
Received 22 February 2024, accepted 31 March 2024, date of publication 10 April 2024, date of current version 19 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387268

AES Security Improvement by Utilizing New
Key-Dependent XOR Tables
TRAN THI LUONG 1, NGUYEN NGOC CUONG1, AND BAY VO 2
1Academy of Cryptography Techniques, Thanh Trì, Hanoi 100000, Vietnam
2Faculty of Information Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Bay Vo (vd.bay@hutech.edu.vn)

ABSTRACT Increasing the security of block ciphers is a topic of great interest today, and thus there is a
variety of work to enhance the strength of such ciphers. There are alsomany studies focusing on theAdvanced
Encryption Standard (AES), presenting methods of making block ciphers dynamic to improve their security.
Animating methods can perform block cipher transformations such as substitution or permutation, or both.
In this article, we propose an algorithm to create new, key-dependent XOR tables from an initial secret key.
At the same time, we prove that in the ciphertext the new XOR operation can preserve the independent,
co-probability distribution of the random key. We then apply these new XOR tables to make AES dynamic
at the Addroundkey transformation. We created a considerable number of XOR tables, about (16!)2 tables.
With such a vast number of key-dependent dynamic XOR tables, cryptanalysts will have great difficulty
finding the actual XOR table used in the modified AES block cipher. Therefore, with our new XOR tables,
AES will be significantly enhanced.

INDEX TERMS New XOR table, AES, dynamic XOR table, key-dependent.

I. INTRODUCTION
According to Shannon [1], in order to design a good block
cipher, the round function of the block cipher must ensure
two properties, diffusion and confusion [2], [3]. S-boxes [4],
[5], [6] are often used to provide confusion, and linear
transformations [7], [8], [9] are often used to provide diffu-
sion. SPNs (permutation-substitution networks) are a familiar
structure of block ciphers. The round function of an SPN
block cipher [10], [11], [12], [13], [14] usually consists of
three transformations: key addition, permutation, and substi-
tution. SPN block ciphers are commonly used to secure data
in many applications today. In addition to block ciphers, there
are a variety of fields related to information security that are
also of interest today as digital signatures [15], [16], [17], [18]
blockchain [16], [19], [20], big data [21].
AES [22], [23] is an SPN block cipher, and it is a block

cipher standard that was developed in the US in 2001, ratified
by NIST. It also includes three transformations in the round
function: key addition, substitution, and linearity. While

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

chaotic maps and DNA-based transformations are widely
used today, they are not employed in AES. The reason for this
is that the AES authors opted for high nonlinear substitutions
by s-boxes and high diffusion through MDS matrices. These
two transformations maximize the security of AES.

AES can be considered one of the strongest and most
widely used encryption algorithms in the world today, exten-
sively applied in various security applications. However, AES
itself has inherent vulnerabilities that cryptanalysts could
potentially exploit to attack this block cipher. Some cryp-
tographic experts express concerns about AES’s security.
If attack techniques improve, AES could be compromised.
Firstly, AES’s mathematical structure is relatively straightfor-
ward, which attackers could leverage for future attacks. For
instance, these attacks might resemble algebraic attacks [24].
Secondly, two of the most potent attacks on block ciphers,
linear attacks [5], [11] and differential attacks [11], [25]
still pose significant threats to AES, as cryptanalysts can
accumulate a substantial amount of plaintext-ciphertext pairs.
Thirdly, as supercomputers continue to advance, brute-force
attacks on keys could become feasible in the future. Addi-
tionally, with the advent of quantum computers, the security

53158

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-9080-6048
https://orcid.org/0000-0002-9246-4587

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

of cryptographic algorithms, including AES, is seriously
jeopardized. For example, Grover’s algorithm [26] would
necessitate doubling the key length of block ciphers for sim-
ilar levels of security.

Therefore, numerous research efforts focus on enhancing
AES through animation. Some of these focus on proposing
dynamic S-boxes for AES [27], [28], [29], [30], [31], [32],
while others create dynamic MixColumn transformations for
AES [33], [34], [35], [36]. Some studies animating both
the S-boxes and the MixColumn transformation of AES are
also of interest [37], [38], [39]. In addition to the above
research directions, some studies work on making block
ciphers dynamic based on deoxyribonucleic acid (DNA) and
on chaotic maps [40], [41], [42].

The works noted above study how to animate AES at the
diffusion layer, substitution layer, or both, or how to make
block ciphers dynamic based on DNA and chaotic maps.
However, none of these works has worked on making AES
dynamic at the Addroundkey transformation. In [43], the
authors presented a dynamic method based on an individual
XOR table depending on the secret parameters that are input.
These secret parameters are used as the input to a 3D chaos
map, and then the output of this map is used to generate that
individual XOR table. In [44], the authors presented twoXOR
tables that depend on the initial secret parameters. These
parameters are also passed through a 3D chaos map to give
some output values. These output values are used to define
two different XOR tables and also define a newMDS matrix.
The authors use the XOR tables and the MDS matrix thus
generated to apply to AES. The authors then evaluate the new
AES block cipher against some statistical criteria.

Through careful analysis of the methods proposed in [43]
and [44], we acknowledge that the methods are both valuable
and new. However, they methods still contain many vulnera-
bilities and many defects, as noted below.

• In [43] and [44], three conditions of an XOR table are
created including:
+ The total of each row or column equals 120.
+ Every row and column contain a series of
non-repeating numbers ranging from 0 to 15.
+ The main diagonal of the XOR table exhibits
symmetry.

The second property implies the first property. Moreover,
the authors have failed to demonstrate that these character-
istics ensure accurate decryption. Specifically, they did not
indicate that if aXORb = c, then deducing a = cXORb
and b = cXORa is viable, despite their created XOR
tables satisfying this property. The explanation provided in
Algorithm (1) of [43] is ambiguous, and it does not establish
the adequacy of producing XOR tables in [43].

• Generating numeric keys from strings produced by 3D
maps and Chebyshev maps of [43] and [44] is an ineffi-
cient process.

• The Z array [44] is utilized to form a key matrix,
which is then used to generate a new MDS matrix based
on the matrix in AES’s MixColumn transformation.

FIGURE 1. The MDS matrix that is dynamically generated by [44].

Nevertheless, the resulting matrix turned out not to be
MDS but rather contained at least a square submatrix of
size 2 that was singular (as depicted in Fig. 1).

Therefore, while the proposed approach of animating the
block cipher in the Addroundkey transformation using XOR
tables presented in [43] and [44] is an intriguing and inno-
vative research avenue that enhances the security of the AES
block cipher, the authors have yet to demonstrate the essential
properties of an XOR table thoroughly. Additionally, the
method for creating new MDS matrices outlined in [44] is
imprecise, resulting in a dynamically generated matrix that
does not meet the criteria of an MDS matrix. As a result, the
authors have not proven that the new XOR can maintain the
independent, co-probability distribution of the random key
within the ciphertext.

In our research article, we introduce a novel approach to
creating dynamic AES at the key-addition transformation
using dynamic XOR tables that depend on the encryption
key. We give the essential characteristics of an XOR table
and we prove the correctness of the new XOR table generated
by our method. Then we prove that our new XOR operation
can maintain the independent, co-probability distribution of
the random key within the ciphertext, which has not been
previously addressed in [43] and [44]. We apply the dynamic
XOR tables we created to improve AES. We then conduct a
detailed security analysis on the dynamic AES block cipher
using our dynamic method, which generates a higher number
of dynamic XOR tables compared to [43] and [44]. With this
large amount of key-dependent XOR tables, cryptanalysts
will face considerable challenges in identifying the actual
XOR table used in the altered AES. Furthermore, we assess
the randomness of the altered AES using NIST tests and
confirm that it passes these tests. As such, our proposed
method has the potential to enhance the security of the AES
block cipher against various formidable attacks on modern
block ciphers. In this paper, we conducted experiments on
AES with a 128-bit key version because it is the most familiar
version. Additionally, we selected a representative version for
ease of understanding in our simulations, but other versions
can be readily implemented as well.

In practice, the AES block cipher is widely employed
to secure information in various safety domains. However,
as analyzed, AES itself harbors several inherent issues that
could potentially render it vulnerable in the not-too-distant
future. On the other hand, there exist many fields in reality
that demand stringent data security requirements, such as in

VOLUME 12, 2024 53159

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

the realms of security, military, and defense. In these areas,
there is a necessity for employing cryptographic systems
with high and stringent security levels. Therefore, dynamic
block cipher algorithms can meet these demands as they
significantly enhance the security of static block ciphers.
Consequently, our approach holds substantial potential for
applications in sectors necessitating such high levels of
security.

The structure of the paper is as follows: Section II con-
tains information on related works, while Section III presents
an algorithm for generating new XOR tables. Additionally,
it provides proof that this new XOR operation maintains the
independent, co-probability distribution of the random key
within the ciphertext. In Section IV, a security analysis and
evaluation of the altered AES block cipher using random
NIST tests is provided. Lastly, Section V concludes the paper.

II. RELATED WORKS
AES is a type of block cipher known as an SPN, which
comprises three distinct layers: a layer for substitution, a layer
for diffusion, and a layer for adding the encryption key.
Numerous research studies have been conducted to enhance
the strength of the AES block cipher by making it more
dynamic. Many of these studies have focused on dynamically
modifying the substitution transformation of AES, as seen
in [27], [28], [29], [30], [31], and [32]. In [27], the authors
presented a novel algorithm for generating dynamic S-boxes
by permuting the original AES S-box. The dynamic S-box is
dependent on the encryption key and employs an irregular
polynomial and an affine constant. With every added key
bit, a new S-box with permuted values is generated, thereby
increasing the algorithm’s complexity. In [28], the authors
proposed an algorithm for constructing key-dependent
S-boxes with desirable algebraic properties, such as SAC,
non-linearity, and BIC. In [29], the authors introduced an
algorithm for generating a dynamic S-box for AES. Unlike
other methods, this algorithm continuously varies indepen-
dent of the encryption key and relies on the timestamp present
in all digital systems. The crucial advantage of this approach
is that it alters the ciphertext while keeping the encryption key
constant, ensuring that identical data will produce different
encryption results. In [30], the authors introduced a method
for generating key-dependent S-boxes based on a dynamic
approach. The key-dependent S-box was evaluated experi-
mentally based on properties such as balanced output, BIC,
SAC, non-linearity, and differential and linear approximation
probabilities. Moreover, an alternative method for generating
key-dependent S-boxes for AES was presented in [31], which
involves creating a new permutation for the S-box using a
pseudo-key expansion algorithm. Additionally, in [32] Mur-
phy et al. presented a method for differential cryptanalysis of
key-dependent S-boxes, outlining techniques for conducting
cryptanalysis using such S-boxes.

Someworks have also focused on introducing dynamism to
the diffusion layer [33], [34], [35], [36] of AES. For example,
one proposal in [33] involves constructing a key-dependent

diffusion layer using scalar multiplication and direct expo-
nentiation. In [34], the authors suggested a key-dependent
MixColumn transformation from the AES MDS matrix, uti-
lizing scalar multiplication of the matrix’s rows and an
additional m-bit key. Shamsabad and Dehnavi presented
some n × n binary matrices in [35], which can be used to
make dynamic AES-like matrices and recursive MDS matri-
ces. Additionally, a direct exponentiation fast calculation
algorithm was presented in [36] to enhance the execution
speed of dynamic block ciphers at the diffusion layer, thereby
contributing to enlarging the overall security of the block
cipher.

Other research has explored the dynamic adaptation of both
substitution and diffusion layers in AES, as demonstrated
in [37], [38], and [39]. In [37], the authors introduced a
dynamic block cipher called P-AES, where the values of
AES parameters are modified for each key. Specifically, the
SubBytes, ShiftRows, and MixColumns transformations are
animated based on the key, resulting in different behavior
with each new key. The P-AES algorithm has been proven
secure against differential and linear attacks. In [38], an image
encryption algorithm based on symmetric cryptography
was proposed, with MixColumns, ShiftRows, and SubByte
transformations that are animated based on the key. The
P-AES algorithm has been proven to provide authenticity,
integrity, and confidentiality. In [39], Xu et al. also pre-
sented dynamic S-boxes and new MixColumn matrices that
maintain good cryptographic properties for creating dynamic
AES.

