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ABSTRACT Although federated learning (FL) represents a distributed machine learning paradigm that
ensures privacy protection, the failure of stragglers to upload local models in a timely manner results in an
overall degradation of the global model’s performance, and the difficulty of accurately predicting whether
clients will succeed in uploading a local model makes client selection still a challenge. To address this
issue, existing works mainly focus on increasing the number of clients who participate in training within
a fixed time, however, the fact is that the performance of a global model depends on the data used for
training. Therefore, increasing the clients’ data contribution to the global model can effectively enhance
the global model’s performance. To this end, we propose a Bayesian estimation based FL framework,
named FedBoost, to enhance the performance of the model when straggler problem exists. Specifically,
we formulate a long-term problem aimed at maximizing clients’ cumulative effective data contributions,
while satisfying a long-term fairness constraints, which ensure a minimum selection frequency for clients.
By analyzing the stability of virtual queues, we transform the long-term problem into a stepwise one via
Lyapunov optimization, reducing its computational complexity. Due to the inability of the server to predict
whether clients successfully upload the local model before receiving the actual upload, we use Bayesian
estimation based on the observed frequency of successful uploads to estimate this probability. Last, extensive
experimental results indicate that the average test accuracy of our FedBoost is up to 5.59% higher than both
FedAvg and FedCS on three real-world datasets, and achieves test loss that are at most 0.1646 below the
two baselines. Furthermore, the value of Lapunov function remains lower than 1.4, and at least 85% of the
estimation of probabilities are in a reasonable range.

INDEX TERMS Bayesian estimation, client selection, federated learning, Lyapunov optimization.

I. INTRODUCTION
With the proliferation of smart devices, massive amounts
of data are stored on distributed front-end devices, offering
potential for machine learning tasks. However, due to the data
sensitivity, people are reluctant to disclose their raw data to
other entities. Federated learning (FL), a distributed machine
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learning paradigm that enables clients to co-train a global
model without leaking their raw data, is considered as one
of the most promising solutions to the isolated ‘‘data island’’
problem [1]. A typical FL system is consisted of a cloud
server and distributed clients connected by the Internet [2].
Specifically, the selected clients perform several local epochs
of stochastic gradient descent (SGD) on the received global
model using their local datasets. Then, they upload the trained
local model to the server for global model aggregation instead
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of sharing their raw data. The iterative process continues
until the desired testing accuracy is attained. Due to its
commitment to protecting clients’ data privacy, FL has
attracted considerable attention across various fields, such as
healthcare [3], [4], [5], etc., and Internet of Things [6], [7],
[8], etc..
In practical applications, acquiring a high-quality machine

learning model is imperative. Empirical evidence has demon-
strated that boosting clients’ participation accelerates the
convergence of FL models [9]. However, due to practical
constraints such as limited bandwidth and client availability,
only a subset of clients can be selected for participation in
each training round. During each training iteration, a fraction
of clients’ data information remains inaccessible to the global
model. Thus, the client selection play a pivotal role in
the convergence and performance of FL [9]. For example,
clients may encounter various obstacles that prevent them
from uploading their trained local models to the cloud
server, including limited bandwidth, accidental closure of the
training program, and active termination of the FL process by
clients [10]. The straggler problem is a significant challenge
for FL [11], [12]. The failure of selected clients to upload
the trained local model to the server will inevitably lead
to a degradation in the performance of the global model.
Intuitively, we should prioritize clients with high probability
of successfully uploading their local models. However, due to
the heterogeneous data in FL (i.e., data quantity, data quality)
each client contributes differently to the global model. It is
imperative to develop an effective client selection method
to optimize the utilization of clients’ data and enhance the
performance of the global model.

The design of client selection in FL has become an
increasingly prominent focus in current research. Existing
works are based on the empirical observation that increased
client participation in training is positively correlated with
enhanced model performance [13]. However, the hetero-
geneous data in FL implies that selecting more clients to
participate in training within a fixed time does not necessarily
result in an optimal global model. Selecting a client with
a large amount of high-quality data to participate in the
training may contribute much more to the global model than
selecting multiple clients with only a small amount of low-
quality data. The straggler problem makes client selection
more complicated. Even if the selected clients use substantial
amounts of data to train local models, the absence of uploaded
local models to the server means that they contribute nothing.
Actually, the performance of the trained model improves with
an increase in both the quantity and quality of data used for
training [14]. Therefore, in order to enhance the performance
of the global model, it is imperative to optimize the effective
contribution of clients’ data to the global model through
meticulous client selection.

Despite recent advancements in FL, optimizing the perfor-
mance of global models in the presence of stragglers remains
a formidable challenge for three-fold reasons: (i) How to
balance performance and long-term fairness is challenging.

Long-term fairness involves ensuring the average selection
rate of clients. Whereas the distinctive data from each client
can enhance model performance, an excessive focus on
long-term fairness may lead to a compromise in model
performance. (ii) FL clients are heterogeneous. On the
one hand, heterogeneous data contributes uniquely to the
global model. On the other hand, device heterogeneity
introduces the challenge of stragglers. (iii) Information
asymmetry exists between clients and servers. The server
is unaware of the probability of successful model uploads
by the clients. Although we can approximate the probability
of clients successfully uploading the model based on the
frequency of successful uploads, there is a large deviation
in this approximation when the training rounds are not large
enough.

