
Received 12 March 2024, accepted 1 April 2024, date of publication 10 April 2024, date of current version 26 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3387300

MECAT: Memory-Safe Smart Contracts
in ARM TrustZone
SEONGHWAN PARK 1, HAYOUNG KANG1, SANGHUN HAN 1, JONGHEE M. YOUN 2,
AND DONGHYUN KWON 3
1Department of Information Convergence Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
2Department of Computer Engineering, Yeungnam University, Gyeongsan 36461, Republic of Korea
3School of Computer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

Corresponding authors: Jonghee M. Youn (youn@yu.ac.kr) and Donghyun Kwon (kwondh@pusan.ac.kr)

This work was supported in part by the Ministry of Science and Information and Communication Technology (MSIT), South Korea, under
the Special Research and Development Zone Development Project (Research and Development)-Development of Research and
Development Innovation Valley Support Program supervised by the Innovation Foundation under Grant 2023-DD-RD-0152; and in part by
MSIT, under the Information Technology Research Center (ITRC) Support Program supervised by the Institute for Information and
Communications Technology Planning and Evaluation (IITP) under Grant IITP-2024-RS-2023-00259967.

ABSTRACT A smart contract is a program executed on a blockchain. However, once the smart contract
is deployed on the blockchain, it becomes visible to all participants and remains immutable. Thus, any
sensitive information or vulnerabilities in smart contracts can be exposed to potential attackers. To protect the
confidentiality of smart contracts, existing studies execute smart contracts in a trusted execution environment
(TEE). However, they still suffer from vulnerabilities in smart contracts and potential memory-vulnerability
problems. If an attack such as privilege escalation occurs by exploiting this vulnerability, the TEE can have
a detrimental effect on the entire system as it has the most privileges in the system. To mitigate the memory
vulnerability of the smart contracts in TEE, we propose MECAT, a prototype for memory-safe confidential
smart contracts. In essence, MECAT runs smart contracts written in Rust, a memory-safe language, in ARM
TrustZone. And MECAT is developed as a software library, allowing developers to easily apply MECAT
to their smart contracts. According to our evaluation, MECAT only incurs a 1.36x performance overhead
and 0.30% power overhead in single-node environments and can process the 16 clients concurrently in the
network made with 8 peer nodes.

INDEX TERMS Blockchain, smart contracts, hyperledger fabric, rust, memory-safety, ARM TrustZone.

I. INTRODUCTION
A smart contract is a program executed on a blockchain
when specific predefined conditions are met. Notably,
it facilitates trustless and decentralized transactions by
eliminating the need for intermediaries and enabling pro-
grammable agreements across various domains such as
finance, supply chain, smart marketplaces, and decentralized
applications (DApps) [1], [2], [3]. However, once a smart
contract is deployed on the blockchain, it becomes visible
to all participants and remains immutable, posing inherent
security challenges. Specifically, the lack of confidentiality
about application code and execution states can expose

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

vulnerabilities in the smart contract to potential attackers.
Even worse, since the contract code cannot be altered after
registration on the blockchain, patching vulnerabilities in
the deployed smart contracts is challenging. Consequently,
financial losses and other adverse consequences result if
attackers exploit vulnerable smart contracts through carefully
crafted payloads.

To mitigate these security problems, some researchers
have leveraged Trusted Execution Environments (TEE) to
provide confidential smart contracts [4]. TEE is a security
feature that ensures the confidential execution of sensitive
operations, protecting them from unauthorized access even
in the presence of a compromised overall system.

Thanks to distributed systems, blockchain technology
can provide several benefits in IoT networks comprised of

56110

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-5607-8423
https://orcid.org/0009-0007-5672-0487
https://orcid.org/0000-0001-7408-3804
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0001-7214-6568


S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

embedded devices, such as security, autonomy, resilience,
and anonymity [5], [6], [7]. Furthermore, since blockchain
technology is widely adopted for IoT, embedded devices
are rising as an important smart contract carrier [8], [9].
Most embedded devices are equipped with ARM chips.
ARM provides a TEE technique called ARM TrustZone
(TrustZone) [10]. Because of these points, some researchers
worked on providing confidential smart contracts using
TrustZone [11], [12].
Especially, TZ4Fabric [12] ensures the confidentiality

of smart contracts and execution states in Hyperledger
Fabric [13], by executing smart contracts within TrustZone.
Although the above work successfully provides confidential-
ity about smart contracts using TEE, it introduces potential
risks because of bloating the code size of TEE. Moreover,
previous work [12] uses memory-unsafe languages such as
C/C++. However the TrustZone provides a single secure OS
in TEE, when the privilege escalation attack occurs to an
application within TEE, it can have a detrimental impact not
only on secure OS but also on the other applications [14].
In this paper, we propose MECAT, a technique to provide

memory-safe and confidential smart contracts. Specifically,
MECAT adopts TrustZone to protect the confidentiality of
smart contracts. And, to mitigate memory vulnerabilities
of confidential smart contracts, MECAT uses memory-safe
programming language Rust [15] to write smart contracts.
Notably, MECAT is provided as a software library, allowing
developers to easily enjoy memory-safe confidential smart
contracts by applying MECAT APIs to their smart contracts.

In summary, MECAT has three main contributions as
follows.

• We mitigate the impact of memory vulnerability prob-
lems caused by confidential smart contracts executed in
TEE.

