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ABSTRACT Fully homomorphic encryption (FHE) provides a solution to privacy-preserving applications
because of its ability to perform computations on encrypted data without exposing raw data. However,
FHE suffers from implementation bottlenecks owing to the large computations involved, particularly
with bootstrapping. Bootstrapping is necessary in FHE to enable an unlimited number of multiplication.
Nonetheless, implementing bootstrapping requires a significantly large polynomial length, N = 216 or 217,
to considerably secure the system. Thus, polynomial multiplication will be challenging in terms of resources
and time. This problem can be resolved by implementing the number theoretic transform (NTT) that can
perform polynomial multiplication in quasi-linear complexity. However, designing an NTT architecture for
FHE is challenging because it requires various parameters, particularly the high polynomial degree that will
require a considerable amount of hardware resources and clock latency. This study proposes a design for
FPGA implementation of the NTT architecture with flexible input lengths: 216 and 217 by combining radix-2
and radix-24. Twiddle factor generator (TFG) and efficient configurable modular multiplication (MM) unit
are also utilized to achieve time and area-efficient architecture. The proposed design was synthesized on
the FPGA Xilinx ALVEO U250 and demonstrated higher hardware efficiency and optimum latency that
outperforms those reported in previous studies.

INDEX TERMS Homomorphic encryption, configurable architecture, lattice-based cryptography, number
theoretic transform.

I. INTRODUCTION
The development of cloud computing has increased the
significance of homomorphic encryption (HE) by providing
enhanced data privacy and security. HE can protect sensitive
information by allowing the data to be calculated in encrypted
form without exposing the raw data [1]. This capability
is applicable and important in many sectors that require
data privacy as their main priority, such as healthcare [1],
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finances [2], communications [3], manufacturing [4], and
many more.

The concept of HE was first proposed in the 1970s by
Rivest et al. [5], [6], which envisioned a system that would
allow both arithmetic addition and multiplication to be done
on encrypted data without decrypting them first. However,
for more than three decades following the initial proposal,
it remained unclear whether the concepts of HE could be fully
implemented [7].

After the proposal, many researchers proposed partially
homomorphic encryption (PHE) schemes, which were only
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capable of doing one type of operation – either addition
or multiplication. Examples of well-known PHE schemes
include RSA [8] and ElGamal [9] cryptosystems, which are
capable of unbounded modular multiplications only; also,
the Paillier [10], and Benaloh [11] cryptosystems, which
are capable of unbounded modular additions only. The RSA
cryptosystem is famously used for secure data transmission,
and the Benaloh cryptosystem is widely used for electronic
voting systems.

Gentry, in 2009, proposed a claimed ‘‘fully’’ homomorphic
encryption using lattice-based cryptography, which is a
remarkable breakthrough after three decades [12]. The
scheme is based on learning with errors (LWE) problems
and ring LWE (RLWE) [13]. The scheme can perform
both addition and multiplication between ciphertext on
the encrypted domain. However, as the ciphertext in the
scheme has deliberately added a small noise, each time a
multiplication is performed, the noise gets larger. Therefore,
this proposed scheme is limited, as the noise of the ciphertext
increases with each performed calculation. Eventually, the
ciphertexts become indecipherable due to large noise levels.

This limited HE scheme is often referred to as
leveled or somewhat homomorphic encryption (SHE),
which means the scheme is usable up to a limited
number of operations. Many leveled HE schemes were
proposed during this period. Notable works include the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme [14],
LopezAlt-Tromer-Vaikuntanathan (LTV) scheme [15],
Brakerski-Fan-Vercauteren (BFV) scheme [16], and Gentry-
Sahai-Waters (GSW) scheme [17].
Many researchers then proposed to upgrade SHE to Fully

homomorphic encryption (FHE) schemes, trying to eliminate
the number of operation limitations. The ciphertext becomes
indecipherable when the noise level is larger than desired
after a certain number of operations. To overcome this
problem, the ciphertext is homomorphically decrypted and
then re-encrypted to reduce the noise level, thus resetting the
operation limit count. This technique is called bootstrapping,
which was also proposed by Gentry [12]. Implementing
bootstrapping efficiently in various proposed schemes has
been a hot topic for HE research.