In this paper, given that the global model’s performance
depends on the quantity and quality of data used for
training, we propose to maximize the cumulative effective
data contribution while ensuring long-term fairness, thus
guaranteeing the exceptional performance of the global
model. Then, we take advantage of Lyapunov optimization
to transform the long-term problem into a queue stability
problem, systematically resolving the optimal client selection
scheme step by step while ensuring the establishment of the
long-term fairness constraint. This significantly diminishes
the computational complexity. To address the issue of
unknown clients’ dropout probabilities, we employ Bayesian
estimation as a solution. In contrast to the frequency approxi-
mation method, Bayesian estimation yields an approximation
value that remains close to the true value even with limited
training rounds. Our main contributions are summarized as
follows:

• We propose a federated learning framework via
Bayesian estimation based online clients selection,
named FedBoost. This framework has the potential
to enhance the performance of the global model
by estimating the probability of clients successfully
uploading their local models, thereby maximizing the
cumulative effective data contribution.

• We optimize the global model by maximizing the
cumulative effective data contribution from clients, even
in the presence of the straggler problem. We also
establish a long-term fairness constraint to ensure
equitable clients selection rates. By employing virtual
queues to quantify the long-term fairness constraint, and
use Lyapunov optimization to transform the long-term
problem into a stepwise one, greatly reducing the
computational complexity.

• We conduct extensive experiments on three real-world
datasets (i.e., MNIST, FMNIST, and CIFAR-10) to
illustrate the superiority of our algorithm. The average
test accuracy of our FedBoost outperforms FedAvg and
FedCS by up to 5.59% on MNIST dataset, up to 2%
on FMNIST dataset, and up to 3.73% on CIFAR-10.
The test loss of our FedBoost is lower than both
FedAvg and FedCS by up to 0.0824 on MNIST dataset,
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up to 0.0355 on FMNIST dataset, and up to 0.1646 on
CIFAR-10.

In the rest of this paper, we review the related works in
Section II, and construct the client selection problem in
Section III. We solve it in Section IV and provide the
theoretical analysis. We conduct the performance evaluation
in Section V, and draw the conclusion in Section VI.

II. RELATED WORKS
In this section, we review the related works in FL from three
perspectives, i.e., performance promoting algorithms, client
selection, and the application of Lyapunov optimization.

A. PERFORMANCE PROMOTING ALGORITHMS
FedAvg is one of the most popular FL algorithms, and
serves as the foundation of FL [2]. However, the performance
of FedAvg exhibits a significant decline when confronted
with highly non-i.i.d. datasets. To address this problem, the
authors in [15] proposed FedProx, which is a generalization
of FedAvg. To accelerate the convergence speed of the global
model, Yuan and Ma [16] proposed FedAc. Although FedAc
speeds up the convergence of the global model, it ignores the
communication cost in federated networks.

The above works considered an idealized scenario, i.e.,
a scenario without straggler problem. In real-world scenarios,
the straggler problem may arise as a result of the hetero-
geneity of clients’ devices. Stragglers encounter difficulties
in successfully uploading their local models, resulting in a
performance penalty for the global model.

B. CLIENT SELECTION
To accelerate the convergence speed of the global model,
Nishio and Yonetani [17] proposed the FedCS algorithm,
aiming to select as many clients as possible to participate
in the training while satisfying the constraints. To solve
straggler problem in synchronous FL, Huang et al. [9]
ensured the convergence speed of the global model by
maximizing the expected cumulative effective participation.
Another effective approach to expedite the convergence of
the global model is to minimize the time-span of each
training round, including the time required for downloading
the global model, conducting local training, and uploading
the local model. Huang et al. [1] constructed a long-term
client selection problem to minimize the training time-span
while satisfying the long-term fairness constraint. To avoid
the straggler problem in FL, Zhu et al. [10] proposed an
asynchronous FL framework and constructed a dynamic
client selection problem to reduce the training time-span.

The aforementioned works are based on the premise
that enhancing clients’ participation can expedite the global
model’s convergence speed. The performance of the model is
contingent upon the quantity and quality of the training data.
By selecting appropriate clients, maximizing the effective
data contribution of clients to the global model, the model
performance can be effectively improved.

TABLE 1. List of notations.

FIGURE 1. A federated learning system model for straggler problem.

C. LYAPUNOV OPTIMIZATION
Lyapunov optimization can be applied to communication
and queueing systems, e.g., an Internet with peer-to-peer
communication [18]. The FL system can be considered an
Internet with peer-to-peer communication due to its inherent
structural characteristics. Hence, Lyapunov optimization can
be employed for the analysis of problems in FL. Lyapunov
optimization can be directly applied to scenarios with actual
queues. The research conducted in [19] demonstrates that
the implementation of Lyapunov optimization can effectively
mitigate communication delays between vehicle users and
roadside units within federated vehicle networks.When faced
with long-term time-average constraints in the optimization
problem, the introduction of virtual queues enables us to
satisfy the constraints effectively [18]. In this case, Lyapunov
optimization can be applied to the scenarios without actual
queues. Battiloro et al. [20] introduced virtual queues to
transform the time-average constraints into queue stability,
and used Lyapunov optimization to construct a dynamic
resource allocation strategy.

Different from the client selection algorithms mentioned
earlier, which focus on increasing the number of clients
participating in FL, this paper aims to optimize the cumulative
effective data contribution from clients by devising a FL
framework. Moreover, we view the entire FL process as an
integrated entity. To enhance the convergence speed of the
global model, we consider the impact of straggler problem
on the global model from a holistical perspective.
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III. PROBLEM FORMULATION
In this section, we construct a FL framework to accelerate the
convergence of the global model. And we propose a client’s
effective data contribution and a long-term fairness constraint
on clients. Then, we formulate a dynamic client selection to
maximize the cumulatively effective data contribution.