In addition to the above research directions, there are
studies currently underway that aim to create dynamic block
ciphers based on DNA and chaotic maps, as demonstrated
in [40], [41], and [42]. In [40], a 4D-hyper system using
chaotic maps and DNA calculating are employed to produce
a dynamic S-box. The system generates numbers to create
a hexadecimal form number, which is then combined with
DNA encoding and addition, subtraction, and exclusive-or
operations to form the dynamic S-box. The new S-box is eval-
uated against balanced, bit independence, strict avalanche,
linearity approximation probability, and differential approx-
imation probability criteria. In [41], the authors introduced
two efficient SPN block ciphers using a chaotic system, with
dynamic S-boxes created based on keys in the chaos maps.
In [42], the authors introduced an algorithm for designing
key-dependent S-boxes (n × n) using chaotic time series
of logical mapping, using different implementation possi-
bilities in chaotic mapping to provide low computational
complexity.

III. GENERATING NEW KEY-DEPENDENT XOR TABLES
BASED ON A PSEUDO-RANDOM NUMBER GENERATOR
AND THE FISHER-YATES SHUFFLE ALGORITHM
In this section, we present the essential characteristics of
an XOR table that are required to ensure the successful
decryption and encryption of the block cipher, which was not
fully demonstrated in [43] and [44]. Subsequently, we will

53160 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

introduce an algorithm for generating new key-dependent
XOR tables based on a pseudo-random number generator and
the Fisher-Yates shuffle algorithm. This algorithm makes it
possible to produce a vast number of new, key-dependent
XOR tables.

A. THE ESSENTIAL CHARACTERISTICS OF AN XOR TABLE
Given that the algorithm under consideration is AES, where
transformations are carried out over the GF(28) field, every
element within GF(28) is handled as a byte comprising two
halves, and each half is composed of four bits. Thus, to guar-
antee the proper functioning of the decryption and encryption
process, we give the following three properties that an XOR
table performed on 4-bit symbols must satisfy, and we name
them as follows.

• XOR property 1: The XOR table exhibits symmetry
across the main diagonal, which implies that xXORy =

yXORx.
• XOR property 2: Each row and column of the XOR table
must include the numbers 0 to 15 exactly once without
repetition (i.e., it must be a permutation of the numbers
0 to 15).

• XOR property 3: For any given elements x, y and z in
the table such that xXORy = z, the table must satisfy the
following conditions simultaneously: yXORz = x, and
xXORz = y.

B. ALGORITHM FOR GENERATING TWO NEW 4-BIT
KEY-DEPENDENT XOR TABLES
In this section, we propose an algorithm that can generate two
4-bit XOR tables from an initial secret key.

Suppose that the receiver and sender need to establish a
secret key a∗ prior to further communication.
Remark 1 (The accuracy of the newly proposed key-

dependent XOR table): The initial XOR table of AES fulfills
the criteria of an XOR table (Section III-A). In addition, with
Algorithm 1, all elements of the table are replaced simulta-
neously, resulting in two new XOR tables that retain all three
required properties of an XOR table. Through experimenta-
tion, we verified that these new XOR tables also satisfy these
essential characteristics, although it is important to note that
the XOR operation performed in this table is not the standard
bit Exclusive Or operation.

It is noteworthy that the aforementioned algorithms are
capable of producing new XOR tables which rely on the
initial secret key.

Now, we demonstrate that the new XOR tables generated
by Algorithm 1 fully satisfy the three essential properties of
an XOR table, as elucidated in Section III-A. We prove the
correctness of the XOR tables obtained from Algorithm 1
through the following proposition.
Proposition 1 (Demonstrating the correctness of the new

XOR tables): The XOR tables obtained from Algorithm 1
are XOR tables that satisfy all the necessary properties of an
XOR table.

Algorithm 1 Generating two XOR 4-bit tables based on the
secret key
INPUT: A randomly generated key K with a length of
128 bits.
OUTPUT: Two new 4-bit XOR tables.

Step 1: Select a 128-bit block consisting of 1s, indicated as
P0 = {11 . . . 1}. Apply theAES algorithm to encryptP0 using
the key K , obtaining the 128-bit sequence P1.
Step 2: Extract the initial 64 bits from the P1 sequence,
then break down these 64 bits into 16 segments, each
containing 4 bits. Let ai(0 ≤ i ≤ 15) represent
the decimal value associated with the i-th 4-bit segment.
Organize these elements into a collection of 16 ele-
ments, symbolized as A = {a0, a1 . . . , a15} where
0 ≤ ai ≤ 15. Initialize the corresponding index array
I1 = {0, 1, 2, · · · , 15}.
Step 3: Perform a similar procedure as in Step 2 with
the last 64 bits of the P1 sequence. Obtain a set B =

{b0, b1 . . . , b15. Initialize the corresponding index array I2 =

{0, 1, 2, · · · , 15}.
Step 4: Sort the elements of the set A = {a0, a1 . . . , a15 in
increasing order based on their values. In case of identical
elements (ai = aj), prioritize the element with the lower
index. The outcome is a fresh set, labeled as Á. Applying the
sorting rule to the index array I1 yields a new index array I ′1
(corresponding to the set Á).
Step 5: Perform a similar process as in Step 4 with the
set B, resulting in a new set denoted as B́. Applying the
sorting rule to the index array I2 yields a new index array I ′2
(corresponding to the set B́).
Step 6: By utilizing the initial XOR table (in Table 8), a new
XOR table M with a dimension of 16 × 16 can be formed in
the following manner:
+ Substitute every entry in the initial XOR table with their
respective elements in the array I ′1 = [u0, u1 . . . , u15], denot-
ing the replacement of the value i(0 ≤ i ≤ 15) in the initial
XOR table with the element ri of the array I ′1. Executing
this substitution for the entire initial XOR table results in a
new XOR table M1. Specifically, all elements in the original
XOR table, including the elements of the header row and
header column, will be replaced according to the following
1-1 mapping.

0 → u0; 1 → u1; 2 → u2; . . . ; 15 → u15

+ Rearrange the columns and rows in the new XOR tableM1
to ensure that the first column and first row form an increasing
sequence ranging from 0 to 15. This action yields a different
XOR table, referred to asM .
Step 7: Perform the same process as in Step 8, but replace
the cells in the original XOR table with the corresponding
elements from the array I ′2 = [ú0, ú1 . . . , ú15], resulting in a
new XOR table denoted as N .

VOLUME 12, 2024 53161

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

TABLE 1. The initial XOR table using in AES.

TABLE 2. The new XOR table from permutation generated in algorithm 1.

Proof:
From array I ′1 = {u0, u1 . . . , u15}, (where 0 ≤ ui ≤ 15)

obtained in Algorithm 1, using the substitution 0 → u0; 1 →

u1; 2 → u2; . . . ; 15 → u15, we obtain the firt newXOR table
in the form as shown in Table 2.

Since the simultaneous replacement of elements is a 1-1
mapping, for any arbitrary values i, j, k(0 ≤ i, j, k ≤ 15) in
the original XOR table (Table 1), their corresponding values
in Table 2 are ui, uj, uk .

For every 0 ≤ i, j, k ≤ 15, according to the original XOR
table, we have:

• iXORj = jXORi
• Each column and row of the original XOR table consists
of a permutation of numbers from 0 to 15.

• If iXORj = k , then iXORk = j and jXORk = i

From the substitution 0 → u0; 1 → u1; 2 → u2; . . . ; 15 →

u15, and the above properties of the original XOR table,
we can deduce that Table 2 also possesses the following
properties.

• uiXORuj = ujXORui (XOR property 1).

• Since the substitution mapping is 1-1, each column and
row of Table 2 consists of a permutation of numbers
from 0 to 15 (XOR property 2).

• If uiXORuj = uk then uiXORuk = uj and ujXORuk = ui
(XOR property 3).

Next, rearranging the positions of rows and columns in the
XOR table does not alter the values of the cells in the XOR
table; therefore, Table 2 satisfies all three essential properties
of an XOR table as outlined in Section III-A.

Based on similar reasoning applied to the second XOR
table generated from array I ′2, we also demonstrate that the
second XOR table satisfies all three essential properties of an
XOR table. ■
Remark 2: To be more specific, the array U comprises of

permutations of 16 distinct elements ranging from 0 to 15,
which are derived from the initial random key. Given that
there exist 16! possible permutations of these 16 elements,
Algorithm 1 enables us to generate up to 16! distinct
key-dependent XOR tables.

Note that, the newXOR operation in the recently generated
XOR table as ⊕.

Suppose we have random, independent variables δ1,δ2,

. . . , δn and their numerical values belong to the set R =

{0, 1, . . . , 15} with equal probability of occurrence, which
is 16−1. Whenever these variables ε1, ε2,. . . , εn take on a
specific value Key = (k1, k2, . . . , kn), we refer to Key as an
optimal random number key of length n.

Let P1 represent the probability distribution across the
plaintext space P , P2 denote the probability distribution
throughout the ciphertext space C, and P3 represent the prob-
ability distribution across the key space K.
Suppose P = C = K = R.
We have the following proposition:
Proposition 2: Let x1,x2, . . . , xn and y1,y2, . . . , yn denote

plaintexts and corresponding ciphertexts that assume val-
ues from set R, respectively. Additionally, δ1,δ2, . . . , δn are
independently generated random variables with a uniform
distribution over set R, and assume values k1,k2, . . . , kn,
which are employed in the new XOR activity to generate
y1,y2, . . . , yn.

yi = xi⊕ki, for i = 1, 2, . . . , 15.

Then it follows that: P2(y1,y2, . . . , yn) = 16−n.
Proof:
Due to the independently random variables δ1,δ2, . . . , δn

having the same probability and taking the values
k1,k2, . . . , kn respectively, as well as the characteristics of the
new XOR, it follows that if yi = xi⊕ki, then xi = yi⊕ki, and
if yj = xj⊕kj, then xj = yj⊕kj, so:

P2(yi,yj) =

∑
ki,kj∈K

P3(ki, kj)P1(yi⊕ki, yj⊕kj)

=

∑
ki,kj∈K

P3(ki)P3(kj)P1(yi⊕ki, yj⊕kj)

=
1

162
∑

ki,kj∈K
P1(yi⊕ki, yj⊕kj) =

1

162
. (1)

53162 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

Besides, for any y ∈ R, and based on the characteristics of the
new XOR, y = x⊕k , then x = y⊕k . Thus, we can conclude
that:

P2 (y) =

∑
k∈R

P3(k)P1 (x) =

∑
k∈R

1
16
P1

(
y⊕k

)
=

1
16

∑
k∈R

P1
(
y⊕k

)
=

1
16

(2)

By (1), (2), it is inferred that:

P2(yi,yj) = P2(yi) · P2(yj) =
1

162
. (3)

With equivalent evidence, it follows that.

P2(y1,y2, . . . , yn) = P2(y1) · P2(y2) · . . . · Pn(yn) =
1
16n

.

■
Remark 3: Based on Proposition 2, it is apparent that by

conducting the new XOR operation between a random key
and a plaintext then the resulting ciphertext will exhibit com-
parable characteristics to that of the random key, including
uniform probability and independent distribution. This is
critical since the ciphertext generated by the XOR opera-
tion may relinquish the properties of the original plaintext,
while the uniform probability and independent distribution of
the ciphertext make it challenging to perform cryptanalysis.
Additionally, the XOR operation is executed before the AES
S-box to guarantee that the properties of uniform probability
and independent distribution are preserved, thereby enabling
the application of differential and linear probability defini-
tions to the S-box.

Compare our method with those in [43] and [44]
Hereinafter, we present certain contrasts between the tech-

niques employed to produce XOR tables in [43] and [44] and
our own approach.

• While [43], [44] enumerated three characteristics of the
new XOR operation, they did not demonstrated that
these features ensure accurate decryption. This research,
however, has established the mandatory attributes of an
XOR table (in section III-A) and verified the accuracy
of the decryption process.

• The authors of [43] fashioned a solitary private XOR
table, and [44] described the creation of two novel
XOR tables; however, this our study has the capacity
to generate 16! key-dependent XOR tables contingent
upon an initial secret key. The availability of a signifi-
cant number of key-dependent XOR tables complicates
cryptanalysis substantially, thereby boosting the AES
security.

• References [43] and [44] only demonstrated the proce-
dure for generating XOR tables, but did not elaborate
on the theoretical significance of the XOR operation,
including the new XOR operation. This paper has
addressed that gap through Proposition 1, Proposition 2,
expounding upon the theoretical importance of XOR as
well as our novel XOR.

TABLE 3. Compare our dynamic method with other one.

Compare our dynamic method with other ones
To have a more comprehensive view, we compare our

proposed dynamic method in this paper with other ones in
literature. Table 3 shows this comparison based on a few basic
criteria.

