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ABSTRACT This study provides a comprehensive view on neural network systems with implemented with
crossbar circuits, and device-level understanding of modern FET technologies in neuromorphic computing.
This work categorizes and analyzes various transistor types, including ion-gate, ferroelectric, and floating-
gate transistors, shedding light on their unique advantages and applications in neuromorphic computing.
In this overview, we explore the fundamental principles, recent advancements, and significant trends in
transistor-based neuromorphic devices, providing valuable insights into this innovative field. This work
also examines resistive memories and 2D materials, that could revolutionize transistor fabrication for
neuromorphic devices. Further, various research challenges, limitations, and potential research directions
are discussed.

INDEX TERMS Field effect transistor (FET), CMOS, memristors, multiply and accumulate (MAC),
2D materials, FeFET, IGT.

I. INTRODUCTION
The wide range of hardware implementations in the analog,
digital or mixed signal domains of bio-inspired computing
systems contributes to the era of neuromorphic computing.
Neuromorphic computing closely resides in analog com-
puting hardware similar to the human brain. The expected
functionalities and how closely they mimic the human brain
are the most important factors in neuromorphic computing
hardware. It attempts to integrate various biological char-
acteristics of the human brain such as synapses, synaptic
weight, synaptic transmission, spike-time encoding, different
types of plasticity, parallel processing of accumulated infor-
mation and higher cognitive functions. The extremely low
power consumption, fast processing of information and high
density of the human brain are the leading factors on which
the evolving neural network implementations in the digital,
analog and mixed-signal domains are the focus. Extreme
energy efficiency is accounted for in advanced spiking neural
networks. The analogies between biological neural networks
and hardware systems can implement using transistors by
making them operate in a region that follows the dynamics
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of neurons and synaptic dynamics. The amount of data being
generated, processed and stored is increasing, and the higher
energy consumption required for the same is due to the data
traffic between memory and processing, which is separated
in the Von-Neumann architecture. This causes huge energy
wastage and reduces computational speed. The possibility of
integrating memory and processing units taking inspiration
from the human brain via neuromorphic chips addresses
the bottleneck for data transmission, which helps to acquire
energy consumption and computational speed similar to that
of the dynamics of the human brain. One key challenge
for neuromorphic computing hardware implementation is the
different non-idealities and variabilities of memory devices
along with transistor technology. To accelerate more than
conventional digital circuits, the complexity of building
neuromorphic chips that require analog behavior of memory
devices and transistors needs to be addressed further. The
lack of hierarchical boundaries, which von-Neumann allows
for development, is lacking in the case of neuromorphic
computing and needs to be addressed to accelerate its
evolution [1]. While building neuromorphic chips, many
neurons and synapses must be modelled to make them
computationally powerful and to imitate brain functions such
as non-linearity, spiking behavior, plasticity and long-term
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memory. Millions of biological interconnections, such as that
of the human brain, need to be replicated in neuromorphic
chips to mimic high degrees of interconnection.

Analog computing, in-memory computing, spike coding,
task-specific connectivity, and parallel processing are the key
tricks employed by the human brain that can be transferred to
neuromorphic computing hardware. Currently, it is difficult
to mimic all the features of the human brain, but it can be
made comparable by starting from conventional technologies
and then exploring new dimensions. Neuromorphic com-
puting is progressing to cover the information storage and
processing principles of the human brain. For example, the
scientific community has already performed sound, image
and video processing for recognition, which is mostly at
the theoretical and algorithmic levels using computers based
on the Von-Neumann architecture. Currently, researchers
are putting great effort into implementing the functions
using novel architectures in a manner where the human
nervous system performs storage and computations that
range from single-memory devices to in-memory computing
architectures. To build efficient neural computing archi-
tectures that perform beyond Von-Neumann’s computing
architecture, scientists must bridge the gap between today’s
electronic chips and human intelligence. The characteristics
of the human brain, such as storing information in the
analog domain and plastic rather than having limited
reconfigurability, million synapses and neurons, and multiple
dynamics rather than having a single clock, are to name a few,
taking into account the evolving neuromorphic computing
hardware design [2]. The architectural and computational
principles of the human brain, with an energy consumption
of approximately 20 Watts, need to be replicated in neural
chips, which is a crucial challenge to address. Different
features of the human brain still cannot be understood
like laminar architecture, diversity (for example, various
types of distinguishable neuron cells exist, but most deep
neural networks use identical neurons), a high degree of
organization (specific areas for specific tasks, which are
usually not considered in neural networks) and synapses
that have complicated biochemical processes encoded as
a single weight value in neural networks. Bridging these
gaps opens the possibility of well-established neuromorphic
computing architectures that have the potential to store
and compute similar to the human brain. Neuromorphic
hardware is biologically inspired by computational aspects
of the human brain. Mapping between biological and arti-
ficial computations requires a set of in-memory computing
circuitries [3]. Neural networks can be implemented using
transistor-based resistive memory circuits. The Weighted
summation operations, succeeding activation functions, and
remaining intermediate operations can be implemented using
specific circuits such as one-transistor-one-memristor-based
crossbars, opamp-based analog-to-digital converters, sample
and hold circuits, purely transistor-based control switches,
activation functions and transmission gates. The memristors
are artificial synapses. Voltage pulses are applied to change

FIGURE 1. The system-level architecture blocks of in-memory computing.

the conductance states of the memristor to which the
input weights of the neural networks are mapped, which
is analogous with the application of neural spikes are to
change the synaptic weights [4], [5], [6]. The memristive
device and selector transistors are arranged in rows and
columns to implement weighted summation operations [7].
Other transistor technology-based circuits are used for further
computations to implement neural networks.

The most significant functional units of neural systems
are the neurons and synapses [8]. Scientists and engineers
can create artificial systems, by understanding and repli-
cating the behavior of these components. Next-generation
neuromorphic computing that mimics the human brain,
using advanced techniques to boost computational power
and pattern recognition, is receiving significant attention [9].
Neurons receive information from sensory organs or other
neurons. It then generates an electrical signal after a certain
threshold point called the action potential. Finally, the
electrical signal is transmitted over long distances within
the nervous system. Synapses transmit signals from one
neuron to another. Neurons receive signals from thousands
of neurons via synapses. Synapses act as neural bridges
where information is stored and processed through dynamic
adjustments in their connection strengths, enabling the brain
to learn and form memories [10]. This neural system can
integrate seamlessly with a parallel in-memory computing
architecture, offering low power consumption and enabling
more precise information processing [11]. Traditional digital
computing is performed using CMOS technology to simulate
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biological synapses and neurons [12]. However, digital
computing using conventional CMOS technology has various
unwanted issues [13]. It is very difficult to handle the
information between physically separated computing and
memory units. Conventional computing consumes more
power, speed, and work overheads. To overcome these
limitations various types of modified transistors has been
proposed and studied. Electrolyte-gated transistors (EGTs),
ferroelectric-gate field effect transistor (FET) (FeFETs), and
floating Gate (FG) FET have been recognized as highly
promising neuromorphic devices for emulating both neurons
and synapses [14]. Their unique characteristics help to mimic
the behaviour of synapses and neurons more closely than
traditional digital computation units based on complementary
metal oxide semiconductor (CMOS) technology. By examin-
ing the interplay between neural network architectures and
transistor-based devices, this comprehensive review focuses
on the pivotal role of transistors in realizing neuromorphic
computing.

This study encompasses a wide spectrum of technical
details, spanning from modular and three-dimensional cross-
bar arrays to circuit-level implementations and transistor
technologies. It focuses on covering the core concepts
of neuromorphic computing and examining its funda-
mental principles alongside neural network architectures,
three-dimensional crossbar arrays, and circuit-level imple-
mentations. We provide concise progress in transistor tech-
nology over time and explore the latest advancements in
transistor-based neuromorphic devices. We discuss the work-
ing mechanism of transistors, followed by their integration
in neuromorphic computing. Additionally, we conducted
an in-depth analysis of the materials crucial to these
transistors, emphasizing their significance in advancing the
field. The focus is on materials such as silicon, ferroelectric
materials, and 2D materials, which have the potential to
revolutionize the fabrication of transistors for neuromorphic
devices. As neuromorphic computing continues to grow, it is
crucial to understand how transistors and neural networks
work together to improve cognitive computing. The review
concludes by addressing the challenges faced in this field and
discussing future perspectives.

II. NEUROMORPHIC COMPUTING
Fig. 1 shows Computation-In-Memory(CIM), in which
computation occurs in the memory core. The system-level
architecture integrates processing within memory. The archi-
tecture mainly consists of non-volatile memory devices that
enable storage and computation. The memory core comprises
a memory array and a peripheral circuit. The computational
results are produced within the array or in the periphery.
Based on where the computational results are formed, the
CIM architecture can be classified into CIM-Array and
CIM-Periphery. The computational results are produced and
stored in the form of resistance states within the memory
array in the case of CIM-Array. Because computation and
storage occur within the same memory array, the maximum

bandwidth can be acquired for transferring data between the
computation and memory. High parallelism can be achieved
because the computations are performed independently of
sense amplifiers. Endurance and energy issues occur because
of the frequent write operations. In complex functionalities,
there is a chance of performance overhead owing to
device programming and cascading. The CIM-Array requires
significant design efforts.

In CIM-Periphery, computational results are produced
within the periphery circuitry. Memory periphery circuits are
mostly based on CMOS technology; the output is voltage.
Because thememory states do not change during computation
or post-computation, this type of architecture will not affect
the endurance of the memory array. During computations, the
sense amplifiers and analog-to-digital converters are shared,
which causes performance degradation.

The Von-Neumann architecture faces various challenges
while scaling down existing technology without compro-
mising efficient computation. The complexity and large
volume requirement for realizing neural network algorithms
to hardware demands the characteristics of scalability,
non-volatility, high density for integration, and low area
and power consumption. The evolving resistive memory
devices and memristors integrated with transistor technology
are good candidates for mimicking synapses in hardware
neural network implementations. Memristive devices mimic
synapses in the human brain. Hence, memristors mimic
synapses in neural network hardware implementations. The
characteristics of memory resistors such as scalability, non-
volatility, transistor compatibility, high density for integra-
tion, and low power and area consumption, make them
suitable for neural network implementations. They are also
flexible for acting as multi-level cell memory, Scaling by
three-dimensional stacking, and multilayer cells, which gives
a higher level of scalability. Neural network weights are
mapped to the conductance values of the memristor, which
helps to emulate the weighted summation operation in neural
network implementation.

The emerging Neuromorphic computing [15] technology
brings high-performance computations in analog, digital
and mixed-signal domains that are brain-inspired [16].
Neuromorphic computers draw inspiration from the structure
and functions of neurons and synapses found in the human
brain. Processing and storage functionalities highly resemble
human intelligence. Neuromorphic computers use program-
ming algorithms based on different neural networks. It differs
from Von-Neumann computers. The processing and storing
are performed by the CPU and memory units separately in
the case of Von-Neumann. Hence, neuromorphic computing
simplifies computations through parallel processing and
storage without requiring separate locations.

The computations performed in neuromorphic computing
architectures are parallel and comparatively simple compared
to the Von-Neumann architecture [17]. The collocation of
memory and processing helps reduce the throughput and
power requirements required for data transfer. The flexibility
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FIGURE 2. Functional blocks of neuromorphic computing hardware
architecture.

to scale helps build larger networks based on different
applications in artificial intelligence, machine learning, etc.

The Spiking Neural Network (SNN) is inspired by biolog-
ical neural systems and performs computations in which neu-
rons and synapses include notions of time. SNN algorithms
comprise neurons and synapses associated with time delay
for neuromorphic computing, which is significantly different
from other neural networks [18]. Different neuron models are
there like Integrate-and-Fire, Hodgkin-Huxley neuronmodel,
etc. Spikes fire when the charge is integrated over time and
meets the threshold in the case of Integrate-and-Fire. The
neurons will have a rest time after firing, which is called
the refractory period. In SNN, both neurons and synapses
include time components based on which functionalities vary.
Based on the network activity, the synapse’s weight value
changes. In a neuromorphic architecture, one can program
neuron thresholds, delay values, and synaptic weights.
In realizing SNN on neuromorphic hardware, information
asynchronously propagates throughout the network, which
can be treated as event-driven and fits well with temporal
dynamics.

For Spiking Neural Networks, TENNLab has different
architectures. Two of these are WHETSTONE, NIDA,
MrDANNA and DANNA2. The DANNA2 is a two-
dimensional architecture. Properties such as synaptic weight
and neuron threshold are represented by integers. In NIDA,
the length of the synapses determines synaptic delays
in the three-dimensional architecture. In MrDANNA,
the architecture was implemented using memristors. The
three-dimensional spiking architecture WHETSTONE stores
elements at a floating point. TENNLab implemented a
two-dimensional spiking architecture with FPGA, software
and Very Large Scale Integration implementations [19].
The modulation of synaptic strength is contingent on the

activity of connected neurons, a characteristic that can be
theorized as a learning mechanism. Spike-timing-dependent

plasticity (STDP) is the prevalent synaptic plasticity mech-
anism employed in neuromorphic computing. It involves
adjusting weights based on the relative spike timings between
pre and post-synaptic neurons. Recurrent Neural Networks
with synaptic plasticity and delays are a broader class of SNN
used for modelling. An example of such a class of networks
is polychronization networks, which are implemented for
spatio-temporal classifications.

A. NEUROMORPHIC COMPUTING: ARCHITECTURES
AI systems consistently outperform computation and storage.
The in-memory computing approach which closely resides
in the human brain is inspired by the learning, processing,
and storing capabilities of the human brain with extremely
low power, latency, and highly dense architecture.Memristive
devices that offer highly dense memories can potentially
emulate the human brain. They are analog programmable
devices that can be programmed to desired conductance
states, and they retain their latest attained resistance value.
It acts as a non-volatile memory. Because computations are
naturally analog, analog memristive computing is widely
accepted and considers memory and the connection of
memories as a type of intelligence. The possibility of
lower signal attenuation issues, reduced parasitic impact,
computation process before noise build-up, performance of
Multiply and Accumulate (MAC)operation, reduction in the
number of computational blocks, and dense architecture with
reduced power, area, and latency enhances the demand for
memristive computing in neuromorphic applications [20],
[21], [22], [23].

In the crossbar arrangement, memristors and transistors are
arranged in a matrix form. Transistors are selector devices.
Each memory cell consists of a memristor and transistor [24].
There are multiple inputs and outputs. The Input voltages
are fed through the rows and the output currents are read
from the columns. The current read equals the result of
the multiplication and accumulation operation carried out
between the input voltages and the equivalent conductance
of the memristor and transistor. The Multiplication and
accumulation operations in amemristive crossbar emulate the
weighted summation operation in neural network [25], [26].
In neural network implementations, the weights are mapped
to the conductance values of the memristor. Some of the
application areas of crossbars are neural networks (Artificial
Neural Networks, Convolutional Neural Networks, Deep
Neural Networks, Spiking Neural Networks, Cellular Neural
Networks), Analog/Digital Memory (associative, long-term
memory, Multi-level memory, NAND.etc), and Solvers
(Linear Equations, Partial Differential Equations, Markov
Chains,.etc), analog/digital logic gates (threshold logic,
bio-inspired,.etc), cryptography (PUF), image processing
(Cellular Neural Networks, object detection, edge detection,
face detection, etc.).

Fig. 2 shows a detailed neuromorphic architecture block
diagram having the major components along with the
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FIGURE 3. The tiled architecture of a memristive crossbar with p × q cells
implemented using multiple sub crossbars each of size i × j . The number
of sub-crossbars for rows and columns is c and d where p = c × i and
q = d × j .

crossbar array. The write, read, and computation operations
are executed using a crossbar. Computational operations
include logical, addition, and multiplication operations.

1) WRITE OPERATION
To which row and column of the crossbar the data need to
be fed should be specified. Three registers are assigned
to perfom the task. The Write Data register (WD register)
is used to feed the data, that be written to the crossbar.
The length of the WD register depends on the width of
the crossbar and the number of conductance levels that the
memristors can program. To address the issues of endurance
and power consumption, it is not necessary to select all
elements in the array for writing data. A Write Data Select
register (WDS register) is used to select the columns to be
activated (Particularly for write-verify operation). A Row
Select register (RS register) is used to select the desired
row to which the data must be written. Depending on the
crossbar technology, the voltage required to be applied to the
crossbar varies. Digital-to-Analog Converter (DAC) converts
data from digital to analog. Different voltage levels must be
applied to the gate and source of the target row.

2) READ AND COMPUTATIONAL OPERATIONS
In architecture, the output generated by different operations
must be read by the peripheral circuit. This can be a direct

memory read or the result of computational operations. After
matrix multiplication, the generated analog result needs to
be captured by a sample and hold circuit. This sample and
hold circuit helps to separate the execution in an array and
the operations in read-out circuitry. This helps to pipeline
the system. The results, in analog form, are given to the
Analog-to- Digital Converter/ Sense Amplifiers (ADC/SA)
for conversion to the digital domain. To avoid issues of high
area and power consumption, the ADCs are not allocated to
each column. Multiplexers are used to share several columns
with an ADC. Additional computational operations were
performed using the addition unit.

III. MODULAR AND THREE-DIMENSIONAL CROSSBAR
ARRAY ARCHITECTURES
The neural network implementation of a memristive crossbar
array uses two architectures, two-dimensional and three-
dimensional. The two-dimensional tiled architecture of a
memristive crossbar array is more widely used than the three-
dimensional architecture, which is still evolving.