• We provide an easy-to-use and compatible design with
a software library and modularized components.

• We show the impact of MECAT on the network and
hardware by prototyped implementation with Hyper-
ledger Fabric and Raspberry Pi 3B+.

II. BACKGROUND AND MOTIVATION
A. HYPERLEDGER FABRIC AND CHAINCODE
Hyperledger Fabric (Fabric) [13] is an open-source
blockchain platform hosted by the Linux Foundation. Fabric
is a permissioned blockchain system; it runs distributed appli-
cations written in general-purpose programming languages,
such as Java, Go, and JavaScript. Distributed application,
i.e., smart contract., is called chaincode in Fabric.

Chaincode is constructed of handlers for handling client
input and business logic that processes the transaction. When
the client invokes chaincode, the handler will receive control
of the transaction and call the appropriate business logic for
processing the transaction. The complexity and size of the
chaincode are determined by business logic.

Algorithm 1 shows the pseudo-code of the simple chain-
code handler, which keeps the name of the user and value in a

Algorithm 1 Pseudo-code of the chaincode handler

Input:
Client input parameters CI

1 function handler(CI )
2 function, args = getFunctionAndParameters(CI )
3 if function == Create then
4 return create(args)
5 else if function == Query then
6 return query(args)
7 else if function == Add then
8 return add(args)
9 else
10 return Error
11 end
12 end

FIGURE 1. TrustZone architecture overview. The green boxes mean
trusted areas. The world switching has invoked with SMC through the
secure monitor.

ledger. For this, it has three subcommands, i.e., Create, Query,
and Add, each creates a user with an initialized value, queries
the value of the user, and adds the value of the user. Handler
has user inputs as parameters. When the client invokes a
chaincode, handler has the control of the transaction first.
After that, it parses the function type and arguments from
client input. (line 2) Finally, the handler calls the appropriate
function to process the business logic as intended (lines 3,
5, and 7) and return the result value to the client (lines 4, 6,
and 8).

B. ARM-TRUSTZONE
TrustZone is a hardware security extension designed to estab-
lish secure execution environments [10], [16]. TrustZone
introduces two distinct domains, namely normal world and
secure world. The secure world has higher privileges in
comparison to the normal world, thereby guaranteeing that
the resources of the secure world remain inaccessible to
the normal world. The identification of the world state is
determined by the value of non-secure (NS) bit in the secure
configuration register.

VOLUME 12, 2024 56111



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

FIGURE 2. Dangling pointer prevention in the Rust with lifetime.

The architecture of TrustZone is depicted in Figure 1. The
normal world is constructed with client applications (CAs),
a non-secure OS, and a hypervisor, and the secure world
is constructed with a secure OS and trusted applications
(TAs). The secure monitor has the highest privilege and is
responsible for switching between the normal world and
the secure world. TrustZone introduced a special instruction
known as Secure Monitor Call (SMC) for world switching
between the normal world and the secure world. When the
SMC occurs within the normal world, the processor enters
monitor mode. Inmonitor mode, the securemonitor stores the
context of the normal world and flips the NS bit. Afterward,
it restores the context of the secure world, and vice versa.

C. RUST
Rust [15] is a programming language that has been designed
for high performance and safety. Rust offers memory safety
by implementing ownership, borrowing, and lifetimes. Rust
has a fundamental principle that dictates all values can only
have a single owner at any given time. When the owner of
the object is no longer within the scope, the value will be
dropped. In the context of the Rust, references can be created
by borrowing. Typically, the borrowed value demonstrates
immutability. For mutating the referenced value, a mutable
type of reference is needed. However, it is important to note
that the value can only be associated with a single reference
at a moment when it is referred to as a mutable type.

The lifetimes in Rust serve the purpose of preventing
dangling references in Rust. Each value has a lifetime at
the scope in which it is declared, and the reference of
this value becomes invalid once it goes beyond this scope.
Figure 2 shows the lifetime exception example of the Rust.
The variable r is declared within the scope of lifetime a on
line 01, and it references value x that is declared within the
scope of lifetime ‘b on line 04. In line 06, variable r uses
the referenced value x after the lifetime of b has ended. Rust
compilers can detect these errors at compile time, allowing
developers to easily rectify the code with the assistance of
error messages.

D. CONFIDENTIAL SMART CONTRACTS
Since the application code and execution state of the
smart contracts are exposed transparently in the blockchain
network, confidential smart contracts have been researched
to address this problem.

Hawk [17] provides confidentiality to smart contracts,
using zero-knowledge proofs. To achieve this, smart contracts
are off-chain; only zero-knowledge proofs are recorded in the
ledger. However, the zero-knowledge proof incurs a relatively
high-performance overhead for TEE-assisted confidential
smart contracts.

Intel-SGX (SGX) [18] is a hardware security extension that
provides a TEE in Intel processors. Ekiden [19], ShadowEth
[20], CCF [21], CONFIDE [22], FPC [23], and Phala
[24] utilize SGX to execute confidential smart contracts.
Especially CCF [21], CONFIDE [22], FPC [23], and Phala
[24] are integrated into blockchain platforms for practical use.
However, implementing these solutions directly in TrustZone
is challenging because of the lack of hardware support, such
as remote attestations, and the relatively limited memory
resources compared with SGX.