A. SYSTEM MODEL
In a typical FL system, there are N clients, indexed by N =

{1, · · · ,N }, and one server. Each client n owns a private local
dataset Dn with Dn = |Dn| data samples. Frequently used
symbols are listed in Table 1.

These clients train local models on their raw data and
communicate with the server periodically to co-train a global
model. Typically, the clients datasets are non-i.i.d., i.e., the
volume and distribution of the clients datasets are different.
Specifically, the local loss function of client n is given as
follows [21]:

Fn (w) =
1
Dn

∑
j∈Dn

lj (w) , (1)

where j is a data sample in client n’s dataset, and lj () is
the experience loss function. With the formula of the local
loss function, the typical goal is to minimize the global loss
function, which is described as bellow:

min
w
f (w) =

N∑
n=1

Dn
D
Fn (w) , (2)

whereD =
∑N

n=1Dn, i.e., total number of data samples of all
clients.

FL aims to achieve a optimal global model w∗
=

argmin
w

f (w) by minimizing the global loss function.

To achieve this objective, the server needs to select a fraction
of clients to co-train a global model based on their raw data.
The straggler problem arises as a consequence of the inherent
characteristics associated with FL. In reality, the occurrence
of this problem can be attributed to a multitude of factors. For
instance, the inadvertent shutdown of the training process by a
client can lead to the straggler prblem. In FL, when stragglers
fail to upload their local models properly during the training
process, their data does not contribute to the global model,
resulting in a deceleration of the convergence rate for the
global model.

To promote the global model’s performance in the presence
of stragglers in the FL system, the server needs to select
appropriate clients to participate in training. As shown in
Figure 1, we establish a FL system model for straggler
problem with five steps: (i) The server evaluates clients’
effective data contributions, and selects clients according to
the evaluation. (ii) The server distributes the global model
to the selected clients. (iii) Each selected client trains the
model using their local data. (iv) Each selected client uploads
the trained local model. (v) The server aggregates the local
models via our proposed aggregation rule.

Algorithm 1 Performance Boosting FL
Input: Clients Number N, Global Epochs T, Local Epochs

K, Learning Rate η
Output: Global Model wTg
1: Initialize the global model w0

g;
2: for t = 1 : T do
3: Server selects clients St according to Algorithm 2;
4: if n ∈ St then
5: wt,0n = wt−1

g ;
6: for k = 1 : K do
7: δt,kn = ∇Fn

(
wt,k−1
n

)
;

8: wt,kn = wt,k−1
n − ηδt,kn ;

9: end for
10: wtn = wt,Kn ;
11: Uploads wtn to server;
12: end if
13: pt,n =

p̄t,nIt,n∑
i∈St p̄t,iIt,i

,∀n ∈ St ;

14: wtg =
∑

i∈St pt,iw
t
i ;

15: end for

B. FL FRAMEWORK FOR STRAGGLER PROBLEM
To address the straggler problem, we propose a performance
boosting FL framework (named FedBoost) that can speed
up global model convergence. This framework constructs
a client selection method to maximize the effective data
contribution to the global model. To further minimize
straggler’s influence, we build a rewighting aggregation rule.
FedBoost consists of the following parts:

• Client selection: According to the problem formulated
in Section III, the server selects a fraction of available
clients to participate in each training round, so that the
expected effective data contribution to the global model
is maximized. That is,

S∗
t = argmin

St∞t=1

P1, (3)

where S∗
t is the optimal clients set in t-th round.

• Local training: After receiving the global model, the
selected clients run several local epochs on their local
datasets to train a local model, that is, achieving a
optimal solution of the local loss function with SGD
optimizer, i.e.,

wt+1
n = wtn − η∇F

(
wtn

)
, ∀n ∈ N , ∀t > 0. (4)

• Model aggregationWhen the allocated time for training
and model uploading provided by the server to clients
expires, the server calculates new aggregation weight for
clients, who upload their local model, by the following
formula:

pt,n =
p̄t,nIt,n∑
i∈St p̄t,iIt,i

, ∀n ∈ St , (5)

where St is the set of selected clients, p̄t,i = Dn/D,
and It,i ∈ {0, 1} indicates whether client i successfully
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FIGURE 2. Comparison of reweight aggregation rule and deadline based
aggregation rule.

uploaded the local model in t-th round. Then, the global
model aggregates the local models in the following way:

wt+1
g =

∑
i∈St

pt,iwti , (6)

wherewt+1
g is the aggregated global model, andwti is the

local model uploaded by client i in t-th round.

The FedBoost framework is summarized in Algorithm 1.
To demonstrate the effectiveness of our reweight aggregation
rule, we compare it with the deadline based aggregation
rule [9], denoted as:

wt+1
g =

∑
i∈St ,Ii=1

pt,iwti +

∑
i∈St ,Ii=0

pt,iwtg. (7)

Intuitively, when the selected clients do not upload the
updated local model, the deadline based aggregation rule
uses wtg to take place of wtn. This aggregation rule somewhat
mitigated the local model loss problem caused by stragglers.
However, substituting wtg for w

t
n for the stragglers still slows

down the convergence of the model. For example, if a
large percentage of clients are stragglers in t-th round, the
global model makes little progress in this round. As shown
in Figure 2, we compare our reweight aggregation rule
with the deadline based aggregation rule. We experiment on
MNIST and set the probability of clients not uploading the
model to random numbers. The outcome aligns with our
expectations, indicating that the reweight aggregation rule
effectively mitigate the straggler problem.