Another breakthrough came in 2017 when Cheon et al.
proposed a leveled FHE scheme that can perform arithmetic
approximations on real and complex numbers data [18],
which they named homomorphic encryption for the arith-
metic of approximate numbers (HEAAN). This scheme was
later known after the authors: the CKKS scheme, following
the name convention of previous HE schemes.

The scheme supports the truncation of encrypted values
and batch computation. One of the strong points of the CKKS
scheme includes an efficient rescaling operation that scales
down an encrypted message after a multiplication operation
using the key-switching technique [19]. In other schemes,
this would already require the bootstrapping technique. The
key-switching implementation in the scheme itself is also a
hot topic for many researchers [19], [20], [21]. A complete

FIGURE 1. Fully homomorphic encryption scheme and the operations
needed in the CKKS scheme: NTT/INTT, key-switching, and bootstrapping.

hardware implementation of a leveled version of the CKKS
scheme is also one of the most researched topics [22], [23].

A challenge in classical CKKS lies in integer arithmetic
utilizing an excessively large modulus Q to implement
the scheme effectively. A practical workaround involves
utilizing Residue Number Systems (RNS) as suggested
in the next version of the CKKS scheme [24]. For the
sake of simplification and differentiation, we refer to
the revised scheme as RNS-CKKS. The solution involves
factoring the thousands-bit modulus Q into smaller moduli
q0, q1, q2, . . . , qL , and making a modulus Q :=

∏L
i=0 qi has

L − 1 levels. However, implementing this workaround in
hardware is also challenging because the modular multiplier
and other arithmetic modules must handle diverse moduli q
as inputs to achieve specific area and time performance.

Even though the CKKS scheme implements multiplication
operations more efficiently. Eventually, the ciphertexts’ noise
also becomes greater than desired, making it indecipherable.
Thus, bootstrapping is also required to reduce the noise level.

In CKKS, the implementation of bootstrapping is a
trade-off between the security level and polynomial length.
A lower security level can be implemented with a relatively
short polynomial length; however, a higher security level
(λ = 128-bit) requires a considerably long polynomial
length. Moreover, since bootstrapping itself consumes Lboot
levels, L should be significantly larger to require less
frequent operations. Therefore, previous works observed and
suggested that only high polynomial degrees NTT with N =
216 orN = 217 wouldmake bootstrapping possible [25], [26].
However, the implementation of bootstrapping in CKKS

still causes bottlenecks due to the expensive cost of HE arith-
metic operations for decrypting and re-encrypting the cipher-
text homomorphically. Therefore, many researchers [25],
[26], [27], [28], [29] try to find workarounds in its imple-
mentation. Figure 1 shows the important building blocks for
implementing FHE in the CKKS scheme.

The NTT [30], [31] can reduce the complexity of poly-
nomial multiplication from quadratic O(n2) to quasi-linear
O(n log n) by adapting the divide-and-conquer algorithm for
the fast Fourier transform (FFT) [32] for NTT: the Cooley-
Tukey (CT) [33] and Gentleman-Sande (GS) [34] butterfly
algorithm for the forward and inverse transform, respectively.

In this paper, we focus on implementing the
NTT part in such considerable lengths aforementioned
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(N = 216 or N = 217) that can support bootstrapping
operation to enable indefinite computation on a CKKS
ciphertext. However, implementing NTT directly in software
is slow and not a straightforward task due to its complex
architecture. Many researchers implement NTT in various
platforms and technologies due to their advantages, such as
implementing them in hardware partially or completely [35],
using hardware supporting parallelism [36], or using vector-
processing features [37]. Our work focuses on the FPGA
implementation as a hardware accelerator.