A. MODULAR ARCHITECTURE
To achieve highly complex neural applications, a large
memristive crossbar array must be created. Large memristive
crossbar arrays are limited by the sneak current issue, which
causes read-out current errors, a lack of accuracy, and power
loss. The influence of the sneak path issues is addressed
by dividing the larger crossbar array into smaller ones as
shown in Fig. 3. This modular memristive crossbar array
approach helps reduce the IR drop (Intermediate Resistance
Drop) and sneak current issues to an extent, especially
when it needs to be scaled. Each layer of the memristive
crossbar array consists of memristors and selector devices
arranged in matrix form. Each node can be accessed using
its corresponding rows and columns. These resistive memory
devices, along with selector devices, are responsible for
emulating the synapses in neural networks. By adjusting
the different parameters of these memristive devices through
amplitude and frequency adjustment of the applied voltage,
with the help of selector devices, different conductance
states are attained. A modular crossbar array is designed
by breaking a large memristive crossbar array into smaller
modules by dividing them into rows from several small
modules of equal size. The number of rows in each module
equals the total number of rows in the larger array divided by
the total number of modules. For each module, the number
of columns is the same for each module. The total output
current from the column of the larger array is equal to the
summation of the currents from the corresponding columns
of each module. The Other columns operate simultaneously
in the same routing mechanism. This approach provides an
appropriate restriction on the path of the leakage current.
In the Modular Memristive Crossbar Array approach, the
path of the leakage current is restricted by dividing a larger
crossbar array into several modules. Owing to the reduced
sneak path current, the read-out current error is also reduced.
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FIGURE 4. Three-dimensional architecture of memristor crossbar array in which each node contains the memory
device and transistor (a) Horizontally stacked crossbar array (b) Vertical crossbar array.

FIGURE 5. Memristor-crossbar architecture with inputs v1, v2, v3 and
output currents i1, i2,i3. The conductance of memristors is denoted as
gmn and that of transistors is denoted by gT . The intermediate circuitry
consists of a control switch, a current-to-voltage converter, a sample and
hold circuit, and circuitry corresponding to the activation function.

A more accurate implementation of neural networks can be
achieved because of the reduced relative current error.

B. THREE-DIMENSIONAL ARCHITECTURE
The two-dimensional tiled architecture of a memristive
crossbar array restricts the possibility of implementing a
neural network with several layers above a specific limit.
To address this limitation, the three-dimensional arrangement
of crossbar arrays provides a highly dense arrangement
of devices. A neural network with many layers does not
contribute significantly to the chip area when using a three-
dimensional architecture. Reduced latency for operation
also helps reduce power. A more advanced scheduling
mechanism for writing, reading, and computation operations

in a three-dimensional architecture further helps reduce
energy consumption.

When hardware neuromorphic computing requires wider
and deeper neural networks to implement complex func-
tionalities, the three-dimensional integration of memristive
crossbar arrays will be more efficient and effective, as shown
in Fig. 4. Hardware implementation of a neuromorphic chip
for high-density applications, memristors can be scaled with
three-dimensional integration to function as multilayered
neural networks with minimum area requirement. Three-
dimensional integration can be performed in two ways.
Vertically stacked three-dimensional crossbar arrays and
horizontally stacked three-dimensional crossbar arrays [27].

In the three-dimensional horizontally stacked crossbar
arrays shown in Fig. 4(a), a higher density can be attained by,
vertically stacking two-dimensional crossbar arrays. Owing
to the flexibility to scale laterally, peripheral circuits can be
placed under crossbar arrays to obtain amore compact design,
and a separate selector or transistor can be accompanied by
a resistive memory. Hence, the selector and transistor can
be individually optimized. The number of interconnections
can be reduced to simplify the fabrication process using a
shared middle electrode. This shared middle electrode can
be either a bit line or word line. If bit lines are shared,
the number of peripheral circuits can be reduced because
the connected read-out circuits, including sense amplifiers
and current-to-voltage converters, can be reduced. Hence,
it is preferable to obtain higher power and area efficiency.
In this type of three-dimensional integration, a minimum
of three major lithography and etching steps are required
for fabrication. The challenge in the three-dimensional
integration is increasing the number of stacking layers,
and the number of interconnects also increases accordingly
and demands more lithographic and etching processes.
Staircasing the interconnects to both the bit lines and word
lines will be another challenge, because different lengths
of the interconnections cause different voltage drops among
different layers.

By fabricating vertical crossbar arrays, as shown in
Fig. 4(b), the challenges encounteredwith horizontal crossbar
arrays can be addressed. This can be treated as a word-
plane-type crossbar array. Here the plane electrode serves
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FIGURE 6. (a) Control Switch, (b) Hyperbolic tangent activation function
(c) ReLU activation function.

as the wordline. Memristors that can be treated as vertical
memory elements are formed at the crosspoints of each pillar
electrode and plane electrode. To select the bitline, a vertical
mosfet is used in which the gate is controlled by the selected
line. In this type of three-dimensional arrangement, only one
critical photolithography is needed, and hence the fabrication
cost is reduced. In this case, there are also challenges such as
etching deep holes.

IV. THE CIRCUIT-LEVEL IMPLEMENTATION OF
NEUROMORPHIC COMPUTING ARCHITECTURES
Complex neural networks are integrated with edge devices
using CMOS-Memristive neuromorphic circuits because
they are programmable, non-volatile devices capable of
in-memory computing [28]. This helps to avoid sending
large amounts of data collected by edge devices to the
processing unit and memory and provides limited area and
power consumption. As mentioned in the previous sections,
crossbar array nodes consisting of transistor-memristor pairs
are used to accelerate multiplication and accumulation
operations for neural networks in hardware implementations.
Different neural networks such as Artificial Neural Networks,
Convolutional Neural Networks, Spiking Neural Networks,
and Long Short-TermMemory networks, are implemented in
hardware using one transistor-one memristor crossbars.

Fig. 5, 6, and 7 refer to the circuits involved in the neu-
romorphic hardware implementations. The crossbar circuits,
activation functions, control switches, sample and hold, and
current-to-voltage converters are based on CMOS circuits.
The convolution and deconvolution operations required for

neural networks are realized using memristive crossbars and,
their sizes depends on the input image. Memristors are
programmed to the desired conductance states with the help
of transistor selectors based on the mapping of weights;
accordingly, a weighted summation is performed. In neural
network implementation using a memristive crossbar archi-
tecture, control switches control the sequential processing of
the rows and columns of the crossbar. The control switches
assist in facilitating the sequential processing of the crossbar
columns. The switching transistors, accompanied by resistive
memory devices, are connected to the control voltage at the
drain rather than at the source to improve the linearity of
the switch. It also helps reduce the leakage current when the
control switch is off. A simple control switch is shown in
Fig. 6(a). When the voltage at Vc is elevated, the input to
the NMOS is in a high state, while the input to the PMOS
is in a low state. Hence, the NMOS and PMOS are turned on.
It acts as a common resistance path; in other words, it acts
as a short circuit. Input vin is passed to the output. When
Vc is low, the input to the NMOS is low, and the PMOS
is high. Hence NMOS and PMOS are turned off. It will
act as a high resistance path, or in other words, as an open
circuit. The input vin will not be passed to the output, and
the realization of some activation functions using transistor
technology is illustrated in Fig. 6(b) and (c). Fig. 6(b) shows
the Hyperbolic tangent (tanh) activation function. The two
cascaded inverters and biasing voltages VDD and VSS realize
the tanh activation function. Fig. 6(c) shows the activation
function ReLU (Rectified Linear Unit). Two transmission
gates exist in a ReLU circuit.M1,M2,M7 andM8 are supplied
with input voltage. The threshold voltages of the inverters are
0.When the input signal is positive, M7 andM8 are on, which
can be treated as under the condition of the transmission gate,
and the input is passed to the output. When the input signal
is negative, M9 and M10 are on, which can be treated as the
on condition of the second transmission gate, and the input is
passed to the output(which is grounded).

The circuit diagram of the opamp and the circuits designed
using the opamp are shown in Fig. 7. A circuit diagram
of the opamp is shown in Fig. 7(c). It consists of two
differential stages and a common gain stage. The output
current read from the columns was converted into voltage
using opamp-based current-to-voltage converters. As shown
in the circuit diagram in Fig. 7(a), the I- to-V converter
gives an inverted output after the first stage, which is equal
to the product of the input voltage and feedback resistance.
The second stage gives a non-inverted output, which also
equals the product of the input (output of the first stage) and
the feedback resistance. During the sequential processing of
crossbar columns, an analog Sample andHold circuit are used
to retain the voltage signal as shown in Fig. 7(b). It comprises
two voltage buffers to mitigate the impact of signals from
other circuit components on the sampled signal, along with
a single sample and hold component. The input is sampled
when Vclk is high. The output from the activation functions
can be read Vclk will be high until the last column is read.
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FIGURE 7. (a) Current-to-voltage converter, (b) Sample and hold circuit,
(c) Opamp circuit with two differential stages and one gain stage.

FIGURE 8. Pinched Hysteresis of a memristor in which the output current
lags behind the input voltage.

V. MEMRISTIVE DEVICES
Memristors, operating as two-terminal devices, display resis-
tance that is affected by factors such as themagnitude, applied
voltage, and polarity. Even in the absence of an applied
voltage, the resistance remains, resulting in non-linear and
memory characteristics. Several types of memristors exist,
each with unique characteristics and materials. Several
emerging memristors, including resistive random access
memory (ReRAM), Phase Change Memory (PCM), and
Spin-Torque Transfer RAM (STT-RAM), operate based on
resistive switching in memristor materials. Nevertheless,
the specific mechanism of resistive switching varies among
memristors.

The characteristics of a memristor showing the variation in
the output current with respect to the input voltage is shown
in Fig. 8. The output current lags behind the input voltage,

resulting in a pinched hysteresis loop that passes through the
origin. Each slope refers to a conductance state that can be
programmed. When the frequency increased, the area of the
pinched hysteresis loop decreased. At a higher frequency,
it appears as a straight line.

A. RESISTIVE RANDOM ACCESS MEMORY (RERAM)
ReRAM, which is an emerging resistive memory, has low
writing energy and high density. ReRAM is also suitable
for building low-latency memories. It also provides a high
endurance (1010) also. Technologies that use variations in
resistance to store information are called resistive memory.
ReRAM especially points to metal-oxide Resistive Random
Access Memory because metal oxide is used as the storage
medium. ReRAM consists of two electrodes (top and bottom
electrodes) and a metal-oxide layer sandwiched between
them, as shown in Fig. 9. To switch the resistive state of
a ReRAM cell, an external voltage of a particular polarity,
duration, and magnitude is applied. SET (switching from
high resistance state to low resistance state) and RESET
(switching from low resistance state to high resistance
state) are controlled by the external voltage. The switching
process of the ReRAM is based on the formation and
rupture of the conductive filament between the electrodes.
The SET process involves the regeneration of conductive
filament by drifting oxide ions to the anode (positive
electrode) and leaving oxide vacancies in the metal oxide
layer. In the RESET process, oxide ions are returned to
the oxide layer by the force of an electric field, followed
by recombination with oxide vacancies. As a result, the
conductive filament is cut off, and the ReRAM is transferred
to a high resistance state. The resistance of a memristor
can be programmed to vary values between these two
high resistance state and low resistance state, by applying
voltage pulses and changing their amplitude and frequency.
The larger the size of the conductive filament, the
smaller the resistance. Multiple states are achieved by
changing the strength of the conductive filament, which
depends on the applied voltage. In digital memristive devices,
the initial formation process of the conductive filament is
termed electroforming. After the electroforming process, the
filamentary switching model functions. The voltage required
for electroforming is higher than that required for switching.
Analog memristive devices are free of electroforming. The
Characteristics of ReRAM vary with the materials. ReRAM
has the advantages of high endurance (1010), scalability, and
switching speed with relatively less energy consumption and
latency.

B. PHASE CHANGE MEMORY (PCM)
Phase Change Memory (PCM), also known as Perfect
RAM (PRAM), PCRAM, and Chalcogenide RAM (CRAM),
belongs to the category of emerging non-volatile memories
that rely on the principles of chalcogenide glass, and possess
two distinct phase states [29]. PCM’s switching operation of
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FIGURE 9. ReRAM device: Set (Transition from High Resistance State to
Low Resistance State) and Reset (Low Resistance State to High Resistance
State) operations. (a) The top Electrode and Bottom Electrode are
connected by a Conductive Filament in Low Resistance State. (b) In High
resistance, this Conductive Filament disconnects.

PCMs relies on the phase change of thematerial, transitioning
from an amorphous state to a crystalline state. This process
involves two distinct resistance levels: low and high. The
PCM technology stores information through the transition
from a low-resistance crystalline state to a high-resistance
amorphous state. Shifting from the amorphous phase to the
crystalline phase is considered the SET process whereas the
reverse method from the crystalline phase to the amorphous
phase is considered RESET switching. The PCM cell
architecture is presented in Fig.10 (a). PCM cells exhibit a
low resistance state (LRS) at high temperatures. Applying
an external power supply and current allows PCM cells
to rapidly RESET to a high-resistance state (HRS) in a
short time-period. This RESET process involves a transition
from a crystalline state to amorphous phase state. Achieving
a return to a crystalline state involves the SET process,
which requires an external current pulse at the melting
temperature. However, the crystallization process requires a
longer duration. The I-V characteristics of the PCM cells are
presented in Fig. 10 (b) [30].

FIGURE 10. PCM: (a) Crystalline state vs amorphous state.
(b) I-V characteristics of PCM cells.

The SET and RESET processes are responsible for
toggling the device between ON and OFF states. During the
transition between ON and OFF states, a brief gap exists
in the OFF region owing to the phase-switching process.
PCM technology exhibits faster operation, lower power
consumption, lower supply voltage, and superior endurance
compared to flash memory technology.

C. SPIN-TRANSFER TORQUE MAGNETIC
RANDOM-ACCESS MEMORY
Magnetic Tunnel Junction Spin-Transfer Torque (MTJ
STT) technology is an important mechanism in Magnetic
Random-AccessMemory (MRAM), that employs a magnetic
tunnel junction that comprising layers of ferromagnetic
material separated by an insulating tunnel barrier. In STT
MRAM, a magnetic tunnel junction (MTJ) consists of three
layers: two ferromagnetic (FM) layers separated by a thin
insulating tunneling barrier. Within the MTJ, the fixed layer
is magnetically linkedwith an antiferromagnet (AFM), which
requires stable magnetization while undergoing voltage
changes. The resistance within the MTJ varies between
low when the magnetizations of the FM layers are parallel
and high when they are anti-parallel. This variation can
be quantified using the tunneling magnetoresistance (TMR)
ratio [31].

FIGURE 11. Figure caption illustrating the MTJ structure and the process
of spin transfer torque-induced magnetization switching: transitioning
from an anti-parallel to parallel orientation (top) and from parallel to
anti-parallel (bottom).

The spin-transfer torque (STT) influences the magnetiza-
tion of the MTJ’s free layer when an unpolarized electric
current becomes spin-polarized upon passing through the
fixed layer [32]. Fig. 11 depicts the cell structure of
the MTJ STT switching mechanism, transitioning from an
anti-parallel orientation to a parallel orientation. During this
process, electrons move from the pinned layer to the free
layer, where magnetization is easily rotatable. As electrons
rotate themagnetization, they align in the same spin direction,
generating a spin-polarized current upon traversing the
pinned layer. This spin-polarized current then affects the
free layer, subjecting it to torque based on spin angular
momentum. The magnetic state of the free layer changed
when the torque exceed a specific threshold value.

For a transition from a parallel to an anti-parallel
orientation (illustrated in Fig. 11(b)), electron flow needs
to occur from the free layer to the pinned layer. Electrons
that maintain the same spin direction after passing through
the free layer and reaching the pinned layer facilitate this
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FIGURE 12. Schematic of the point contact transistor.

transition. Conversely, electrons with different spin directions
are reflected at the insulator-pinned layer boundary and
bounce back to the free layer. This reflection induces a spin
transfer torque on the free layer, ultimately switching its
magnetization when the torque exceeds the threshold value.

VI. TRANSISTOR TECHNOLOGY IN NEUROMORPHIC
DEVICES
A. EVOLUTION OF TRANSISTOR TECHNOLOGY
The first seed of the electronics industry called the ‘vacuum
tube’ was invented in 1904 [33], as a device designed to
regulate electron flow within a vacuum. However, during
WorldWar II, the demand for vacuum tubes surged, revealing
their limitations. These tubes are plagued by increasing
complexity, cost, and power consumption which degrade
their reliability. As the 1940s drew to a close, the elec-
tronic industry discovered two semiconductor devices: the
point-contact germanium transistor and the bipolar junction
transistor (BJT) [34] as shown in Fig. 12.
In a landmark achievement in 1947, a team comprising

William Shockley, John Bardeen, and Walter Brattain intro-
duced the point-contact transistor [35]. A year later, in 1948,
William Shockley pioneered BJT. This three-terminal device
plays a crucial role in our everyday existence as amplifiers
and switch, impacting our lives in numerous subtle yet
significant ways. BJTs typically consume more power and
have lower switching speeds which makes them less efficient
in applications where power efficiency is critical. The
transistor’s trans-formative legacy extends to the evolution of
field effect transistors (FETs). FETs are voltage-controlled
devices, that provide a high level of performance in terms
of power efficiency and reliability. The FET uses an electric
field to control the current flow making it a voltage device
instead of a current device.