TSC-VEE [11], and Tz4Fabric [12] studied confiden-
tial smart contracts in TrustZone. TSC-VEE [11] has
implemented the Solidity VM into the TEE to enable
confidential smart contracts. It provides the instruction set
for the Solidity bytecode. Furthermore, memorymanagement
and prefetching technologies were introduced to overcome
memory limitations and enhance performance. However,
it requires additional physical memory space for theVM. This
can hinder the performance of embedded devices because
it reduces the available memory resources. Tz4Fabric [12]
provides confidential smart contracts on the TrustZone at the
Hyperledger Fabric platform [13]. Since Fabric supports Go,
Node.js, and Java for writing smart contracts, it is necessary
to rewrite the legacy contracts in a memory-unsafe pro-
gramming language, i.e., C/C++. Because smart contracts
can be written by third-party developers, memory-unsafe
smart contracts can cause potential security risks in the TEE.
MECAT adopts the memory-safe programming language
Rust towritememory-safe smart contracts. This approach can
address the potential security risks associated with third-party
smart contracts.

E. SECURITY OF TRUSTZONE
Although TrustZone provides TEE to construct a reliable
system, it has poor applicability because of the absence of
robust TEE runtime or due to architectural flaws [10], [25].
To address this problem vTZ [26], TrustShadow [27], PrOS
[28], Sanctuary [29], and RusTEE [30] have been studied.

vTZ [26] provides virtualization to TrustZone with a
software-only design. This study virtualized the TEE as a
VM, executed it in the REE, and guaranteed isolation between
them. However, because of the limitations of the software-
only design, it incurs a high-performance overhead.

TrustShadow [27], PrOS [28], and Sanctuary [29] use a
hardware feature TrustZone Address Spaces Controller to
achieve physical memory isolation between TAs. However,
this design can cause significant overhead due to world
switching caused by memory mapping, and the absence of
the TrustZone Address Spaces Controller can hinder the
deployment of the confidential smart contract.

56112 VOLUME 12, 2024



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

FIGURE 3. MECAT architecture overview. The peer node is run on the host
machine and the contract node is run on the embedded device, that
supports TrustZone.

RusTEE [30] provides a Rust-based TA SDK for devel-
oping memory-safe TAs. This design can address the
potential risks from memory-unsafe TAs and enhance TEE
security. However, the Rust-based TA SDK does not support
smart contract development. The design of MECAT can
complement this problem by providing confidential and
memory-safe smart contracts.

III. THREAT MODEL
We assume the fundamental components of the secure world
are trusted, such as the boot loader, firmware, security
monitor, and secure OS. Meanwhile, the components of the
normal world, such as non-secure OS, and user space, are
untrusted. This is a common scenario recognized in previous
studies that adopt TrustZone [11], [12], [30].

The blockchain network is permission-based, so most of
the participants are benign, and the smart contracts are not
malicious but can contain memory vulnerabilities. The input
provided by the user through the client can cause memory
corruption bugs in smart contracts. Attacks against TrustZone
itself or the network, such as side-channel attacks [31], [32],
and DoS [33] are out of scope.

IV. MECAT OVERVIEW
In MECAT, we provide confidentiality about code and
execution state to the smart contract by adopting TrustZone,
and mitigate the memory vulnerabilities of the smart contract
by using Rust. The ideal solution for the confidential smart
contract is to execute the whole node in the embedded
device with TEE. However, it has challenges due to the
limited persistent memory resources and computing power
of embedded devices [5]. In the case of persistent memory,
the blockchain network keeps all transactions made in the
network as a ledger, because of this, the size of the ledger will
increase larger than the persistent memory of devices. In the
case of computing power, the consensus algorithms require
high computing power. Furthermore, when the whole node
runs in the TEE, it can bring large attack surfaces because of
its code size.

To address these challenges, we partitioned the smart
contract into three main components, wrapper, proxy, and

FIGURE 4. The structure of the MECAT_Message. This includes
information about the context state, subcommand, parameter, and
message.

memory-safe chaincode. Figure 3 shows the architecture of
the MECAT. The peer node is run on a host machine that
includes the wrapper and the ledger and is responsible for
consensus. Since the peer node runs on a host machine,
we can address the limitation of persistent memory resources
and computation power. The wrapper is installed, instan-
tiated, and deployed as a smart contract in the blockchain
network. Since our design does not affect parts other than
transaction execution, MECAT can perform transactions in
the memory-safe chaincode by calling the wrapper with a
standard approach.

The contract node supports TrustZone and includes the
proxy and thememory-safe chaincode. The proxy is run in the
normal world of the contract node and establishes commu-
nication between the wrapper and memory-safe chaincode.
The memory-safe chaincode is run in the secure world of the
contract node. Because of this, we can provide confidentiality
to smart contracts. In the contract node, all components are
implemented with the memory-safe programming language
Rust, which can guarantee robustness against memory
vulnerabilities, thereby mitigating the potential security risks
in the secure world.

From this design, we have overcome the constraint
of limited memory resources and computing power of
embedded devices. In addition, we minimized the code size
and attack surface within the TEE by executing only the
business logic of the smart contracts within the TEE.

V. TRANSACTION FLOW
The peer and contract nodes communicate with each
other using MECAT_Message, which contains the trans-
action information. Figure 4 shows the structure of the
MECAT_Message consists of four fields; context, subcom-
mand, transaction parameter, and message. The context field
is one of the following seven contexts, showing the current
state.

• InvokeRequest means initiating the transaction to
the memory-safe chaincode.