We propose a design for FPGA implementation of the NTT
architecture with flexible input lengths: 216 and 217. Studies
on NTT implementations that support large N up to 216 are
limited [38], [39], [40], [41], particularly studies supporting
N up to 217 in a single architecture. The contributions of this
study are as follows:

1) We propose a configurable NTT architecture with an
increased input length, 216 and 217, that can be selected
by configuring the input sel of the NTT to facilitate
bootstrapping in the CKKS scheme, which requires
increasing the polynomial order to be multiplied.
Our NTT also utilized flexible modular multiplication
(MM) units to accommodate any moduli q values
required to support a high-security level.

2) We propose the combination of feed-forward
32-coefficient input radix-2 architecture and iter-
ative 16-coefficient input radix-24 architecture to
achieve optimum latency and hardware utilization.
Our 216 NTT architecture utilizes area optimum
and conflict-free memory access calculated in four
iterations. We extend this optimized architecture to
support N = 217 without additional iterations for
latency efficiency by adding one feed-forward radix-
2 stage that only requires 11 CC for its operation.

3) We propose an on-the-fly twiddle-factor generator
(TFG) to decrease memory utilization by approx-
imately 96.9% compared with conventional ROM-
based methods. Our NTT and TFG achieve better
memory efficiency and higher throughput than most
related studies. These contributions make our proposed
design provide useful approaches for the development
of NTT accelerator in particular or HE system in the
future.

The remainder of the paper is organized as follows:
Section II provides a background of the NTT and its
equations. Section III explains the architecture of our
proposed design and detail explanation of the system and sub-
modules. Section IV provides the performance analysis and
comparison with other studies. Finally, Section V concludes
the paper.

II. PRELIMINARIES: THE NUMBER THEORETIC
TRANSFORM (NTT)
While polynomial multiplication is a fundamental operation
in cryptography, it is conventionally an expensive operation

performed through schoolbook multiplication with O(n2)
complexity. TheNTT can be utilized to reduce the complexity
to O(n log n), which is equivalent to the discrete Fourier
transform (DFT) in the cyclotomic polynomial ringZq/8(x).
When 8(x) = xn − 1, the NTT requires the twiddle factor

base to be the n-th root of unity of the ring Zq, ω, where
ω ≡ 1 mod q. This type of NTT is called positively-wrapped
convolution. However, to multiply polynomials using this
convolution type, zero-padding is needed.

Most cryptographic applications generally utilize 8(x) =
xn + 1, the n-th root of unity of the ring Zq, ω, where
ω ≡ 1 mod q, and ψ , the 2n-th root of unity, as the TF
base to avoid zero-padding. Where ψ2

≡ ω mod q and
ψn
≡ −1 mod q. This type of polynomial multiplication

based on the ring Zq/(xn + 1) is called negatively-wrapped
convolution, which is the base of our design.

The forward and inverse transformation of NTT is
expressed as [30] and [31]:

NTTψ (a) = âj =
n−1∑
i=0

ωij(aiψ i) mod q (1)

While the inverse transformation of NTT is given by:

INTTψ
−1
(â) = ai = n−1

n−1∑
j=0

ψ−j(ω−ijâj) mod q (2)

The process of multiplying the vector by ψ i in the forward
transform is called pre-processing and by ψ−j in the inverse
transform is called post-processing. We can simplify the
transformation by substituting the fact that ψ2

≡ ω mod q
into equations (1) and (2):

NTTψ (a) = âj =
n−1∑
i=0

ψ2ij+iai mod q (3)

INTTψ
−1
(â) = ai = n−1

n−1∑
j=0

ψ−(2ij+j)âj mod q (4)

Note that these NTT-INTT pairs, when done as-is, still
have a quadratic complexity O(n2). One can use the divide-
and-conquer approach to reduce the complexity to quasi-
linear, O(n log n). The main idea is to calculate the required
values once but distribute the results to others instead of
calculating the same value multiple times.

The well-known divide-and-conquer technique is the CT
and GS algorithm. The CT butterfly algorithm utilizes a
divide-and-conquer technique to divide the input vector
recursively into two parts: odd and even. In contrast, the GS
butterfly algorithm divides the input vector recursively into
the upper and lower parts.