The very first FET device called the Junction Field Effect
Transistor (JFET) patented by Heinrich Welker in 1945,
is often used in low to medium-frequency amplification
and switching circuits [36]. Despite the invention of the
junction field effect transistor, the journey was far from

over, as its performance fell short of expectations, leaving
room for exploration and improvement in other forms of
the device. The JFET device has introduced more gate
leakage current owing to high drain voltage which degrades
the device’s performance. In 1959, Mohamed Atalla and
DawonKahng [37] discovered themetal-oxide-semiconductor
field effect transistor (MOSFET) [38] considered the
driving engine of the semiconductor industry. MOSFETs
are incredibly versatile 20th-century inventions, which
have become iconic for their role in making tiny chips,
MOSFETs are used in almost all electronic devices, from
amplifiers and voltage regulators to microprocessors and
memory cells. They are also essential in power management
circuits and switching applications. It packed more into
less space, remained affordable, and ran faster. For over
40 years, MOSFETs have dominated the semiconductor
industry. Scaling is an important approach, for increasing
the packing density of the chip. Scaling enhances the
device’s speed functionality with a minimum fabrication
cost. However, MOSFET faces various unwanted problems
owing to reducing the device dimensions. The overscaling
of device dimensions in MOSFET introduces a non-ideal
effect called short channel effects (SCEs) [39]. These SCEs
affect the device’s efficiency. In 1997, Dr. Chenming Hu
invented a fin-shaped field effect transistor (FinFET) [40].
FinFET is a triple gate device, that has better electrostatic
gate control capability over the channel which reduces
the leakage current. Intel was the first company to adopt
FinFET technology over CMOS technology in 2012. FinFET
technology [40] has been used in the semiconductor industry
for more than one decade.

FETs are a broad category of transistors that are used
in various applications from sensors to memories [41]. The
Metal-Semiconductor Field-Effect Transistor (MESFET)
[42] is a type of field-effect transistor (FET) commonly used
in high-frequency and high-speed applications, particularly
in Radio Frequency (RF) and microwave circuits, including
satellite communication, radar systems, and wireless commu-
nication. MESFETs are typically fabricated using compound
semiconductor materials such as gallium arsenide (GaAs)
or indium phosphide (InP). These materials offer a high
electron mobility, which is advantageous for high-frequency
applications.

Graphene FETs (GFETs) [43] offer unparalleled poten-
tial as electronic devices in the semiconductor industry,
particularly for high-frequency and high-speed applications.
Departing from the conventional FET design, GFETs utilize
graphene as the channel material instead of silicon, capi-
talizing on graphene’s superior mobility, enhanced thermal
conductivity, and lower parasitic capacitance. These unique
properties empower the seamless design of cutting-edge RF
electronic circuits, making GFETs a promising choice for
the future of semiconductor technology. The various FET
configurations are presented in Fig. 13.

Transistor technology has undergone a remarkable evolu-
tion since the birth of the transistor, propelling the world into
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FIGURE 13. Schematic structure of various FETs.

FIGURE 14. IGTs structure.

the digital age. It has come a long way since its inception,
transforming the world of electronics and paving the way
for countless technological advancements. This demonstrates
a remarkable tale of miniaturization, efficiency, and expo-
nential growth. The evolution of transistor technology has
revolutionized the computing, communication, and countless
industries, leaving an indelible mark in the modern world.
Over the decades, transistors have shrunk in size, expanded in
functionality, and become an integral part of our daily lives.
The evolution of transistor technology from vacuum tubes to
silicon transistors and beyond has been a defining factor in the
electronics industry. The relentless pursuit of smaller, faster,
and more efficient transistors has driven the evolution of
technology. Transistors are used in many electronic devices,
from tiny parts to big computers. Without them, many of
our gadgets would not have worked. In the next section,
we provide a detailed overview of the emerging memory
devices for a better understanding.

VII. TYPES OF TRANSISTORS USED IN NEUROMORPHIC
DEVICES
A. ION-GATE NEUROMORPHIC TRANSISTORS
Ion-gate transistors (IGTs) share a similar structural and
voltage bias configuration with MOSFETs as shown in
Fig. 14. However, a crucial divergence arises from the choice

FIGURE 15. (a) Electrostatic doping mechanism with an impermeable
channel (b) Electrochemical doping mechanism with a permeable
channel.

of the gate dielectric materials. While MOSFETs rely on
insulating gate dielectrics, IGTs opt for electrolytes, which
serve dual purposes as electron insulators and ion conductors
within the gate dielectric. These differences in the gate
dielectrics lead to distinct working mechanisms for the two
devices. MOSFETs fundamentally control the current flow
when a supply voltage is applied to the gate and the gate
to the drain terminal. The applied gate voltage determines
the extent of control over the channel, allowing MOSFETs
to act as crucial switches or amplifiers in electronic
circuits [44]. This process exclusively involves electron
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FIGURE 16. Transconductance (Gm = dID/dVGS ) performance of IGTs
Structure.

movement and is essentially a capacitive charging mecha-
nism. On the other hand, IGTs follow the same roots as
MOSFETs. In IGTs, the gate terminal bias governs the
control of the current. However, in IGTs, the movement
of ions within the electrolyte of IGTs, come into play at
specific gate voltage levels. This ion movement is a critical
factor in the distinctive working mechanism of IGTs within
the electrolyte, which occurs at specific gate voltage levels.
This ion movement is a key factor in the unique working
mechanism of IGTs [45].

In IGTs structures, there are two distinct working mecha-
nisms electrostatic and electrochemical carrier doping mech-
anisms, where impermeable and permeable channel materials
can be considered [46]. Fig. 15(a) represents the schematic
diagram of the IGTs where an impermeable channel is used.
Applying a positive bias to the gate terminal in the presence
of an electrolyte results in the attraction of cations to the
negatively charged gate, while anions are repelled. While
the channel remains impermeable, positive ions from the
electrolyte gather near the interface between the electrolyte
and the channel. This accumulation of oppositely charged
ions creates an electric double layer (EDL), essentially
forming a parallel plate capacitor structure, where one
plate is formed by the accumulated positive ions and the
other plate is the channel surface with induced negative
ions. The formation of EDL is a fundamental concept in
electrochemistry is widely utilized in various applications,
including capacitors, supercapacitors, and electrochemical
sensors, in which the charge separation at the interface plays
a crucial role.

Fig. 15(b) the working function of the IGT is depicted,
taking into account the permeable channel. Upon applying
a positive voltage to the gate terminal, electrolyte ions start
migrating toward the channel, facilitated by the channel’s
ability to permit ion passage through the interface. The
electrolyte ions are injected more towards the channel owing
to the high supply voltages. An opposite type of charge
carrier was injected into the channel region to compen-
sate for the injected electrolytic ions. The electrochemical

doping mechanism involves the injection of electrolytic
ions whereas opposite ions move towards the gate. IGT-
based electrochemical doping is also called electrochemical
transistor (ECT). IGTs have polarized and nonpolarized
gates, where the nonpolarized gate configuration boasts a
higher capacitance value that enhances gate controllability
compared to a polarized gate setup [47], [48]. The polarized
gate can increase the gate controllability of the channel by
enlarging the area of the gate-electrolyte interface.

Fig.16 shows the transconductance performance of the
IGT transistor, which IGT possesses a significant capacitance
value, thereby enhancing the transconductance value in
comparison to traditional transistors. This characteristic is
advantageous for small signal amplification.

Different types of IGT structures exist in practical appli-
cations.They can be categorized into two primary groups:
planar and vertical. Planar structures, in turn, can be further
classified into co-planar and lateral thin-film transistor (TFT)
structures. In the co-plane structure, the source, drain, and
gate electrodes are placed in the same plane, as shown in
Fig. 17(a). Within co-planar structures, the source, drain,
and gate electrodes are commonly deposited simultaneously
onto the substrate through methods like spin coating. These
IGTs are ideal for sensors because of their simple design,
easy fabrication, and the fact that they don’t require device
miniaturization

Another planar IGT structure lateral thin-film transistor
is shown in Fig. 17(b). Lateral TFT-based IGTs have four
specific configurations based on the locations of the source,
drain, and gate electrodes: top-gate top contact, top-gate
bottom contact, bottom-gate top contact, and bottom-gate
bottom contact. Unlike co-plane architecture, lateral TFT
designs are more mature in their processing and offer
integration possibilities into arrays. However, the energy
efficiency and processing speed of planar IGT structures
need to be improved. To address these issues of planar
IGT, a vertical field effect transistor (vFET) [49] has
been demonstrated to improve the saturation current and
switching frequency, as shown in Fig. 17(c). The vFET
structure offers a higher saturation current with minimum
operating voltage which reduces the total power consumption
of the device [50]. A comparative analysis between the
IGT and alternative devices for implementing neuromorphic
computing is presented in Table 1.

B. FERROELECTRIC-GATE NEUROMORPHIC TRANSISTORS
Since the discovery of ferroelectricity in BaTiO3, ferroelec-
tric materials, have attracted considerable attention [51].
Ferroelectric field effect transistors (FeFETs) use ferro-
electric materials as gate dielectrics. FeFETs typically use
the same designs as their conventional counterparts, but
instead of relying on an external electric field, they control
the conductance of the channel by polarization [52]. The
loop in Fig. 18 shows a characteristic hysteresis loop that
displays the relationship between the induced polarization
and the applied electric field. The hysteresis loop shape
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FIGURE 17. The basic structures of various IGTs. (a) Co-plane structure (b) Lateral TFT structure (c) Vertical structure.

signifies the inherent ferroelectric properties of the material
including its coercive field (Ec), remnant polarization (Pr ),
and polarization saturation (Pmax). The transistor provides
features such as a high operating speed and multi-domain
switching possibility and hence, is suitable for the application
of neural computing. FeFETs can possess two archi-
tectures. The Metal-Ferroelectric-Insulator-Semiconductor
(MFIS) or Metal-Ferroelectric-Metal-Insulator-Semicond-
uctor(MFMIS). Lue et. al. provided detailed information
on the simulation and modelling of these two types of
transistors [53]. It discusses the behavior of the drain current,
channel potential, surface band bending, and space charge
density as functions of the drain voltage. This study uses a
wide range of materials and geometric parameters to gain
insight into the operation of FeFETs. It also describes the
calculation algorithm used and states that the results are
independent of the equivalent oxide thickness (EOT) of the
insulator. The study mentioned that the hysteresis loop of the
ferroelectric layer traces a clockwise direction for a p-type
substrate and a counterclockwise direction for an n-type
substrate.

The diagram (Fig. 19) illustrates the conventional structure
of a FeFET, the gate voltage pulses applied to it, the resulting
multi-level polarization states, and the corresponding transfer
curves [54]. By applying short voltage pulses to the gate,
the threshold voltage of the underlying MOSFET channel
can be gradually tuned, thereby adjusting the drain-to-source
conductance. This feature allows the implementation of
weight updates in FeFET synapses, enabling the storage
and manipulation of analog synaptic weights in neural
computing systems. The carrier concentration in the channel
can be precisely and gradually adjusted by manipulating the
polarization state of the ferroelectric dielectric using gate
voltage pulses. This ability allows FeMFETs to distinguish
various logic states, making them capable of serving as both
memory and logic devices with non-volatile characteristics.
In the context of neuromorphic transistors, the utilization of

FIGURE 18. Hysteresis loop illustrating the polarization-electric field (P-E)
behavior of a ferroelectric material under varying electric fields. The
hysteresis loop’s shape signifies the material’s inherent ferroelectric
properties, including its coercive field (Ec ), remnant polarization (Pr ),
and polarization saturation (Pmax ).

multi-domain polarization switching enables multiple levels
of channel conductance to be achieved. This capability is
valuable for recording the synaptic weights in neuromorphic
circuits.

The analog conductance modulation behavior in ferroelec-
tric thin-film transistors (FeTFTs), comprising nanoscale fer-
roelectric materials and oxide semiconductors, was demon-
strated by Lee et al. [55]. Precise control of the polarization
changes within the nanoscale ferroelectric layer induces
conductance modulation and depression characteristics in
FeTFTs. These devices exhibit potentiation and depression
properties characterized by high linearity, multiple states, and
minimal cycle-to-cycle/device-to-device variations. Through
simulations employing measured properties, a recognition
accuracy of 91.1 % for handwritten digits was achieved
by a neuromorphic system featuring FeTFTs as synaptic
devices. This study presents a potential avenue for real-
izing neuromorphic hardware systems employing FeTFTs
as synaptic devices. Takagi et. al. observed that, in the
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FIGURE 19. The configuration of a FeFET, the applied gate voltage pulses, the numerous switching states of
multi-domain partial polarisation, and the associated transfer curves are shown in an illustration [54].

FIGURE 20. Schematic of the structure of FG transistor.

case of small polarization regimes, a linear proportionality
exists between the memory window (MW) and ferroelectric
polarization [56]. The relationship between the MW of
ferroelectric field-effect transistors (FeFETs) and the P-E
hysteresis loop of a ferroelectric gate insulator was investi-
gated theoretically in this study. Furthermore, it is determined
that when the remanent polarization significantly exceeds
the product of the permittivity and coercive field, the MW
approaches a limiting value equivalent to 2 times the coercive
field multiplied by the thickness of the ferroelectric material.
Tunneling factors that may influence MW in practical FeFET
devices are discussed, including the presence of interlayers,
interface charges, and minor-loop operation.

C. FLOATING GATE (FG) NEUROMORPHIC TRANSISTORS
A floating gate transistor is a type of transistor that uses a
non-volatile memory device such as flash memory. The first
metallic floating gate in aMOSFETwas discovered byKahng
and Sze in 1967 [57].

The structure of the FG transistor differs from that of
a conventional MOSFET, as shown in Fig.20. A metallic
floating gate was placed between two different dielectric
layers with two different oxide thicknesses. The thick upper
dielectric layer serves as an effective barrier, preventing the
flow of charge carriers from the floating gate to the control
gate during both programming and erasing processes. On the

FIGURE 21. I-V characteristics of FG transistor.

other hand, a lower thinner dielectric layer can block charge
carriers from shifting from the semiconductor layer in the
absence of a power supply. Therefore, charge carriers can be
stored in the floating gate layer even after a power supply
outage [58]. There are many ways in which the charge can
shift to or from the floating gate of the transistor such as
hot electron injection, Fowler-Nordheim (F-N) tunneling, and
direct tunneling.

Fig.21 shows the I-V characteristics of the FG transistor.
In an ideal MOSFET, the threshold voltage remains constant
at a fixed drain voltage. However, for Floating Gate (FG)
transistor devices, the threshold voltage changes because of
the trapping of charge carriers in the floating gate. This
phenomenon affects the conductivity during programming
and erasing operations. When the threshold voltage value
is designated as’0’ or VTh(0), the Floating Gate (FG) is
recognized as the ‘programmed state’ resulting from the
injection of a negative charge. On the other hand, ‘erased
state’ can be called when threshold voltage returns to VTh (1)
due to the supply of negative voltage at the gate electrode.
In the erased state, no charges were trapped in the floating
gate, signifying the ‘OFF’ or ’0’ state, while the programmed
state is referred to as ’1’ or ‘ON’ state.

During hot electron injection programming, vertical and
lateral electric fields must be applied. The lateral electric
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FIGURE 22. Schematic structure of hot electron injection, Fowler-Nordheim tunneling, direct tunneling.

field provides sufficient energy to surpass the energy barrier
separating the floating and semiconductor layers. The vertical
electric field is generated by the gate voltage, which helps
the charge carriers to be trapped in the floating gate
layer. This process enables exceptionally rapid write speeds,
typically within the microsecond range for a single data bit.
Additionally, it enables write operations with significantly
lower control gate voltages, making the memory efficient
and responsive [59]. The Fowler-Nordheim (F-N) tunneling
mechanism occurs because of the presence of a higher
electric field, and charge carriers pass through the thin barrier.
The thin barrier allows charge carriers to tunnel through
it [60]. The F–N tunneling mechanism requires minimum
energy for the process of ‘program’ and ‘erase’ operation and
offers good efficiency compared to other injection methods.
However, this process has some disadvantages owing to the
high electric field and long access time. The direct tunneling
(DT) mechanism occurs because of a higher electric field
and extremely thin layers. Owing to the ultra-thin nature of
the oxide layer in the DT process, the charge carriers can
easily move. The direct tunneling method provides a faster
programming speed with less power consumption. However,
it reduces the data retention capabilities. To enhance charge
retention, increasing the barrier height can be beneficial,
which in turn reduces tunneling probabilities. In the DT
mechanism, the tunnel oxide layer is generally constrained
to around 6 nm. However, because of trap-assisted electron
tunneling induced by oxide aging, a more realistic thickness
may need to be increased to approximately 7-8 nm [61].
The schematic structure of the hot electron injection, Fowler-
Nordheim tunneling, and direct tunneling mechanism ha
shown in Fig.22. Conventional FG transistor faces sev-
eral challenges owing to the over-scaling of the device
dimensions. One main problem is the decreasing distance
between cells, leading to cell-to-cell interference and para-
sitic capacitance. The reduction in oxide thickness enhances
the tunneling issue which increases the leakage current,
making it difficult to manage charge retention. Additionally,
a smaller floating gate carries a small number of free electrons
which degrades the performance of the device. Scientists have
created several enhanced iterations of FG transistors aimed at
improving their efficiency. Examples include silicon-oxide-
nitride-oxide-silicon (SONOS) [62], and nano-floating-gate

(NFG) memory devices, which incorporate metal nanopar-
ticles (NPs) and utilize organic/inorganic nano-materials in
their dielectric layers [63]. All the modified structures of
the FG transistor offer better durability, and less power
consumption with a smaller chip size than conventional
FG transistor. Modified structures can store multiple levels
of data which attract the semiconductor memory industry.
Liu et al. [64] constructed an organic FET (OFET) memory
incorporating self-assembled gold nanoparticles (NPs) into
the gate dielectric. Constructed on a silicon (Si) substrate to
control the gate electrodes, the device utilized a 100 nm thick
silicon oxide (SiO2) layer as the charge-blocking dielectric.
Poly(3-hexylthiophene) (P3HT) serves as a semiconductor
channel layer, with additional polyelectrolytes separating it
and a poly(4-vinylphenol) (PVP) tunneling layer covering the
gold nanoparticles (NPs). Despite exhibiting an impressive
switching ratio of 1500, the device exhibits a relatively
short retention time of 200 s. Ryu et al. [65] approached
a non-volatile transistor memory in which a double-stacked
layer of metal NPs was used, as shown in Fig.23. They
formed various types of charge-tapping layers by depositing
different sequences of gold (Au) and nickel (Ni) such as
Ni/Ni, Au/Au, Ni/Au, and Au/Ni to observe the memory
device performance. The utilization of both top and bottom
charge-trapping layers (Au/Ni) has been observed to improve
program/erase speeds significantly and notably extend data
retention times. Chang et al. [66] demonstrated an FG
memory device incorporating high-k oxide dielectrics, such
as HfLaO, HfON, and HfO as the blocking, charge trapping,
and tunneling dielectric layers, respectively. Memory devices
provide a low program/erase voltage of 12 V and also
contribute a programming speed of 1/100 ms.