In general, each dynamic method operates differently, but
the commonality among these dynamic methods is their abil-
ity to ‘‘obfuscate’’ a certain component of the block cipher,
making it significantly more challenging for cryptanalysis
compared to a static block cipher.

C. UTILIZING KEY-DEPENDENT FOR TABLES TO ALTER
THE AES BLOCK CIPHER
In our proposal in this paper, we only replace the XOR oper-
ation in the AddRoundKey transformation in AES with the
XOR operation from a new XOR table; other transformations
in AES (key schedule, MDS operation XOR, etc.) will still
use the regular bitwise XOR.

By inputting a secret key K into Algorithm 1, we can
generate two new XOR tables, designated asM and N , which
are dependent on the above keys. These tables will be used
alternatively during the creation of the alteredAES algorithm,

VOLUME 12, 2024 53163

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

with tableM utilized during even rounds and table N utilized
during odd rounds.

We carry out tests utilizingK as a 128-bit authentic random
key sourced from the link: https://www.random.org/bytes/.
Specifically, two genuine random sequences (in hexadecimal
format) are acquired in the following manner:
K = ce a2 72 31 c6 8d ba d2 32 1b fb 60 7f 6d 29 7e
Performing Algorithm 1 with this key results in two arrays

as shown below.

I ′1 = {14, 11, 1, 3, 10, 5, 15, 13, 4, 7, 6, 8, 2, 12, 9, 0,

I ′2 = {4, 0, 7, 8, 9, 14, 13, 12, 15, 3, 1, 11, 2, 5, 6, 10

Two new XOR tables, M1 and N1, can be obtained as pre-
sented in Table 4 and Table 5, respectively.

Afterwards, reposition the columns and rows in tables M1
and N1 such that the initial row and column in each table
form an increasing sequence from 0 to 15. This will produce
two new key-dependent XOR tables, M and N , which are
illustrated in Table 6 and Table 7, respectively.

Subsequently, for the purpose of encryption and decryp-
tion, we utilize XOR tableM for even AES rounds and XOR
table N for odd AES rounds.

In the experiment, we can use K as the encryption
key of AES-128 as the input of Algorithm 1. Actually,
in Algorithm 1, we do not directly use the key K to generate
the XOR tables but rather a 128-bit string P1 derived from K .
This helps limit cryptanalysts from exploiting XOR tables to
deduce key bits of K .

IV. RESULTS FOR EXPERIMENT AND ANALYSIS
The modified AES algorithm is implemented in C++. In this
study, experiments were performed on the 128-bit key version
of AES, which is the most widely recognized version.

NIST tests are performed for the modified AES algorithm
on 349,632 different sequences for LW128 and HW128 data
sets, and 1,048,576 different sequences for AV1 and Rot data
sets, where every sequence is 128 bits. Some statistical tests
for short sequences include the Test for the Longest Run of
Ones, Runs Test, Approximate Entropy Test, Frequency Test,
Serial Test, and CuSum Test. Our experiments are imple-
mented on a Windows 10 64-bit computer, Intel Core i5
2430M (Bus 2500, Cache 3MB, 2 × 2.4GHz Turbo Boost
3.0GHz), RAM 2GB DDR3 1333MHz, Intel HD Graphics
3000, Chipset Intel HM67 Express, and NVidia Geforce GT
520M (1GB VRAM).

A. SECURITY ANALYSIS
Block ciphers are a popular type of cryptographic algorithm
used in various fields nowadays, but they are vulnerable
to attacks, with linear [5], [11], [48], [49] and differential
attacks [11], [25], [49], [50], [51] being the two most potent
types. Both of these attacks require cryptanalysts to gather
a significant amount of plaintext/ciphertext pairs to conduct
the attacks. Keliher [52] provided data complexity formulas
for a linear attack (using Matsui’s Algorithm 2 [49]), which

TABLE 4. The new XOR Table M1.

TABLE 5. The new XOR Table N1.

TABLE 6. The XOR table M used for even rounds.

determine the minimum amount of data required for the
attack to be successful, as follows:

NL =
c

EDP[1..T](a, b)
(4)

53164 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

TABLE 7. The XOR table N used for odd rounds.

Keliher also gave the data complexity for a differential
attack, as follows:

ND =
1

EDP[1..T](1X , 1Y)
(5)

where, EDP[1..T](1X , 1Y) is the probability of the average
differential probability over 1..T roundswith input and output
differences are 1X and 1Y respectively; ELP[1..T](a, b) is
the average linear probability over 1..T rounds with input and
output mask a and b respectively (see more in [52]).
For example, to successfully perform the linear attack on

the DES block cipher, the cryptanalysts must collect about
247 plaintext/ciphertext pairs [48]. As such, the data complex-
ity to perform these attacks is very large.

To carry out linear and differential attacks on block
ciphers, including the AES algorithm, cryptanalysts must
possess knowledge of all the algorithm’s components, such
as S-box, ShiftRow, Mixcolumn matrix, and Addroundkey.
Specifically for AES, the cryptanalyst needs to know these
transformations precisely. However, the secret key remains
unknown for encryption/decryption. Cryptanalysts should
thus gather an ample amount of plaintext/ciphertext pairs
to conduct these attacks and follow the typical methods
described in [11], [25], [48], and [52].

However, when we animate the AES block cipher, and
specifically in this paper, we animate the Addroundkey trans-
formation. The cryptanalysts then do not know which XOR
table we used for dynamic AES, so they must search to find
the XOR table used for dynamic AES. After each attempt
of an XOR table, the cryptanalysts must collect as many
plaintext/ciphertext pairs as for attacking AES. This search
will make it very difficult for cryptanalysts because of the
large number of plaintext/ciphertext pairs. Algorithm 1 gen-
erates an extensive number of new XOR tables (16! to be
precise), making it particularly challenging for cryptanalysts
to perform an exhaustive search.

Note that when applied to AES, the total number of
dynamic XOR tables that the attacker needs to iterate over is

(16!)2 because we use two dynamically generated XOR tables
alternately in consecutive rounds. The attacker does not know
which XOR table will be used in each round.

Proposition 2 demonstrates that the new XOR operation
guarantees the output to exhibit the same characteristics as
a random key sequence, namely uniform probability and
independent distribution. This is significant because the
ciphertext may lose the structure of the plaintext after the
XOR operation, rendering it challenging for cryptanalysis.
Additionally, the XOR operation is executed before the AES
S-box, with the intention of preserving the uniform proba-
bility and independent distribution properties. Ensuring the
preservation of the uniform probability and independent dis-
tribution properties is crucial for applying the definition of
differential and linear probabilities to the S-box. In addition,
in [1] Shannon gave a formula for evaluating the unicity
distance of a cryptosystem as follows:

U =
H (K)
D

(6)

The unicity distance of a block cipher is theminimum number
of ciphertext characters required for cryptanalysts to uniquely
deduce the secret key, given thatH (K) represents the entropy
of the key space and D denotes the redundancy of the lan-
guage. A larger unicity distance indicates a more secure block
cipher.

Applying to the dynamic AES algorithm proposed in this
paper, it can be seen that, since we animate the Addroundkey
operation with dynamic XOR tables, in this case the key
space increases, not only K but also extra space of dynamic
XOR tables. As a result, the numerator of (6) experiences a
significant increase, leading to a greater unicity distance and
ultimately enhancing the security of the dynamic AES block
cipher.

Now, to provide further persuasion, we analyze in detail
how the security of the dynamic AES block cipher in
this paper is enhanced compared to the AES block cipher.
We focus our analysis on two of the strongest attacks on block
ciphers: linear attack and differential attack.

1) ANALYZING LINEAR CYPTANALYSIS ON THE AES AND
DYNAMIC AES
a: ANALYZING LINEAR CYPTANALYSIS ON THE AES
Linear cryptanalysis aims to exploit the frequent instances of
linear equations involving bits of the original message, bits in
the ‘‘ciphertext’’ (are the input data bits of the last round), and
bits of the subkey. This method constitutes a known plaintext
assault.

The fundamental idea of linear cryptanalysis involves
representing the function of a segment within the cipher
through a linear expression, with the term ‘‘linearity’’ sig-
nifying a bit-wise operation using mod-2 (specifically, the
exclusive-OR represented by ‘‘⊕’’). This linear expression
takes the following structure:

Xi1 ⊕ Xi2 ⊕ . . . ⊕ Xia ⊕ Yj1 ⊕ Yj2 ⊕ . . . Yjb = 0 (7)

VOLUME 12, 2024 53165

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

FIGURE 2. A 8 × 8 S-box mapping.

where Xi denotes the i-th bit within the input X =

[X1,X2, . . .], and Yj signifies the j-th bit of the output Y =

[Y1,Y2, . . .]. Please observe thatX is the plaintext input of the
block cipher, and Y serves as the output from the preceding
round just before the final one, or alternatively expressed,
it functions as the input for the last round.

Let p be the probability of the occurrence of the linear
expression (7) with randomly chosen plaintexts, and ε be the
linear probability bias of (7). In that case, p−

1
2 = ε.

The strategy in linear cryptanalysis involves identifying
patterns similar to (7) that exhibit either a high or low likeli-
hood of appearing, but what matters is that it has a high bias.

Matsui [48] presented the following Piling-Up lemma:
For a set of n binary variables that are independent and

random, X1,X2, . . . ,Xn,

Pr (X1 ⊕ X2⊕ . . . ⊕Xn = 0) =
1
2

+ 2n−1
n∏
i=1

εi

where ε1,2,..,n = 2n−1
n∏
i=1

εi is the bias of X1⊕X2⊕. . .⊕Xn =

0.
To execute a linear attack on a block cipher, the attacker

must necessarily find a high probability linear expression for
the entire block cipher, with a significant probability bias.
In conducting linear cryptanalysis, the attacker will run a
direct search algorithm to discover the linear expression or
the best linear approximation with the highest probability.

To find a linear expression for the entire n-round block
cipher in the form of (7), we present Table 8 describing
the general steps to be carried out. These steps follow the
Algorithm 2 outlined by Matsui [48], [49].
Figure 2 illustrates the input and output of a 8 × 8 S-box.
As we know, the AES block cipher has n rounds (n = 10,

12, or 14), with a 128-bit input block and employs
8 × 8 S-boxes.

To align with the above analysis regarding the structure of
a general SPN block cipher, here, we examine each round of
AES, which consists of four transformations (from round 1
to round n − 1): AddRoundKey, SubByte, ShiftRow, and
MixColumn. The last round (round n) of AES comprises
Four transformations: AddRoundKey, SubByte, ShiftRow,
and AddRoundKey.

TABLE 8. Steps to construct a linear expression for the SPN block cipher.

Note that in the final round, the ShiftRow operation takes
place. This operation on a 4 × 4 byte state is as follows:
the first row of the state remains unchanged, the second row
left-rotates by one byte, the third row left-rotates by two
bytes, and the fourth row left-rotates by three bytes.

Thus, the inverse operation of the ShiftRow, denoted as
ShiftRow−1 will perform the reverse. The first row of the state
remains unchanged, the second row right-rotates by one byte,
the third row right-rotates by two bytes, and the fourth row
right-rotates by three bytes.

Therefore, the ShiftRow operation can be simulated as a
byte permutation as follows.

The ShiftRow−1 operation can also be represented as a byte
permutation as follows.

Assume K is the secret key of AES, and the round keys
derived from K are denoted as K1, K2, . . . , Kn,Kn+1.
Let P and C be the corresponding plaintext and ciphertext

of the AES block cipher.
Let Ui,Vi represent the inputs and outputs of the S-boxes

at round i. Denote Ui,j as the j-th bit of Ui, where 1 ≤ i ≤

n, 1 ≤ j ≤ 128.
Note that the linear expression of AES obtained only

relates to the plaintext input, the input bits of the final round
(round n), and the key bits of the subkeys K1, K2, . . . , Kn.

53166 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

After obtaining a linear approximation for the n−1 rounds
and the corresponding linear expression with a sufficiently
large probability bias for the entire AES, the attacker pro-
ceeds to extract the key bits of the last subkey in the final
round of AES (key Kn+1). Naturally, for this cryptanalysis to
succeed, a considerable number of plaintext/ciphertext pairs
must be collected.

Assuming the attacker collected 100,000 plaintext/cipher
text pairs and found both a linear approximation for
n − 1 rounds and a corresponding linear expression with a
linear probability p and a sufficiently large probability bias ε.
Suppose in this linear expression, it includes the inputs of two
S-boxes in the final round Sn,2 and Sn,4 (the 2nd S-box and 4th

S-box in round n). Corresponding to these two S-boxes are
two related key bytes from the subkey Kn+1.