• GetRequest means memory-safe chaincode requ-
ested getting information from the ledger.

• GetResponse means proxy handled the request from
memory-safe chaincode.

• SetRequestmeansmemory-safe chaincode requested
to update the ledger to proxy.

VOLUME 12, 2024 56113



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

FIGURE 5. Create transaction flow in MECAT, solid arrows and square
boxes depict message transfer between memory-safe chaincode and
wrapper and dashed lines depict ledger access between wrapper and
peer.

• SetResponse means proxy handled the request from
memory-safe chaincode.

• Success means the transaction was successfully
processed.

• Failedmeans an error occurred during the transaction
processing.

The subcommand and parameter fields are parsed from the
client transaction request input. The message field contains
the request parameter and results of the ledger access request.

In Figure 5, we illustrate the transaction processing flow
of the MECAT with a specific scenario, a client invokes
a transaction to register a new user Amy with an initial
value of 10 with the subcommand Create. The square boxes
display the contents of MECAT_Message for each phase.
(1) Invoke phase wrapper creates a MECAT_Message with
InvokeRequest and the client input parameters (Create,
Amy, 10) and then sends it to memory-safe chaincode
via proxy. When memory-safe chaincode receives the
MECAT_Message, it responds with GetRequest to request
ledger access. (2) Get phase wrapper receives ledger access
request with GetRequest state, it retrieves the ledger
with an argument parsed from the message field. Then,
wrapper sends GetResponse with the result of the ledger
access. Since the user Amy is not registered in the ledger,
the message field will be filled with the result, NULL.
(3) Processing phase memory-safe chaincode receives the
result of (2), it determines whether to update the ledger
according to the result contained in the message filed. After
that, sends SetRequest to wrapper for a request to update
the ledger for registering user Amy to the network. (4) Set
phase wrapper receives the SetRequest, updates the

ledger, and then replies with SetResponse. (5) Fin phase
memory-safe chaincode receives SetResponse, it replies
the Success to with a message ‘‘Done’’ to wrapper for
terminating the transaction.

In this flow, wrapper can handle ledger access requests
from memory-safe chaincode with context state and message
field. Therefore, the memory-safe chaincode can access the
ledger when needed.

VI. COMPONENTS
In this section, we elaborate on the three main components,
i.e., wrapper, proxy, memory-safe chaincode, and APIs.

A. WRAPPER
Thewrapper is deployed as a smart contract in the blockchain
network. Due to this, a peer can invoke a transaction
through the wrapper. During the transaction processing,
it is responsible for processing ledger access requests from
the memory-safe chaincode. When the wrapper receives a
transaction request from the peer, wrapper converts the
request intoMECAT_Message and sends it to the proxy.

Algorithm 2 Pseudo-code of the wrapper

Input:
Client input parameters CI
MECAT_Message received from proxy MFP

1 function wrapper(CI )
2 invokeHandler(CI )
3 while do
4 MFP = receiveFromProxy()
5 if MFP.C == GetRequest then
6 getRequestHandler(MFP)
7 else ifMFP.C == SetRequest then
8 setRequestHandler(MFP)
9 else ifMFP.C == Success then
10 return transactionEnd(MFP)
11 else
12 return contextError(MFP)
13 end
14 end
15 end

Algorithm 2 shows the pseudo-code of the wrapper.
First, when the wrapper receives a transaction process
request from the peer, wrapper calls the invokeHandler
function. In the invokeHandler function, it creates a
MECAT_Message with InvokeRequest and sends it to
the proxy. After the InvokeRequest,wrapper receives the
response from proxy and processes the request depending on
the context until the response with Success (lines 3 - 14).
When the message which has GetRequest context arrives,
wrapper gets the information about parameters from the
ledger and replies as the GetResponse context by call-
ing the getRequestHandler (lines 5 - 6). Otherwise,
when thememory-safe chaincode responds as SetRequest

56114 VOLUME 12, 2024



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

context, the wrapper updates the ledger with received
parameters and replies with the SetResponse context
(lines 7 - 8). If the Success has arrived, wrapper returns
the result to the peer and ends the transaction (lines 9 - 10). If
the context of the MECAT_Message is invalid, the wrapper
shows the error message and halts the wrapper processor
(lines 11 - 12).

In this design, we separated the ledger access functions
from the transaction processor to the wrapper, which can
provide compatibility and adaptability.

B. PROXY
The proxy establishes an interface between the wrapper
and the memory-safe chaincode. When the proxy receives
a MECAT_Message as a byte stream from the wrapper,
it reconstructs the MECAT_Message as an object and then
forwards it to memory-safe chaincode for processing the
transaction.

Algorithm 3 Pseudo-code of the proxy

Input:
MECAT_Message received from wrapper MFW
MECAT_Message sent to wrapper MTW

1 function proxy()
2 MFW = receiveFromWrapper()
3 MTW = invokeContract(MMF)
4 sendToWrapper(MTW )
5 end

Algorithm 3 shows the pseudo-code of the proxy.
First, proxy calls the receiveFromWrapper to receive
a MECAT_Message as a byte stream from wrapper
and reconstruct the object (line 2). Then, invoke the
memory-safe chaincode with invokeContract function
and memory-safe chaincode returns MECAT_Message as
a return value (line 3). The invokeContract function
serializes theMECAT_Message as a vector and deserializes it
to theMECAT_Messagewhen the result is returned. As a last,
in sendToWrapper sends the returned MECAT_Message
as a byte stream to wrapper (line 4).
Since the proxy has limited capabilities, i.e., only

establishing an interface between the wrapper and the
memory-safe chaincode, it provides high versatility. It is
independent of memory-safe chaincode and wrapper.