Loai et al. introduced an energy-efficient memristive
device-based FG FET device [38]. Operating in a sub-
threshold memristive mode, this distinctive device is referred
to as the Y-flash [8], [34] and is engineered to be
linearized for small change in signals. By incorporating
recent advancements in memristive techniques utilized in
small-scale selector-free dense integrated Artificial Neural
Networks (ANNs) for spike-timing-dependent plasticity
(STDP), Vector-Matrix Multiplication (VMM), associative
memory, and classification training, we developed a practical
and high-performance memristive device.
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FIGURE 23. Schematic diagram of double-stacked metal
nanocrystals (NC).

Through both theoretical analysis and experimental val-
idation, our research demonstrated the viability of this
memristive device for applications in high-performance
neuromorphic computing. This innovative approach not only
paves the way for energy-efficient computing but also
opens up new possibilities for advanced neural network
applications, making it a promising technology for the future
of artificial intelligence and cognitive computing.

D. PERSPECTIVE ON TRANSISTORS IN COMPUTING
Integrating various types of transistors into neuromorphic
computing systems offers a holistic approach to emulate the
complexity of the human brain. By combining their unique
characteristics such as ion-based modulation, non-volatility,
and analog behavior—neuromorphic systems can achieve
energy-efficient, adaptive, and self-learning capabilities.
These advancements have brought us closer to realizing
artificial intelligence models that can learn, adapt, and
process information in ways that resemble human cognition.

VIII. INTEGRATION OF TRANSISTORS IN
NEUROMORPHIC SYSTEMS
IGTs have evolved from traditional MOSFET, that were ini-
tially designed as switches for both analog and digital circuits.
However, IGT can be used for sensor and neuromorphic
computing. IGTs have a large channel capacitance which
enhances the transconductance value, and can be applied for
small signals.

IGT-based electrostatic and electrochemical doping mech-
anisms can make neural networks to study synapses in the
brain. Lenz et al. [85] demonstrated a vertical structure IGT.
Initially, they designed an Au/Ti/SiO2/Ti/Au stack with a
cross structure and created empty spaces perpendicular to the
stacking orientation with Ti and SiO2 materials. The height
of these voids corresponds to the length of the channel and

TABLE 1. Comparative analysis between IGT and alternative devices for
implementing neuromorphic computing.

FIGURE 24. Schematic of the structure of IGT based on MoO3 material.

their depths, determined by SiO2 thickness and etching time,
respectively, were precisely controlled. The proposed device
uses a spin coating technique to fill the constructed voids.
It is observed that the proposed vertical IGT improvised
the high on-state current densities and switching ratio by
<3mA cm−2 and 108, respectively. The power consumption
has been optimized by 100 fJ per event which is good
compared to other similar types of devices.

Shang et al. [86] designed an IGT based on layered
transition metal oxide -phase molybdenum oxide (α-MoO3)
as shown in Fig. 24. The higher band-gap characteristics
of α-MoO3 make it an insulator. They considered Li+

electrolyte solid material instead of a liquid material. When
a supply voltage was applied to the gate terminal, tiny
particles called Li+ to move in and out of the α-MoO3
material. The proposed transistor with Li+ as the dopants
offers a channel conductance switching value of< 10−5 Torr.
These specialized devices are highly energy-efficient and can
be employed to construct large-scale computer systems by
densely packing them together.

Fig. 25 schematically illustrates a crossbar array com-
prising a synaptic-weight layer. The weighted summation
of the neural network is emulated in the arrangement by
calculating vector-matrix multiplication. The switching of
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FIGURE 25. Diagram of the synaptic weight layer comprising an IGT
crossbar array.

the devices can be performed by programming by applying
suitable voltage pulses along the horizontal and vertical
lines. Synaptic transistors, based on α-MoO3, serve as
memory elements within the crossbar array [46]. By applying
a gate voltage, the interaction of lithium ions with the
layered α-MoO3 channel results in analog switching of the
α-MoO3 layer. The ionic liquid was subsequently substituted
with a solid-state Li+ electrolyte. Li+ electrolytes are
considered dopants that enhance the switching of the channel
conductance under vacuum conditions. Additionally, the
α-MoO3-based synaptic transistors demonstrate exception-
ally low conductance (<75 nS), making them highly
advantageous for energy efficiency and the manufacture of
extensive crossbar arrays.

Zhu et al. [87] proposed a latterly coupled IGT featuring a
co-planar architecture that operates on an electrostatic doping
mechanism. This structure changes the electrical properties
to mimic how synapses in the brain work for short-term
memory. The planar structure of an IGT can be built with
multiple gates and channels. Recently, researchers have been
paying considerable attention to the electrochemical doping
mechanism of IGT owing to its non-volatile characteristics.
This method does not forget information when the power is
turned off, whichmakes it useful for mimicking the long-term
memory of the synapses in the brain. Burgt et al. [88]
demonstrated a neuromorphic organic transistor based on
an electrostatic doping mechanism with affordable plastic
materials that act like an artificial synapse [89]. The proposed
transistor provides non-volatile and reproducible states (more
than 500) at a very low operating voltage, as noted in [90].
However, the devices exhibited a higher channel conductance
value ranging from 500 to - 2000 µS.
More electrical power was required to carry the current

capacity when the array dimensions were increased. Never-
theless, by combining a conductive polymer with an insulator,
the device consumes less electricity. Thismixing composition
offers a lower synaptic weight readout (< 10 nA) [91].

Wang et al. proposed a ferroelectric material-based tran-
sistor for applications in neural computing [92]. The device

FIGURE 26. Schematic diagram representing the Ferroelectric field effect
transistor structure [92].

FIGURE 27. Implementation of analog vector-matrix multiplication and
row-wise parallel weight updates via a Ferroelectric Field-Effect Transistor
(FeFET) pseudo-crossbar array. Incorporating access transistors alongside
FeFET storage devices in synaptic weight cells to minimize disturbance
effects [54].

structure of ferroelectric channel transistors (FeCTs) is shown
in Fig. 26. In the device fabrication process, the bottom
dielectric layer, aluminum oxide (Al2O3) is deposited onto
the substrate using atomic layer deposition (ALD). Mechani-
cal exfoliation was used to create a 2D - In2Se3 channel layer
and bottom hexagonal boron nitride (h-BN). The elimination
of the PVA sacrificial layer employed wet methods, while
the design of the electrode was accomplished through
the utilization of electron beam lithography. Al2O3 layers,
produced by ALD, dopes the In2Se3 channel. Therefore, the
bottom h-BN layer’s existence is essential for optimizing the
interface. In addition, the h-BN layer serves as a passivation
layer for the In2Se3 channel in addition to being a dielectric,
thereby isolating it from the ambient environment. When a
voltage is applied to the gate electrode, the polarization of
the ferroelectric material changes, resulting in a change in
the threshold voltage of the device. This change in threshold
voltage allows for the storage and retrieval of information
in FeFETs. The ferroelectric material acts as a non-volatile
memory element, enabling the FeFET to retain its state
even when power is removed. The device’s impressive
performance includes a 40 nanosecond write speed, increased
endurance made possible by the internal electric field, low
energy consumption at 234/40 femto-joules per event for
excitation/inhibition, and a high-precision simulation with an
accuracy rate of 94.74%.
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FIGURE 28. Schematic diagram of FG transistor as two terminal devices.

The FeFET synapse can be incorporated within pseudo-
crossbar arrays, enabling simultaneous row-based adjust-
ments of the weight and column-based computation of the
combined FeFET conductances. Fig 27 shows the crossbar
array for the ferroelectric material-based transistors. Using
high-speed weight update pulses, which are mapped to the
conductance states that vary between dynamic changes,
The FeFET synapse combines the ability to modulate the
ferroelectric polarization with the help of metal oxide semi-
conductor field effect transistors. The crossbar arrangement
of the FeFET synapses allows the weighted summation
of individual FeFET conductance values. The conductance
states were programmed, and the results from the columns
were read using programming voltage pulses and the
application of read voltages.

In the area of neural computing 2D materials are used
as both switch and memory components of the neural
network architecture [93]. Different 2D materials such as
Graphene, MoS2, WSe2 etc. been proposed, which can be
used in FeFET fabrication to enhance the properties [94],
[95], [96]. These materials have been used as the channel
materials, gate contacts, and gate dielectrics in FeFETs.
These materials contribute to improved device performance,
including increased retention time, memory window, and
on/off ratio [97]. The use of 2D materials in FeFETs
helps address issues such as gate current leakage and
charge trapping at the semiconductor-ferroelectric interface.
The van der Waals structures of 2D materials effectively
reduce or eliminate charge trapping, leading to an enhanced
device performance. Wan et al. studied the effect of
vertically stacked graphene with hexagonal boron nitride
and -In2Se3, to form a device structure. The electric
polarization of -In2Se3 induces doping in graphene, leading
to modulation of its resistance and allowing for the storage
and retrieval of information in the FeFET [98]. Si et al.
reported the stable non-volatile memory property of these
Fe-FETs, which is modulated by the back-gate bias of the
MoS2 transistors, leading to an enhancement of the on/off
current ratio. Additionally, the CuInP2S6 thin film used in
these Fe-FETs also shows resistive switching characteristics
with a high on/off ratio between the low- and high-
resistance states [99]. Tathagata et al. [100] proposed and

fabricated a charge tunneling-based synaptic transistor where
two-dimensional molybdenum disulfide (MoS2) is consid-
ered as the channel material. MoS2 exhibits better coupling
with metallic gates. MoS2 can be used for non-volatile
memory cells owing its high switching ratio and low band
gap characteristics. The proposed architecture offers a high
drain current with a sub-threshold swing of 77mV/decade.
In 2014, Riggert et al. [101] designed an FG transistor
as a memristive device for neuromorphic computing as
shown in Fig.28. Their investigation focused on evaluating
the impact of gate oxide scaling in single floating-gate
transistors on their performance in the memristive operation
mode within the domain of neuromorphic engineering. It is
considered that an oxide thickness of 4nm can generate a
pulse width of 3ms, which is comparable to the biological
pulse times that consume less power than other memristive
devices. In investigating thinner gate oxides, they formulated
an enhanced device model for a single MemFlash cell,
encompassing F-N tunneling, Poole-Frenkel emission, and
hot electron injection. The DT tunneling process has been
used to consider an ultra-thin oxide layer from the channel
to the floating gate.
Yongli et al. [102] demonstrated indium-gallium-zinc-

oxide (IGZO) based floating-gate synaptic transistors
(FGST) for neuromorphic computing where the minimum
temperature is considered, as shown in Fig.29. The proposed
transistors used Al2O3/ITO/Al2O3 gate dielectric stacks to
store the synaptic weight as channel conductance (G). They
designed an artificial neural network with 95.7% accuracy
for small signal datasets. Fig. 30 illustrates a cross-bar
array composed of FGST. They examined M × N synaptic
devices designed to mimic an M × N synaptic weight
array. The conductance state of these synaptic devices is
determined by the product of high voltage with the rows and
columns lines, with the rows represented by blue horizontal
lines and the columns by black vertical lines. However,
reading operations can account for lower voltages with read
lines. The crossbar array of AXB synaptic devices emulates
the AXB synaptic weight array. The conductance states
of the FGST devices were programmed using the voltages
along the horizontal programming lines and vertical lines
to perform vector-matrix multiplication. By applying small
voltages across the read lines (indicated by black horizontal
lines), reading operations were performed, and a small
voltage was applied across the programming lines to measure
the currents from the columns. To prevent discharging after
programming, a two-terminal access device is essential for
the floating gate transistor device.

Myung et al. [103] proposed a modified FG transis-
tor called overturned charge injection synaptic transistor
(OCIST) specifically for neuromorphic computing. The key
distinction of OCIST lies in the incorporation of an additional
layer known as the Charge Valve Layer (CVL), setting it
apart from the conventional FG transistors. CVL plays a
pivotal role in regulating the flow of charge carriers to the
Floating Gate (FG). The experimental results demonstrated
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the effectiveness of this modification, with the proposed
OCIST achieving an impressive accuracy rate of 92.4%
for handwritten digits in the MNIST dataset. This high
accuracy underscores the practical viability and potential
applications of the OCIST in the field of neuromorphic
computing. Comparative analysis of the performance of
various neuromorphic transistors has tabulated in Table 2.
FinFETs and other advanced devices have gained promi-

nence in contemporary neural computing. Dibyendu et al. [17]
introduced a novel bulk FinFET design centered on ultra-low
energy artificial neurons, demonstrating a comprehensive
comparative analysis with other CMOS-compatible devices.
Avinash et al. [104] designed an energy-efficient bipolar
I-MOS for spiking neural networks which reduced the spike
energy and enhanced the spike frequency by an order of
6 compared to biological neurons. Neha et al. proposed a
junctionless FET configuration-based leaky integrate-and-
fire (LIF) neuron. It is observed that the proposed device with
a gate length of 20nm consumes less spike energy on the order
of 1.14 pJ making the device more power efficient than the
partially depleted (PD) SOI MOSFET device.

IX. EMERGING MATERIALS IN TRANSISTOR
FABRICATION
A. SI BASED TRANSISTORS
The most important building block used in the produc-
tion of transistors is silicon wafers. The semiconducting
property of Si and its tunability with doping facilitate its
application in transistors, which are crucial components of
electronic devices. Single crystalline Si wafers are ideal
for high-performance transistors owing to their well-ordered
atomic structures. Due to the superior thermal conductivity
of silicon, the heat produced during transistor operation
can be effectively dissipated [111]. Si is suitable for a
variety of fabrication processes, including oxidation and
etching, because they are chemically stable and do not
react with the majority of common chemicals. Because
Si wafers are mechanically strong, they can endure the
strain of different production processes including lithography
and etching [112], [113]. The preparation of silicon wafers
is the first step in the manufacturing of transistors. The
requisite layers and structures for transistors are created
on wafers by several procedures, including oxidation and
epitaxial growth after they have been cleaned to eliminate
impurities. A sophisticated circuitry of transistors and other
semiconductor devices is created on top of these silicon
wafers.

Wagner et al. discussed the use of silicon for thin-film
transistors (TFTs) in the industrialization of flexible back-
planes [114]. The two main research directions for TFTs are
processability on flexible substrates and sufficient field-effect
mobility of electrons and holes. Different modifications
of silicon films, such as amorphous, nanocrystalline, and
microcrystalline, are summarized in terms of their TFT
properties and compatibility with foil substrate materials.

FIGURE 29. A schematic diagram of IGZO-based FGST.

FIGURE 30. Hardware implementation of cross-bar array comprised
of FGST.

TABLE 2. Comparative analysis on the performance of various
neuromorphic transistors. CNT:Carbon NanoTube, IZO: Indium Zinc Oxide,
PEG: Polyethylene Glycol, ITO: Indium Tin Oxide, NA: Not Applicable.

This document presents a chart showing the compatibility
of directly deposited silicon channels with different substrate
materials as shown in Fig. 31. Silicon films, including amor-
phous, nanocrystalline, and microcrystalline, are leading
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FIGURE 31. Variations in silicon film modifications accessible for
Thin-Film Transistor (TFT) fabrication exhibit diverse carrier mobilities,
Field-Effect Transistor (FET) capabilities, and process temperature
requirements [114].

candidates for flexible and conformal TFT backplanes.
The choice of silicon material, substrate material, and
fabrication process will play a crucial role in the successful
implementation of TFT backplanes for various applications.
Guo et al. reported the fabrication of FET based on Si using
nanoimprint lithography [115]. With the help of lithography
techniques and dry etching, they have patterned transistors in
silicon including nanowire channels, quantum dots, and ring
structures without any degradation in the device structure and
characteristics. This method of nanoimprint lithography thus
helps in the mass production of transistors for industrial-scale
applications.

Ast et al. conducted a comprehensive study to explore
the conduction mechanism and sources of leakage current
in undoped channel polycrystalline silicon thin-film transis-
tors (TFTs) produced under diverse processing conditions.
Remarkably, they achieved leakage currents below 1 nA at
drain-source voltages of 40 V for both n-type and p-type
devices. The effective channel mobilities for electrons and
holes were determined to be 75 and 42 cm2/Vs, respectively.