The notation for these two subkey bytes consists of a 16-bit
key [Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,25Kn+1,26 . . .Kn+1,32].
There are a total of 216 possible combinations for these 16 key
bits. For each set of 16 key bits, there will be a corresponding
count value count i(1 ≤ i ≤ 216), initialized to 0.

From the obtained linear expression, temporarily exclud-
ing the key bits (as the sum of key bits is fixed and can only
be 0 or 1), the linear expression becomes the XOR sum of the
plaintext bits and the input data bits for round n. The linear
expression has the following form.

Un,i ⊕ Un,j⊕ . . . ⊕Un,t ⊕ (Pl ⊕ Ph ⊕ . . . ⊕ Pk) = 0 (8)

For each plaintext/ciphertext pair, the cryptanalyst will try all
216 possibilities of the 16 key bits [Kn+1,9Kn+1,10 . . .Kn+1,16,

Kn+1,25Kn+1,26 . . .Kn+1,32]. In the final round we have the
following formula:

ShiftRow(V n)⊕Kn+1 = C (9)

where C is the known ciphertext corresponding to the known
plaintext P.
Therefore, for each 16-bit candidate [Kn+1,9Kn+1,10 . . .

Kn+1,16,Kn+1,25Kn+1,26 . . .Kn+1,32], the cryptanalyst can
find the relevant bits of Vn from (9) as follows.

Vn = ShiftRow−1(C ⊕ Kn+1)

We have Un → Sn → Vn, so from Vn, it can be found by
working backward to obtain Un. Replace the corresponding
bits of Un into (8) to check if (8) is satisfied or not.
Try all 216 possibilities for the 16-bit key above. If any can-

didate 16-bit key [Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,25Kn+1,26
. . .Kn+1,32] makes the linear expression (8) true, increase
the count value corresponding to that 16-bit key candidate
by 1. Repeat this process for the 100,000 pairs of plain-
text/ciphertext that the cryptanalyst collected. Then perform
the calculation:

|biasi| = |count i − 50000| /100000for1 ≤ i ≤ 216.

The value of count i that differs the most from 50,000, or in
other words, the value of |biasi| that is the largest, corre-
sponds to the correct 16-bit key. Therefore, the 16-bit key

found is the correct key bits for the second and fourth bytes
of the subkey Kn+1.
The permutation operation of the AES block is denoted as

TP (comprising two transformations: ShiftRow and MixCol-
umn).

To proceed in finding the key bits of the Kn key, the
cryptanalyst relies on the following formula:

Un = TP(Vn−1) ⊕ Kn (10)

Because some bits of Un have already been determined, and
the SPN block cipher is static, meaning that the permutation
operation TP is known, the cryptanalyst continues to guess
the key bits of the Kn subkey (the key bits related to the active
S-boxes in round n). From (10), the cryptanalyst can calculate
the bits of Vn−1 as follows:

Vn−1 = T−1
P (Un ⊕ Kn) (11)

On the other hand, in round n − 1, we also obtain a linear
approximation formula in the following form.

Vn−1,i ⊕ Vn−1,j⊕ . . . ⊕Vn−1,t ⊕ (Pl ⊕ Ph ⊕ . . . ⊕ Pk)

⊕
(
K1,g ⊕ . . .K1,e⊕K2,f ⊕⊕K3,u ⊕ . . . ⊕ Kn−1,v

)
= 0

Temporarily excluding these key bits, since their XOR sum
can only be 0 or 1, we obtain:

Vn−1,i ⊕ Vn−1,j⊕ . . . ⊕Vn−1,t ⊕ (Pl ⊕ Ph ⊕ . . . ⊕ Pk) = 0

(12)

Since the necessary bits ofVn−1 have been found, substituting
them into (12) will verify whether this expression is true or
false. Thus, for a candidate set of key bits for Kn making (12)
true, we increment count value for that set by 1. Similar to the
case of the Kn+1 key, we will identify some correct key bits
for Kn (the key bits of Kn related to the S-boxes operating at
round n).
Similarly to the process above, for the remaining rounds,

we can accurately determine the key bits of the subkeys Ki
(the key bits of Ki related to the S-boxes chosen for the linear
approximation at round i).
Above are the detailed analyses with a general perspective

of our linear attack on AES block cipher based on Matsui’s
Algorithm 2 [48], [49]. These analyses are designed for linear
cryptanalysis on original AES block ciphers, meaning that the
components of the block cipher such as S-boxes, AddRound-
Key, ShiftRow, Mixcolumns are all public.

b: ANALYZING LINEAR CRYPTANALYSIS ON THE DYNAMIC
AES BLOCK CIPHER AT THE ADDROUNDKEY OPERATION
When the SPN block cipher is made dynamic at the
AddRoundKey operation, the XOR operation in the
AddRoundKey at the rounds of the block cipher will be
replaced by a dynamically key-dependent XOR operation.

With Ui and Vi being the inputs and outputs of the S-boxes
at round i, then:

U1 = P⊕K1

VOLUME 12, 2024 53167

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

where P is the 128-bit input plaintext block, K1 is the round 1
subkey, and ⊕ represents the key-dependent XOR operation.

Suppose the cryptanalyst continues to follow the steps
outlined in Table 8 to construct a linear approximation for
n − 1 rounds and a corresponding linear expression for the
dynamic AES block cipher. Assume that the cryptanalyst can
perform Steps 1 and 2 as in the case of the static block cipher,
meaning that a linear approximation table for the S-box has
been constructed, specific S-boxes have been chosen, and
their particular linear approximations for each round have
been selected (using regular bit XOR operations).

When performing Step 3 of Table 8, the cryptanalyst still
obtain a linear expression for the entire dynamic AES block
cipher involving plaintext bits (P), input data bits for round n
(bits of Un), and key bits of the subkeys in n rounds (subkey
bits of K1, K2, . . . , Kn). Suppose this linear expression takes
the form:

Un,i ⊕ Un,j⊕ . . . ⊕Un,t ⊕ (
(
Pl⊕Ph⊕ . . . ⊕Pk

)
⊕

(
K1,g⊕ . . .K1,e⊕K2,f ⊕⊕K3,u⊕ . . . ⊕Kn,v

)
) = 0

(13)

Thus, the linear expression of dynamic AES includes both
regular bitwise XOR and XOR operations dependent on the
key. Temporarily omitting the key bits, the obtained expres-
sion is as follows:

Un,i ⊕ Un,j⊕ . . . ⊕Un,t ⊕
(
Pl⊕Ph⊕ . . . ⊕Pk

)
= 0 (14)

In this case, even if the attacker attempts to try the key bits
of Kn+1 in the final round to recover Un,i⊕Un,j⊕ . . . ⊕Un,t
(through the ShiftRow operation and the selected S-boxes in
round n), the attacker still doesn’t know whether the linear
expression (14) is correct with those key bits. Because the ⊕

operation is key-dependent, the attacker doesn’t know which
XOR operation it corresponds to. Therefore, the attacker
cannot find the key bits of Kn+1 even with any number of
collected plaintext/ciphertext pairs.

Therefore, to launch a linear attack on the case of
dynamic AES block cipher with the XOR operation in the
AddRoundKey transformation, the attacker needs to identify
the dynamic XOR operation ⊕ that is used. Only after that,
the attacker can proceed with the linear attack on the dynamic
AES as in the static case. Thus, it is evident that this dynamic
aspect adds considerable complexity to the attacker’s task,
as they must first determine the dynamic XOR operation or
the dynamic XOR table used in the dynamic AES before
conducting the attack.

2) ANALYZING DIFFERENTIAL CYPTANALYSIS ON THE AES
AND DYNAMIC AES
a: ANALYZING DIFFERENTIAL CYPTANALYSIS ON THE AES
Differential cryptanalysis leverages the elevated likelihood
of certain instances of differences in plaintexts and input
differences occurring in the final round of a block cipher.

Consider an n-round SPN block cipher with a block size of
m bits. The input to the block cipher is a bit vector denoted

as X = [X1X2 . . .Xm], and the output of the block cipher is
denoted as Y = [Y1Y2 . . . Ym].

Assuming X ′ and X
′′

are two inputs of the SPN block
cipher with corresponding outputs Y ′ and Y

′′

.
Notation:1X = X ′

⊕X
′′

= [1X11X2 . . . 1Xm] represents
the input difference of the SPN block cipher, and 1Y = Y ′

⊕

Y
′′

= [1Y11Y2 . . . 1Ym] represents the output difference of
the block cipher, where ⊕ is the bitwise XOR operation.
In that case, the pair (1X , 1Y) is referred to as a

differential.
To execute a differential attack, it is necessary to construct

a high-probability differential (1X , 1Y) related to the plain-
text bits and the input bits of the final round of the block
cipher. To achieve this, one needs to explore high-probability
differential characteristics. From these characteristics, the
corresponding differential can be identified for the block
cipher. A differential characteristic entails a succession of
differences in input and output throughout multiple rounds,
with the resultant output difference from one round aligning
with the input difference for the subsequent round. Then,
utilize this high-probability differential to exploit information
in the final round and deduce the subkey bits for the final
round.

Now, suppose the input to the S-box is the vector
X = [X1X2 . . .Xm], and the output of the S-box is Y =

[Y1Y2 . . . Ym]. Assume X ′ and X
′′

are two inputs to the S-box,
and their respective outputs are Y ′ and Y

′′

.
Note that in the SPN block cipher, the input X to the

S-box, before passing through the S-box, is XORed with the
round key (AddRoundKey operation). Therefore, the actual
input difference to the S-box should be:

1W = W ′
⊕W

′′

= [1W11W2 . . . 1Wn]

where,

1W i = W ′
i ⊕W

′′

i =
(
X ′
i ⊕ Ki

)
⊕

(
X

′′

i ⊕ Ki
)

= X ′
i ⊕ X

′′

i = 1X i (15)

Note that the XOR operation (⊕) here is a bitwise XOR.
Figure 4 is an example of an 8 × 8 S-box with key XOR

operation.
Thus, for regular SPN ciphers, the input differences of the

S-boxes do not depend on the key bits.
Based on the above analysis, we provide Table 9, illus-

trating the general steps needed to find a differential char-
acteristic for n − 1 rounds and a corresponding differential
for the entire n-round block cipher. These steps follow the
differential cryptanalysis method introduced by Biham and
Shamir [49], [50], [51].

Note that, the AES block cipher has n rounds, takes a 128-
bit input block, and employs 8×8 S-boxes. LetK be the secret
key of AES, and the round keys derived from K are denoted
as: K1, K2, . . . , Kn,Kn+1.
Let P and C be the plaintext and corresponding ciphertext

of AES. Let 1P and 1C be the differences in input plaintext
and output ciphertext, respectively, of AES.

53168 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

FIGURE 3. The final round of AES.

FIGURE 4. A 8 × 8 S-box with key XOR operation.

TABLE 9. Steps to construct a differential for an SPN block cipher.

LetUi and Vi represent the input and output of the S-boxes
at round i. The notationUi,j represents the jth bit ofUi,where
1 ≤ i ≤ n, 1 ≤ j ≤ 128.

Let1Ui = Ui⊕U ′
i and1Vi = Vi⊕V ′

i be the differences in
input and output of the S-boxes at round i. The notation1Ui,j
represents the jth bit of 1U i, where 1 ≤ i ≤ n, 1 ≤ j ≤ 128.
From the obtained differential (Table 9) related to the

plaintext input bits and the input bits of the S-boxes in the
last round (round n), the cryptanalyst can attack the SPN
block cipher by recovering a subset of the subkey bits fol-
lowing the last round (bits of the subkey Kn+1). Naturally,
the cryptanalyst needs to collect a substantial number of
plaintext/ciphertext pairs to determine these key bits.

As indicated in (16) (where1W = 1X), thus the plaintext
input difference of AES is equivalent to the input difference
of the S-box in the first round, meaning:

1U1 = 1P

Similarly, the input difference of the SPN block cipher in
round i is equivalent to the input difference of the S-box in
round i.

We have the differential characteristic n− 1 rounds in the
following form.

((1U1, 1V1, p1), (1U2, 1V2, p2),,

(1Un−1, 1Vn−1, pn−1)) (16)

And the differential of the entire SPN block cipher associated
with the above differential characteristic will have the follow-
ing form.

(1U1, 1Un, p)hay(1P, 1Un, p) (17)

In which p, and pi(1 ≤ i ≤ n − 1) are the corresponding
probabilities of the above differentials. The probability p will
be calculated from the probabilities pi with the assumption
that the differential pairs of the S-boxes are independent
across all rounds.