C. MEMORY-SAFE CHAINCODE
The memory-safe chaincode is executed as a TA in the
secure world and processes the transaction received from
wrapper following the context. Sincememory-safe chaincode
is written in Rust and runs in the TEE, it can guarantee
confidentiality and memory safety. memory-safe chaincode
is constructed similarly to Algorithm 1 except invoked by
wrapper and delegate the ledger access to wrapper via
MECAT_Message.

Algorithm 4 Pseudo-code of the handler part of
memory-safe chaincode

Input:
MECAT_Message received from proxy MFP
MECAT_Message returned to proxy MTP

1 function memorySafeChaincode()
2 MFP = invokeFromProxy()
3 MTP = invokeHandler(MFP)
4 returnMTP
5 end
6

7 function invokeHandler(MFP)
8 subcommand = getSubcommand(MFP)
9 if subcommand == Create then
10 return createHandler(MFP)
11 else if subcommand == Query then
12 return queryHandler(MFP)
13 else if subcommand == Add then
14 return addHandler(MFP)
15 else
16 return error(Error)
17 end
18 end

Algorithm 4 shows the pseudo-code of the handler
part of the memory-safe chaincode, which receives a
transaction request from the wrapper and calls the
invokeHandler(lines 1-5). After that, the
invokeHandler function transfers the processing flow as
follows according to the subcommand (lines 7-18).

We provide MECAT_Message creation functions which
require arguments MECAT_Message structure and a string
for the message field. Algorithm 5 shows the pseudo-code
of subcommand Create as shown in Figure 5. When flow
riches as a subcommand handler, it gets the context state from
MECAT_Message by calling the function getContext
(line 2). After this, memory-safe chaincode handling the
transaction follows as context state. In InvokeRequest
state, memory-safe chaincode returns a GetRequest mes-
sage with the name of the user which will be created by
calling the createGetRequest function (lines 3 - 5).
In GetResponse state, memory-safe chaincode checks the
user already exists if the user does not exist, it responds
with SetRequest (lines 6 - 9). If the user already
exists, it responds with a Failed (lines 10 - 12). In
SetResponse state, memory-safe chaincode checks the
result of the ledger update request. If the update is com-
pleted successfully, memory-safe chaincode responds with
Success (lines 13 - 16). If an error has occurred during
the update, memory-safe chaincode responds with Failed
and an error message (lines 17 - 19). When the context
has no defined state, memory-safe chaincode response with
Failed and an error message (lines 20 - 22).

VOLUME 12, 2024 56115



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

Algorithm 5 Pseudo-code of the create handler of
memory-safe chaincode

Input:
MECAT_Message received from proxy MFP

1 function createHandler(MFP)
2 context = getContext(MFP)
3 if context == InvokeRequest then
4 message = getPayload(MFP).name
5 return createGetRequest(MFP, message)
6 else if context == GetResponse then
7 message = getMessage(MFP)
8 if message == NULL then
9 return createSetRequest(MFP, NULL)

10 else
11 return createFailed(MFP, Error)
12 end
13 else if context == SetResponse then
14 message = getMessage(MFP)
15 if message == NULL then
16 return createSuccess(MFP, Done)
17 else
18 return createFailed(MFP, Error)
19 end
20 else
21 return createFailed(MFP, Error)
22 end
23 end

VII. EVALUATION
A. ENVIRONMENT SETTING
We implemented MECAT on a Raspberry Pi 3B+ with
OP-TEE (version 3.18) a popular open-source secure OS
with support for TrustZone. To develop memory-safe smart
contracts, we use the OP-TEE Rust SDK [34] which is based
on RusTEE [30]. The wrapper is written in Go, which is a
Fabric chaincode support language.

We evaluate the performance of MECAT, on Hyeprledger
Fabric blockchain network. We built a blockchain network
using Hyperledger Fabric (version 1.4) [13]. The peer node
andwrapper are run on the server machine with an i9-10900k
processor clocked at 3.7 GHz, 64 GB of RAM, and Ubuntu
20.04. The wrapper and the peer node are run as a docker
container.

We used Hyperledger Caliper [35] (version 0.3.2) as a
benchmark tool to evaluate the performance impact of
MECAT on the network. For evaluation, we implemented
MECAT with a simple smart contract, that creates a user,
queries the value, and adds the value of the user. Then
compare this with three cases, Native, REE, and MECAT.
In Native, the smart contract is written in GO and executed
as a Docker container on the same host machine as the peer
node. In REE, the smart contract is written in Rust and
executed in the embedded device, similar to MECAT, the
only difference is business logic is not executed in the secure
world.

FIGURE 6. Transaction latency according to subcommand, including
processing time.

B. NODE EVALUATION
We evaluated MECAT in a single peer node environment to
measure the overhead of transaction processing and power,
for this, we executed 100 transactions in 10 seconds.

1) TRANSACTION LATENCY
We measured the transaction latency at the peer about each
subcommand. For this, we executed each subcommand with
ten transactions per second for ten seconds and took the mean
of the results.

