hfLS | which are required to
fill in the conversion matrix, where −H ≤ h ≤ +H .
As compared to previous work [20], the present implemen-

tation exhibits also other important improvements which it
is worthwhile to mention for their impact on the numerical
accuracy of the results, simulation time and frequency range.
First, it allows for arbitrarily high perturbation frequencies,
and that without the introduction of truncation errors for
fSS > 1/2fLS . Second, it relies on algebraic manipulations
(rather than circuit reconfigurations) to compute the con-
version matrices and the loop gains, which makes it more
efficient and robust. Notice that the capability of computing
automatically the full conversion matrix over frequency of a
nonlinear circuit is in itself a remarkable feature, with further
applications in mixer design and nonlinear noise analysis.

V. EXPERIMENTAL VALIDATION
A. DUT INTRODUCTION
To illustrate the application of the presented approach to
a practical case, the unstable version of a hybrid balanced
amplifier discussed in [9] and [25] is selected as an example.
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FIGURE 2. Picture of the balanced amplifier.

FIGURE 3. Comparison of the simulated output power curves found
through standard HB analysis and with the AG technique.

The amplifier is based on BFR92A medium-power silicon
bipolar transistors from Infineon in a SOT23 package, which
come with a Gummel-Poon nonlinear model including the
package parasitics. The amplifier is fabricated on a TLX-8
substrate from Taconic, with surface-mount passive devices
characterized by S-parameters from the supplier. In the
operative bandwidth of 560 through 580 MHz, the amplifier
exhibits a 16.4 dB linear gain with ±0.1 dB ripple, input
return loss better than 10 dB, output return loss better than
8 dB and a 19 dBm output power at 1-dB gain compression.
As can be seen from Fig. 2, the architecture consists of
two identical single-transistor branches in common-emitter
configuration, connected by an input splitter and an output
combiner.

Since B = 2 in this example, the amplifier makes for an
ideal case study since B > 1 (otherwise, there would be no
difference with the standard approach) and at the same time B
is low enough that the standard approach is still manageable.
In addition, the stability-related behavior of this amplifier
is well known thanks to extensive alternative analyses and
measurements [9], [25].

In particular, given the nominal operating conditions
VCC = 7.5 V, Vbe = 0.826 V, the analysis methods used
in [9] and [25] reveal that the amplifier is stable at small
signal but shows a bifurcation at higher power levels when
the frequency of the input signal (fLS ) spans from 574 MHz
to 588 MHz. Considering, for instance, fLS = 576 MHz,
at around −0.2 dBm input power a frequency division
by 2 occurs and the amplifier generates a subharmonic
component at fLS/2. The bifurcation is clearly visible in Fig. 3,

FIGURE 4. Measured output power at fundamental (fLS = 576 MHz) and
subharmonic frequency (fLS/2).

FIGURE 5. Measured output power spectrum at fLS = 576 MHz,
Pav = 10 dBm.

where the circuit is analyzed through the auxiliary-generator
(AG) technique, for which the reader is referred to [3].

The parametric instability of the amplifier was verified
through measurements. In particular, Fig. 4 reports the
measured results of a sweep of the available input power (Pav)
at nominal frequency fLS = 576 MHz. The output power
at the fundamental frequency increases continuously until
the bifurcation is reached, then the subharmonic component
kicks in at frequency fLS/2. These experimental results agree
very well with the simulations in Fig. 3. Further, Fig. 5
shows an example of the measured output spectrum after
the bifurcation. The division-by-2 of the frequency basis is
clearly visible.

B. PROPOSED TEST
The amplifier was then subjected to the stability analysis
approach presented in this contribution. A LSSS simulation
with H = 5 was set up at nominal conditions and at different
values of Pav, with a 1-dB step. The partial determinants
11 and 12 were found to trace Nyquist plots void of
encirclements of the critical point (i.e., the origin in this
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FIGURE 6. i and φi = ̸ Δi of the balanced amplifier, computed either
through the standard or partitioned method. Simulation parameters:
Pav = −1 dBm, fLS = 576 MHz, H = 5.

representation) for Pav up to −1 dBm, i.e., E[1] = E[11]+
E[12] = 0. In particular, the partial determinants and their
phases are shown in Fig. 6.