Now, we will seek ways to find the key bits of the last
subkey in the last round of AES from (18).

Suppose in the obtained differential characteristic, the last
round (round n) involves the input of two active S-boxes,
namely Sn,2 and Sn,5 (the 2nd and 5th S-boxes in round n).
Corresponding to these two S-boxes, there will be a relation-
ship with two bytes of the last subkey in the last round Kn+1.
The notation for these two subkey bytes consists of 16 key

bits [Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,33Kn+1,34 . . .Kn+1,40].
There are a total of 216 possibilities for these 16 key bits. For
each set of these 16 key bits, there will be a corresponding
count value count i(1 ≤ i ≤ 216), initialized to 0.
From (18), we obtain the value of 1Un = (1Un,1, 1Un,2,

. . . 1Un,128) with probability p.
We proceed to partially decrypt at the last round with the

aforementioned two subkey bytes of Kn+1. According to (9),
we have ShiftRow(V n)⊕Kn+1 = C , which implies:

Vn = ShiftRow−1(C ⊕ Kn+1) (18)

Assume that the cryptanalyst collected a large number of
plaintext/ciphertext pairs, and after some filtering techniques,
selected 10,000 pairs of plaintext in the form (P,P′) such that

VOLUME 12, 2024 53169

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

P⊕P′
= 1P. The corresponding ciphertext pairs are denoted

as (C,C ′).
For each plaintext pair and the corresponding cipher-

text pair, attempt all 216 possibilities of the two key bytes
[Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,33Kn+1,34 . . .Kn+1,40].

For each candidate [Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,33
Kn+1,34 . . .Kn+1,40], the cryptanalyst decrypts at the last
round (2 bytes of the ciphertext corresponding to the two key
bytes) as follows:

Vn = ShiftRow−1(C⊕Kn+1) and

V ′
n = ShiftRow−1(C ′

⊕Kn+1)

Because Vn, V ′
n are the outputs of the S-box at round nwith

the corresponding inputsUn,U ′
n, we can calculate by travers-

ing back through the S-box to obtain Un, U ′
n. Calculate:

Un ⊕ U ′
n = 1Un (19)

Check if the two bytes (corresponding to the two key bytes
above in Kn+1) of 1Un obtained from (19) match those
two bytes of 1Un in the differential (18) or not. If they
match, increase the count value corresponding to the candi-
date [Kn+1,9Kn+1,10 . . .Kn+1,16,Kn+1,33Kn+1,34 . . .Kn+1,40]
by one.

Repeat this process with 10,000 plaintext pairs and the cor-
responding ciphertext pairs. The candidate [Kn+1,9Kn+1,10 . . .

Kn+1,16,Kn+1,33Kn+1,34 . . .Kn+1,40] with the highest count
value will be the correct two key bytes of Kn+1.

To proceed with finding the key bits ofKn, the cryptanalyst
utilizes the formula (10) (Un = TP(Vn−1)⊕Kn), where TP is
denoted as the permutation operation of theAES block cipher.

Because some bits of Un,U ′
n have been found, and the

AES block cipher has public components, meaning the per-
mutation operation TP is known, the cryptanalyst continues
to guess the key bits of the subkey Kn (key bits related to the
active S-boxes at round n). Then, from (10), the cryptanalyst
can compute the related bits of Vn−1 (which is Vn−1 =

T−1
P (Un⊕Kn)).
Similarly, the cryptanalyst also computes the related bits

of V ′

n−1. Next, calculate:

Vn−1 ⊕ V ′

n−1 = 1Vn−1 (20)

On the other hand, at round n− 1, we already know the value
of1Vn−1 in the obtained differential characteristic. Compare
the bits of 1Vn−1 in the differential characteristic with the
corresponding bits of 1Vn−1 obtained in (20). If they match,
the guessed key bits may be correct as subkey bits of Kn, and
increase the count value of these candidate key bits. Similarly
to the process abovewith the keyKn+1, we can accurately find
some related key bits of the subkey Kn.
Above is our detailed and general analysis for the differen-

tial attack onAES block cipher based on themethod of Biham
and Shamir [49], [50], [51]. These analyses are dedicated
to the differential cryptanalysis for the original AES block
cipher, meaning that the components of AES such as S-boxes,
AddRoundKey, ShiftRows, and MixColumns are all public.

b: ANALYZING DIFFERENTIAL CRYPTANALYSIS ON THE
DYNAMIC AES BLOCK CIPHER AT THE ADDROUNDKEY
OPERATION
When the AES block cipher is made dynamic in the
AddRoundKey operation, the XOR operation in the
AddRoundKey at the rounds of AES will be replaced by a
dynamically key-dependent XOR operation.
With Ui and Vi being the inputs and outputs of the S-boxes

at the i-th round, we have:

U1 = P⊕K1,U ′

1 = P′
⊕K1

where, ⊕ is denoted as the dynamic key-dependent XOR
operation applied to the AddRoundKey transformation.

Therefore,

1U1 = (P⊕K1) ⊕ (P′
⊕K1) (21)

So, the first challenge in this dynamic case is that the input
difference of the S-box in round 1 depends on the unknown
keyK1, and the cryptanalyst does not know the dynamic XOR
operation ⊕. As a result, they cannot determine the value
of 1U1.

Now, assuming the cryptanalyst is still able to construct
a differential characteristic for n − 1 rounds using the steps
outlined in Table 9, obtaining the corresponding differen-
tial characteristic in (17) and the corresponding differential
in (18).

Next, the cryptanalyst proceeds with decryption in the
final round using a given plaintext pair and a corresponding
ciphertext pair and the key bytes of Kn+1 related to the active
S-boxes operating in round n.

Vn = ShiftRow−1(C⊕Kn+1) and

V ′
n = ShiftRow−1(C ′

⊕Kn+1) (22)

At this point, the cryptanalyst encounters the second chal-
lenge as they cannot decrypt Vn and V ′

n due to the unknown
nature of the ⊕ operation, even if they attempt to guess the
relevant key bits of Kn+1. Consequently, the cryptanalyst is
unable to determine the correct key bits for Kn+1.

Therefore, for the case of dynamic AES block cipher at the
AddRoundKey operation, if cryptanalysts want to perform
a differential attack, they must first determine the dynamic
XOR operation ⊕ used. Even if the cryptanalyst finds the
dynamic XOR operation ⊕, they still face additional difficul-
ties because 1U1 = (P⊕K1) ⊕ (P′

⊕K1) depends on the key
K1. Thus, they continue to try the relevant key bits of K1, and
then they have to choose suitable plaintext pairs so that the
value of 1U1 matches the value of 1U1 in the constructed
differential characteristic of n − 1 rounds. After that, they
proceed with the differential cryptanalysis as usual, but the
probability of selecting correct plaintext pairs/ciphertext pairs
becomes smaller compared to the case of the original AES
block cipher.

Therefore, it is evident that this dynamic AddRoundKey
operation poses significant challenges for cryptanalysts. The
dynamic key-dependent XOR operations ⊕ add an extra

53170 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

difficulty for cryptanalysts compared to the original AES
case. At the very least, the cryptanalyst needs to invest
effort in determining the dynamic XOR operation or dynamic
XOR table used in dynamic AES among the (16!)2 possible
dynamic XOR tables.

Based on the aforementioned analysis, it is evident that
the dynamic AES utilizing key-dependent XOR tables can
substantially enhance the security of the AES block cipher.

3) COMPLEXITY ANALYSIS OF LINEAR AND DIFFERENTIAL
ATTACKS ON AES AND DYNAMIC AES
For linear cryptanalysis, the related S-boxes in linear approx-
imations are active S-boxes. The probability of a linear
expression being correct is related to the linear probability
bias in the active S-boxes and the number of active S-
boxes. In general, the larger the bias in the S-boxes, the
larger the bias of the overall linear expression. Also, the
fewer active S-boxes, the larger the bias of the overall linear
expression.

With ε denoting the bias from 1/2 of the probability for
the linear expression to hold true for the entire block cipher,
Matsui [48] showed that the quantity of known plaintexts
needed for a linear attack scale proportionally with ε−2.
Denote by NL the quantity of plaintexts needed for the attack,
meaning that when there are NL known plaintexts, the linear
attack can be carried out. In that case,

NL ≈
1
ε2

(23)

As the bias is determined through the utilization of the Piling-
Up Lemma, wherein product refers to a linear approximation
of an S-box, it’s clear that the bias relies on the biases of
the linear approximations of the S-boxes and the quantity
of engaged active S-boxes. Common approaches to enhanc-
ing resilience against linear cryptanalysis have centered on
improving the S-boxes (i.e., reducing the highest bias) and
discovering configurations to maximize the quantity of active
S-boxes. The design methodology employed in Rijndael
stands as a noteworthy illustration of this strategy.

For differential cryptanalysis, active S-boxes within a dif-
ferential characteristic are S-boxes with a non-zero input
difference (and thus a non-zero output difference). Typically,
the greater the differential probabilities associated with active
S-boxes, the higher the probability of the overall characteris-
tic across the cipher. Similarly, fewer active S-boxes lead to
a higher probability of the characteristic. Analogous to linear
cryptanalysis, we refer to the required data for conducting a
differential attackwhen assessing the complexity of the crypt-
analysis. This means that if we have ND pairs of plaintexts,
we can carry out a differential attack.

Typically, precisely ascertaining the precise count of
selected plaintext pairs needed to carry out a successful differ-
ential attack poses significant complexity. Nonetheless, it can
be demonstrated [49], [50], [51] that there exists a straight-
forward and efficient guideline for estimating the requisite

quantity of chosen plaintext pairs ND as follow.

ND ≈
c
pD

(24)

Given that pD represents the probability of the differential
characteristic for the n− 1 rounds of the n-round cipher and
c is a minor constant, if we suppose that the appearances of
difference pairs in every active S-box are unrelated, then the
differential characteristic probability can be expressed as:

pD =

∏τ

i=1
pd i (25)

where τ stands for the count of active S-boxes, and the
likelihood of the specific difference pair appearing in the
i-th active S-box of the characteristic is denoted by pdi.

Efforts to resist against differential cryptanalysis have
concentrated on optimizing the characteristics of S-boxes
(such as reducing the probability of difference pairs in an
S-box) and identifying arrangements to increase the quantity
of active S-boxes. Rijndael serves as a notable instance of a
cipher engineered to offer robust protection against differen-
tial cryptanalysis.

Thus, the prerequisite task is to identify specific differen-
tial characteristics/linear expressions with high probabilities
before conducting a differential/linear attack. To impart prac-
tical relevance to cryptographic constructions, Knudsen [57]
introduced the concept of practical resilience against differen-
tial and linear cryptanalysis by showing the non-existence of
a differential characteristic or a linear expression with a prob-
ability high enough to enable a successful attack. In essence,
we ascertain a cipher’s practical security when the minimum
complexity bound of the characteristics/expressions can be
suitably low. The prevalent method involves tallying the least
number of active S-boxes (differential and linear) throughout
the block cipher’s rounds, as employed in the wide trail
strategy of AES ([23]).
In [37], the authors proposed a dynamic modified AES

algorithm and also assess its security using an approach that
involves identifying active S-boxes; however, their evalua-
tion is quite rudimentary. In [58], the authors evaluate linear
cryptanalysis on one and two rounds of AES and assess
the success rates on single and multi-systems. In [59], the
authors analyzed the potential of linear cryptanalysis against
the SimplifiedAESAlgorithm (SAES). Based on the findings
of this linear cryptanalysis, it was demonstrated that linear
calculations can compromise the security of both the first and
second rounds of SAES.

Daemen and Rijmen introduced the wide trail strategy
in [22] and [23] as a design approach aimed at maxi-
mizing the active S-boxes by selecting appropriate linear
transformations. This strategy focuses on employing con-
cise and efficient transformations to ensure sufficient active
S-boxes throughout the encryption process. It is utilized
in crafting SPN-based encryption schemes like AES, LED,
Kalyna, among others. In their work [23], the AES authors
demonstrated that the minimum number of active S-boxes
in AES within any 4-round differential characteristic or

VOLUME 12, 2024 53171

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

TABLE 10. Number of active S-boxes across the encryption rounds of AES
and dynamic AES.

linear approximation is 25 (see more in Theorem 9.5.1,
page 142 in [23])

Since the dynamic AES algorithmwe propose in this paper
only involves dynamic XOR operations in the AddRoundKey
transformation, the substitution boxes and diffusion layer of
dynamic AES remain the same as AES. Therefore, the wide
trail strategy of AES is preserved in dynamic AES. Conse-
quently, the total number of active S-boxes across rounds
can be summarized, and the total number of active S-boxes
across rounds for both AES and dynamic AES is presented in
Table 10.