Both have a trade-off of input bit-reversal. The CT-type
butterfly has normal-order input and bit-reversed-order
output, whereas the GS-type butterfly has bit-reversed-
order input and normal-order output. By utilizing CT for
the forward transform and GS for the inverse transform,
a reordering device is not required in the middle.
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FIGURE 2. Top-level block diagram of configurable 216 and 217 NTT architectures.

III. PROPOSED NTT ARCHITECTURE
A. ARCHITECTURE OVERVIEW
We propose an NTT architecture with a configurable number
of input coefficients, N = 216 or N = 217 by adapting the
idea of configurable FFT [32]. For the input length N = 217,
Equation (3) is expressed as:

âj =
217−1∑
i=0

ψ2ij+iai mod q (5)

When split into lower and upper halves, the equation
becomes:

âj =
216−1∑
i=0

ψ2ij+iai mod q+
217−1∑
i=216

ψ2ij+iai mod q (6)

From the equation, the radix-217 NTT can be split into two
radix-216. However, the iterator and exponentiation of ψ
differ significantly in both summations.

This can be rewritten as a double summation:

âj =
216−1∑
m1=0

21−1∑
m0=0

ψkan mod q (7)

where n = m1 + 65536m0 and k = n(2j+ 1).

The same principle can be applied to the inside summation,
dividing it into four parts:

âj =
15∑

m4=0

15∑
m3=0

15∑
m2=0

15∑
m1=0

1∑
m0=0

ψkan mod q (8)

where n = m4 + 16m3 + 256m2 + 4096m1 + 65536m0 and
k = n(2j + 1). Equation (8) is fundamental to our NTT
architecture.

Based on Equation (8), we propose Algorithm 1 to support
the configurability of our NTT. Function BitReverse(u, v)
generates the bit-reversed order of the input u in size of
v bits. We separate log2 N stages of radix-2 into stage 0
and iterative units. The iterative unit comprises four stages
of radix-2. It can also be called radix-24 and runs in four
iterations, resulting in 16 stages in total. Suppose sel = 1 or
N = 217. In that case, stage 0 will be included.When sel = 0,
stage 0 is excluded, and the iterative unit is executed directly.
To minimize memory utilization in storing TF values, the TFs
must be calculated on the fly. Therefore a TFG is introduced
in this work. Only several TF bases and special constantsWC
need to be stored. Each operation will get 15 TFs from TF
bases andWC multiplication.
The top-level architecture for the proposed NTT is shown

in Figure 2. It comprises a processing unit, FIFO, TFG, RAM,
and amain control unit. The processing unit which consists of
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FIGURE 3. (a) Detailed CT radix-2 BU (b) MA (c) MS (d) MM unit.

butterfly units (BUs), evaluates the arithmetic computation.
The part comprising stage 0 is the first summation of
Equation (8), whereas the iterative radix-4 butterfly unit (BU)
computes the remainder of the summation. We combined the
4-stage radix-24 BU (16 input coefficients) and 16 paralleled
radix-2 modules (32 input coefficients) to accommodate both
input lengths and optimize between the area and latency since
the input data for NTT 217 is extensively large, requiring a
considerable amount of processing unit and latency.

We utilized the radix-24 BU module to calculate NTT
216 in four iterations. To accommodate 217 input length,
an additional radix-2 stage is required before the iterative
module to extend the 216 architecture. We utilized 16 BU
with 32 input coefficients such that the index of the output
coefficient can be directly fed to the next stage (the iterative
4-stage radix-24 BU). The output data of the second half of
this stage is stored by utilizing FIFO because the iterative
stage requires 16 coefficients as input, whereas the output
data of the first stage requires 32 coefficients. Thus, the output
data of the FIFO is fed to the iterative stage immediately after
the first half of the output data are fed to the next stage, which
is after 4096 CC.

RAM is used to store intermediate data between iterations.
A conflict-free memory address management was applied to
achieve optimal memory utilization, which allows reading
and writing data at the same time without conflict.