The above results indicate that, subject to the
inherent-stability proviso (see Section V-D), 1(s) does not
exhibit unstable zeros for Pav ≤ 0 dBm, whereas conjugate
pairs of unstable zeros appear at higher driving levels – each
pair being relevant to the [0, fLS ] range and to the subsequent
fLS -wide bands. As emerges from Fig. 7-(a) and (c), the
Nyquist plot of 11 runs very close to the critical point at a
frequency fcr = fLS/2, which denotes a zero with imaginary
part ωcr = 2π fcr = π fLS : a rather typical behavior.

Thus, the proposed approach agrees very well both with
alternative simulations approaches and with measurements,
either illustrated in this contribution (Figs. 3-5) or presented
elsewhere [9], [25]. In addition, the loop gains computed
with the proposed method and shown in Figs. 8-9 are
numerically identical to those computed through the stan-
dard method [20], which further validates the presented
partitioning approach. As compared to the latter method,
however, it entails significantly shorter processing times, due
to the reasons discussed in Section IV. This will be shown
quantitatively in Section V-C and in particular in Table 3.

C. EFFICIENCY COMPARISON
In order to provide a quantitative comparison, in terms
of simulation efficiency, between the standard and the
partitioned approach, the considered balanced amplifier was
subjected to both on the same machine, namely, a computer
equipped with an Intel(R) Core(TM) i5-1035G1 4-core
processor, an x64 operating system and 16 GB RAM. The
standard and partitioned tests lead to a processing time of the

FIGURE 7. Δi and φi = ̸ Δi of the balanced amplifier, computed either
through the standard or partitioned method. Simulation parameters:
Pav = 0 dBm, fLS = 576 MHz, H = 5.

TABLE 3. Comparison of Processing Time [s] between Standard and
Partitioned Ohtomo Test in an Illustrative Case.

data set as reported in Table 3. In order to obtain reasonable
processing times, the frequency sweep was kept unusually
low, namely 50 points between d.c. and the fundamental
frequency of the large-signal excitation, fLS . The values in
parentheses are quadratic extrapolations of the B = 1 case
(in this example, B ≤ 2). However, it is worth noticing that
for the verified condition at B = 2 the actual processing
time with the standard approach was found to be even higher
(13.15 s or 45.72 s) than the theoretically expected one
(10.80 s or 29.40 s). For more complex circuits (larger B or
pb) or more demanding simulation conditions (larger H or
F , where F is the number of small-signal frequency points),
the partitioned approach would obviously become even more
advantageous than in this example. Notice also that pb = 2 in
this illustration: this corresponds to analyzing B replicas of
half the circuit when B ̸= 2, the actual circuit for B = 2.

In addition to the processing time, it is worth presenting,
in Table 4, the index of complexity C defined in (8), since
this is a machine-independent figure of merit. Again, the
convenience of the partitioned approach is more and more
apparent as B increases and, for B > 1, as H increases.
Of course, this comparison holds at each small-signal
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TABLE 4. Comparison of Index of Complexity C between Standard and
Partitioned Ohtomo Test in an Illustrative Case.

frequency, hence the comparative benefits of using the
partitioned approach increase as F increases.

D. CHECK OF THE INHERENT-STABILITY PROVISO
As mentioned in Section II, Nyquist-based tests require that
some precondition be valid in order to be meaningfully
applied. In the case of Ohtomo’s test, this is typically
referred to as the ‘inherent-stability proviso’ and requires
that the active sub-network be devoid of unstable poles when
terminated in reference loads [4], [20]. For completeness,
we report on the proviso check in the following.