For both AES and dynamic AES, the S-box used in the
SubByte transformation has the following parameters:

+ The maximum differential probability is
Max

(
pd i

)
= 2−6.

+Themaximum linear probability bias is:Max (ε) = 2−3.
In this case, the formulas for calculating the data complex-

ity against linear cryptanalysis and differential cryptanalysis
are as follows.

Let S(t) denote the number of active S-boxes after t rounds
of the AES block cipher and dynamic AES. S(t) can be
obtained from Table 10.

Then, from equations (24) and (26), the data complexity of
the AES block cipher and dynamic AES against differential
cryptanalysis at the t-th round can be calculated using the
following formula:

ND ≈
1

Max
(
pd i

)S(t) (26)

From (23) and the Piling-Up Lemma, the data complexity
of the AES block cipher and dynamic AES against linear
cryptanalysis at the t-th round can be calculated using the
following formula:

NL ≈
1

Max (ε)2S(t)
(27)

Therefore, from Table 10 and formulas (26) and (27), the
lower bounds of data complexity for linear cryptanalysis and
differential cryptanalysis against AES and dynamic AESwith
a 128-bit key version are determined in Table 11.
From Table 11, it can be observed that with a 128-bit secret

key, after 4 rounds both AES and dynamic AES algorithms
are secure against linear and differential cryptanalysis. It is

TABLE 11. Data complexity of linear cryptanalysis and differential
cryptanalysis against AES and dynamic AES.

noteworthy that the data complexity of dynamic AES here
is when we assume the attacker is guessing two specific
dynamic XOR tables used in dynamic AES.

On the other hand, as we have analyzed in detail above,
a prerequisite for both differential and linear cryptanalysis is
to find differential characteristics or linear expressions with
high probabilities. However, when using dynamic AES with
key-dependent XOR tables in the AddRoundKey operation,
cryptanalysis becomes extremely difficult because without
knowing which dynamic XOR tables are used, attackers
face significant obstacles in finding such characteristics and
expressions. In this paper, we employ (16!)2 key-dependent
XOR tables for dynamic AES. Therefore, cryptanalysts must
first identify the exact two XOR tables we use alternately for
rounds before they can proceed with their cryptanalysis.

Furthermore, with differential cryptanalysis, as analyzed
above, even if cryptanalysts manage to identify the dynamic
XOR operations as ⊕, they still encounter additional diffi-
culties because 1U1 = (P⊕K1) ⊕ (P′

⊕K1) depends on the
key K1. Therefore, they continue to need to test related key
bits of K1, then they have to select appropriate plaintext pairs
to match the value of 1U1 with the value of 1U1 in the
previously constructed n−1 round differential characteristic.
Only then can they proceed with differential cryptanalysis as
usual; however, at that point, the probability of selecting cor-
rect plaintext/ciphertext pairs will be even smaller compared
to the case of the original AES block cipher.

4) SOME LIMITATIONS OF OUR METHOD
Our approach can significantly enhance the security of the
AES block cipher; however, it also has some limitations and
vulnerabilities, such as:

53172 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

• In the implementation, additional memory space must
be allocated for the new XOR table. Certainly, we do not
pre-generate all the XOR tables but generate a newXOR
table for each session corresponding to a secret key,
then store this new XOR table throughout that session.
When transitioning to another session with other key,
a newXOR table is generated once again. Therefore, this
XOR table needs to be safeguarded until the end of that
session.

• Generating key-dependent XOR tables will impact the
encryption/decryption time. Because for each session
using a secret key, both the sender and receiver must
execute Algorithm 1 to generate a newXOR table before
using it for AES. Therefore, it will take some time at the
beginning of a session for both parties to generate a new
XOR table.

• Algorithm 1 utilizes a pseudo-random number genera-
tor, hence the security of this algorithm is also influenced
by the security of the random number generator it
employs. Therefore, it is essential to select a crypto-
graphically secure random number generator.

Our proposed method in this paper can enhance the secu-
rity of the AES block cipher against various strong attacks,
such as linear and differential attacks. However, it is impor-
tant to note that side-channel attacks can be used to extract
encryption key information by analyzing the physical char-
acteristics of the system. Therefore, both static and dynamic
block ciphers can be vulnerable to this type of attack. Hence,
regardless of the cryptographic system in use, users should
ensure that appropriate countermeasures are in place to pre-
vent side-channel attacks, such as using secure hardware or
implementing software-based countermeasures.

Our proposed dynamic AES algorithm can be applied to
systems demanding very high levels of security and can
be used to protect highly sensitive data. The dynamic AES
algorithm operates similarly to AES, making it integratable
into existing standards, protocols, and systems. However,
the challenge arises when the secret key changes, mean-
ing a switch to a different session, dynamic AES needs
to be reconfigured as it relies on that specific secret key.
Hence, the dynamic AES algorithm is best suited for systems
using session keys for relatively long periods, which can
reduce administrative effort. On the other hand, hardening
the dynamic AES algorithm can be problematic since the
algorithm changes with the session key. Therefore, depending
on the real-world environment and application, users can
apply the proposed dynamic AES algorithm with the primary
goal of enhancing the security of their data

B. ASSESSMENT OF RANDOMNESS VIA THE NIST TESTS
It is imperative for any cryptographic module to ensure that
the redundancies at the input do not compromise the output.
During the selection process of AES finalists, NIST utilized a
method of concatenating the output strings of cryptographic
primitives, followed by an evaluation of the randomness
through NIST SP 800-22 test suite [53]. However, it is

crucial to treat the cryptographic primitives as a PRNG while
making such evaluations, and the results of the randomness
assessment are applicable to the PRNG rather than the cryp-
tographic primitive being evaluated.

Several tests have been proposed in the literature in
order to evaluate the randomness of the altered AES block
cipher. In [54], the authors suggested using Collision Test,
Linear Span Test, SAC Test, and Coverage Test to eval-
uate cryptographic criteria for hash functions and block
ciphers.

Block ciphers in particular, and symmetric-key primi-
tives in general, need to satisfy a fundamental requirement:
randomness. Currently, there are two main strategies for
assessing the randomness of these primitives, as follows.

1) TESTING RANDOMNESS FOR CRYPTOGRAPHIC
FUNCTIONS AS WITH A PRNG
In this approach, a cryptographic function is treated as a
pseudo-random number generator (PRNG). In this case, the
randomness of the output can be assessed using statistical
tests designed for pseudo-random number generators. Com-
monly used statistical test suites include Diehard, Dieharder,
ENT, TestU01, and the NIST SP 800-22 test suite.

Although the title of the NIST SP 800-22 test suite [60]
states that it is for ‘‘cryptography applications,’’ in reality, it is
a general-purpose statistical test suite designed to evaluate
the randomness of binary sequences-unlike statistical tests
for sequences of evenly distributed integers or real num-
bers, as commonly seen in other test suites. The NIST test
suite does not concern itself with the origin of the binary
sequences, whether they come from a cryptographic function
or another source.

In practice, there arises an issue when using the NIST
SP 800-22 test suite (or any statistical test suite) to assess a
cryptographic function that produces fixed-length output due
to the fact that the cryptographic function is not a PRNG;
it does not generate an arbitrarily long binary sequence.
To apply the NIST test suite to a cryptographic function, the
function must be adjusted to operate as a PRNG and produce
binary sequences of sufficient length. The NIST SP 800-
22 specification document does not specify how this should
be done. NIST has published a document [61] describing
how NIST implements candidate block ciphers in the AES
competition to generate long binary sequences. The technique
used is encrypting a long sequence of 0 bits using block
cipher in Cipher Block Chaining (CBC) mode with randomly
chosen different keys and applying the test suite to the result-
ing ciphertext sequence. Another similar technique involves
encrypting a sequence of all 1 bits instead of a long sequence
of all 0 bits using block cipher in ECB mode.

However, when a block cipher is transformed into a PRNG
and subjected to the NIST test suite (or another test suite),
it is testing the randomness of the PRNG, not the inherent
randomness of the block cipher itself. If a non-random bias
is detected in the output, it is unclear whether that bias

VOLUME 12, 2024 53173

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

stems from the block cipher or is introduced by the mode of
operation used.

2) TESTING THE RANDOMNESS OF CRYPTOGRAPHIC
FUNCTIONS DIRECTLY AS A RANDOM MAPPING
In fact, there are some studies analyzing the randomness
of the mapping of cryptographic functions directly, without
considering the function as a PRNG. Specifically, Filiol [62]
defined a statistical test based on comparing the algebraic
normal form of the cryptographic function with the alge-
braic normal form of a random Bool function, and applied
the test to DES and AES block ciphers as well as some
stream ciphers and hash functions. Katos [63] defined a
statistical test to measure the diffusion of the block cipher
mapping but did not apply the test to any actual block
cipher. Doğanaksoy et al. [54] defined four statistical tests
based on block cipher mappings - strict avalanche criterion
(SAC), linear span test, collision test, and coverage test -
and applied these tests to candidates in the final round of
AES selection. These authors also applied the methodology
of [54] and [56] to second-round SHA-3 candidate hash func-
tions [64]. In addition to frequency-based approaches like
those above, in [65], the authors used Bayesian approaches to
assess the randomness of block ciphers and hash functions.
In the literature, there are several approaches to assessing
randomness, as outlined in [66]. In this document, the authors
presented the outcomes of NIST’s statistical analyses con-
ducted on diverse datasets derived from the output of every
feasible truncated iteration of the finalists from the NIST
Lightweight standardization procedure.

However, in this paper, we rely on the approach out-
lined in [55], which we find most reasonable for evaluating
the randomness of proposed block ciphers, particularly by
employing the NIST SP 800-22 test suite with adjustments
for short sequences to suit block cipher evaluations. The input
to the block cipher consists of keys and plaintexts, where we
use non-random plaintext datasets and two scenarios of com-
pletely zero keys and random keys to assess the randomness
of the block cipher. When the input data is non-random and
the evaluation result is random, then the randomness must
stem from the block cipher’s structure. In practice, keys used
are generated from random number generators that satisfy
stringent standards such as NIST SP 800-90 or AIS20/AIS31,
so we do not consider randomness testing standards for keys.
Furthermore, the scope of the paper necessitates evaluating
the randomness of the block cipher rather than assessing the
keys.

In [55], the author proposed a technique for assessing the
randomness of hash functions and block ciphers by gener-
ating input data sets with redundancy and calculating their
corresponding outputs that use the cryptographic primitives.
The randomness of the output data sets is then checked
using statistical tests. If the data exhibits randomness, it is
evident that the cryptographic primitive is the source of the

randomness; otherwise, the cryptographic primitive cannot
be attributed with any randomness. Our aim is to assess the
output randomness of the altered AES block cipher using
these methods, assuming that the algorithm being tested is
a mapping Fm2 × Fn2 → Fn2 , where n is the block size and m
is the key size of the altered block cipher.

Evaluation Process: The process employed to assess the
randomness of the output from the altered AES block cipher
is as follows.

1. As outlined in [55], there are four types of datasets
used as input to be considered for the block cipher: High
Weight (HW) Plaintext, Plaintext rotation (Rot), 1-bit Plain-
text avalanche (Av1), Low Weight (LW) Plaintext data sets,
all of which are non-random in nature.

2. Calculate the output dataset of the cipher, corresponding
to the data generated as the first step of the process, and the
discretionary key, for each truncated version of the cipher.
In the case of, for example, the LowWeight 128-bit (LW128)
input dataset, calculate 10 output sequences for each altered
cipher with round numbers ranging between 1 and 10,
each output sequence comprising 349,632 output sets of
input strings of128-bit from the Low Weight 128-bit input
data.

3. Derive the p-values for each of output strings by utilizing
the two-tiered testing methodology (from NIST) with some
adjustment made for statistical testing of short strings.

4. One can conclude that a T -round block cipher can only
be considered random if all its corresponding output data sets
satisfy the below statistical tests, as evidenced by the results
and consequences.

Note: In this context, the variable T refers to the round
number performed by the cipher.

Statistical Tests: Within this manuscript, we adopt a
dual-tiered testing methodology as prescribed in NIST SP
800-22 [46]. The distribution of p-values resulting from the
tests, when applied to brief sequences, has been analyzed and
demonstrated in [56].