The control unit manages the data flow, synchronizes all
signals, and provides the correct address to read and write the
RAM without conflict. Moreover, it also has the important
role of generating and controlling all signals of each
sub-module to work correctly. The TFG provides respective
ψk values to the input coefficient. Further, we calculated the
twiddle factor (TF) on the fly to optimize memory utilization.

B. BUTTERFLY UNIT
Figure 3 shows the CT radix-2 BU that is utilized in the
proposed NTT and its submodules. Using this architecture,
the normal order input generates a reversed order output.
Later, the reversed order output can be reordered back when
it passes the INTT module in the HE system. In Figure 3(a),
each BU comprises a modular adder (MA), a modular
subtractor (MS), a FIFO, and anMMunit, while Figure 3(b-d)
illustrate the architectures of the MA, MS, and MM unit,
respectively.

The MM between the input data and TF is crucial in
the entire area consumption of the NTT because 16 and
32 MM units were utilized in the first and iterative stages,
respectively, as well as 15 MM units in the TFG, constituting
most of the area consumed. Moreover, MM is a sophisticated
operation that requires many resources. In our NTT, a total
of 63 MM units are utilized as a part of the processing unit
and TFG module.

Therefore, we utilized the Barrett-based modular reduction
(MR) algorithm [30] and modified it to support any moduli
q input with optimum speed and efficient area utilization.
By applying this MM, our NTT can evaluate any moduli
q input to support high-security levels with RNS in the
HE system. Algorithm 2 shows MM with Barrett modular
reduction that we implemented in our design.

Our proposed Barrett-based MM unit architecture is
depicted in Figure 3(d). We employ adders and shifters to
construct half multipliers, allowing for processing arbitrary
q input with the same bit size. Recognizing the need to
utilize RNS for building the complete accelerator system,
which requires multiple values of q moduli, this MM unit
is designed to accommodate arbitrary values for all its
inputs. Additionally, FIFO modules are employed to reduce
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FIGURE 4. Indexing scheme of polynomial coefficients through NTT 217 iterations.

Algorithm 1 Proposed Configurable NTT Algorithm
Input: a = (a[0], a[0], . . . , a[131071]); sel = {0, 1};
Output: a = NTTN (a);N = {216, 217}
Functions:
1: BitReverse(u, v);
2: NTT2(a,W , q);
3: NTT16(a,W , q);
Main:

// For N = 217. For N = 216, this if-block is skipped.
4: if sel = 1 then
5: for j = 0 to 216 − 1 do
6: j̃ = BitReverse(j, 16)
7: for i = 0 to 1 do
8: temp[i] = a[j̃× 2+ i]
9: end for
10: a← NTT2(temp, ψ65536, q)
11: end for
12: end if

// For N = 216

13: for l = 0 to 3 do
14: for k = 1 to 15 do
15: k̃ = BitReverse((16l)× 2⌊log2 k⌋ + k, 17)
16: W [k] = ψpow[k̃]
17: end for
18: for j = 0 to 16l − 1 do
19: j̃ = BitReverse(j, 4l)
20: for i = 0 to 217−4(l+1) − 1 do
21: for k = 0 to 15 do
22: temp[k] = a[j̃× 217−4l + k × 217−4(l+1) + i]
23: end for
24: a← NTT16(temp,W , q)
25: end for
26: for m = 1 to 15 do
27: W [m] = W [m]×WC [17− 4l − ⌊log2 m⌋]
28: end for
29: end for
30: end for

the critical path and enhance speed. Since this MM unit
requires a total of 9 clock cycles, in the radix-2 BU, a FIFO
is used to store the input not multiplied with a TF. This
ensures that the correct data index is fed into the MA
and MS.

C. CONFLICT FREE ACCESS PATTERN AND ADDRESSING
The index of coefficients through butterfly radix-2 stage 0
and all iterations are shown in Figure 4. Thirty-two input
coefficients were utilized at stage 0 as 16 parallelized
radix-2 units were utilized; the index numbers were multiples
of 4096. Inside the first radix-2 BU of stage 0, the input
coefficients were index 0 and 65536, whereas the 16th radix-2
input coefficients were index 61440 and 126976. This scheme
guaranteed that the output of this stage could directly proceed
to the next stage, which is stage 1 of iterative BU, without
waiting for the entire data coefficient to pass through stage 0.