B. FERROELECTRIC MATERIALS BASED TRANSISTORS
Ferroelectric materials have a special dielectric characteristic
because they retain a constant polarization [116]. These
substances can change the direction of their dipoles when
exposed to an external electric field [117]. The perovskite
structure (ABO3), in which A and B are cations and A, B,
and oxygen atoms are located at the corners of the crystal,
body center, and face centers, respectively, is the structure
most commonly used for ferroelectric materials [118], [119].
Along with their ferroelectric properties, these materials
exhibit good magnetic and optical properties [120], [121].
The B atom moves when an external electric field is applied,
causing an unbalanced distribution of electrical charges and
formation of a dipole moment. Depending on their symmetry
properties, the materials were classified into 32 different
crystal classes. 21 out of the 32 crystal classes found in
the materials are non-centrosymmetric. Twenty of these
non-centrosymmetric crystal classes exhibit piezoelectricity,

FIGURE 32. P-E loop characteristics corresponding to different switching
states [92].

while 10 exhibit pyroelectricity, or temperature-dependent
polarization [122]. The polarization vs electric-field graph
of some pyroelectric materials also exhibits external electric-
field-dependent polarization, which results in a hysteresis
loop. Crucial characteristics of ferroelectric materials are
obtained from this hysteresis loop as shown in Fig. 32 [123].
Ferroelectric materials must exhibit saturation polarization
(Ps), remnant polarization (Pr), and coercive electric field
(Ec). The values Ps and Pr represent the maximum polariza-
tion attained in the presence of an external electric field and
the remaining polarization after the field has been removed.
Where Ec represents the strength of the electric field required
to cause a polarization reversal. Polarisation reversal in
ferroelectric materials occurs because of the formation and
growth of ferroelectric domains. Ferroelectric memory is an
important requirement for non-volatile memory with stable
memory states because the polarization switching process is
controlled by the electric field and maintains its state even
after the field is withdrawn [124].

Ferroelectric materials exhibit significant promise as
potential candidates for synaptic weight elements in neural
network hardware owing to their non-volatile multi-level
memory effect. Ferroelectric materials have characteristic
features such as low symmetry and the presence of sponta-
neous polarization states [125], [126], [127]. Materials such
as HfO2, PbZrOx (PZT), SrBi2Ta2O9 (SBT), BaTiO3 (BTO),
and BiFeO3 (BFO) can be used for ferroelectric transistor
fabrication owing to their potential for neuromorphic appli-
cations. This characteristic holds vital significance for their
application in mobile devices, where vector-matrix multi-
plication is performed during portable artificial intelligence
services. Additionally, the adaptive learning effect observed
in ferroelectric polarization has attracted substantial research
attention, with the aim of improving the CMOS circuit
overhead associated with integrators and amplifiers featuring
activation functions. Material-related challenges have been
identified as potential hurdles in the commercialization of
these devices, particularly in CMOS processing and device
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TABLE 3. Material parameters used for transistor fabrication.

structures [128]. Ferroelectric materials exhibit properties
such as high operating speed, low power consumption,
and nondestructive read-out for transistor fabrication which
is suitable for neural computing applications. Xue et al.
reported the multi-domain polarization switching behavior
of ferroelectric materials, which helped achieve multi-level
FeFET channel conductance [129].

Seidel et.al. presented the advantages of utilizing hafnium
oxide-based FeFETs for non-volatile memory device appli-
cations [141]. Their fundamental three-terminal structure
enables the selective activation or deactivation of specific
devices and allows for the tuning of the linearity and
dynamic range to cater to specific applications. Furthermore,
the article delves into the influence of material properties
on the ferroelectric layer, interface layer thickness, and
scaling on device performance. Notably, it demonstrates the
viability of achieving favorable device properties even in
the case of highly scaled devices, as small as 100 nm x
100 nm. Another material, In2Se3 has been explored as a
ferroelectric semiconductor channel material for transistors.
It demonstrates strong ferroelectric properties at ambient
room temperature and can maintain ferroelectric polarization
even at the atomic scale. This substance provides compact,
scalable devices that combine non-volatile memory (NVM)
with neural computing capabilities. Table 3 lists the different
materials and their properties that must be considered for
transistor applications.

FIGURE 33. Hierarchical ranking of electron device modelling approaches
based on computational demand and accuracy [143].

C. 2D MATERIALS BASED TRANSISTORS
Two-dimensional (2D) materials, such as hBN and transition
metal dichalcogenides (TMDCs), play a crucial role in
the development of transistors for silicon technology. They
offer unique properties and have potential applications
in next-generation computing technologies. Utilizing 2D
materials in transistors presents numerous benefits, such as
substantial memory hysteresis windows, prolonged retention,
increased endurance, rapid write speed, flexible neuroplas-
ticity adjustment, and exceptionally low power consumption.
Additionally, they demonstrate thermal tunability in both
memory and neural computation, positioning them as promis-
ing candidates for high-density, energy-efficient memory
and computing fusion systems. The incorporation of 2D
materials in transistors opens avenues for the advancement
of high-density and energy-efficient memory computing
systems, offering potential solutions to eliminate the phys-
ical separation of memory and computing. This addresses
challenges in data-centric applications and enhances overall
system efficiency.

hBN and TMDCs have attracted significant attention
because of their exceptional electrical and mechanical prop-
erties. They can be used as channel materials in transistors,
thus enabling high-performance and low-power devices.
The device physics of ferroelectric transistors based on
graphene and TMDCs involves understanding the complex
interface interactions between the ferroelectric gate and
nanoscale channel. For graphene-based transistors, the focus
is on interfacial screening dynamics, and mobility limits at
different temperatures. The key benefit of 2D materials is
their thermodynamically stable nature as single atomic layers.
These materials can be fabricated by isolating them from
closely related 3D variants, that have a layered structure.
Single 2D layers do not have any dangling bonds and
form defect-free van der Waals interfaces with other layered
materials. This allows for high charge carrier mobility and
minimizes scattering at the surface traps. The thinness of
2D materials, with a thickness below 1 nm, suppresses
short channel effects and enables the scaling of the channel
length below 15 nm, which is required for technology
nodes beyond 3 nm technology nodes. Additionally, the
van der Waals interface between adjacent layers creates the
possibility of combining different 2D materials in van der
Waals heterostructures, offering a wide variety of options for
creating novel device designs [142].

Different models have been proposed to provide insights
into the performance, reliability, and stability of FETs based
on 2D materials [Fig. 33]. Non-equilibrium green’s function
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(NEGF) is a quantum mechanical approach used to describe
the behavior of charge carriers and energy exchange in
transistors [12]. It is based on the open boundary Schrödinger
equation and is commonly used to model devices in the
ballistic regime. The NEGF requires the calculation of
the Hamiltonian, Green’s function, and self-energy matrix.
It is typically used to study nanoscale electronic devices
and has been applied to simulate transport in various
materials, including graphene, transition metal dichalco-
genides (TMDs), and semiconducting heterostructures. The
drift-diffusion model is a simplified approximation of the
Boltzmann transport equation (BTE) and is computationally
efficient. The model is based on the balance equation of the
charge carrier flow within the phase space and is formulated
as a partial differential equation for the carrier distribution
function. These relations consider the effects of mobility,
diffusion, and potential distribution in the semiconductor. The
drift-diffusion model is commonly used to simulate current
transport in prototype FETs based on 2D semiconductors
with micrometer scale dimensions [142].

X. ADVANTAGES OF EMERGING TRANSISTORS FOR
NEUROMORPHIC COMPUTING
IGTs exhibit elevated transconductance, rapid speed, and the
ability to be independently gated, allowing for the creation of
a scalable and adaptable integrated circuit. [144]. IGTS can
operate at low voltage (less than 4V) owing to the making of
a dual layer at the junction between the oxide semiconductor
and the ion-gating medium and provides a high charge carrier
density due to its high capacitance value [145]. IGTs exhibit
significant channel capacitance because of the ion movement
mechanism, resulting in substantial transconductance when
compared to traditional transistors. This characteristic makes
them well-suited for amplifying small signals and for
processing neural signals, especially in scenarios where weak
signals need to be accurately detected and amplified. IGTs
have exhibited remarkable proficiency in both switching
performance and channel conductance, due to the efficient
isolation of the writing and reading processes associated with
channel conductance. This distinctive characteristic renders
IGTs a preferred choice for serving as synaptic devices in the
field of neural computing [46].

FGT can store electrons for a long time (around 10 years).
Since then, the FG transistor as a memory device can used for
the semiconductor industry commercially. This non-volatile
memory device has many advantages such as long dura-
bility, larger storage capacity, and higher flexibility. The
programmable synapses based on floating-gate technology
prove highly advantageous for analog VLSI neural circuits.
This is attributed to their robust long-term information
storage capabilities, adaptability for neural reprogramming,
and seamless integration with conventional VLSI circuits
during the manufacturing process [146].

FeFET stands out with its diverse advantages, encom-
passing swift read/write speeds, elevated density, minimal
power usage, non-destructive readout capability, random

access convenience, and unparalleled endurance. These
attributes set it apart from traditional mainstream flash
memories [147]. The captivating feature of ferroelectric
materials in neuromorphic applications arises from their
bistable memory effect. Bistability manifests when a device
exhibits two distinct resistive states, and notably, the device
retains its state even after the applied bias is withdrawn.

XI. OPEN PROBLEMS, CHALLENGES, LIMITATIONS,
CURRENT RESEARCH AREAS AND FUTURE PROSPECTS
Neuromorphic computing hardware using transistor-based
resistive memory is challenged by the dynamic switching
behavior of the nodes. A higher programming voltage for
faster switching to programmable states demands a higher
power consumption. The flow of current in a semiconductor
material can be enhanced by temperature, which helps reduce
the switching delay. An increase in temperature leads to
increased power consumption and unreliable programming.
From an architectural point of view, the physical, electro-
magnetic, and mutual inductance effects of different circuit
components enhance the chances of losing signal integrity
and signal attenuation. The effects of electrical and thermal
noises are other factors to be considered.

Crossbar nodes consisting of transistors and resistive
memory devices are used. CMOS transistors are used in
applications of neuromorphic hardware based on Multiply
and Accumulate (MAC)operations. The Multiply and Accu-
mulate operation mimics the weighted summation in a neural
network. In a neural network, weights are multiplied by the
neural inputs, and these results are added. The summated
result will fed to the activation function for further processing
through the upcoming neural network layers. In a MAC
operation using a memristive crossbar array, the neural
network inputs are mapped to the input voltages, and the
weight values are mapped to the conductance states of the
memristor nodes. Memristor crossbar in which memristor
nodes are arranged in a matrix form, the input voltages
are fed to the rows, and the output currents measured from
the columns represent the summation of products of input
voltage and memristive conductance. Hence, the weighted
summation of neural network and MAC operation in a
memristive crossbar array is analogous. CMOS transistors are
used in crossbar nodes, inputs, or outputs to select the par-
ticular device and to avoid the unintentional flow of current
through an undesired path. The parasitic effects and leakage
currents associated with CMOS transistors cause extra power
consumption by affecting accurate crossbar computations.
Parasitic capacitances are formed owing to the separation
of mobile charge careers in different regions within the
CMOS structure. These unwanted parasitic capacitances
can be neglected when the CMOS circuit operates at low
frequency. At low frequencies, the capacitative impedance
is high (considered as infinity), acts as an open circuit, and
does not affect the circuit. At high frequencies, they act as
impedances and affect the transistor behavior. There is a
chance of current leakage between the drain and the source
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of a MOSFET, even if it is off. This leakage current and
unwanted parasitic effects cause high power loss. The current
flowing through the unintentional circuit paths is called the
sneak path current. The major aim of transistors is to reduce
sneak path issues. However, practically, even though the
transistors are in the cutoff region, there is a subthreshold
current flow.

The nonidealities in the resistive memory devices in
the crossbar node lead to relative current error at the
output, relative crossbar leakage current, and performance
deterioration [148], [149], [150], [151]. The crossbar leakage
current increases with an increase in crossbar size even
if nanometer-scale metal wires of negligible resistance are
used. The equivalent capacitance of all resistive memory
devices in a row of memristive crossbars is called the
line capacitance. This line capacitance directly affects the
dynamic behavior of the memristor. When the switching
time of the memristors is low, the impact is not significant.
However, this will lead to computational errors and power
wastage. Improper packaging leads to deterioration of the
performance of crossbars and improper utilization of power.
A crossbar architecture consisting of transistors and resistive
memory devices with fast switching exhibits the capacitative
effect of bond wires, and self-inductive effects distort the
transmitted signal. IR drop and wire resistance are the two
other negative impacts of the sneak-path current [152], [153].
The current passing through the metal wires leads to a
significant voltage drop in metal wires. When the crossbar
size increased, this drop also increased because of increased
metal resistance. Even without considering the sneak path
current, an IR drop issue exists because the current passes
through different resistances, producing a voltage drop.When
the size of the crossbar increases, this IR drop issue also
increases, leading to power wastage. Metal lines that are
used to connect memristors offer resistance which is known
as wire resistance. This wire resistance, resistors in the
CMOS switches, and stray capacitors create RC delays along
crossbar rows and columns. This reduces the read speed,
particularly when the crossbar size increases. Parasitic effects
lead to a large current error exhaustion of the power.

When the number of computational blocks increases,
the power consumption also increases. The Input/Output
blocks associated with memristive crossbars such as opamps,
ADC, buffers, sense amplifiers, line selector switches,
programming circuits, and multiplexers account for the
majority of power usage. The opamp, or set of amplifiers,
reads the column currents. To consume minimal power, some
factors associated with the offset voltage/current, and delays
should be minimal. The parasitic resistors and capacitors
from the sense amplifiers cause a delay in the output reading.
To address these issues, extra timing or memory control cir-
cuits are necessary, and these additional computational blocks
enhance the power demand. To control the various switches
in the crossbar architecture and peripheral circuits, different
control circuits are required. Neural network applications in

whichmultiple crossbars are used also require control circuits
to access intermediate storage and multiplex signals between
crossbars. The control circuit required additional power.
The errors associated with the ADC/DAC in the peripheral
circuits enhance the chance of current errors. Peripheral
circuits are sensitive to voltage, process, temperature, and
noise. Noise introduced in the peripheral circuits is passed
from one crossbar array to another. The computational errors
resulting from this were also passed. A modular crossbar
approach/crossbar tiling is used to reduce the leakage
current owing to the interconnection of resistance between
rows and columns of crossbars and memristor variabilities.
However, when the number of crossbar modules increases,
the requirement for additional circuitry also increases to
add up the output signals from different modules. Because
of this, the power demand also increased due to this fact.
Endurance and data retention are the two major aspects of
memory devices used for storing data. Endurance denotes
the capacity of the storage device to endure numerous
write and erase cycles without compromising the integrity
and reliability of the stored data. However, data retention
signifies a storage device’s capability to preserve stored data
over time, ensuring that there is no degradation or loss
of information integrity. High endurance and data retention
values in synaptic applications ensure the longevity, stability,
energy efficiency, accuracy, and reduced maintenance of
neural networks, making them essential parameters for
the successful implementation of neuromorphic computing
systems. However, a higher value of endurance and data
retention is very difficult to obtain due to variations in various
factors present in the systems. Miniaturization often leads
to reduced endurance and data retention because smaller
devices tend to be more vulnerable to various forms of
degradation, such as electromigration or defect. The large
dynamic ranges, optimum noise, and high switching ratio
may help achieve multi-gate states and optimize device
variability. A lower operating voltage reduces the power
consumption during the read/write operation. Unfortunately,
temperature sensitivity and various technological constraints
may degrade the overall performance. The use of organic
materials in IGT devices makes the device unstable and
limits its speed [154]. Organic materials have a lower charge
mobility. The low ionic mobility of common electrolytes
and poor reversibility of ion penetration affect device speed
and endurance. These materials are extremely expensive and
difficult to synthesize. Additional procedures are required
to maintain a good quality. Moreover, organic materials
are vulnerable to damage from moisture and insects, and
are more susceptible to fading, further complicating their
practical application in IGT devices. Devices are mostly
affected by nonideal factors such as voltage variations
and conductivity states. Careful selection and design of
electrolytes and channelmaterials, alongwith engineering the
ion electrolyte/channel interface, are key steps for optimizing
the IGT performance.
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TABLE 4. Commercialized crossbar MACs.

The construction of neural networks requires more synap-
tic connections. However, integrating these connections
through three-terminal devices such as IGTs, FG transis-
tors, and Fe FETs introduces complex wiring and routing
challenges. Unlike their two-terminal counterparts, these
three-terminal devices require intricate peripheral control cir-
cuits, which add complexity. These routing challenges render
the design and fabrication of large-scale networks highly
complex. Achieving large-scale integration of three-terminal
devices for constructing artificial synaptic and neural net-
works is a long-term goal [155]. Integrating three-terminal
devices seamlessly with existing semiconductor technology
and complementary metal-oxide-semiconductor (CMOS)
circuits is challenging. Ensuring compatibility and efficient
communication between different components of a neuro-
morphic system is essential for its overall functionality.
Manufacturing processes can introduce variability into the
characteristics of three-terminal devices, thereby affecting
their performance consistency. Achieving uniformity and
reliability across a large number of devices poses significant
challenges during the fabrication process. The resources and
procedures required to design and fabricate an integrated
circuit differ at different scales. Scaling down certain limits
presents many associated challenges. From an architectural
point of view, the geometrical mismatch between circuit
components is a primary factor to be considered [156]. The
number of neural network layers to be implemented in two
dimensions is limited owing to area constraints, even when
modular crossbars are used. The three-dimensional stacking
of layers also presents geometrical challenges for fitting
intermediate circuits.

XII. COMMERCIALIZED CROSSBAR MACS
Table 4 provides details regarding commercialized crossbar
chips for Multiply and Accumulate (MAC)operations. Intel
and Micron jointly developed a 3D XPoint memory storage
technology to fill the gap between existing technologies,
dynamic RAMandNANDflash. The technology contributors
claim that 3D XPoint will be a thousand times faster,

a thousand times more endurance, and ten times the storage
capacity than existing memory technologies.