C. EFFECTIVE DATA CONTRIBUTIONS
It is noteworthy that the more effective contributions the data
makes to the model, the better the overall performance of
the model. If the model is trained on a dataset with higher
data quality and a larger quantity of data, the resultant model
performance is better, leading to higher test accuracy [22].
Hence, to enhance the global model’s performance, it is
crucial to select the appropriate clients in a way that
maximizes their effective data contributions. We denote the
effective data contribution of client n in t-th round to be:

χt,n = qnθnxt,nIt,n, (8)

where qn = Dn/D, θn is the data quality of client n, and
xt,n ∈ {0, 1} denotes whether client n is selected in t-th
round. In other words, if n ∈ St then xt,n = 1; otherwise
xt,n = 0. The global model in FL system is obtained through
a training process. Therefore, to attain a well-performing
global model after the training process, we need to maximize
the cumulative effective data contribution throughout the
entire training process, i.e.,

T∑
t=1

N∑
n=1

χt,n. (9)

Maximizing the cumulative effective data contribution is
equivalent to maximizing the time-average cumulative effec-
tive data contribution. When the number of training rounds is
sufficiently large, our objective is equivalent to maximizing
the limit value of the time-average effective data contribution,
i.e.,

min lim
T→∞

−
1
T

T∑
t=1

N∑
n=1

χt,n. (10)

D. LONG-TERM FAIRNESS
Another criterion to consider is fairness, as it holds a
significant influence on the performance of the global
model [23]. In an ideal scenario where the server possesses
accurate predictive capabilities to identify potential straggler
clients, when the first m clients with the largest effective
data contribution are always selected, the cumulative effective
data contribution of the FL process is maximized. Yet, due
to the heterogeneity of clients’ data in FL, each client’s
dataset makes a unique contribution to enhancing the model’s
accuracy [10]. On the one hand, if some clients are always
selected, their associated costs, such as energy consumption,
may significantly exceed those incurred by other clients.
On the other hand, if some clients are always ignored, due to
the loss of client-specific data information, the performance
of the trained global model may experience a significant
decline. In this regard, greedy client selection can not
optimize the global model. Thus, fairness is a crucial issue
that should be taken into account. Moreover, fairness is a
relative criterion, not an absolute one [24]. To model the
long-term fairness, we denote Xt =

[
xt,1, · · · , xt,N

]
, where

Xt is a vector representing the client selection in t-th round.
In order to ensure that each client can make effective data
contributions to the global model, we construct a long-term
fairness constraint, i.e.,

lim
T→∞

1
T

T∑
t=1

xt,n ≥ γn, γn ∈ (0, 1] , ∀n ∈ N , (11)

where γn is the expected guaranteed selection frequency for
client n.

E. PROBLEM FORMULATION
In FL, having all clients participate in training creates a
significant communication burden. Therefore, it is common
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practice to select a fraction of clients to participate in each
training round. In this paper, we assume that the number of
clients selected by the server to participate in each training
round is at most m. Hence, we have

zt = EXT
t ≤ m, ∀t > 0, (12)

where E = [1, · · · , 1], i.e., is a N -dimensional unit vector.
Based on the discussions on effective data contribution and
client fairness, we define the problem model as follows:

P1 : min
{St }∞t=1

lim
T→∞

−
1
T

∑T

t=1

N∑
n=1

E
[
χt,n

]
,

s.t.

{
lim
T→∞

1
T

∑T
t=1 xtn ≥ γn,∀n ∈ N ,∑N

n=1 xtn ≤ m,∀t > 0.

(13)

Solving P1 presents some challenges. There are 2-fold
concerns: (i) It can be noted that the object function and
long-term fairness constraint in P1 are time-coupled. Offline
solving is complicated by the interplay of uncertainty and
temporal coupling [25]. (ii) The server cannot determine
know exactly which client will be straggler. Hence, the
estimation of clients’ expected effective data contribution
remains unattainable, which poses a challenge in selecting the
proper clients to promote the performance of the model.

IV. CLIENT SELECTION FOR MAXIMIZING EFFECTIVE
DATA CONTRIBUTION
In this section, we exploit the Lyapunov optimization to
transform the temporal coupling problem P1 into a queue
stability problem, which is much easier to be solved. Then,
we leverage Bayesian estimation to assess the probabilities of
clients becoming stragglers [26], constructing an online client
select algorithm. The algorithm’s time complexity, fairness
guarantee and convergence are subsequently analyzed from a
theoretical perspective.

A. PROBLEM TRANSFORMATION UNDER LYAPUNOV
OPTIMIZATION
The management of the long-term fairness constraint poses
challenges for conventional optimization methods. Lya-
punov optimization employs virtual queues to transform the
long-term fairness constraint to the stability of the virtual
queues. This transformation enables stepwise resolution of
the objective function. For the long-term fairness constraint
in P1, we introduce the following virtual queues:

Zt+1,n = max
{
Zt,n + γn − xt,n, 0

}
, ∀n ∈ N , ∀t > 0,

(14)

where Z0,n = 0,∀n ∈ N . Proposition 1 is now presented to
establish the fundamental principle of this transformation.
Proposition 1: The long-term fairness constraint in

Eq. (11) holds, if all virtual queues remain mean rate stable
during the FL process.

Proof: From the definition of the virtual queues, we can
know that Zt+1,n ≥ Zt,n + γn − xt,n,∀t > 0,∀n ∈ N . Thus,

the following inequality hold:

T∑
t=0

(
Zt+1,n − Zt,n

)
≥

T∑
t=1

(
γn − xt,n

)
, (15)

where the left hand side is equal to ZT+1,n. As assumed, Zt,n
is mean rate stable for ∀n ∈ N , which means that

lim
t→∞

E
[
Zt,n

]
t

= 0, (16)

where E
[
Zt,n

]
is the expectation of Zt,n. This implies that

lim
T→∞

T∑
t=1

E
[
γn − xt,n

]
= 0. (17)

The above basic mathematical operations show that the long
term constraint holds.