Figure 6 shows the latency of Native, REE, and MECAT.
The REE and MECAT show 2.14x-2.32x and 2.91x-3.38x
of latency overhead compared with Native. However, when
compared REE and MECAT show 1.36x-1.46x of execution
time overhead. The subcommand Query shows less execution
time overhead than other subcommands. Because the Query
does not need to update the ledger does not include the Set
phase. Subcommands Create and Add show mostly the same
execution time overhead since they have almost identical
transaction flow.

2) PERFORMANCE ANALYSIS
To assess the influence of MECAT on transaction latency,
we measured the execution time of each subcommand along
with its respective phase. To measure the execution time of
phases, we utilized the Go time package within wrapper.
Figure 6 shows the execution time followed by phase.

Others indicate time beyond transaction processing, encom-
passing the period when the peer receives the client’s request,
invokes the smart contract, and returns the result to the client.
Since the design of MECAT does not affect on blockchain
network except for smart contract executions, Others have a
nearly similar execution time. In addition, the Get and Set
phases i.e., ledger access time, show nearly similar execution
time as Others, because the ledger access is processed in
the host machine. The Invoke and Processing phases include
MECAT_Message transfer time and execution time within
the contact node, these show significant overhead over the
Native. Furthermore, in MECAT, the Invoke and Processing

56116 VOLUME 12, 2024



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

TABLE 1. The micro evaluation result of MECAT including message
serial/deserialization time and world switching.

FIGURE 7. Power consumption of each subcommand in 10 transactions
per second rate.

phases include the MECAT_Message serial/deserialization
and world switching time between normal and secure worlds,
they show more overhead than REE.

Table 1 shows the micro-benchmark result of MECAT.
Since the size ofMECAT_Message is notmore than a hundred
bytes, the serial/deserialization time is trivial. We measure
the world switching time by invoking the TA in CA without
parameters and immediately returning from the secure world
to the normal world. The world switching time takes the most
of performance overhead between REE and MECAT.

3) POWER MEASUREMENT
We measured the power consumption of MECAT and REE
using the Monsoon power monitor. We chose not to compare
MECAT with Native due to the significant electric power
consumption of Native, which runs on the host machine.

Figure 7 shows the average power consumption during the
processing of 100 transactions over 10 seconds. Although
MECAT requires six world switchings during transaction
processing, the power consumption associated with world
switching is remarkably small [36]. Since the only difference
between MECAT and REE is processing the transactions
in secure world, the average power shows a negligible
overhead of 0.30%-0.39%. Therefore, the increase in power
consumption due to world switching is considered negligible.
Consequently, MECAT offers a memory-safe smart contract
solution with high energy efficiency.

C. NETWORK EVALUATION
To measure the impact of MECAT in the blockchain network
we construct a network with 8 peer nodes and 1 contract node.

All peers communicate with the one contract node since the
blockchain network deploys an equal wrapper to all nodes.
Since the REE evaluates in the same environment asMECAT,
the wrappers communicate with the same embedded device.
We measured the transaction latency and throughput by
increasing clients from 4 to 20. During 3 minutes, each client
invokes 10 transactions per second.

The top row of Figure 8 shows the write transaction
overheads. Although the latency is 2.45x increased, the
throughput of MECAT follows the Native before the
16 clients.When the client number reaches 16, the throughput
is dropped by 9.08%, but the latency is increased by
2.91x since the latency of Native also increased by 41.54x.
In addition, the throughput has grown with the number of
clients, and the average power overhead also increased to
process the transactions. Compared with REE, the latency
has increased by about 2.45x and 2.72x, at the 12 clients
and 16 clients. Nevertheless, the average power is slightly
increased by 3.86% and 5.00%, since the processing time of
transactions is the same regardless of the number of clients.

The bottom row of Figure 8 shows the read transaction
overheads which tend to be like write transactions. However,
since the query does not update the ledger, it has a shorter
execution time than the write transactions, allowing MECAT
to perform with 20 clients. In addition, Native shows
thresholds with 120 transactions per second across more than
12 clients, a similar trend in other environments.

In the evaluation environment, MECAT processes
requested transactions sequentially in the contract node.
Therefore, we expect that if transaction requests can be
processed simultaneously the performance of MECAT can
reach the mostly same as the Native.

VIII. DISCUSSION
The current prototype of MECAT is based on the
Fabric network, supporting smart contracts. However,
as MECAT follows a modular design principle, it can be
easily extended to various blockchain networks without
re-implementing all components (i.e., wrapper, proxy,
and memory-safe chaincode). Specifically, if a blockchain
network provides smart contracts based on a different
programming language, extending MECAT can be achieved
as follows. First, the smart contract has to be modified to
call MECAT APIs for the wrapper. Since MECAT provides
MECAT_Message supporting communication between the
wrapper and proxy such modifications would be straight-
forward. Then, the actual contract operations for each
subcommand of the smart contract must move to the secure
world in TrustZone and be written in Rust. Even in this
case, developers can effortlessly port their code, as MECAT
provides APIs for context management. It is noteworthy that
the MECAT proxy remains unchanged, allowing developers
to extend to different blockchain networks without rewriting
the message transmission process between the wrapper and
memory-safe chaincode.

VOLUME 12, 2024 56117



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

FIGURE 8. Network evaluation result of MECAT with different numbers of clients. The top row shows the result of write transactions and the
bottom row shows the result of read transactions.