As we can see, the coefficient indices required at iteration
1 are 16 multiples of 4096 indices as half of the stage 0 input,
such as 0, 4096, 8192, . . . 61440. Those coefficient indices
are directly fed to iteration 1 input, while the other half are fed
to FIFO. This direct process is beneficial to reduce significant
latency, which is crucial in our big number coefficient input
calculation.

The latency required for the first stage of radix-2 was only
11 clock cycles for the butterfly operation.

The next stage is the iteration stage. It utilized 4-stage
radix-24. The module fetched 16 first input coefficients from
stage 0. The other 16 input coefficients were fed to the FIFO
to delay the operation until the inputs of the first half were
fed in. Each iteration took 8192 CC to input data and 51 CC
for butterfly operation and memory access.

The next iteration, including the reading operation, could
only be conducted after all the data passed through four
stages, whereas the output was directly written to the RAM
after finishing the stage. The writing address and bank
address tomanage all intermediate data are shown in Figure 5,

FIGURE 5. Conflict free writing address scheme through NTT 217

iterations.
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FIGURE 6. (a) Detailed conflict-free writing address and bank address scheme for iteration 1 output data writing (b) Detailed conflict-free RAM data
reading address and bank address scheme for iteration 2 input data.

while detailed examples of writing and reading address
management for iteration 1 are shown in Figure 6. Since
the reading process of RAM was enabled after the writing
process was finished, the reading address in Figure 6 (b)
shows the reading address and bank address of RAM output
as coefficient input of iteration 2.

One iteration will inevitably consume significant latency
for writing the whole data, 8192 CC, and mathematical
operation with pipelines, 51 CC, resulting in 8243 CC latency
for each iteration. However, this address mapping scheme
guarantees a conflict-free and efficient writing and reading
operation of 16 coefficients. This process continued until
the fourth iteration, whereas the order of coefficient groups
changed through loop iterations based on Figure 4 and
managed by the control unit.

When the input sel was set to 0, the main architecture
operated as 216 NTT. The 16 input coefficients were directly
fed to the 4-stage radix-24 or the iterative BU for four
iterations. Each iteration utilized 4096 clocks (216/24) and
additional 51 CC for the butterfly operation and memory
access.

D. TWIDDLE FACTOR GENERATOR
Because the input number N is large, the TFG is crucial for
area efficiency. We required 65535 and 131071 TF values
(ψk ), with a width of 60 bits each, which is memory-
consuming. The design of the TFG that calculated 15 TF
values (TFs) on the fly thus optimizing memory utilization,
is shown in Figure 7. We can see there are four groups of
MMs, FIFO, and ψc from the left side to the right to show
the stages in iterative BU. For example, we utilized 1 MM at
the first stage, then 2 MM, 4 MM, and 8 MM for stages 2,
3, and 4, respectively, based on the number of TFs required.
A total of 15 MM calculated the TFs by multiplying TF bases
and constant values generated and controlled by the control
unit. The control unit manages the counter, addresses of the
generator, FSM, and several constants to be multiplied with
the selected TF bases stored in the ROM.

Figure 2 shows at radix-24 BU, input data is fed in the order
of the first, second, third, and fourth stages. Each stage is
performed within 11 clock cycles. Therefore, TFs must be

Algorithm 2 Modular Multiplication Followed by Standard
Barrett Modular Reduction (BMR)
Input: a, b, q ∈ Z
Output: a× b mod q