As usual [18], [20], this was carried out through identi-
fication of the scattering conversion matrices of the active
blocks [13], [14], [15] at each simulation condition (actually,
the conditions for which E[1] = 0 would clearly be enough).
In this case, since the two active devices operate in identical
conditions, it follows that S1(s) = S2(s), therefore just
one identification per simulation condition was sufficient.
Also, the full information stored in the computed conversion
matrices was used (i.e., instead of cropping the iso-frequency
response only) by exploiting the commonality of the poles
among all elements [14]. The identification step was carried
out in MATLAB through the package VFIT3 [26], [27].
The pole plots resulting for the two driving levels Pav =

−1 dBm and Pav = 0 dBm are shown in Fig. 8 and Fig. 9,
respectively. In both conditions the inherent stability proviso
is fulfilled: after all, this is not difficult to achieve, since the
active block matrices include isolated devices whose stability
is to be evaluated in relation to purely resistive loads of
arbitrary value.

E. INSTABILITY CORRECTION
As mentioned in the Introduction, all analysis tools for
inherent-stability analysis are based on the idea of localizing
the zeros of the characteristic polynomial, and in particular
with respect to the vertical axis of the complex plane.
This is done directly in the case of the identification-based
techniques, and indirectly (i.e., by studying the stability
margins) in the case of the Nyquist-based techniques.
In either case, however, since the zeros of the characteristic
polynomial are a global property of the network, no clear
indications are provided to the designers as to how and where
modify an unstable circuit to cure the instability.

This limitation is circumvented in practice by iterating
the analysis over sweeps of circuit parameters which are

FIGURE 8. Identified poles of Si (s) of the balanced amplifier at nominal
condition for Pav = −1 dBm. The angular frequency is normalized to that
of the large-signal tone and the dashed curve represents the
circumference

∣∣σ + ȷω̂
∣∣ = ω̂max . All poles are in the left-hand half plane.

likely to impact its stability properties. In turn, the choice
of these parameters is based on common sense and design
experience. In particular, a common cause of oscillation in
corporate amplifiers consists in the emergence of odd-mode
instabilities related to the presence of loops across symmetry
planes. These instabilities are typically corrected by adding
appropriate resistors across those symmetry planes, thus
damping the odd modes [14], [15], [25].

As a matter of fact, this very strategy has been proven
successful in the case of the balanced amplifier here
considered. Specifically, it has been shown in [25] that
inserting a resistor of 47 Ω between the two points just ahead
of the gate d.c.-block capacitors manages to stabilize the
circuit.

The same analysis is repeated here by means of the
proposed approach, to show that consistent results are
again obtained with alternative analysis approaches and
measurements. Fig. 10 juxtaposes the Nyquist and phase plot
of 11(s) for the unstable (left) and stabilized (right) circuit
versions. As already observed in Section V-B, 11(s) of the
unstable circuit exhibits an encirclement of the origin at the
critical frequency fcr = fLS/2. After adding the stabilization
resistance, however, the encirclement of the origin vanishes
as expected.

VI. APPLICATION TO A COMPLEX MMIC
Since the proposed method is aimed at realistic circuits
with a large number of active devices, another example is
presented in this Section, constituted by a complex MMIC
realized on MACOM’s GaN-on-Si technology. The MMIC
implements a distributed high-power amplifier (HPA) with
5-50 GHz bandwidth and comprising eight cascode pairs, for
a total of 16 active devices. In order to improve the gain
while guaranteeing good output power, the common-source
and common-gate stages of the cascode pairs are featured
by 60-nm and 100-nm gate lengths, respectively. The
simultaneous use, on the same circuit, of two different gate
lengths is a peculiarity of the adopted technology.
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FIGURE 9. Identified poles of Si (s) of the balanced amplifier at nominal
condition for Pav = 0 dBm. The angular frequency is normalized to that of
the large-signal tone and the dashed curve represents the circumference∣∣σ + ȷω̂

∣∣ = ω̂max . All poles are in the left-hand half plane.