In addition, MECAT can be guaranteeing the memory
safety of the smart contracts, nevertheless, the vulnerabilities
of smart contracts inherent in the business logic can exist.
These can be mitigated by vulnerability detection methods
such as fuzzing which is our orthogonal approach.

IX. CONCLUSION
In this study, we introduced MECAT, which supports
memory-safe confidential smart contracts. In MECAT, smart
contracts are written in Rust, a memory-safe language, and
executed in TEE. By doing this,MECAT is free frommemory
vulnerabilities in the smart contract. As a result, MECAT
provides compatibility with its modular design and provides
an API to make it easy to use. In the evaluation, we show
the energy efficiency and practical performance of MECAT
in both single-node environment and network made with
8 peers. As our result shows MECAT can process 16 clients
in the Hyperledger Fabric network and only incurs 5.00%
of power overhead. However, in the current environment
deploying one single contract node in the network. It is
expected that the network performance of MECAT can be
improved through multi-node deployment or multi-threading
support, we leave this as future work.

REFERENCES
[1] B. M. Yakubu, R. Latif, A. Yakubu, M. I. Khan, and A. I. Magashi,

‘‘RiceChain: Secure and traceable Rice supply chain framework using
blockchain technology,’’ PeerJ Comput. Sci., vol. 8, p. e801, Jan. 2022.

[2] B. M. Yakubu, M. I. Khan, N. Javaid, and A. Khan, ‘‘Blockchain-based
secure multi-resource trading model for smart marketplace,’’ Computing,
vol. 103, no. 3, pp. 379–400, Mar. 2021.

[3] M. Waleed, R. Latif, B. M. Yakubu, M. I. Khan, and S. Latif,
‘‘T-smart: Trust model for blockchain based smart marketplace,’’ J.
Theor. Appl. Electron. Commerce Res., vol. 16, no. 6, pp. 2405–2423,
Sep. 2021.

[4] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan, ‘‘SoK: TEE-assisted
confidential smart contract,’’ Proc. Privacy Enhancing Technol., vol. 2022,
no. 3, pp. 711–731, Jul. 2022.

[5] H. F. Atlam and G. B. Wills, Intersections Between IoT and Distributed
Ledger (Advances in Computers). vol. 115. Amsterdam, The Netherlands:
Elsevier, 2019, pp. 73–113.

[6] B. M. Yakubu, M. I. Khan, A. Khan, F. Jabeen, and G. Jeon, ‘‘Blockchain-
based DDoS attack mitigation protocol for device-to-device interaction in
smart home,’’Digit. Commun. Netw., vol. 9, no. 2, pp. 383–392, Apr. 2023.

[7] B. M. Yakubu, M. I. Khan, A. Khan, A. Anjum, M. H. Syed, and
S. Rehman, ‘‘A privacy-enabled, blockchain-based smart marketplace,’’
Appl. Sci., vol. 13, no. 5, p. 2914, Feb. 2023.

[8] T. Li, Y. Fang, Z. Jian, X. Xie, Y. Lu, and G. Wang, ‘‘ATOM: Architectural
support and optimization mechanism for smart contract fast update and
execution in blockchain-based IoT,’’ IEEE Internet Things J., vol. 9, no. 11,
pp. 7959–7971, Jun. 2022.

[9] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, ‘‘Smart contract-
based access control for the Internet of Things,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 1594–1605, Apr. 2019.

[10] S. Pinto and N. Santos, ‘‘Demystifying arm TrustZone: A comprehensive
survey,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Nov. 2019.

[11] Z. Jian, Y. Lu, Y. Qiao, Y. Fang, X. Xie, D. Yang, Z. Zhou, and T. Li, ‘‘TSC-
VEE: A TrustZone-based smart contract virtual execution environment,’’
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 6, pp. 1773–1788,
Jun. 2023.

[12] C. Müller, M. Brandenburger, C. Cachin, P. Felber, C. Göttel, and
V. Schiavoni, ‘‘TZ4Fabric: Executing smart contracts with ARM Trust-
Zone: (Practical experience Report),’’ in Proc. Int. Symp. Reliable
Distrib. Syst. (SRDS), Sep. 23, 2020, pp. 31–40. [Online]. Available:
https://ieeexplore.ieee.org/document/9251926

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, and Y. Manevich,
‘‘Hyperledger fabric: A distributed operating system for permissioned
blockchains,’’ in Proc. 13th EuroSys Conf., 2018, pp. 1–15.

[14] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, ‘‘ReZone: Disarming
TrustZone with TEE privilege reduction,’’ in Proc. 31st USENIX Secur.
Symp. (USENIX Secur.), 2022, pp. 2261–2279.

[15] N. Matsakis and I. K. Felix, ‘‘The rust language,’’ in Proc. ACM SIGAda
Annu. Conf. High Integrity Lang. Technol., Oct. 2014, pp. 103–104.
[Online]. Available: http://dl.acm.org/citation.cfm?id&#61;2663188

[16] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, ‘‘TrustZone
explained: Architectural features and use cases,’’ in Proc. IEEE 2nd Int.
Conf. Collaboration Internet Comput. (CIC), Nov. 2016, pp. 445–451.

56118 VOLUME 12, 2024



S. Park et al.: MECAT: Memory-Safe Smart Contracts in ARM TrustZone

[17] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 839–858.