3D XPoint has a cross-point architecture based on the
memory technology Phase Change Memory (PCM), which is
transistorless. The selectors and memory cells are positioned
at the intersection of the perpendicular wires. The cells are
accessed by the current through the top and bottom wires.
The stacking of 3DXPoint cells in three dimensions improves
the storage density. A single data, either 0 or 1, is stored in
each cell. Storage is based on modifying the resistance level
of the cell. Each cell exhibits two resistance levels. The high
resistance state represents zero, and the low resistance state
represents 1. It is retained in the latest attained state owing
to its non-volatile nature. The reading and writing operations
are performed by varying the voltage supplied to the selectors.
During writing operations, according to the voltage supplied,
the selector is activated, which helps change the resistance
levels of the memory devices. During the reading operation,
another range of voltage is applied to check whether the
cell is in a high resistance or low resistance state. Unlike
the NAND flash, 3DXpoint can write data at the bit
level [157].
The IBM research community introduced an energy-

efficient analog AI mixed signal chip for different Deep Neu-
ral Network inference tasks [158]. IBM’s Albany NanoTech
Complex was used to fabricate the chip. It has 64 tiles/
analog in-memory computation core. Each core consists of
a crossbar array of 256 rows and 256 columns. Each tile is
integrated with a time-based analog-to-digital converter. Tiles
are also associated with lightweight digital processing units
that perform non-linear neuronal activation functions and
scaling. Digital communication pathways occur at the chip
interconnects of all tiles, and the global digital processing
unit. By performing analog neural computing on CIFAR-10,
a precision of 92.81% was obtained.

MB85AS4MT is a chip based on ReRAM contributed
by Fujitsu semiconductors in a configuration of 524,288
words × 8 bits. To form the non-volatile memory cells,
resistance-variable memory process and silicon gate CMOS
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process technologies are used.Memory cells used are capable
of having 1.2 × 106 rewrites.

Crossbar chips of configurations 2 × 2 × 16, 4 × 4 × 8,
8 × 8 × 4, 16 × 16 × 2 and 32 × 32 × 1 had contributed
by Knowm that can be used for research in neural network
accelerators, in-memory computing and non-volatile memory
controllers.

CrossBar’s ReRAM technology can be integrated between
two metal lines and crossbar arrays can integrate on CMOS
logic wafers to build a 3D ReRAM storage chip. This helps to
provide on-chip, non-volatile memory with more advantages
than NAND solutions.

XIII. RECENT INDUSTRY AND RESEARCH PROSPECTS OF
BEYOND CMOS DEVICES
According to the International Roadmap for Devices and
Systems (IRDS) 2022 report, STT MRAM has been
manufactured commercially of embedded and standalone
flash-like applications. Prominent companies like TSMC,
GlobalFoundries, and Samsung have announced the produc-
tion of embedded MRAM due to its benefits, including Non-
volatile, exceptional durability, scalable, energy-efficient,
and requiring fewer masks than embedded flash. SITMRAM
consumes less power and minimizes the leakage current
compared to flash memory. Standalone MRAM products are
also available IoT and data center applications.

Switching in OxRAM using the 1T1R configuration
was pioneered by Toshiba, Panasonic, and IMEC. Toshiba
unveiled a 32 GB RRAM chip integrated with 24 nm CMOS
technology. Panasonic and IMEC presented an encapsulated
cell structure with an Ir/Ta2O5/TaOx /TaN stack on a 2-Mbit
chip at the 40 nm node. [159].

The floating gate, also known as a synaptic transistor, has
applications in analog and mixed-signal contexts owing to
its low input and output impedances. These characteristics
contribute to minimizing the overhead of peripheral circuitry.
By implementing NAND flash memory, a floating gate
neuromorphic circuit can be designed for high density.
It has been reported that mixed-signal neuromorphic cir-
cuits with industrial-grade SONOS floating gate devices
exhibit better performance, particularly in terms of energy
efficiency [160]. The semiconductor industry has already
developed 3D NAND memory with a floating gate of
96 layers. projections suggest an increase of 512 layers to
attain a density of 10 Tb/in2 density. This advancement
is crucial for accommodating the storage requirements of
large-scale neuromorphic models [161].

IBM, Infineon, Samsung, Macronix, and other entities
tested the PCM prototypes. Additionally, collaborations
between Intel and STMicroelectronics, as well as with
Samsung, have recently announced the production of PCM,
further highlighting its potential to compete with other con-
ventional memory devices because of its cost-effectiveness,
high speed, high density, and substantial non-volatile storage
capacity. The FeFET technology has been successfully imple-
mented using conventional HKMG technology, allowing the

manufacture of a 28 nm FeFET device. This achievement is
attributed to the reduced number of masks required in the
fabrication process compared with the embedded FLASH.
FE-HfO2 based FeFET delivers superior performance with
a faster switching speed (100 ns), operating voltages ranging
from 4 to 6 V, and impressive ten-year data continuation and
high durability, reaching up to 1012 switching cycles [162].

XIV. CONCLUSION AND FUTURE OUTLOOK
This review provides a comprehensive analysis of the
rapidly evolving field of neuromorphic computing, with a
specific emphasis on the role of transistors in enabling
efficient and brain-inspired computing. We explored various
transistor technologies, their integration into neuromorphic
architectures, and the influence of emerging materials on
their performance. IGTs offer numerous benefits, including
elevated transconductance, rapid speed, and the capability for
individual gating. These features make them highly suitable
for amplifying small signals and processing neural signals
effectively. FGT find widespread commercial application in
various memory storage technologies, due to their enduring
long-term durability. Ferroelectric-gate transistors possess
the benefit of operating at high speeds. They can be
manufactured using CMOS technology; nevertheless, they
encounter numerous challenges unlike traditional transistors.
Materials for transistor technology in neural computing
applications must exhibit low power consumption, high
speed, and tunability. Ferroelectric materials provide a
promising path for transistor technology enabling the devel-
opment of neuromorphic systems that mimic the brain’s
dynamic and adaptable behavior. Additionally, emerging 2D
materials like graphene and transition metal dichalcogenides
offer exceptional conductivity and flexibility, making them
suitable for designing energy-efficient and adaptable synaptic
transistors.

The field of neuromorphic computing is about to witness
significant advancements and innovations in upcoming years.
Future expectations include the development of advanced
transistor technologies, creation of hybrid neuromorphic
systems, design of specialized hardware accelerators, refine-
ment of neuromorphic algorithms, and the consideration
of ethical and security implications. For realising fully
connected neural networks, memristive crossbar topology
is widely used. The sparse connectivity in many neural
networks in real applications makes mapping to a crossbar
structure difficult. Scaling is also a challenge in the case
of larger neural networks. Hence, the memristive crossbars
are combined with discrete synapse modules in hybrid
neuromorphic computing systems. In addition, the practical
implementation of neuromorphic hardware accelerators in
real-world applications will become prominent, contributing
to the development of smart and autonomous systems.
Neuromorphic algorithms will evolve to fully perform
the capabilities of emerging transistors, enabling efficient
learning and decision-making processes.

VOLUME 12, 2024 54043



R. R. Das et al.: FETs for Analog Neural MACs

REFERENCES
[1] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and

B. Kay, ‘‘Opportunities for neuromorphic computing algorithms and
applications,’’ Nature Comput. Sci., vol. 2, no. 1, pp. 10–19, Jan. 2022.

[2] D. Strukov, G. Indiveri, J. Grollier, and S. Fusi, ‘‘Building brain-inspired
computing,’’ Nature Commun., vol. 10, p. 4838, Oct. 2019.

[3] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
‘‘Memory devices and applications for in-memory computing,’’ Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020.

[4] L. Chua, ‘‘Memristor—Themissing circuit element,’’ IEEETrans. Circuit
Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[5] L. Chua, G. C. Sirakoulis, and A. Adamatzky, Handbook of Memristor
Networks. Cham, Switzerland: Springer, 2019.

[6] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
‘‘The missing memristor found,’’ Nature, vol. 453, no. 7191, pp. 80–83,
May 2008.

[7] T. R. Rajalekshmi, R. R. Das, C. Reghuvaran, and A. James, ‘‘Graphene-
based RRAMdevices for neural computing,’’Frontiers Neurosci., vol. 17,
Oct. 2023, Art. no. 1253075.

[8] R. Yuste, ‘‘From the neuron doctrine to neural networks,’’ Nature Rev.
Neurosci., vol. 16, no. 8, pp. 487–497, Aug. 2015.

[9] J. Q. Yang, R. Wang, Y. Ren, J. Y. Mao, Z. P. Wang, Y. Zhou, and
S. T. Han, ‘‘Neuromorphic engineering: From biological to spike-based
hardware nervous systems,’’ Adv. Mater., vol. 32, no. 52, Dec. 2020,
Art. no. 2003610.

[10] D. Graupe, Principles of Artificial Neural Networks, 7th ed. Singapore:
World Scientific, Sep. 2013.

[11] A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and
A. J. Kenyon, ‘‘Memristors—From in-memory computing, deep learning
acceleration, and spiking neural networks to the future of neuromorphic
and bio-inspired computing,’’ Adv. Intell. Syst., vol. 2, no. 11, Nov. 2020,
Art. no. 2000085.

[12] R. B. Salazar, H. Ilatikhameneh, R. Rahman, G. Klimeck, and
J. Appenzeller, ‘‘A predictive analytic model for high-performance
tunneling field-effect transistors approaching non-equilibrium Green’s
function simulations,’’ J. Appl. Phys., vol. 118, no. 16, Oct. 2015,
Art. no. 164305.

[13] Y.-B. Kim, ‘‘Challenges for nanoscale MOSFETs and emerging nano-
electronics,’’ Trans. Electr. Electron. Mater., vol. 11, no. 3, pp. 93–105,
Jun. 2010.

[14] Y. Zhu, Y. Zhu, H. Mao, Y. He, S. Jiang, L. Zhu, C. Chen, C. Wan, and
Q. Wan, ‘‘Recent advances in emerging neuromorphic computing and
perception devices,’’ J. Phys. D, Appl. Phys., vol. 55, no. 5, Feb. 2022,
Art. no. 053002.

[15] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, ‘‘Advancing neuromorphic comput-
ing with loihi: A survey of results and outlook,’’ Proc. IEEE, vol. 109,
no. 5, pp. 911–934, May 2021.

[16] D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, ‘‘Physics for
neuromorphic computing,’’ Nature Rev. Phys., vol. 2, no. 9, pp. 499–510,
Jul. 2020.

[17] D. Chatterjee and A. Kottantharayil, ‘‘A CMOS compatible bulk FinFET-
based ultra low energy leaky integrate and fire neuron for spiking neural
networks,’’ IEEE Electron Device Lett., vol. 40, no. 8, pp. 1301–1304,
Aug. 2019.

[18] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’Anna, G. Indiveri,
J. L. Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor, ‘‘Mapping
spiking neural networks to neuromorphic hardware,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 76–86,
Jan. 2020.

[19] J. Zhao, ‘‘Conversion of whetstone trained spiking deep neural networks
to spiking neural networks,’’ Ph.D. thesis, Dept. Comput. Sci., Univ.
Tennessee, Knoxville, TN, USA, 2019.

[20] Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, ‘‘Review of
memristor devices in neuromorphic computing: Materials sciences and
device challenges,’’ J. Phys. D, Appl. Phys., vol. 51, no. 50, Dec. 2018,
Art. no. 503002.

[21] P. Sheridan and W. Lu, ‘‘Memristors and memristive devices for
neuromorphic computing,’’ inMemristor Networks. NewYork, NY, USA:
Springer, 2014, pp. 129–149.

[22] T. Prodromakis and C. Toumazou, ‘‘A review on memristive devices and
applications,’’ in Proc. 17th IEEE Int. Conf. Electron., Circuits Syst.,
Dec. 2010, pp. 934–937.

[23] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou,
‘‘Neuromorphic computing with multi-memristive synapses,’’ Nature
Commun., vol. 9, no. 1, pp. 1–12, Jun. 2018.

[24] J. Chen, J. Li, Y. Li, and X. Miao, ‘‘Multiply accumulate operations in
memristor crossbar arrays for analog computing,’’ J. Semiconductors,
vol. 42, no. 1, Jan. 2021, Art. no. 013104.

[25] C. Yakopcic, M. Z. Alom, and T. M. Taha, ‘‘Extremely parallel memristor
crossbar architecture for convolutional neural network implementa-
tion,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 1696–1703.

[26] J. A. Starzyk and Basawaraj, ‘‘Memristor crossbar architecture for
synchronous neural networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 8, pp. 2390–2401, Aug. 2014.

[27] Y. Li and K.-W. Ang, ‘‘Hardware implementation of neuromorphic
computing using large-scalememristor crossbar arrays,’’Adv. Intell. Syst.,
vol. 3, no. 1, Jan. 2021, Art. no. 2000137.

[28] O. Krestinskaya, B. Choubey, and A. P. James, ‘‘Memristive GAN in
analog,’’ Sci. Rep., vol. 10, no. 1, p. 5838, Apr. 2020.

[29] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, ‘‘Overview of
emerging nonvolatile memory technologies,’’ Nanosc. Res. Lett., vol. 9,
no. 1, pp. 1–33, Dec. 2014.

[30] W. Banerjee, ‘‘Challenges and applications of emerging nonvolatile
memory devices,’’ Electronics, vol. 9, no. 6, p. 1029, Jun. 2020.

[31] T. Andre, S. M. Alam, D. Gogl, C. K. Subramanian, H. Lin,
W. Meadows, X. Zhang, N. D. Rizzo, J. Janesky, D. Houssameddine,
and J. M. Slaughter, ‘‘ST-MRAM fundamentals, challenges, and appli-
cations,’’ in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2013,
pp. 1–8.

[32] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and M. Krounbi,
‘‘Spin-transfer torque magnetic random access memory (STT-MRAM),’’
ACM J. Emerg. Technol. Comput. Syst. (JETC), vol. 9, no. 2, pp. 1–35,
2013.

[33] P. Gölitz and R. Hecker, ‘‘Turning potential into realities,’’
Chemphyschem, Eur. J. Chem. Phys. Phys. Chem., vol. 2, nos. 8–9,
pp. 473–474, 2001.

[34] M. Riordan, L. Hoddeson, and C. Herring, ‘‘The invention of the
transistor,’’ Rev. Mod. Phys., vol. 71, no. 2, p. S336, 1999.

[35] W. Shockley, ‘‘The path to the conception of the junction transistor,’’
IEEE Trans. Electron Devices, vol. ED-23, no. 7, pp. 597–620, Jul. 1976.

[36] M. Grundmann, ‘‘Kramers–Kronig relations,’’ in The Physics of Semi-
conductors: An Introduction Including Nanophysics and Applications.
Berlin, Germany: Springer, 2010, pp. 775–776.

[37] M. M. Atalla, E. Tannenbaum, and E. J. Scheibner, ‘‘Stabilization of
silicon surfaces by thermally grown oxides,’’ Bell Syst. Tech. J., vol. 38,
no. 3, pp. 749–783, May 1959.

[38] R. G. Arns, ‘‘The other transistor: Early history of the metal-oxide
semiconductor field-effect transistor,’’ Eng. Sci. Educ. J., vol. 7, no. 5,
pp. 233–240, Oct. 1998.

[39] R. R. Das, S. Maity, A. Choudhury, A. Chakraborty, C. T. Bhunia,
and P. P. Sahu, ‘‘Temperature-dependent short-channel parameters of
FinFETs,’’ J. Comput. Electron., vol. 17, no. 3, pp. 1001–1012,
Sep. 2018.

[40] R. R. Das, A. Chowdhury, A. Chakraborty, and S.Maity, ‘‘Impact of stress
effect on triple material gate step-FinFET with DC and AC analysis,’’
Microsyst. Technol., vol. 26, no. 6, pp. 1813–1821, Jun. 2020.

[41] J. Bhardwaj, K. K. Gupta, and R. Gupta, ‘‘A review of emerging trends on
water quality measurement sensors,’’ in Proc. Int. Conf. Technol. Sustain.
Develop. (ICTSD), Feb. 2015, pp. 1–6.

[42] W. R. Curtice, ‘‘A MESFET model for use in the design of GaAs
integrated circuits,’’ IEEE Trans. Microw. Theory Techn., vol. MTT-28,
no. 5, pp. 448–456, May 1980.

[43] Y.-M. Lin, H.-Y. Chiu, K. A. Jenkins, D. B. Farmer, P. Avouris, and
A. Valdes-Garcia, ‘‘Dual-gate graphene FETs with fT of 50 GHz,’’ IEEE
Electron Device Lett., vol. 31, no. 1, pp. 68–70, Jan. 2010.

[44] H. S. White, G. P. Kittlesen, and M. S. Wrighton, ‘‘Chemical
derivatization of an array of three gold microelectrodes with polypyrrole:
Fabrication of amolecule-based transistor,’’ J. Amer. Chem. Soc., vol. 106,
no. 18, pp. 5375–5377, Sep. 1984.

[45] A. M. Deml, A. L. Bunge, M. A. Reznikov, A. Kolessov, and
R. P. O’Hayre, ‘‘Progress toward a solid-state ionic field effect transis-
tor,’’ J. Appl. Phys., vol. 111, no. 7, Apr. 2012, Art. no. 074511.

54044 VOLUME 12, 2024



R. R. Das et al.: FETs for Analog Neural MACs

[46] X. Bu, H. Xu, D. Shang, Y. Li, H. Lv, and Q. Liu, ‘‘Ion-gated transistor:
An enabler for sensing and computing integration,’’ Adv. Intell. Syst.,
vol. 2, no. 12, Dec. 2020, Art. no. 2000156.

[47] M. Takayanagi, T. Tsuchiya, W. Namiki, T. Higuchi, and K. Terabe,
‘‘Correlated metal SrVO3 based all-solid-state redox transistors achieved
by Li+ or H+ transport,’’ J. Phys. Soc. Jpn., vol. 87, no. 3, Mar. 2018,
Art. no. 034802.