The long-term fairness constraint in P1 can be replaced by
queue stability constraint, i.e.,

lim
T→∞

1
T
ZT ,n = 0, ∀n ∈ N , (18)

where Zt,n is the virtual queues defined in Eq. (14). Thus,
the problem is transformed to maximizing the effective
data contribution while ensuring all virtual queues mean
rate stable. To measure the queues’ length, we construct a
Lyapunov function, which is a nonnegative metric of the
virtual queues. The vector of virtual queues’ backlogs is
defined as Zt =

[
Zt,1, · · · ,Zt,N

]
. Then, the Lyapunov

function is defined as:

L (Zt) =
1
2
Z2
t,n. (19)

The drift in virtual queues’ length (i.e., Lyapunov drift)
is quantified by computing the discrepancy between the
Lyapunov function of t + 1-th round and that of t-th round,
i.e.,

1(Zt) = E [L (Zt+1)− L (Zt)] . (20)

[18] states that given ϵ > 0, α > 0, and B > 0, such that

1(Zt)+ αE

[
N∑
n=1

χt,n | Zt

]
≤ B+ α

N∑
n=1

χ∗
t,n − ϵ

N∑
n=1

Zt,n,

(21)

then all the virtual queues are mean rate stable, where
χ∗
t,n is the optimal effective data contribution, α and ϵ are

weight factors, and B is a constant. However, calculating
1(Zt) needs the information from t + 1-th round, which is
not accessible in t-th round. Thus, to tackle this problem,
an upper bound of the Lyapunov drift is given as follows:

1(Zt) = E [L (Zt+1)− L (Zt)]

≤ B+ E

[
N∑
n=1

Zt,n
(
γn − xt,n

)
| Zt

]
. (22)
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Consequently, P1 can be transformed into the following
problem:

P2 : min
St

E

[
−α

N∑
n=1

χt,n +

N∑
n=1

Zt,n
(
γn − xt,n

)]
,

s.t.
N∑
n=1

xtn ≤ m,∀t > 0,

(23)

where α is a weight factor that regulates fairness and effective
data contribution.

B. BAYESIAN ESTIMATION BASED ONLINE CLIENTS
SELECTION
As defined in Eq. (8), the effective data contribution is a linear
function of the client selection. We can substitute Eq. (8) into
the object in P2, that is,

−α

N∑
n=1

E [xtn (qnθnItn + Ztn)] + γn

N∑
n=1

Ztn. (24)

In this paper, we assume that the probability d̄n of client
n becoming a straggler is a fixed value for ∀n ∈ N (but
not known to the server). The expectation of the effective
data contribution is E

[
χt,n

]
= qnθnxt,ndn, where dn =

1−d̄n,∀n ∈ N .With the above assumption, we can transform
P2 into the following problem:
P3 : min

St
− α

∑N

n=1
xtn (qnθndn + Ztn)+ γn

∑N

n=1
Ztn,

s.t.
∑N

n=1
xtn ≤ m.

(25)

In each training round, qn, θn, and Zt,n are constants.
Therefore, if the probabilities dn,∀n ∈ N are known in
advance, P3 is quite easy to be solved. We just need to
calculate the value of the objective function in P3 for each
client, and then select the first m largest clients. The law
of the large number ensures when events occur enough
times, we can approximate the probability of an event by the
frequency of its occurrence [26]. However, when the training
rounds are relatively small, the law of large numbers does
not apply. For instance, if the server selects the client n three
times in a row at the beginning of training (i.e., x1,n = 1,
x2,n = 1, and x3,n=1), and client n fails to upload local model
during all three rounds of training, the frequency at which
client n becomes a straggler is 1. However, due to the limited
number of observations, it would be inappropriate to assert
that dn = 0. We take advantage of Bayesian estimation to
estimate the probability vector 2 = [d1, · · · , dN ]. Bayesian
estimation consists of the following five steps.

• We determine the parameters that need to be estimated
2 = [d1, · · · , dN ], and set a prior distribution P (2).

• We calculate the frequency vector (i.e., the frequency of
successful local model upload) Rt =

{
rt,i

}N
i=1 from the

prior distribution about 2.

Algorithm 2 Bayesian Estimation Based Online Client
Selection (BEBOCS)
Input: Queues backlog vector: Zt , Frequency vector: Rt
Output: Selected clients: St
1: Set a prior distribution P (2);
2: Calculate L (Rt | 2) according to Eq. (26);
3: CalculateM (Rt | 2) according to Eq. (27);
4: Calculate ψ (2 | Rt) according to Eq. (28);
5:

[
d̂1, · · · , d̂N

]
= E [ψ (2 | Rt)];

6: for n = 1 : N do
7: −α

∑N
n=1 xtn

(
qnθnd̂n + Ztn

)
+ γn

∑N
n=1 Ztn;

8: end for
9: Select the first m largest clients St ;

• We calculate the joint probability function using the
observed samples:

L (Rt | 2) = P
(
rt,1, · · · , rt,N | 2

)
= 5

i∈N
P

(
rt,i | 2

)
. (26)

• We calculate the probability of the marginal distribution

M (Rt | 2) =

∫
2

H (Rt | 2) d2

=

∫
2

P (2)L (Rt | 2) d2, (27)

whereH (Rt | 2) = P (2)L (Rt | 2).
• We use Bayesian formula to get the posteriori distribu-
tion for the parameters

ψ (2 | Rt) =
P (2)L (Rt | 2)∫

2
P (2)L (Rt | 2) d2

, (28)

where ψ (2 | Rt) is the posteriori distribution for
the parameters. We calculate E [ψ (2 | Rt)] as the
estimation of the parameters.