[18] V. Costan and S. Devadas, ‘‘Intel sgx explained,’’ Cryptol.
ePrint Archive, Tech. Paper 2016/086, 2016. [Online]. Available:
https://eprint.iacr.org/2016/086

[19] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, ‘‘Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS&P), Jun. 2019, pp. 185–200. [Online].
Available: https://ieeexplore.ieee.org/document/8806762

[20] R. Yuan, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, and J. Xie, ‘‘ShadowEth:
Private smart contract on public blockchain,’’ J. Comput. Sci. Technol.,
vol. 33, no. 3, pp. 542–556, May 2018.

[21] M. Russinovich, E. Ashton, C. Avanessians, M. Castro, A. Chamayou,
S. Clebsch, M. Costa, C. Fournet, M. Kerner, and S. Krishna, ‘‘CCF:
A framework for building confidential verifiable replicated services,’’
Microsoft, Redmond, WA, USA, Tech. Rep. MSR-TR-201916, 2019.

[22] Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song,
B. Zhao, and H. Zhang, ‘‘Confidentiality support over financial grade
consortium blockchain,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2020, pp. 2227–2240.

[23] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, ‘‘Blockchain
and trusted computing: Problems, pitfalls, and a solution for hyperledger
fabric,’’ 2018, arXiv:1805.08541.

[24] H. Yin, S. Zhou, and J. Jiang, ‘‘Phala network: A confidential smart
contract network based on polkadot,’’ Phala Network, Singapore, 2019.

[25] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, ‘‘SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE systems,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1416–1432.
[Online]. Available: https://ieeexplore.ieee.org/document/9152801

[26] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, ‘‘vTZ: Virtualizing
ARMTrustZone,’’ in Proc. 26th USENIX Secur. Symp. (USENIX Secur.),
2017, pp. 541–556.

[27] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
‘‘TrustShadow: Secure execution of unmodified applications with ARM
TrustZone,’’ in Proc. 15th Annu. Int. Conf. Mobile Syst., Appl., Services,
Jun. 2017, pp. 488–501.

[28] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek, ‘‘PrOS: Light-weight
privatized se cure OSes in ARMTrustZone,’’ IEEE Trans.Mobile Comput.,
vol. 19, no. 6, pp. 1434–1447, Jun. 2020.

[29] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, ‘‘SANC-
TUARY: ARMing TrustZone with User-space enclaves,’’ in Proc. NDSS,
2019, pp. 1–15.

[30] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, ‘‘RusTEE: Developing
memory-safe ARM TrustZone applications,’’ in Proc. Annu. Comput.
Secur. Appl. Conf., Dec. 2020, pp. 442–453.

[31] K. Ryan, ‘‘Hardware-backed heist: Extracting ECDSA keys from Qual-
comm’s TrustZone,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 181–194.

[32] P. Qiu, D. Wang, Y. Lyu, and G. Qu, ‘‘VoltJockey: Breaching TrustZone
by software-controlled voltage manipulation over multi-core frequencies,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 195–209.

[33] W. Liu, ‘‘Research on DoS attack and detection programming,’’ in Proc.
3rd Int. Symp. Intell. Inf. Technol. Appl., vol. 1, Nov. 2009, pp. 207–210.

[34] Apache. Incubator-Teaclave-TrustZone-SDK. Accessed: Nov. 17, 2023.
[Online]. Available: https://github.com/apache/incubator-teaclave-
trustzone-sdk

[35] Hyperledger. Hyperledger-Caliper. Accessed: Nov. 17, 2023. [Online].
Available: https://github.com/hyperledger/caliper

[36] J. Amacher and V. Schiavoni, ‘‘On the performance of ARM TrustZone:
(Practical experience report),’’ in Proc. Distrib. Appl. Interoperable Syst.:
19th IFIP WG 6.1 Int. Conf., DAIS, Held 14th Int. Federated Conf. Distrib.
Comput. Techn. (DisCoTec) Kongens Lyngby, Denmark: Springer, 2019,
pp. 133–151.

SEONGHWAN PARK received the B.S. degree in
computer engineering from Dongseo University,
South Korea, in 2021. He is currently pursuing
the Ph.D. degree with Pusan National University,
Busan, Republic of Korea. His research interests
include system security and H/W architecture.

HAYOUNG KANG received the B.S. degree
in mathematics from Pusan National University,
South Korea, in 2024, where she is currently pur-
suing themaster’s degree in computer engineering.
Her research interest includes system security.

SANGHUN HAN received the B.S. degree in
computer engineering from Pukyong National
University, South Korea, in 2020. He is currently
pursuing the master’s degree in computer engi-
neering with Pusan National University, Republic
of Korea. His research interests include compilers,
software optimization, and cyber security.

JONGHEE M. YOUN received the B.S. degree
from the School of Electronics and Electrical Engi-
neering, Kyungpook National University, Daegu,
South Korea, in 2003, and the Ph.D. degree in
electrical engineering and computer science from
Seoul National University, in 2011. He is currently
an Associate Professor with the Department of
Computer Engineering, YeungnamUniversity. His
research interests include compiler, software opti-
mization, embedded systems, mobile computing,
and cyber security.

DONGHYUN KWON received the B.S. and Ph.D.
degrees in electrical and computer engineering
from Seoul National University, South Korea,
in 2012 and 2019, respectively. He is currently
a Professor with the School of Computer Sci-
ence and Engineering, Pusan National University,
South Korea. His research interest includes system
security against various types of threats.

VOLUME 12, 2024 56119