[48] T. Tsuchiya, K. Terabe, R. Yang, and M. Aono, ‘‘Nanoionic devices:
Interface nanoarchitechtonics for physical property tuning and
enhancement,’’ Jpn. J. Appl. Phys., vol. 55, no. 11, Nov. 2016,
Art. no. 1102A4.

[49] J. Liu, Z. Qin, H. Gao, H. Dong, J. Zhu, and W. Hu, ‘‘Vertical organic
field-effect transistors,’’ Adv. Funct. Mater., vol. 29, no. 17, 2019,
Art. no. 1808453.

[50] W. Shi, Y. Guo, and Y. Liu, ‘‘When flexible organic Field-Effect
transistors meet biomimetics: A prospective view of the Internet of
Things,’’ Adv. Mater., vol. 32, no. 15, Apr. 2020, Art. no. 1901493.

[51] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza,
G. A. Rossetti, and J. Rödel, ‘‘BaTiO3-based piezoelectrics: Fundamen-
tals, current status, and perspectives,’’ Appl. Phys. Rev., vol. 4, no. 4,
p. 41305, Dec. 2017.

[52] K. Kim and S. Lee, ‘‘Integration of lead zirconium titanate thin films
for high density ferroelectric random access memory,’’ J. Appl. Phys.,
vol. 100, no. 5, Sep. 2006, Art. no. 051604.

[53] H.-T. Lue, C.-J. Wu, and T.-Y. Tseng, ‘‘Device modeling of ferroelec-
tric memory field-effect transistor (FeMFET),’’ IEEE Trans. Electron
Devices, vol. 49, no. 10, pp. 1790–1798, Oct. 2002.

[54] M. Jerry, S. Dutta, A. Kazemi, K. Ni, J. Zhang, P.-Y. Chen, P. Sharma,
S. Yu, X. S. Hu, M. Niemier, and S. Datta, ‘‘A ferroelectric field effect
transistor based synaptic weight cell,’’ J. Phys. D, Appl. Phys., vol. 51,
no. 43, Oct. 2018, Art. no. 434001.

[55] M.-K. Kim and J.-S. Lee, ‘‘Ferroelectric analog synaptic transistors,’’
Nano Lett., vol. 19, no. 3, pp. 2044–2050, Mar. 2019.

[56] K. Toprasertpong, M. Takenaka, and S. Takagi, ‘‘Memory win-
dow in ferroelectric field-effect transistors: Analytical approach,’’
IEEE Trans. Electron Devices, vol. 69, no. 12, pp. 7113–7119,
Dec. 2022.

[57] D. Kahng and S. M. Sze, ‘‘A floating gate and its application to
memory devices,’’ Bell Syst. Tech. J., vol. 46, no. 6, pp. 1288–1295,
Jul. 1967.

[58] H. Chen, Y. Zhou, and S. Han, ‘‘Recent advances in metal nanoparticle-
based floating gate memory,’’ Nano Select, vol. 2, no. 7, pp. 1245–1265,
Jul. 2021.

[59] E. M. Conwell, High Field Transport in Semiconductor (Solid State
Physics). New York, NY, USA: Academic, 1967.

[60] L. Esaki, ‘‘Long journey into tunneling,’’ Science, vol. 183, no. 4130,
pp. 1149–1155, Mar. 1974.

[61] C. Hu andM. A. Lieberman, Electronics Research Laboratory, document
Contract 49620(90-C):0029, Boiling Air Force Base, Washington, DC,
USA, 1998.

[62] C. A.-P. de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott,
and J. F. Scott, ‘‘Fatigue-free ferroelectric capacitors with
platinum electrodes,’’ Nature, vol. 374, no. 6523, pp. 627–629,
Apr. 1995.

[63] J. De Blauwe, ‘‘Nanocrystal nonvolatile memory devices,’’ IEEE Trans.
Nanotechnol., vol. 1, no. 1, pp. 72–77, Mar. 2002.

[64] Z. Liu, F. Xue, Y. Su, Y.M. Lvov, andK.Varahramyan, ‘‘Memory effect of
a polymer thin-film transistor with self-assembled gold nanoparticles in
the gate dielectric,’’ IEEE Trans. Nanotechnol., vol. 5, no. 4, pp. 379–384,
Jul. 2006.

[65] S.-W. Ryu, J.-W. Lee, J.-W. Han, S. Kim, and Y.-K. Choi, ‘‘Designed
workfunction engineering of double-stacked metal nanocrystals for
nonvolatile memory application,’’ IEEE Trans. Electron Devices, vol. 56,
no. 3, pp. 377–382, Mar. 2009.

[66] M.-F. Chang, P.-T. Lee, S. P. McAlister, and A. Chin, ‘‘A flexible organic
pentacene nonvolatile memory based on high-k dielectric layers,’’ Appl.
Phys. Lett., vol. 93, no. 23, p. 439, Dec. 2008.

[67] S. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon,
K.-T. Lee, M. Copel, D. B. Farmer, J. A. Ott, T. Ando, H. Miyazoe,
V. Narayanan, and J. Rozen, ‘‘Metal-oxide based, CMOS-compatible
ECRAM for deep learning accelerator,’’ in IEDM Tech. Dig., Dec. 2019,
pp. 35.7.1–35.7.4.

[68] J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin,
K.-T. Lee, P. Solomon, K. Chan, W. Haensch, and J. Rozen, ‘‘ECRAM
as scalable synaptic cell for high-speed, low-power neuromorphic
computing,’’ in IEDM Tech. Dig., Dec. 2018, pp. 13.1.1–13.1.4.

[69] W. Wang et al., ‘‘Neuromorphic sensorimotor loop embodied by
monolithically integrated, low-voltage, soft e-skin,’’ Science, vol. 380,
no. 6646, pp. 735–742, May 2023.

[70] A. Melianas, T. J. Quill, G. LeCroy, Y. Tuchman, H. V. Loo,
S. T. Keene, A. Giovannitti, H. R. Lee, I. P. Maria, I. McCulloch, and
A. Salleo, ‘‘Temperature-resilient solid-state organic artificial synapses
for neuromorphic computing,’’ Sci. Adv., vol. 6, no. 27, Jul. 2020,
Art. no. eabb2958.

[71] Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria,
S. Agarwal, M. J. Marinella, A. A. Talin, and A. Salleo, ‘‘A non-volatile
organic electrochemical device as a low-voltage artificial synapse for
neuromorphic computing,’’ Nature Mater., vol. 16, no. 4, pp. 414–418,
Apr. 2017.

[72] S. Rashidi, M. Jalili, and H. Sarbazi-Azad, ‘‘Improving MLC PCM
performance through relaxed write and read for intermediate resistance
levels,’’ ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp. 1–31,
Mar. 2018.

[73] F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song,
S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, ‘‘Reduc-
ing the stochasticity of crystal nucleation to enable subnanosec-
ond memory writing,’’ Science, vol. 358, no. 6369, pp. 1423–1427,
Dec. 2017.

[74] J. Liang, R. G. D. Jeyasingh, H.-Y. Chen, and H.-S. P. Wong, ‘‘A 1.4 µA
reset current phase change memory cell with integrated carbon nanotube
electrodes for cross-point memory application,’’ in Proc. Symp. VLSI
Technol.-Dig. Tech. Papers, Jun. 2011, pp. 100–101.

[75] I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh,
D. H. Ahn, S. O. Park, S. W. Nam, J. T. Moon, and C. H. Chung, ‘‘High
performance PRAM cell scalable to sub-20 nm technology with below
4F2 cell size, extendable to DRAM applications,’’ in Proc. Symp. VLSI
Technol., Jun. 2010, pp. 203–204.

[76] G. Navarro et al., ‘‘Trade-off between SET and data retention perfor-
mance thanks to innovative materials for phase-change memory,’’ in
IEDM Tech. Dig., Dec. 2013, pp. 21.5.1–21.5.4.

[77] B.Walters,M.V. Jacob, A. Amirsoleimani, andM.R.Azghadi, ‘‘A review
of graphene-based memristive neuromorphic devices and circuits,’’ Adv.
Intell. Syst., vol. 2, no. 10, 2023, Art. no. 2300136.

[78] B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn,
M. J. Marinella, Z. Li, R. S. Williams, and J. J. Yang, ‘‘High-speed and
low-energy nitride memristors,’’ Adv. Funct. Mater., vol. 26, no. 29,
pp. 5290–5296, Aug. 2016.

[79] I. MihaiMiron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini,
J. Vogel, and P. Gambardella, ‘‘Current-driven spin torque induced by the
Rashba effect in a ferromagnetic metal layer,’’NatureMater., vol. 9, no. 3,
pp. 230–234, Mar. 2010.

[80] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim,
C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim,
‘‘A fast, high-endurance and scalable non-volatile memory device made
from asymmetric Ta2O5−x /TaO2−x bilayer structures,’’ Nature Mater.,
vol. 10, no. 8, pp. 625–630, Aug. 2011.

[81] H. Jiang, L. Han, P. Lin, Z. Wang, M. H. Jang, Q. Wu, M. Barnell,
J. J. Yang, H. L. Xin, and Q. Xia, ‘‘Sub-10 nm Ta channel responsible
for superior performance of a HfO2 memristor,’’ Sci. Rep., vol. 6, no. 1,
Jun. 2016, Art. no. 28525.

[82] A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil,
X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot,
A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthélémy,
‘‘Solid-state memories based on ferroelectric tunnel junctions,’’ Nature
Nanotechnol., vol. 7, no. 2, pp. 101–104, Feb. 2012.

[83] S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier, C. Deranlot, H. Yamada,
C. Carrétéro, E. Jacquet, M. Bibes, A. Barthélémy, and J. Grollier,
‘‘High-performance ferroelectric memory based on fully patterned tunnel
junctions,’’ Appl. Phys. Lett., vol. 104, no. 5, Feb. 2014, Art. no. 052909.

[84] H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter,
S. Xavier, J. Grollier, E. Jacquets, C. Carrétéro, C. Deranlot, M. Bibes,
and A. Barthélémy, ‘‘Giant electroresistance of super-tetragonal BiFeO3-
based ferroelectric tunnel junctions,’’ ACS Nano, vol. 7, no. 6,
pp. 5385–5390, Jun. 2013.

VOLUME 12, 2024 54045



R. R. Das et al.: FETs for Analog Neural MACs

[85] J. Lenz, F. D. Giudice, F. R. Geisenhof, F. Winterer, and R. T. Weitz,
‘‘Vertical, electrolyte-gated organic transistors show continuous opera-
tion in the MA cm−2 regime and artificial synaptic behaviour,’’ Nat.
Nanotechnol., vol. 14, pp. 579–585, Mar. 2019.

[86] C. S. Yang, D. S. Shang, N. Liu, G. Shi, X. Shen, R. C. Yu, Y. Q. Li, and
Y. Sun, ‘‘A synaptic transistor based on quasi-2D molybdenum oxide,’’
Adv. Mater., vol. 29, no. 27, Jul. 2017, Art. no. 1700906.

[87] L. Q. Zhu, C. J. Wan, L. Q. Guo, Y. Shi, and Q. Wan, ‘‘Artificial synapse
network on inorganic proton conductor for neuromorphic systems,’’
Nature Commun., vol. 5, no. 1, p. 3158, Jan. 2014.

[88] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo,
‘‘Organic electronics for neuromorphic computing,’’ Nature Electron.,
vol. 1, pp. 386–397, Jul. 2018.

[89] Y. Chen, H. Yu, J. Gong, M. Ma, H. Han, H. Wei, and W. Xu, ‘‘Artificial
synapses based on nanomaterials,’’ Nanotechnology, vol. 30, no. 1,
Jan. 2019, Art. no. 012001.

[90] Y. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang,
A. M. Foudeh, C. Zhu, Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, and
T.-W. Lee, ‘‘A bioinspired flexible organic artificial afferent nerve,’’
Science, vol. 360, no. 6392, pp. 998–1003, Jun. 2018.

[91] E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li,
Y. Tuchman, C. D. James, M. J. Marinella, A. Salleo, and A. A. Talin,
‘‘Parallel programming of an ionic floating-gate memory array for scal-
able neuromorphic computing,’’ Science, vol. 364, no. 6440, pp. 570–574,
2019.

[92] S. Wang, L. Liu, L. Gan, H. Chen, X. Hou, Y. Ding, S. Ma, D. W. Zhang,
and P. Zhou, ‘‘Two-dimensional ferroelectric channel transistors integrat-
ing ultra-fast memory and neural computing,’’ Nature Commun., vol. 12,
no. 1, pp. 1–9, Jan. 2021.

[93] T. R. Rajalekshmi, R. R. Das, R. Chithra, and A. James, ‘‘Graphene-based
RRAM devices for neural computing,’’ 2023, arXiv:2308.02767.

[94] Y.-S. Liu and P. Su, ‘‘Comparison of 2-D MoS2 and Si ferroelectric
FET nonvolatile memories considering the trapped-charge-induced
variability,’’ IEEE Trans. Electron Devices, vol. 69, no. 5, pp. 2738–2740,
May 2022.

[95] M. Hassanpour Amiri, J. Heidler, K. Müllen, and K. Asadi, ‘‘Design
rules for memories based on graphene ferroelectric field-effect
transistors,’’ ACS Appl. Electron. Mater., vol. 2, no. 1, pp. 2–8,
Jan. 2020.

[96] X. Jiang, X. Hu, J. Bian, K. Zhang, L. Chen, H. Zhu, Q. Sun,
and D. W. Zhang, ‘‘Ferroelectric field-effect transistors based on
WSe2/CuInP2S6 heterostructures for memory applications,’’ ACS Appl.
Electron. Mater., vol. 3, no. 11, pp. 4711–4717, 2021.

[97] M. Liu, T. Liao, Z. Sun, Y. Gu, and L. Kou, ‘‘2D ferroelectric devices:
Working principles and research progress,’’ Phys. Chem. Chem. Phys.,
vol. 23, no. 38, pp. 21376–21384, 2021.

[98] S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie,
J. Xiang, Z. Liu, W. Zhu, and H. Zeng, ‘‘Nonvolatile ferroelectric
memory effect in ultrathin α-In2Se3,’’ Adv. Funct. Mater., vol. 29, no. 20,
May 2019, Art. no. 1808606.

[99] M. Si, P.-Y. Liao, G. Qiu, Y. Duan, and P. D. Ye, ‘‘Ferroelectric field-effect
transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals
heterostructure,’’ ACS Nano, vol. 12, no. 7, pp. 6700–6705, Jul. 2018.

[100] T. Paul, T. Ahmed, K. K. Tiwari, C. S. Thakur, and A. Ghosh, ‘‘A high-
performance MoS2 synaptic device with floating gate engineering
for neuromorphic computing,’’ 2D Mater., vol. 6, no. 4, Jul. 2019,
Art. no. 045008.

[101] C. Riggert, M. Ziegler, D. Schroeder, W. H. Krautschneider, and
H. Kohlstedt, ‘‘MemFlash device: Floating gate transistors as memristive
devices for neuromorphic computing,’’ Semiconductor Sci. Technol.,
vol. 29, no. 10, Oct. 2014, Art. no. 104011.

[102] Y. He, R. Liu, S. Jiang, C. Chen, L. Zhu, Y. Shi, and Q. Wan,
‘‘IGZO-based floating-gate synaptic transistors for neuromorphic com-
puting,’’ J. Phys. D, Appl. Phys., vol. 53, no. 21, May 2020,
Art. no. 215106.

[103] M.-S. Kim, J.-K. Kim, G.-J. Yun, J.-M. Yu, J.-K. Han, J.-W. Lee,
S. Seo, S. Choi, and Y.-K. Choi, ‘‘An overturned charge injection
synaptic transistor with a floating-gate for neuromorphic hardware
computing,’’ IEEE Electron Device Lett., vol. 43, no. 9, pp. 1440–1443,
Sep. 2022.

[104] A. Lahgere, ‘‘Design of leaky integrate and fire neuron for spiking
neural networks using trench bipolar I-MOS,’’ IEEE Trans. Nanotechnol.,
vol. 22, pp. 260–265, 2023.

[105] K. Kim, C. Chen, Q. Truong, A. M. Shen, and Y. Chen, ‘‘A carbon
nanotube synapse with dynamic logic and learning,’’ Adv. Mater., vol. 25,
no. 12, pp. 1693–1698, Mar. 2013.

[106] Y. He, S. Nie, R. Liu, S. Jiang, Y. Shi, and Q. Wan, ‘‘Spatiotemporal
information processing emulated by multiterminal neuro-transistor
networks,’’ Adv. Mater., vol. 31, no. 21, May 2019, Art. no. 1900903.

[107] S. Jang, S. Jang, E.-H. Lee,M.Kang, G.Wang, and T.-W. Kim, ‘‘Ultrathin
conformable organic artificial synapse for wearable intelligent device
applications,’’ ACS Appl. Mater. Interfaces, vol. 11, no. 1, pp. 1071–1080,
Jan. 2019.

[108] C.-P. Chou, Y.-X. Lin, Y.-K. Huang, C.-Y. Chan, and Y.-H. Wu,
‘‘Junctionless poly-GeSn ferroelectric thin-film transistors with
improved reliability by interface engineering for neuromorphic
computing,’’ ACS Appl. Mater. Interfaces, vol. 12, no. 1, pp. 1014–1023,
Jan. 2020.

[109] M. A. Rodder, S. Vasishta, and A. Dodabalapur, ‘‘Double-gate MoS2
field-effect transistor with a multilayer graphene floating gate: A versatile
device for logic, memory, and synaptic applications,’’ ACS Appl. Mater.
Interfaces, vol. 12, no. 30, pp. 33926–33933, Jul. 2020.