Our assessment encompassed both AES and the altered
AES, and we examined two scenarios regarding the choice
of the master key: a random key and a zero key. The findings
indicated that the altered version achieves output randomness
akin to AES. Table 12 displays the outcome of a specific
scenario in which input data set AV1 was used in conjunction
with a random key.

We present the results of the randomness evaluation for
AES and the modified AES from Table 12 using Figure 5 and
Figure 6.
We can observe that the original AES algorithm achieves

randomness after three rounds with the input data AV1 and a
random key, whereas the modified AES algorithm achieves
randomness after only two rounds with similar data and a
random key.

The summary results are presented in Table 13.
To sum up, we can see that both the original and modified

AES algorithms achieve randomness after three rounds with a

53174 VOLUME 12, 2024

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

TABLE 12. The results of the randomness evaluation for the AV1 data set
using a random key of AES-128 and the altered AES-128.

FIGURE 5. Randomness evaluation results of AES.

FIGURE 6. Randomness evaluation results of the altered AES.

random key and input data sets LW, HW, Av1, Rot. Also, both
the AES and altered AES algorithms achieve randomness

TABLE 13. The findings of the randomness assessment for the AES-128
and the altered AES.

after four rounds with input data sets LW, HW, Av1, Rot, and
zero key.

V. CONCLUSION
In an effort to enhance the strength of SPN block ciphers,
including the AES block cipher, dynamic approaches may
target individual parts of the ciphers, such as the dif-
fusion layer transformation, substitution transformation,
or both. This manuscript introduces a technique for render-
ing AES dynamic at the key addition transformation with
key-dependent XOR tables. Within this study, we outline the
requisite characteristics of an XOR table and we prove the
correctness of the new XOR table generated by our method.
Notably, the revised XOR operation canmaintain the uniform
probability and independent distribution of the random key
in the ciphertext. We analyze the security of the altered AES
block cipher, and the number of key-dependent XOR tables
that can be created through our approach is equivalent to
(16!)2. With such an extensive array of new XOR tables,
cryptanalysts will face significant challenges in ascertaining
the specific XOR table employed in the altered AES block
cipher. Lastly, both the AES block cipher and dynamic AES
block cipher were assessed for randomness utilizing NIST
statistical criteria. The results of the experiment indicate that
both the altered AES andAES algorithms exhibit randomness
after three rounds with a random key and input data sets Rot,
HW, LW, Av1, and after four rounds with a zero key and
input data sets Rot, HW, LW, Av1, both exhibit randomness.
Therefore, the method proposed has the ability to generate
a dynamic AES block cipher that strengthens the strength of
AES against various powerful attacks targeting block ciphers.
In our upcoming research, we plan to integrate dynamic tech-
niques into the substitution, key addition, and diffusion layers
to enhance the security of SPN block ciphers even further.
Simultaneously making multiple components of the block
cipher dynamic will make it more challenging for attackers
to carry out attacks. We will also invest more time and effort
in researching specific attacks, especially conducting linear
and differential attacks against the proposed dynamic block
ciphers.

VOLUME 12, 2024 53175

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

REFERENCES
[1] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ Bell Syst.

Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.
[2] P. L. Andono and D. R. I. M. Setiadi, ‘‘Improved pixel and bit

confusion-diffusion based on mixed chaos and hash operation for image
encryption,’’ IEEE Access, vol. 10, pp. 115143–115156, 2022, doi:
10.1109/ACCESS.2022.3218886.

[3] E. Winarno, K. Nugroho, P. W. Adi, and D. R. I. M. Setiadi, ‘‘Combined
interleaved pattern to improve confusion-diffusion image encryption based
on hyperchaotic system,’’ IEEE Access, vol. 11, pp. 69005–69021, 2023,
doi: 10.1109/ACCESS.2023.3285481.

[4] S. Beg, N. Ahmad, A. Anjum, M. Ahmad, A. Khan, F. Baig, and A. Khan,
‘‘S-box design based on optimize LFT parameter selection: A practical
approach in recommendation system domain,’’ Multimedia Tools Appl.,
vol. 79, nos. 17–18, pp. 11667–11684, May 2020, doi: 10.1007/s11042-
019-08464-6.

[5] S. Mister and C. Adams, ‘‘Practical S-box design,’’ in Proc. Workshop Sel.
Areas Cryptography (SAC), vol. 96, Aug. 1996, pp. 61–76.

[6] A. M. Youssef and S. E. Tavares, ‘‘Resistance of balanced S-boxes to
linear and differential cryptanalysis,’’ Inf. Process. Lett., vol. 56, no. 5,
pp. 249–252, Dec. 1995, doi: 10.1016/0020-0190(95)00156-6.

[7] B. W. Koo, H. S. Jang, and J. H. Song, ‘‘On constructing of a 32 × 32
binary matrix as a diffusion layer for a 256-bit block cipher,’’ in Proc. Int.
Conf. Inf. Secur. Cryptol., Germany. Berlin, Springer, 2006, pp. 51–64.

[8] M. Kumar, P. Yadav, S. Pal, and A. Panigrahi, ‘‘Secure and efficient
diffusion layers for block ciphers,’’ J. Appl. Comput. Sci. Math., vol. 11,
no. 2, pp. 15–20, 2017.

[9] H. N. Noura and A. Chehab, ‘‘Efficient binary diffusion matrix structures
for dynamic key-dependent cryptographic algorithms,’’ J. Inf. Secur. Appl.,
vol. 68, Aug. 2022, Art. no. 103264.

[10] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger,
‘‘On a generalization of substitution-permutation networks: The HADES
design strategy,’’ in Proc. 39th Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. (EUROCRYPT), Zagreb, Croatia. Springer, 2020, pp. 674–704.
[Online]. Available: https://eprint.iacr.org/2019/1107, doi: 10.1007/978-3-
030-45724-2_23.

[11] H. M. Heys and S. E. Tavares, ‘‘Substitution-permutation networks resis-
tant to differential and linear cryptanalysis,’’ J. Cryptol., vol. 9, no. 1,
pp. 1–19, 1996.

[12] H. M. Heys and S. E. Tavares, ‘‘Avalanche characteristics of substitution-
permutation encryption networks,’’ IEEE Trans. Comput., vol. 44, no. 9,
pp. 1131–1139, Sep. 1995.

[13] J. B. Kam and G. I. Davida, ‘‘Structured design of substitution-
permutation encryption networks,’’ IEEE Trans. Comput., vol. C-28,
no. 10, pp. 747–753, Oct. 1979.

[14] R. Li, B. Sun, and C. Li, ‘‘Impossible differential cryptanalysis of SPN
ciphers,’’ IET Inf. Secur., vol. 5, no. 2, pp. 111–120, 2011, doi: 10.1049/iet-
ifs.2010.0174.

[15] H. Q. Le, B. Vo, D. H. Duong, W. Susilo, N. T. Le, K. Fukushima,
and S. Kiyomoto, ‘‘Identity-based linkable ring signatures from
lattices,’’ IEEE Access, vol. 9, pp. 84739–84755, 2021, doi:
10.1109/ACCESS.2021.3087808.

[16] R. Guo, H. Shi, Q. Zhao, and D. Zheng, ‘‘Secure attribute-based signa-
ture scheme with multiple authorities for blockchain in electronic health
records systems,’’ IEEE Access, vol. 6, pp. 11676–11686, 2018, doi:
10.1109/ACCESS.2018.2801266.

[17] A. Waheed, A. I. Umar, N. Din, N. U. Amin, S. Abdullah, and P. Kumam,
‘‘Cryptanalysis of an authentication scheme using an identity based gen-
eralized signcryption,’’Mathematics, vol. 7, no. 9, p. 782, Aug. 2019, doi:
10.3390/math7090782.

[18] N. Din, A. Waheed, M. Zareei, and F. Alanazi, ‘‘An improved identity-
based generalized signcryption scheme for secure multi-access edge
computing empowered flying ad hoc networks,’’ IEEE Access, vol. 9,
pp. 120704–120714, 2021, doi: 10.1109/ACCESS.2021.3108130.

[19] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, and W. Yan, ‘‘LedgerDB:
A centralized ledger database for universal audit and verification,’’ Proc.
VLDB Endowment, vol. 13, no. 12, pp. 3138–3151, Aug. 2020.

[20] D. L. Fekete and A. Kiss, ‘‘A survey of ledger technology-based
databases,’’ Future Internet, vol. 13, no. 8, p. 197, Jul. 2021.

[21] Z.-K. Gao, A.-A. Liu, Y. Wang, M. Small, X. Chang, and J. Kurths, ‘‘IEEE
access special section editorial: Big data learning and discovery,’’ IEEE
Access, vol. 9, pp. 158064–158073, 2021.

[22] J. Daemen and V. Rijmen, ‘‘AES proposal: Rijndael,’’ in Proc. 1st Adv.
Encryption Conf., 1998, pp. 1–45.

[23] J. Daemen and V. Rijmen, The Design of Rijndael, vol. 2. New York, NY,
USA: Springer-Verlag, 2002.

[24] L. R. Knudsen and C. V.Miolane, ‘‘Counting equations in algebraic attacks
on block ciphers,’’ Int. J. Inf. Secur., vol. 9, no. 2, pp. 127–135, Apr. 2010,
doi: 10.1007/s10207-009-0099-9.

[25] X. Lai, J. L. Massey, and S. Murphy, ‘‘Markov ciphers and differential
cryptanalysis,’’ in Proc. Adv. Cryptology-EUROCRYPT Workshop Theory
Appl. Cryptograph. Techn., Brighton, U.K. Berlin, Germany: Springer,
Apr. 1991, pp. 17–38.

[26] M. Rahman and G. Paul, ‘‘Grover on KATAN: Quantum resource
estimation,’’ IEEE Trans. Quantum Eng., vol. 3, pp. 1–9, 2022, doi:
10.1109/TQE.2022.3140376.

[27] P. Agarwal, A. Singh, and A. Kilicman, ‘‘Development of key-
dependent dynamic S-boxes with dynamic irreducible polynomial
and affine constant,’’ Adv. Mech. Eng., vol. 10, no. 7, Jul. 2018,
Art. no. 168781401878163, doi: 10.1177/1687814018781638.

[28] A. Y. Al-Dweik, I. Hussain, M. Saleh, and M. T. Mustafa, ‘‘A novel
method to generate key-dependent s-boxes with identical algebraic prop-
erties,’’ J. Inf. Secur. Appl., vol. 64, Feb. 2022, Art. no. 103065, doi:
10.1016/j.jisa.2021.103065.

[29] H. T. Assafli and I. A. Hashim, ‘‘Generation and evaluation of a new time-
dependent dynamic S-box algorithm for AES block cipher cryptosystems,’’
IOPConf. Ser., Mater. Sci. Eng., vol. 978, no. 1, 2020, Art. no. 012042, doi:
10.1088/1757-899X/978/1/012042.

[30] A. Ejaz, I. A. Shoukat, U. Iqbal, A. Rauf, and A. Kanwal, ‘‘A secure key
dependent dynamic substitution method for symmetric cryptosystems,’’
PeerJ Comput. Sci., vol. 7, p. e587, Jul. 2021.

[31] K. Kazlauskas and J. Kazlauskas, ‘‘Key-dependent S-box generation
in AES block cipher system,’’ Informatica, vol. 20, no. 1, pp. 23–34,
Jan. 2009.

[32] S.Murphy andM. J. B. Robshaw, ‘‘Key-dependent S-boxes and differential
cryptanalysis,’’ Des., Codes Cryptogr., vol. 27, no. 3, pp. 229–255, 2002.

[33] T. T. Luong, ‘‘Building the dynamic diffusion layer for SPN block ciphers
based on direct exponent and scalar multiplication,’’ J. Sci. Technol. Inf.
Secur., vol. 1, no. 15, pp. 38–45, Jun. 2022.

[34] G. Murtaza, A. A. Khan, S. W. Alam, and A. Farooqi, ‘‘Fortification of
AES with dynamic mix-column transformation,’’ Cryptol. ePrint Arch.,
Tech. Paper 2011/184, pp. 1–13, Jan. 2011.

[35] M. R. M. Shamsabad and S. M. Dehnavi, ‘‘Dynamic MDS diffusion layers
with efficient software implementation,’’ Int. J. Appl. Cryptography, vol. 4,
no. 1, pp. 36–44, 2020, doi: 10.1504/ijact.2020.107164.

[36] L. Tran Thi, ‘‘Fast computation of direct exponentiation to speed up imple-
mentation of dynamic block ciphers,’’ J. Comput. Sci. Cybern., vol. 38,
no. 4, pp. 365–375, Dec. 2022, doi: 10.15625/1813-9663/38/4/17226.