Based on the Bayesian estimation, we propose a online
clients selection algorithm, as summarized in Algorithm 2.
When each training round begins, the server can calculate
queues backlog vector Zt and the frequency vector Rt . Then,
the server can estimate the probability of successful local
model upload of each clients d̂n,∀n ∈ N . Hence, the server
can select a subset of clients St as an optimal solution of P3.

C. THEORETICAL ANALYSIS FOR PROPOSED ALGORITHM
The time complexity of Algorithm 2, fairness guarantee, and
convergence of the Algorithm 2 are analyzed theoretically.

1) TIME COMPLEXITY
Because there are N clients participating in FL, the time
complexity for calculating Eq. (26) - Eq. (28) is O (N ).
Furthermore, the time complexity for computing the effective
data contribution of N clients is also O (N ). The backlog
of each client’s virtual queue is known. Our objective is
to select the first m clients based on a weighted value of
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their effective data contributions and the backlogs of the
virtual queues. Therefore, we just need to sort all clients
by the weighted value. On average, the time complexity of
quicksort isO (NlogN ). The time complexity of our BEBOCS
is O (NlogN ).

2) FAIRNESS GUARANTEE
If the long-term fairness constraint in Eq. (11) is not satisfied,
the backlogs of the virtual queues will grow to infinity. Thus,
to guarantee the long-term fairness constraint, we need to
make sure that all virtual queues are mean rate stable. The
following theorem shows that our BEBOCS algorithm can
guarantee the stability of the virtual queues.
Theorem 1: The proposed BEBOCS algorithm guarantees

the long-term fairness constraint.
Proof: In our algorithm, A (t) is stationary. Thus,

according to the Theorem 4.5 in [18], there exists an A-only
policy ϑ , for ∀ϵ > 0 the following two inequality holds:

E

[
N∑
n=1

xϑt,nqnθnIt,n

]
≤

N∑
n=1

x∗
t,nqnθnIt,n + ϵ,

γn ≤ E
[
xϑt,n

]
+ ϵ. (29)

Based on the definition of Lyapunov drift, we have

E [L (Zt+1)− L (Zt)]

≤
N
2

+

N∑
n=1

γnZt,n − E

[
N∑
n=1

xt,nZt,n | Zt

]

≤ C +

N∑
n=1

γnZt,n − E

[
N∑
n=1

xt,n
(
Zt,n + γnqnθnIt,n

)]
,

(30)

where C =
N
2 + mqθγn, q = maxn∈N {qn}, and θ =

maxn∈N {θn}. And a lower bound of the last term in the right
hand side of Eq. (30) is

E

[
N∑
n=1

xt,n
(
Zt,n + αθnqnI t, n

)
| Zt

]

≥E

[
N∑
n=1

xϑt,n
(
Zt,n + αθnqnI t, n

)
| Zt

]

≥E

[
N∑
n=1

xϑt,nZt,n | Zt

]

≥

N∑
n=1

(γn − ϵ)Zt . (31)

Let ϵ → 0, we can deduce the following inequality

E

[
N∑
n=1

xt,n
(
Zt,n + αθnqnI t, n

)
| Zt

]
≥

N∑
n=1

γnZt,n. (32)

Then we substitute (32) into (30), and we add both sides of
inequality from t = 0 to t = T simultaneously. Based on

L (Z0) = 0 and E
[
Zt,n

]2
≤ E

[
Z2
t,n

]
, we can deduce that

N∑
n=1

E
[
Zt,n

]2
≤

N∑
n=1

E
[
Z2
t,n

]
≤ 2TC . (33)

Based on Jensen’s inequality, we can deduce that

lim
T→∞

N∑
n=1

≤ lim
T→∞

√
2NC
T

= 0, (34)

which implies limT→∞
E[ZT ]
T = 0, i.e., all virtual queues

are mean rate stable. This ensures that the long-term fairness
constraint holds.

When the long-term fairness constraint in (11) is violated,
there will be some virtual queues with infinite length
orientation, which means some clients are always selected.
The above theorem shows that the virtual queues are mean
rate stable. This implies our BEBOCS can give clients a fair
selection rate.

3) CONVERGENCE ANALYSIS
We prove the convergence of the proposed performance
promoting FL from the perspective of functional analysis.
Banach fixed point theorem states that if f is a contraction
mapping on a complete metric space, then there is a unique
x such that f (x) = x [27]. We make a common assumption
and take advantage of Banach fixed point theorem to prove
the convergence of our algorithm.
Assumption 1: The loss function of all clientsFn (w) ,∀n ∈

N are m-strong convex and L-smooth, i.e.,

⟨∇Fn (w)− ∇Fn (w̄) ,w− w̄⟩ ≥ m||w− w̄||, (35)

||∇Fn (w)− ∇Fn (w̄) || ≤ L||w− w̄||. (36)

Theorem 2: If all loss function Fn (w) , n ∈ N satisfy
Assumption 1, given m > L > 0, the reweight aggregation
can ensure that an appropriate learning rate η can be selected
to make Algorithm 1 convergent.