// Pre-computation
1: k = ⌈log2 q⌉ // k is the number of bits in q
2: r = 2k

3: µ = ⌊ r
2

q ⌋

// Multiplication
4: z = a× b

// Modular reduction
5: m1 = ⌊

z
r ⌋

6: m2 = m1 × µ

7: m3 = ⌊
m2
r ⌋

8: m4 = (m3 × q)
9: z = z mod 2k+1

10: m4 = m4 mod 2k+1

11: if z < m then
12: t = 2k+1 + z− m4
13: else
14: t = z− m4
15: end if
16: if t ≥ 2q then return t − 2q
17: else if t ≥ q then return t − q
18: else return t
19: end if

ready for the first clock in the first stage, 12rd, 23th, and 34th

clock for the second, third, and fourth stages, respectively.
We employed FIFO to delay the MM result for stages 2, 3,

and 4 to fulfill this requirement. This architecture is simpler
than the architecture proposed in a previous study [38] since
their TFG architecture has feedback from its TF output
to be fed again as an input of the MM. That architecture
required more registers to store its results and longer latency
to evaluate TF calculation.

The power index of the TF bases stored in the ROM
for 217 and 216 NTT is shown in Figure 8. It shows some
samples of TF bases need to be stored for each iteration. Each
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FIGURE 7. Twiddle factor generator (TFG) architecture.

column has 15 TF bases because the iterative radix-24 BU
requires 15 TFs for each calculation. One of each 32 original
TFs was saved as TF base; thus, memory utilization can be
reduced up to approximately 96.88%. The total number of
TFs for 217 and 216 NTT were originally 131071 and 65535,
respectively. Because 15 TFs are utilized for each 16-input
coefficient, we originally needed to store 8758 × 15 and
4369 × 15 TFs. However, by applying our proposed TFG
architecture design, only 275×15 and 138×15 TFs are stored
for 217 and 216 N input, respectively.

TABLE 1. Area breakdown of the proposed NTT architecture on the Xilinx
Ultrascale+ XCU250 FPGA.

IV. RESULTS AND DISCUSSION
We implemented the proposed NTT architecture by utilizing
System Verilog HDL on the Xilinx Vivado
(v2020.1) tool
and synthesized them on the Xilinx ALVEO U250 FPGA
board. We selected this specific FPGA board for its large
capacity to support our future research endeavors utilizing
the proposed NTT, such as key switching and HE accelerator.
Table 1 presents the hardware resource utilization of major
sub-modules utilized in our proposed NTT module. Iterative
BU and stage-0, which act as the processing unit, dominate
in hardware resource consumption. Since each MM unit
uses 10 DSP slices, stage-0, Iterative BU, and TFG consume
160, 320, and 150 DSP slices respectively.

Table 2 presents the hardware utilization and clock latency
of a single radix-2 CT-BU in our work, comparing it with [38]
and [42]. We observe that our BU and its submodules
employ an optimized amount of hardware and clock latency.
The BU architecture in [42] uses 32 bits of data, almost

TABLE 2. Comparison of hardware utilization and clock cycle latency for
a single Radix-2 CT-BU architecture on FPGA.

half the number compared to our architecture. Despite this,
our architecture utilizes the same number of DSPs, and a
considerable amount of LUT and FF. Our MM unit employs
9 pipelines, while [42] uses 10 pipelines, resulting in latencies
of 9 and 10 CC, respectively. On the other hand, [38] which
employs the same bit number size as our work, requires
more hardware resources for its BU and MM, as well as a
longer CC latency. This is attributed to their use of MM units
based on [48] that is designed for specific moduli. However,
it requires 2 half-intmult units to support one more moduli,
leading to increased hardware requirements for their specific
32 moduli. In contrast, our MM unit is designed with the
ability to support flexible or arbitrary moduli, resulting in
efficient hardware utilization and CC latency.

We also compared the proposed NTT architecture with
those from similar related studies [38], [40], [41], [43],
[44], [45], [46], [47]. However, a particular metric was
required to fairly compare results because each researcher
utilized significantly different devices, silicon technologies
platforms, and parameters for their research. One such
metric that fairly compares across various platforms is the
throughput per slice (TPS) [41], [49].