[37] A. Altigani, S. Hasan, B. Barry, S. Naserelden, M. A. Elsadig, and
H. T. Elshoush, ‘‘A polymorphic advanced encryption standard—A
novel approach,’’ IEEE Access, vol. 9, pp. 20191–20207, 2021, doi:
10.1109/ACCESS.2021.3051556.

[38] V. Sawant, A. Solkar, and R. Mangrulkar, ‘‘Modified symmetric image
encryption approach based on mixed column and substitution box,’’
J. Appl. Secur. Res., vol. 19, no. 2, pp. 196–229, Apr. 2024, doi:
10.1080/19361610.2022.2150498.

[39] T. Xu, F. Liu, and C. Wu, ‘‘A white-box AES-like implementation based
on key-dependent substitution-linear transformations,’’ Multimedia Tools
Appl., vol. 77, no. 14, pp. 18117–18137, Jul. 2018, doi: 10.1007/s11042-
017-4562-8.

[40] A. Belazi, A. A. Abd El-Latif, A.-V. Diaconu, R. Rhouma, and S. Belghith,
‘‘Chaos-based partial image encryption scheme based on linear fractional
and lifting wavelet transforms,’’ Opt. Lasers Eng., vol. 88, pp. 37–50,
Jan. 2017, doi: 10.1016/j.optlaseng.2016.07.010.

[41] B. B. Cassal-Quiroga and E. Campos-Cantón, ‘‘Generation of dynamical
S-boxes for block ciphers via extended logistic map,’’ Math. Problems
Eng., vol. 2020, pp. 1–12, Mar. 2020, doi: 10.1155/2020/2702653.

[42] H. R. Shakir, S. A. A. Mehdi, and A. A. Hattab, ‘‘A dynamic S-
box generation based on a hybrid method of new chaotic system and
DNA computing,’’ TELKOMNIKA Telecommunication Comput. Electron.
Control, vol. 20, no. 6, pp. 1230–1238, Dec. 2022, doi: 10.12928/telkom-
nika.v20i6.23449.

[43] A. I. Salih, A. Alabaichi, and A. S. Abbas, ‘‘A novel approach for enhanc-
ing security of advance encryption standard using private XOR table and
3D chaotic regarding to software quality factor,’’ ICIC Exp. Lett. B, Appl.,
Int. J. Res. Surv., vol. 10, no. 9, pp. 823–832, 2019, doi: 10.24507/ici-
celb.10.09.823.

53176 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2022.3218886
http://dx.doi.org/10.1109/ACCESS.2023.3285481
http://dx.doi.org/10.1007/s11042-019-08464-6
http://dx.doi.org/10.1007/s11042-019-08464-6
http://dx.doi.org/10.1016/0020-0190(95)00156-6
http://dx.doi.org/10.1007/978-3-030-45724-2_23
http://dx.doi.org/10.1007/978-3-030-45724-2_23
http://dx.doi.org/10.1049/iet-ifs.2010.0174
http://dx.doi.org/10.1049/iet-ifs.2010.0174
http://dx.doi.org/10.1109/ACCESS.2021.3087808
http://dx.doi.org/10.1109/ACCESS.2018.2801266
http://dx.doi.org/10.3390/math7090782
http://dx.doi.org/10.1109/ACCESS.2021.3108130
http://dx.doi.org/10.1007/s10207-009-0099-9
http://dx.doi.org/10.1109/TQE.2022.3140376
http://dx.doi.org/10.1177/1687814018781638
http://dx.doi.org/10.1016/j.jisa.2021.103065
http://dx.doi.org/10.1088/1757-899X/978/1/012042
http://dx.doi.org/10.1504/ijact.2020.107164
http://dx.doi.org/10.15625/1813-9663/38/4/17226
http://dx.doi.org/10.1109/ACCESS.2021.3051556
http://dx.doi.org/10.1080/19361610.2022.2150498
http://dx.doi.org/10.1007/s11042-017-4562-8
http://dx.doi.org/10.1007/s11042-017-4562-8
http://dx.doi.org/10.1016/j.optlaseng.2016.07.010
http://dx.doi.org/10.1155/2020/2702653
http://dx.doi.org/10.12928/telkomnika.v20i6.23449
http://dx.doi.org/10.12928/telkomnika.v20i6.23449
http://dx.doi.org/10.24507/icicelb.10.09.823
http://dx.doi.org/10.24507/icicelb.10.09.823

T. T. Luong et al.: AES Security Improvement by Utilizing New Key-Dependent XOR Tables

[44] A. I. Salih, A. M. Alabaichi, and A. Y. Tuama, ‘‘Enhancing advance
encryption standard security based on dual dynamic XOR table and Mix-
Columns transformation,’’ Indonesian J. Electr. Eng. Comput. Sci., vol. 19,
no. 3, p. 1574, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1574-1581.

[45] R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural
and Medical Research, Ra Fisher and F. Yates, Eds. Edinburgh, Scotland:
Oliver and Boyd, 1963.

[46] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, ‘‘A statistical test
suite for random and pseudorandom number generators for cryptographic
applications,’’ Booz-Allen Hamilton Inc., McLean, VA, USA, Tech. Rep.,
2001, vol. 22.

[47] M. O. Saarinen, ‘‘SP 800–22 and GM/T 0005–2012 tests: Clearly
obsolete, possibly harmful,’’ in Proc. IEEE Eur. Symp. Secur.
Privacy Workshops (EuroS&PW), Jun. 2022, pp. 31–37, doi:
10.1109/EuroSPW55150.2022.00011.

[48] M. Matsui, ‘‘Linear cryptanalysis method for DES cipher,’’ in Proc. Work-
shop Theory Appl. Cryptograph. Techn. (EUROCRYPT), Lofthus, Norway.
Berlin, Germany: Springer, 1994, pp. 386–397.

[49] H.M. Heys, ‘‘A tutorial on linear and differential cryptanalysis,’’Cryptolo-
gia, vol. 26, no. 3, pp. 189–221, Jul. 2002.

[50] E. Biham and A. Shamir, ‘‘Differential cryptanalysis of DES-like cryp-
tosystems,’’ J. Cryptol., vol. 4, no. 1, pp. 3–72, Jan. 1991.

[51] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryp-
tion Standard. Springer, 1993. [Online]. Available: https://link.springer.
com/book/10.1007/978-1-4613-9314-6

[52] L. T. Keliher, ‘‘Linear cryptanalysis of substitution-permutation net-
works,’’ Ph.D. thesis, Queen’s Univ., Canada, 2003. [Online]. Available:
https://dl.acm.org/doi/10.5555/1037576

[53] J. Soto, ‘‘Randomness testing of the advanced encryption standard can-
didate algorithms,’’ U.S. Dept. Commerce, Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. NISTIR 6390, pp. 1-9, Sep. 1999.

[54] A. Doǧanaksoy, B. Ege, O. Koçak, and F. Sulak, ‘‘Cryptographic random-
ness testing of block ciphers and hash functions,’’ Cryptol. ePrint Arch.,
Tech. Paper 2010/564, pp. 1–12, Jan. 2010.

[55] F. Sulak, ‘‘Statistical analysis of block ciphers and hash functions,’’
Ph.D. thesis, Middle East Technical Univ., 2011. [Online]. Available:
http://etd.lib.metu.edu.tr/upload/12613045/index.pdf

[56] F. Sulak, A. Doǧanaksoy, B. Ege, and O. Koçak, ‘‘Evaluation of random-
ness test results for short sequences,’’ in Proc. Int. Conf. Sequences Their
Appl. Berlin, Germany: Springer, 2010, pp. 309–319, doi: 10.1007/978-3-
642-15874-2_27.

[57] L. R. Knudsen, ‘‘Practically secure Feistel ciphers,’’ in Proc. Int. Workshop
Fast Softw. Encryption. Berlin, Germany: Springer, 1993, pp. 211–221.

[58] K. Sakamura, W. X. Dong, and H. Ishikawa, ‘‘A study on the linear
cryptanalysis of AES cipher,’’ Okayama Univ. Fac. Environ. Sci. Technol.
Res., Okayama, Japan, Tech. Rep. 9, 2004, pp. 19–26. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-36159-6_29

[59] S. D. Mansoori and H. K. Bizaki, ‘‘On the vulnerability of simplified AES
algorithm against linear cryptanalysis,’’ Int. J. Comput. Sci. Netw. Secur.,
vol. 7, no. 7, pp. 257–263, 2007.

[60] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, and S. Vo, A Statistical Test Suite for Random and Pseu-
dorandom Number Generators for Cryptographic Applications, document
NIST SP 800-22 Rev. 1, Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, 2010.

[61] J. Soto and L. E. Bassham, ‘‘Randomness testing of the advanced
encryption standard finalist candidates,’’ U.S. Dept. Commerce, Nat. Inst.
Standards Technol., Gaithersburg, MD, USA, Tech. Rep. ADA393385,
2000, pp. 1–4.

[62] E. Filiol, ‘‘A new statistical testing for symmetric ciphers and hash func-
tions,’’ in Proc. 4th Int. Conf. Inf. Commun. Security (ICICS), Singapore.
Berlin, Germany: Springer, Dec. 2002, pp. 342–353. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-36159-6_29

[63] V. Katos, ‘‘A randomness test for block ciphers,’’ Appl. Math. Comput.,
vol. 162, no. 1, pp. 29–35, Mar. 2005.

[64] A. Doǧanaksoy, B. Ege, O. Koçak, and F. Sulak, ‘‘Statistical analysis of
reduced round compression functions of SHA-3 second round candidates,’’
Cryptol. ePrint Arch., Tech. Paper 2010/611, pp. 1–10, Jan. 2010.

[65] A. Kaminsky, ‘‘Testing the randomness of cryptographic function map-
pings,’’ Cryptol. ePrint Arch., Tech. Paper 2019/078, pp. 1–25, Jan. 2019.

[66] E. Bellini and Y. J. Huang, ‘‘Randomness testing of the NIST light weight
cipher finalist candidates,’’ inProc. NIST Lightweight Cryptogr. Workshop,
2022, pp. 1–26.

TRAN THI LUONG received the bachelor’s
degree from Hanoi University of Science, Hanoi,
Vietnam, in 2006, and the master’s and Ph.D.
degrees in cryptographic technique from the
Academy of Cryptography Techniques, Hanoi, in
2012 and 2019, respectively.

She was the Chief Investigator of the Project
‘‘Constructions of MDS and Dynamic MDS
Matrices for the Dynamic Diffusion Layer of
Block Ciphers’’ (2014–2015) and an Investigator

of the Project ‘‘Construction of Cryptographic Primitives for Digital Signa-
ture Schemes and Key Exchange Protocols using Public Key Cryptography’’
(2018–2020) and the Project ‘‘Research on Constructing a Secure and Effi-
cient Dynamic SPN Block Cipher Algorithm’’ (2022–2023). Her research
interests include cryptography, coding theory, and information security. She
served as the Co-Chair for special session of KSE 2023 and the PeerJ
Computer Science Reviewer.

NGUYEN NGOC CUONG received the degree
and Ph.D. degrees fromHanoi National University,
Hanoi, Vietnam, in 1972 and 1984, respectively.
He is currently pursuing the Ph.D. degree in math-
ematics. His research interests include computing
mathematics and cryptographic science.

BAY VO received the Ph.D. degree in computer
science from the University of Science, Vietnam
National University, Ho Chi Minh City, Vietnam,
in 2011. He is currently an Associate Professor
with Ho Chi Minh City University of Tech-
nology, Vietnam. His research interests include
association rules, classification, mining in the
incremental database, distributed databases and
privacy-preserving in data mining, and soft com-
puting. He also served as the Co-Chair for several

special sessions, such as ICCCI, ACIIDS, KSE 2013 and 2014, and SMC
2015; and a Reviewer for many international journals, such as IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Knowledge and Infor-
mation Systems, Expert Systems with Applications, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS, Information Sciences, Knowledge-Based
Systems, Soft Computing, PLOS One, and IEEE ACCESS. He serves as an
Associate Editor for the Journal of Intelligent and Fuzzy Systems and the
Managing Editor for Vietnam Journal of Computer Science.

VOLUME 12, 2024 53177

http://dx.doi.org/10.11591/ijeecs.v19.i3.pp1574-1581
http://dx.doi.org/10.1109/EuroSPW55150.2022.00011
http://dx.doi.org/10.1007/978-3-642-15874-2_27
http://dx.doi.org/10.1007/978-3-642-15874-2_27