Proof: First, we prove that the global loss function
is L-smooth and m-strong convex. Due to f (w) =∑

n∈St Fn (w), where St is the selected clients in t-th round.

||∇f (w)− f (w̄) || ≤

∑
n∈St

pt,nL||w− w̄||. (37)

And the reweight aggregation rule ensures that
∑

n∈St pt,n =

1. Thus we have

||∇f (w)− f (w̄) || ≤ L||w− w̄||, (38)

which means the global loss function is L-smooth. Similarly,
we have

⟨∇f (w) − ∇f (w̄),w− w̄⟩ ≥

∑
n∈St

pt,nm∥w− w̄∥

= m∥w− w̄∥, (39)

52262 VOLUME 12, 2024



Y. Sheng et al.: FedBoost: Bayesian Estimation Based Client Selection for Federated Learning

which means the global loss function is m-strong convex.
Then we can infer that the following inequality is true for ∀w
and ∀w̄:

∥∇f (w) − ∇f (w̄)∥ ≤ L∥w− w̄∥,

⟨∇f (w) − ∇f (w̄),w− w̄⟩ ≥ m∥w− w̄∥. (40)

The update of the global model can be denoted as wt+1
g =

wtg − η∇f
(
wtg

)
. Let H (w) ≜ w− η∇f (w), we have

∥H (w) − H (w̄)∥ = ∥w− w̄− η(∇f (w) − ∇f (w̄))∥

≤

(
1 − 2mη + 2η2L2

)
∥w− w̄∥. (41)

In this case, we can choose an appropriate learning rate η
to make sure 0 < 1 − 2mη + 2η2L2 < 1, such that
H (w) is a contraction mapping. This implies our algorithm
is convergent.
The update of the global model can be regarded as the
gradient descent of the global loss function, which is proved
to be a contraction mapping. This means that if we update the
global model by wt+1

g = wtg − η∇f
(
wtg

)
, then there exists a

unique w∗
g such that w∗

g = w∗
g − η∇f

(
w∗
g

)
V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
FedBoost compared with FedAvg [2] and FedCS [17] on four
real world datasets.

A. EXPERIMENTAL SETTINGS
1) DATASETS
We use three real world datasets, i.e., MNIST [28],
FMNIST [29], and CIFAR-10 [30]. The MNIST dataset
consists of 70, 000 images, including 60, 000 for training
and 10, 000 for testing. The FMNIST dataset contains
10 categories of images, including 60, 000 training samples
and 10, 000 test samples. The CIFAR-10 dataset consists of
10 different categories of images, including 50, 000 training
samples and 10, 000 test samples. We adopt a heterogeneous
partitioning. In heterogeneous partitioning, each client has
a different amount of local data. The dataset is divided
by category so that each client has samples in different
categories. In each category, the data samples are divided to
clients via Dirichlet distribution, creating an imbalance in the
amount of data.

2) MODELS
(1) Model for MNIST: On MNIST, we adopt a CNN model
with the following structure: First, a 3 × 3 convolutional
layer with 1 in-channel and 32 out-channels, followed by
a 2 × 2 max pooling layer whose stride is 2. Then, a
3 × 3 convolutional layer with 32 in-channels and 64 out-
channels, followed by a dropout function with 0.25 dropout
rate. We use the Flatten function to flatten the input tensor
to a one-dimensional tensor. Next, a liner layer with 9216
in-features and 128 out-features, followed by a dropout

function with 0.5 dropout rate. Finally, a liner layer with 128
in-features and 10 out-features, followed by a ReLu function.
(2) Model for FMNIST: On FMNIST, we adopt a CNN
model with the following structure: Two 3× 3 convolutional
layers with 1 in-channel, 32 out-channels and 32 in-channels,
64 out-channels, respectively. Then, there’s a 2 × 2 pooling
layer. Next, two linear layers with 3136 in-features, 120 out-
features and 120 in-features, 10 out-features, respectively.
(3) Model for CIFAR-10: On CIFAR-10, we adopt a
CNN model with the following structure: First, a 5 ×

5 convolutional layer with 3 in-channels and 6 out-channels,
followed by a 2 × 2 max pooling layer. Then, a 5 ×

5 convolutional layer with 6 in-channels and 16 out-channels,
followed by three linear layers whose in-features and out-
features are 400 and 120, 120 and 84, and 84 and 10,
respectively.

3) HYPERPARAMETERS
The global epochs T is set to 200 for MNIST and 150 for
the other datasets, and the number of local training rounds is
set to 1. The clients number in total N is set to 60, and the
selected clients number per round is set to 30. We set local
training batch size to 10, and use SGD optimizer to train local
models. The learning rate η is set to 0.03 with a weight decay
0.001, i.e., ηt+1 = (1 − 0.001) ηt . We set dn to 0.8 for all
clients, and we set the estimate values to 1 for all clients at
the begining of the evaluation. We set the non-IID degree to
0.5 for Dirichlet distribution. And we set γn =

1
N ,∀n ∈ N .

4) BASELINES
We compare our proposed FedBoost with the following
baselines: (1) FedAvg [2]: FedAvg is one of the most popular
FL algorithms, which randomly selects the clients with an
equal probability. (2) FedCS [17]: FedCS selects m clients
that satisfy the constraints in a greedy way.

5) METRIC
We evaluate the performance of the global model with the
followingmetrics: (1) Average test accuracy:We compare the
average test accuracy of the global model, i.e., 1

N

∑N
n=1 accn,

where accn is the test accuracy of the global model on client
n’s test dataset. (2) Test loss: We compare the average test
loss of the global model, i.e., 1

N

∑N
n=1 lossn, where lossn is

the test loss of the global model on client n’s test dataset.
(3) Value of Lyapunov function: We monitor the changes
in the Lyapunov function (as defined in Eq. (19)) of our
FedBoost across training rounds. If the value of the Lyapunov
function consistently remains above a certain threshold,
it indicates that the long-term fairness constraint is upheld.
(4) Probability: We determine the probability of each client
successfully uploading the model to the server through our
FedBoost. And compare it to the real value.