FIGURE 10. Δ1 and φ1 = ̸ Δ1 of the balanced amplifier, computed either
through the standard or partitioned method. Simulation parameters:
Pav = 0 dBm, fLS = 576 MHz, H = 5. Left: without stabilization resistance.
Right: with stabilization resistance.

FIGURE 11. Picture of the distributed HPA.

The details of the HPA, which is shown in Fig. 11,
will be presented in a future publication. However, it is

FIGURE 12. φi = ̸ Δi of the distributed HPA, computed either through
the standard or partitioned method. Simulation parameters:
Pav = 23 dBm, fLS = 20 GHz, H = 2.

FIGURE 13. Detail of Δ1 and φ1 = ̸ Δ1 of the distributed HPA, computed
either through the standard or partitioned method. Simulation
parameters: Pav = 23 dBm, fLS = 20 GHz, H = 2.

here mentioned that measured performance includes input
and output return losses better than 10 dB over the whole
operative bandwidth, as well as a gain of approximately
10 dB. The measured output power at 1 dB gain compression
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FIGURE 14. Identified poles of Si (s) of the distributed HPA at nominal
condition for Pav = 23 dBm. The angular frequency is normalized to that
of the large-signal tone and the dashed curve represents the
circumference

∣∣σ + ȷω̂
∣∣ = ω̂max . All poles are in the left-hand half plane.

is about 25 dBm for frequencies between 5 GHz and 25 GHz,
although it decreases more or less linearly to 16 dBm between
25 GHz and 50 GHz. Chip size is 3.0 × 1.8 mm2.
Given the large number of active devices, the problem

was simplified upfront by including in the active blocks
the whole cascode pairs rather than the individual devices.
The latter approach would have entailed two ports for each
common-source device and three ports for each common-gate
device, for a total of 40 ports for both the passive and active
sub-networks; in addition, the Nb values would have been
different for the common-source and common-gate devices
(2 and 3, respectively), complicating further the overall setup.
The adopted simplification, on the other hand, reduces the
ports of the two sub-networks to 16 – still a rather challenging
number, and totally out of reach for the standard method.

Fig. 12 shows the result of the analysis, with the HPA
operating at nominal conditions and driven by a 23-dBm
continuous wave at 20 GHz. The perturbation frequency is
swept up to fLS in 50 uniformly spaced steps. Although no
encirclements of the critical point are found, the small jump
of φ1 around fLS was deemed to deserve further investigation.
Thus, a new analysis, limited to the first block but up to higher
frequency (3/2fLS ) and with a finer step (150 points in total)
was carried out. It is worth noting that, with the standard
approach, it would not have been possible to selectively refine
the analysis parameters as here shown. The detailed analysis
of the first block is shown in Fig. 13. It can be seen that
the jump is actually not associated with an encirclement but
simplywith a crossing of the real axis to the right of the origin.

Finally, the inherent-stability proviso was checked on the
active blocks. Again, since these are identical and exhibit the
same operating point, only one block per driving level needs
to be checked. The pole plot associatedwith the data in Fig. 13
is shown in Fig. 14. The identification method is the same as
already illustrated in Section V-D.

VII. CONCLUSION
This contribution has shown that the structure of the active
sub-network (in particular, the mutual isolation of the active

components) arising in the Ohtomo test can be exploited to
split the computation into a sequence of smaller tests. These
remarks apply equally well to d.c. and large-signal solutions;
however, they allow a notably more efficient implementation
of the Ohtomo test in the large-signal case. The strong points
of the current implementation, as compared to former ones,
have been discussed. The proposed large-signal Ohtomo
test has been validated against a hybrid balanced amplifier,
whose stability behavior is well known from previous work.
In addition, it has been applied to a realistic MMIC with a
large number of devices, i.e., such that the standard method
is on the contrary not feasible.
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