Throughput is defined as follows:

Throughput (Mbps) =
Total number of bits

Latency (µs)
(9)

The throughput can be an excellent comparison among
identical platforms, but it is not ideal to compare results
between platforms that differ considerably. Hence, we nor-
malized the TPS by normalizing it to the equivalent slices:

TPS (Mbps/slice) =
Throughput (Mbps)
Equivalent slices

(10)

where the equivalent slices are defined as:

Eq. slices = Number of slices+ Eq. DSP+ Eq. BRAM

(11)

The number of slices is derived from (Number of LUT)/8 due
to 8 LUTs in one Slice for Ultrascale FPGAs [50]. Equivalent
DSP is obtained by substituting each DSP block with
51.2 slices and replacing one BRAM with 116.2 Slices to get
the equivalent BRAM [49], [51].

A comparison of our design to other related studies is
shown in Table 3. A previous study on configurable NTT [41]
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FIGURE 8. Fifteen-bank memory scheme of TF bases for the TFG (a) for NTT 217 (b) for NTT 216.

TABLE 3. Comparison of the proposed NTT architecture and previous works.

with high throughput did not have a TFG to calculate TFs on
the fly and utilized TFs as an input to the NTT. Even though
the NTT only stores TFs for one set of N , the other N values
will still need ROM for storing TFs out of the NTT module.
Therefore, a large ROM is required to store all TF values
for the 6 sizes of N input it supports. Another work in 216

NTT like [39] has a lower clock frequency and even bigger
BRAM, resulting in lower throughput and TPS. The work
of [38] proposed 216 NTT, but the design is limited to several
specified moduli q values due to the MM architecture they
utilized. Reference [40] works in lower frequency and utilizes
bigger equivalent of slice, resulting in lower throughput and
TPS than ours. Reference [45] proposed an NTT supported
by a TFG unit. However, the TFG generates all TF values
before the NTT operation, causing additional latency for
TF generation. This method may not be suitable for NTT
with high polynomial degrees like our work. In this study,
we calculate the TF on the fly to enable the generation
of 15 TFs every clock cycle. Further, our proposed design
achieved up to 59,623 and 0.63 in terms of throughput and
TPS, outperforming the result in other studies.

Our proposed architecture is the only NTT on FPGA
that can support up to N = 217. Moreover, the power

consumption of the architecture is only 25.9 Watt, which
is relatively low considering our architecture parameters.
In general, under the same architecture, a 217 NTT will
require double RAM memory to store the intermediate
data, double BRAM memory to store the TF bases, and
double clock latency compared to 216 NTTwhile maintaining
the same throughput. Consequently, the equivalent slices
experience a significant increase, leading to a substantial
reduction in TPS. Therefore, designing an optimized 217 NTT
architecture poses a considerable challenge. Furthermore, our
NTT architecture also supports 216 NTT, requiring dedicated
BRAM to store 216 NTT TF bases. Therefore, we employ
the optimized and highly efficient architecture described in
previous sections to support bothN sizes, essential for a Fully
HE system to achieve efficient area utilization and relatively
high-speed performance.

V. CONCLUSION AND FUTURE WORKS
A. CONCLUSION
We implemented a configurable NTT architecture with
increased input lengths of 216 and 217. These configurable
input lengths, as well as the flexible MM units we utilized,
could facilitate bootstrapping modules in HE schemes. The
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proposed architecture combined parallel butterfly radix-2
and iterative butterfly radix-24 to achieve optimum hardware
utilization and latency. Finally, we designed an on-the-
fly TFG to minimize memory utilization by preventing
the storage of all twiddle-factor constants in memory.
By utilizing this TFG, we can reduce BRAM usage to
around 96.9%. The proposed configurable NTT architecture
achieves time-area efficient architecture for a bootstrappable
HE system.

B. FUTURE WORKS
In future work, we will utilize the proposed NTT module to
build the Fully HE system. To achieve that aim, we need to
implement the essential modules such as key switching and
bootstrapping. Extensive data and expensive computation are
required to implement the whole system. As one fundamental
module to build the system, our proposed NTT has been
designed to support future aims, such as high N sizes input,
as well as employing TFG to minimize ROM usage and
flexible q input MM units. The use of FPGA devices and
ASIC implementation will make it possible to realize the
Fully HE-based accelerator.
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