B. COMPARISON OF AVERAGE TEST ACCURACY
Figure 3 depicts the comparison of average test accuracy
between our proposed FedBoost and the baselines. Because
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FIGURE 3. Comparison of average test accuracy on three datasets: (a) MNIST, (b) FMNIST, (c) CIFAR-10.

FIGURE 4. Comparison of test loss on three datasets: (a) MNIST, (b) FMNIST, (c) CIFAR-10.

FIGURE 5. Value of Lyapunov function of our FedBoost on MNIST,
FMNIST, and CIFAR-10.

the classification task on MNIST and FMNIST datasets is
relatively simple, the effect of FedCS algorithm on these
two data sets is not ideal. On the CIFAR-10 dataset, the
effect of FedCS is significantly better than that of FedAvg.
The goal of FedCS is to select m clients to participate
in training under constrained conditions, so as to promote
model performance improvement. When there is a straggler
problem, our FedBoost maximizes the clients’ effective data
contribution to the global model, thereby improving the test
accuracy of the global model. Consequently, our FedBoost
outperforms FedCS.

Specifically, with 200 training rounds on MNIST, our
FedBoost achieves a average test accuracy of 82.46%,
higher than the value of 81.05% and 77.08% achieved by
FedAvg and FedCS, respectively. With 150 training rounds
on FMNIST, our FedBoost achieves a average test accuracy

FIGURE 6. Estimation of probability of clients successfully upload local
model by our FedBoost on MNIST, FMNIST, and CIFAR-10.

of 85.02%, 1.28% higher than FedAvg and 2% higher than
FedCS. Our FedBoost exhibits a distinct advantage when
applied to the CIFAR-10 dataset. With 150 training rounds on
CIFAR-10, our FedBoost achieves a average test accuracy of
43.44%, 5.59% higher than FedAvg, and 2.53% higher than
FedCS.

C. COMPARISON OF AVERAGE TEST LOSS
Figure 4 depicts the comparison of test loss between the
proposed FedBoost and the baselines. The average test loss
of FedCS has experienced a sudden and significant increase,
as evidenced by the data. The observed phenomenon can
likely be attributed to the straggler problem affecting FedCS.
Given that FedAvg employs a uniform clients selection
probability and we maintain equal probabilities for clients
dropout, the straggler problem may has a small impact
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on FedAvg. The random selection of clients with equal
probability in FedAvg is insufficient for maximizing the
effective data contribution of clients, thereby limiting its
ability to effectively enhancemodel performance. Thus, when
there’s a straggler problem, our FedBoost ensures a selection
rate of clients while prioritizing the inclusion of high-quality
clients, thereby maximizing their contribution to the effective
data of the global model and subsequently reducing test loss.

Specifically, with 200 training rounds on MNIST, our
FedBoost achieves a test loss of 0.2402, which is lower than
the value of 0.2616 and 0.3226 achieved by FedAvg and
FedCS, respectively. With 150 training rounds on FMNIST,
the proposed FedBoost achieves a test loss of 0.2780,
0.0191 lower than FedAvg and, 0.0355 lower than FedCS.
Our FedBoost also outperforms over FedAvg and FedCS
in terms of testing loss on the CIFAR-10, corresponding
to the average testing accuracy. With 150 training rounds
on CIFAR-10, our FedBoost achieves a test loss of 1.3117,
0.1646 lower than FedAvg, and 0.1341 lower than FedCS.

D. MEARUSRES OF FAIRNESS
Figure 5 depicts the length of virtual queues on MNIST,
FMNIST, and CIFAR-10. The Lyapunov function exhibits
fluctuations on the MNIST dataset. However, it is evident
that this value possesses an upper bound U . This implies
limt→∞

1
t Zt,n ≤ limt→∞

U
t = 0,∀n ∈ N , i.e., all

virtual queues are mean rate stable. The value of Lyapunov
function on FMNIST and CIFAR-10 is almost a constant.
Obviously, virtual queues are mean rate stable on both
datasets. In conclusion, our FedBoost ensures the long-term
fairness constraints across all datasets.

E. BAYESIAN ESTIMATION OF PROBABILITY
Figure 6 depicts the estimation of the probability of clients
successfully uploading the model after the training process.
In the experiments conducted on the three datasets, a sig-
nificant proportion of clients were selected between 50 and
65 times. If we employ frequency of clients successfully
uploading the model to estimate the probability of clients
successfully uploading the model, such a number of selecting
times is obviously not enough. By employing Bayesian esti-
mation, we can obtain highly precise probability estimations.
While certain estimates exhibit significant deviations from
the true value (0.8), at least 85%of values fall within the range
of 0.70 to 0.85.

VI. CONCLUSION
To promote the performance of the global model when
straggler problem exists, we have proposed to maximize
clients’ cumulative effective data contribution to the global
model as the optimization object. Therefore, we have
proposed a Bayesian estimation based FL framework, named
FedBoost, and we have analyzed its fairness and convergence
theoretically. We have employed Bayesian estimation to
address the challenge of unknown probabilities associated
with clients successfully uploading the model. Extensive

experiments on three real-world datasets have shown that our
proposed FedBoost had the highest average test accuracy and
the lowest test loss compared with FedAvg and FedCS.
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