[110] S. Kim, B. Choi, M. Lim, J. Yoon, J. Lee, H.-D. Kim, and S.-J. Choi,
‘‘Pattern recognition using carbon nanotube synaptic transistors with
an adjustable weight update protocol,’’ ACS Nano, vol. 11, no. 3,
pp. 2814–2822, Mar. 2017.

[111] W. Liu and M. Asheghi, ‘‘Thermal conductivity measurements of ultra-
thin single crystal silicon layers,’’ J. Heat Transf., vol. 128, no. 1,
pp. 75–83, Jan. 2006.

[112] J. J. Petkowski, W. Bains, and S. Seager, ‘‘On the potential of silicon as
a building block for life,’’ Life, vol. 10, no. 6, p. 84, Jun. 2020.

[113] Y. Xiu, Y. Liu, D. W. Hess, and C. P. Wong, ‘‘Mechanically robust
superhydrophobicity on hierarchically structured Si surfaces,’’Nanotech-
nology, vol. 21, no. 15, Apr. 2010, Art. no. 155705.

[114] S. Wagner, H. Gleskova, I. C. Cheng, and M. Wu, ‘‘Silicon for thin-film
transistors,’’ Thin Solid Films, vol. 430, nos. 1–2, pp. 15–19, Apr. 2003.

[115] L. Guo, P. R. Krauss, and S. Y. Chou, ‘‘Nanoscale silicon field effect
transistors fabricated using imprint lithography,’’ Appl. Phys. Lett.,
vol. 71, no. 13, pp. 1881–1883, Sep. 1997.

[116] Z. Liu, L. Deng, and B. Peng, ‘‘Ferromagnetic and ferroelectric two-
dimensional materials for memory application,’’Nano Res., vol. 14, no. 6,
pp. 1802–1813, Jun. 2021.

[117] J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C. H. Ahn, and
T. P. Ma, ‘‘Ferroelectric field effect transistors for memory applications,’’
Adv. Mater., vol. 22, nos. 26–27, pp. 2957–2961, Jul. 2010.

[118] N. Nuraje and K. Su, ‘‘Perovskite ferroelectric nanomaterials,’’
Nanoscale, vol. 5, no. 19, pp. 8752–8780, 2013.

[119] T. R. Rajalekshmi, V. Mishra, T. Dixit, P. R. Sagdeo, M. S. R. Rao, and
K. Sethupathi, ‘‘Study of energy gaps and their temperature-dependent
modulation in LaCrO3: A theoretical and experimental approach,’’
J. Appl. Phys., vol. 133, no. 23, Jun. 2023, Art. no. 233104.

[120] T. R. Rajalekshmi, T. Dixit, M. S. R. Rao, and K. Sethupathi,
‘‘Pair-emission-induced near-infrared lasing from ceramic Ga:LaCrO3
microcrystals at room temperature,’’ Phys. Status Solidi (RRL), vol. 15,
no. 4, Apr. 2021, Art. no. 2000519.

[121] T. R. Rajalekshmi, V. Mishra, T. Dixit, M. Miryala, M. S. R. Rao,
and K. Sethupathi, ‘‘Near white light and near-infrared luminescence
in perovskite Ga:LaCrO3,’’ Scripta Mater., vol. 210, Mar. 2022,
Art. no. 114449.

[122] P. S. Halasyamani and K. R. Poeppelmeier, ‘‘Noncentrosymmetric
oxides,’’ Chem. Mater., vol. 10, no. 10, pp. 2753–2769, Oct. 1998.

[123] M. Stewart, M. Cain, and D. Hall, ‘‘Ferroelectric hysteresis measurement
and analysis,’’ Nat. Phys. Lab., Teddington, MX, USA, Tech. Rep. NPL
Report CMMT(A) 152, 1999.

[124] S. Han, Y. Zhou, and V. A. L. Roy, ‘‘Towards the development of flexible
non-volatile memories,’’ Adv. Mater., vol. 25, no. 38, pp. 5425–5449,
Oct. 2013.

[125] O. Auciello, J. F. Scott, and R. Ramesh, ‘‘The physics of ferroelectric
memories,’’ Phys. Today, vol. 51, no. 7, pp. 22–27, Jul. 1998.

[126] A. J. Lovinger, ‘‘Ferroelectric polymers,’’ Science, vol. 220, no. 4602,
pp. 1115–1121, Jun. 1983.

[127] R. Ramesh, T. Sands, V. G. Keramidas, and D. K. Fork, ‘‘Epitaxial
ferroelectric thin films for memory applications,’’ Mater. Sci. Eng. B,
vol. 22, nos. 2–3, pp. 283–289, Jan. 1994.

[128] S. Oh, H. Hwang, and I. K. Yoo, ‘‘Ferroelectric materials for neuromor-
phic computing,’’ APL Mater., vol. 7, no. 9, Sep. 2019, Art. no. 091109.

54046 VOLUME 12, 2024



R. R. Das et al.: FETs for Analog Neural MACs

[129] F. Xue, X. He, Y. Ma, D. Zheng, C. Zhang, L.-J. Li, J.-H. He,
B. Yu, and X. Zhang, ‘‘Unraveling the origin of ferroelectric resistance
switching through the interfacial engineering of layered ferroelectric-
metal junctions,’’ Nature Commun., vol. 12, no. 1, pp. 1–8, Dec. 2021.

[130] E. Bersch, S. Rangan, R. A. Bartynski, E. Garfunkel, and E. Vescovo,
‘‘Band offsets of ultrathin high-k oxide films with Si,’’ Phys. Rev. B,
Condens. Matter, vol. 78, no. 8, Aug. 2008, Art. no. 085114.

[131] J. Robertson, ‘‘High dielectric constant gate oxides for metal oxide
Si transistors,’’ Rep. Prog. Phys., vol. 69, no. 2, pp. 327–396,
Feb. 2006.

[132] J. Robertson, ‘‘High dielectric constant oxides,’’ Eur. Phys. J. Appl. Phys.,
vol. 28, no. 3, pp. 265–291, Dec. 2004.

[133] F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang,
and T.-L. Ren, ‘‘Vertical MoS2 transistors with sub-1-nm gate lengths,’’
Nature, vol. 603, no. 7900, pp. 259–264, Mar. 2022.

[134] Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, ‘‘Dielectric property and
thermal stability of HfO2 on silicon,’’ Appl. Phys. Lett., vol. 81, no. 11,
pp. 2041–2043, Sep. 2002.

[135] A. Abderrahmane, C. Woo, and P. J. Ko, ‘‘Tunable optoelectronic
properties of a two-dimensional graphene/α-In2Se3/graphene-based
ferroelectric semiconductor field-effect transistor,’’ Res. Square, vol. 32,
pp. 20252–20258, Mar. 2021.

[136] D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren,
H. Peng, Y.-H. Tsai, G. S. Hwang, and K. Lai, ‘‘Thickness-dependent
dielectric constant of few-layer In2Se3 nanoflakes,’’ Nano Lett., vol. 15,
no. 12, pp. 8136–8140, Dec. 2015.

[137] B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, ‘‘Huge excitonic
effects in layered hexagonal boron nitride,’’Phys. Rev. Lett., vol. 96, no. 2,
Jan. 2006, Art. no. 026402.

[138] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt,
N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen,
A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. J. Mortensen, T. Olsen,
and K. S. Thygesen, ‘‘The computational 2D materials database: High-
throughput modeling and discovery of atomically thin crystals,’’ 2D
Mater., vol. 5, no. 4, Sep. 2018, Art. no. 042002.

[139] R. Geick, C. H. Perry, and G. Rupprecht, ‘‘Normal modes in hexagonal
boron nitride,’’ Phys. Rev., vol. 146, no. 2, pp. 543–547, Jun. 1966.

[140] S. L. Howell, D. Jariwala, C.-C. Wu, K.-S. Chen, V. K. Sangwan,
J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, ‘‘Investigation
of band-offsets at monolayer–multilayer MoS2 junctions by scanning
photocurrent microscopy,’’ Nano Lett., vol. 15, no. 4, pp. 2278–2284,
Apr. 2015.

[141] M. Lederer, T. Kämpfe, T. Ali, F. Müller, R. Olivo, R. Hoffmann,
N. Laleni, and K. Seidel, ‘‘Ferroelectric field effect transistors as a
synapse for neuromorphic application,’’ IEEE Trans. Electron Devices,
vol. 68, no. 5, pp. 2295–2300, May 2021.

[142] T. Knobloch, ‘‘On the electrical stability of 2Dmaterial-based field-effect
transistors,’’ Ph.D. dissertation, Faculty Elect. Eng. Inf. Technol., TU
Wien, Vienna, Austria, 2022.

[143] E. G. Marin, M. Perucchini, D. Marian, G. Iannaccone, and G. Fiori,
‘‘Modeling of electron devices based on 2-D materials,’’ IEEE Trans.
Electron Devices, vol. 65, no. 10, pp. 4167–4179, Oct. 2018.

[144] G. D. Spyropoulos, J. N. Gelinas, and D. Khodagholy, ‘‘Internal ion-
gated organic electrochemical transistor: A building block for integrated
bioelectronics,’’ Sci. Adv., vol. 5, no. 2, Feb. 2019, Art. no. eaau7378.

[145] K. Baeg and J. Lee, ‘‘Flexible electronic systems on plastic substrates and
textiles for smart wearable technologies,’’ Adv. Mater. Technol., vol. 5,
no. 7, Jul. 2020, Art. no. 2000071.

[146] B. W. Lee, B. J. Sheu, and H. Yang, ‘‘Analog floating-gate synapses for
general-purpose VLSI neural computation,’’ IEEE Trans. Circuits Syst.,
vol. 38, no. 6, pp. 654–658, Jun. 1991.

[147] J. Ajayan, P.Mohankumar, D. Nirmal, L.M. I. L. Joseph, S. Bhattacharya,
S. Sreejith, S. Kollem, S. Rebelli, S. Tayal, and B. Mounika, ‘‘Ferro-
electric field effect transistors (FeFETs): Advancements, challenges and
exciting prospects for next generation non-volatile memory (NVM) appli-
cations,’’Mater. Today Commun., vol. 35, Jun. 2023, Art. no. 105591.

[148] Y. Jeong, M. A. Zidan, and W. D. Lu, ‘‘Parasitic effect analysis in
memristor-array-based neuromorphic systems,’’ IEEE Trans. Nanotech-
nol., vol. 17, no. 1, pp. 184–193, Jan. 2018.

[149] O. Krestinskaya, A. Irmanova, and A. P. James, ‘‘Memristive non-
idealities: Is there any practical implications for designing neural network
chips?’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,
pp. 1–5.

[150] F. Gül, ‘‘Addressing the sneak-path problem in crossbar RRAM devices
using memristor-based one Schottky diode-one resistor array,’’ Results
Phys., vol. 12, pp. 1091–1096, Mar. 2019.

[151] R. Naous, M. A. Zidan, A. Sultan-Salem, and K. N. Salama, ‘‘Memristor
based crossbar memory array sneak path estimation,’’ in Proc. 14th Int.
Workshop Cellular Nanosc. Netw. Appl. (CNNA), Jul. 2014, pp. 1–2.

[152] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, ‘‘Sneak-path constraints
in memristor crossbar arrays,’’ in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 156–160.

[153] L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan, ‘‘Research progress on
solutions to the sneak path issue in memristor crossbar arrays,’’ Nanosc.
Adv., vol. 2, no. 5, pp. 1811–1827, 2020.

[154] C. Cea, Z. Zhao, D. J. Wisniewski, G. D. Spyropoulos, A. Polyravas,
J. N. Gelinas, and D. Khodagholy, ‘‘Integrated internal ion-gated organic
electrochemical transistors for stand-alone conformable bioelectronics,’’
Nature Mater., vol. 22, no. 10, pp. 1227–1235, Oct. 2023.

[155] C. Sun, X. Liu, Q. Jiang, X. Ye, X. Zhu, and R.-W. Li, ‘‘Emerging
electrolyte-gated transistors for neuromorphic perception,’’ Sci. Technol.
Adv. Mater., vol. 24, no. 1, Dec. 2023, Art. no. 2162325.

[156] I. Vourkas, D. Stathis, G. Ch. Sirakoulis, and S. Hamdioui, ‘‘Alternative
architectures toward reliable memristive crossbar memories,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1, pp. 206–217,
Jan. 2016.

[157] M. Zabihi, S. Resch, H. Cilasun, Z. I. Chowdhury, Z. Zhao,
U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar, ‘‘Exploring the
feasibility of using 3-D XPoint as an in-memory computing accelerator,’’
IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 7, pp. 88–96,
2021.

[158] M. Le Gallo et al., ‘‘A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network inference,’’
Nature Electron., vol. 6, no. 9, pp. 680–693, Aug. 2023.

[159] T.-Y. Liu et al., ‘‘A 130.7 mm2 2-layer 32 Gb ReRAM memory device in
24 nm technology,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2013, pp. 140–153.

[160] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh, and D. Fick,
‘‘Analog in-memory subthreshold deep neural network accelerator,’’ in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2017, pp. 1–4.

[161] C. Kim et al., ‘‘A 512-Gb 3-b/cell 64-stacked WL 3-D-NAND flash
memory,’’ IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 124–133,
Jan. 2018.

[162] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller,
D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky,
K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer,
U. Schröder, and T. Mikolajick, ‘‘Ferroelectricity in HfO2 enables
nonvolatile data storage in 28 nm HKMG,’’ in Proc. Symp. VLSI Technol.
(VLSIT), Jun. 2012, pp. 25–26.

RINKU RANI DAS received the B.E. degree
in electronics and telecommunication engineering
from Tripura Institute of Technology College,
Tripura, India, in 2013, the M.Tech. degree
in mobile communication and computing from
the National Institute of Technology, Arunachal
Pradesh, India, in 2017, and the Ph.D. degree in
electronics and communication engineering from
the National Institute of Technology, Agartala,
Tripura, in 2023. She is currently an Electronics

Design Engineer with the School of Electronics Systems and Automations,
Digital University Kerala, India. Her research interests include semiconduc-
tor devices, such as FinFET, multi-bridge channel FET, and sensor.

VOLUME 12, 2024 54047



R. R. Das et al.: FETs for Analog Neural MACs

T. R. RAJALEKSHMI received the bachelor’s
degree in physics from Kerala University, the
master’s degree in physics from the National
Institute of Technology, Calicut, and the Ph.D.
degree in physics from Indian Institute of Tech-
nology Madras. She is currently a Postdoctoral
Fellow with Digital University Kerala. She has
the work experience as a Project Fellow with the
Space Physics Laboratory, Vikram Sarabhai Space
Centre, during the master’s degree. She was a

recipient of Scholarship of Higher Education (SHE), awarded by Kerala
State Higher Education Council (2010–2015), and also qualified National
Eligibility Test for lectureship with Junior Research Fellowship in physical
sciences. She is a fellow of Sakura Science Program, Japan, and also selected
for the JASSO Fellowship for the Research Program with SIT, Japan. Her
research interests include the study of transition metal oxides in bulk and
thin film, 2D materials, graphene-based sensors, composite materials, and
memory devices.

SRUTHI PALLATHUVALAPPIL (Graduate Stu-
dent Member, IEEE) received the bachelor’s
degree in electronics and communication, in 2014,
and the Master of Technology degree in embedded
systems, in 2017. She is currently pursuing the
Ph.D. degree with the School of Electronics Sys-
tems and Automation, Digital University Kerala.
She is also involved in a few projects related to
hardware-based low power memristive network
implementation. Her research interests include

memristive analog circuits, multi-bit logic memories, 3D integration, neu-
romorphic computing systems, and low-power resistive memory networks
for AI.

ALEX JAMES (Senior Member, IEEE) received
the Ph.D. degree from Griffith University, QLD,
Australia. He is currently a Professor and the Dean
(Academic) with Kerala University of Digital
Sciences, Innovation and Technology (aka Digital
University Kerala). He is also the Professor-in-
Charge of the Maker Village, a Chief Investigator
of the Centre for excellence in Intelligent IoT
Sensors, and the Company Director of India
Innovation Centre for Graphene. He is also the

CTO of India Graphene Engineering and Innovation Centre. His research
interests includeAI—neuromorphic systems (software and hardware), VLSI,
and image processing. He is the Creator of ‘‘Kairali AI processors,’’ which
is a low-power AI hardware and founded the startup Keralatoys. He is a
member of IEEE CASS TC on Nonlinear Circuits and Systems, IEEE CTSoc
TC on Quantum in Consumer Technology (QCT), TC on Machine learning,
Deep learning and AI in CE (MDA), IEEE CASS TC on Cellular Nanoscale
Networks and Memristor Array Computing (CNN-MAC), and IEEE CASS
SIG on AgriElectronics. He is a Life Member of ACM, a Senior Fellow
of HEA, a fellow of British Computer Society (FBCS), and a fellow of
IET (FIET). He was awarded IEEE Outstanding researcher by IEEE Kerala
Section for 2022, Kairali Scientist Award (Kairali Gaveshana Puraskaram)
for Physical Science, in 2021 and 2022, and Best Associate Editor for
TCAS1, in 2021. He was the Founding Chair of IEEE CASS Kerala Chapter,
a member of IET Vision and Imaging Network, and currently a member
of BCS’ Fellows Technical Advisory Group (F-TAG). He was an Editorial
Board Member of Information Fusion (2010–2014) and IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEM—I: REGULAR PAPERS (2018–2023); and currently
serving as an Associate Editor for IEEE ACCESS, since 2017, Frontiers in
Neuroscience, since 2022, IEEEOPEN JOURNALOFCIRCUITSAND SYSTEMS, since
2022, and IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, since
2024. He has been the Associate Editor-in-Chief of IEEE OPEN JOURNAL OF

CIRCUITS AND SYSTEMS, since 2024.

54048 VOLUME 12, 2024


